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Abstract. Reachability for piecewise affine systems is known to be un-
decidable, starting from dimension 2. In this paper we investigate the
exact complexity of several decidable variants of reachability and con-
trol questions for piecewise affine systems. We show in particular that
the region to region bounded time versions leads to NP -complete or
co-NP -complete problems, starting from dimension 2.

1 Introduction

A (discrete time) dynamical system H is given by some space X and a func-
tion f : X → X. A trajectory of the system starting from x0 is a sequence
x0, x1, x2, . . . etc., with xi+1 = f(xi) = f [i+1](x0) where f [i] stands for ith iter-
ate of f . A crucial problem in such systems is the reachability question: given a
system H and R0, R ⊆ X, determine if there is a trajectory starting from a point
of R0 that falls in R. Reachabilty is known to be undecidable for very simple
functions f . Indeed, it is well-known that various types of dynamical systems,
such as hybrid systems, piecewise affine systems, or saturated linear systems,
can simulate Turing machines, see e.g., [1,2,3,4].

This question is at the heart of verification of systems. Indeed, a safety prop-
erty corresponds to the determination if there is a trajectory starting from some
set R0 of possible initial states to the set R of bad states. The industrial and
economical impact of having efficient computer tools, that are able to guaran-
tee that a given system does satisfy its specification, have indeed generated very
important literature. Particularly, many undecidability and complexity-theoretic
results about the hardness of verification of safety properties have been obtained
in the model checking community. However, as far as we know, the exact com-
plexity of natural restrictions of the reachability question for systems as simple
as piecewise affine maps are not known, despite their practical interest.

Indeed, existing results mainly focus on the frontier between decidability
and undecidability. For example, it is known that reachability is undecidable
for piecewise constant derivative systems of dimension 3, whereas it is decidable
for dimension 2 [5]. It is known that piecewise affine maps of dimension 2 can
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simulate Turing machines [6], whereas the question for dimension 1 is still open
and can be related to other natural problems [7,8,9]. Variations of such problems
over the integers have recently been investigated [10].

Some complexity facts follow immediately from these (un)computability re-
sults: for example, point to point bounded time reachability for piecewise affine
maps is P -complete as it corresponds to configuration to configuration reacha-
bility for Turing machines.

However, their remain many natural variants of reachability questions which
complexity have not yet been established.

For example, in the context of verification, point to point reachability is often
not sufficient. On the contrary, region to region reachability is a more general
question, which complexity do not follow from existing results.

In this paper we choose to restrict to the case of piecewise affine maps and
we consider the following natural variant of the problem.

CONTINUOUS BOUNDED TIME: we want to know if region R is reached
in less than some prescribed time T , with f assumed to be continuous

Remark 1. We consider piecewise affine maps over the domain [0, 1]d, that is to
say we do not restrict to the integers as in [10]. That would make the problem
rather different. We also assume f to be continuous which makes the hardness
result more natural.

In an orthogonal way, control of systems or constructions of controllers for
systems often yield to dual questions. Instead of asking if some trajectory reaches
region R, one wants to know if all trajectories reach R. The questions of stability,
mortality, or nilpotence for piecewise affine maps and saturated linear systems
have been established in [11]. Still in this context, the complexity of the problem
when restricting to bounded time or fixed precision is not known.

This paper provides an exact characterization of the algorithmic complexity
of those two types of reachability for discrete time dynamical systems. Let PAFd
denote the set of piecewise-affine continuous functions over [0, 1]d. At the end
we get the following picture.

Problem: REACH-REGION
Inputs: a continuous PAFd f and two regions R0 and R in dom(f)
Question: ∃x0 ∈ R0, t ∈ N, f [t](x0) ∈ R?

Theorem 2 ([6]). Problem REACH-REGION is undecidable (and recursively enumerable-
complete).

Problem: CONTROL-REGION
Inputs: a continuous PAFd f and two regions R0 and R in dom(f)
Question: ∀x0 ∈ R0,∃t ∈ N, f [t](x0) ∈ R?

Theorem 3 ([11]). Problem CONTROL-REGION is undecidable (and co-recursively
enumerable complete) for d > 2.



Problem: REACH-REGION-TIME
Inputs: a time T ∈ N in unary, a continuous PAFd f and two regions R0 and
R in dom(f)
Question: ∃x0 ∈ R0,∃t 6 T, f [t](x0) ∈ R?

Theorem 4. Problem REACH-REGION-TIME is NP -complete for d > 2.

Problem: CONTROL-REGION-TIME
Inputs: a time T ∈ N in unary, a continuous PAFd f and two regions R0 and
R in dom(f)
Question: ∀x0 ∈ R0,∃t 6 T, f [t](x0) ∈ R?

Theorem 5. Problem CONTROL-REGION-TIME is coNP -complete for d > 2.

All our problems are region to region reachability questions, which requires
new proof techniques.

Indeed, classical tricks to simulate a Turing machine using a piecewise affine
maps encode a Turing machine configuration by a point, and assume that all
the points of the trajectories encode (possibly ultimately) valid Turing machines
configurations.

This is not a problem in the context of point to point reachability, but this can
not be extended to region to region reachability. Indeed, a (non-trivial) region
consists mostly in invalid points: mostly all points do not correspond to encoding
of Turing machines for all the considered encodings in above references.

In order to establish hardness results, the trajectories of all (valid and invalid)
points must be carefully controlled. This turns out not to be easily possible using
the classical encodings.

Let us insist on the fact that we restrict to continuous dynamics. In this
context, this is an additional source of difficulties. Indeed, such a system must
necessarily have a sub-region which dynamics cannot be easily interpreted in
terms of configurations.

In other words, the difficulty is in dealing with points and trajectories not
corresponding to valid configurations or evolutions.

2 Preliminaries

2.1 Notations

The set of non-negative integers is denoted N and the set of the first n naturals
is denoted Nn = {0, 1, . . . , n− 1}. For any finite set Σ, let Σ∗ denote the set of
finite words over Σ. For any word w ∈ Σ∗, let |w| denote the length of w. Finally,
let λ denote the empty word. If w is a word, let w1 denote its first character,
w2 the second one and so on. For any i, j ∈ N, let wi...j denote the subword
wiwi+1 . . . wj . For any σ ∈ Σ, and k ∈ N, let σk denote the word of length k
where all symbols are σ. For any function f , let f � E denote the restriction of
f to E and let dom(f) denote the domain of definition of f . For any set S ∈ Rd,
S̊ denotes the interior of S.



2.2 Piecewise affine functions

Let I denote the unit interval [0, 1]. Let d ∈ N. A convex closed polyhedron in
the space Id is the solution set of some linear system of inequalities:

Ax ≤ b (1)

with coefficient matrix A and offset vector b. Let PAFd denote the set of
piecewise-affine continuous functions over Id. For any f : Id → Id in PAFd,
f satisfies:

• f is continuous,

• there exists a sequence (Pi)1≤i≤p of convex closed polyhedron with nonempty

interior such that fi = f � Pi is affine, Id =
⋃p
i=1 Pi and P̊i ∩ P̊j = ∅ for

i 6= j.

In the following discussion we will always assume that any polyhedron P can
be defined by a finite set of linear inequalities, where all the elements of A and
b in (1) are all rationals. A polyhedron over which f is affine we also be called
a region.

2.3 Decision problems

In this paper, we will show hardness results by reduction to known hard prob-
lems. We give the statement of these latter problems in the following.

Problem: SUBSET-SUM
Inputs: a goal B ∈ N and integers A1, . . . , An ∈ N.
Output: ∃I ⊆ {1, . . . , n},

∑
i∈I Ai = B?

Theorem 6 ([12]). SUBSET-SUM is NP-complete.

Problem: NOSUBSET-SUM
Inputs: a witness B ∈ N and integers A1, . . . , An ∈ N.
Output: ∀I ⊆ {1, . . . , n},

∑
i∈I Ai 6= B?

Theorem 7. NOSUBSET-SUM is coNP-complete.

Proof. Basically the same proof as Theorem 6

3 Hardness of Bounded Time Reachability

In this section, we will show that REACH-REGION-TIME is an NP -hard problem
by reducing it to SUBSET-SUM.



3.1 Solving SUBSET-SUM by iteration

We will now show how to solve the SUBSET-SUM problem with a simple iterated
function. Consider an instance I = (B,A1, . . . , An) of SUBSET-SUM. We will
need to introduce some notions before defining our piecewise affine function.
Our first notion is that of configurations, which represent partial summation of
the number for a given choice of I.

Remark 8. Without loss of generality, we will only consider instances where Ai 6
B, for all i. Indeed, if Ai > B, it will never be part of a subset sum and so we
can simply remove this variable from the problem. This ensures that Ai < B+ 1
in everything that follows.

Definition 9 (Configuration). A configuration of I is a tuple (i, σ, εi, . . . , εn)
where i ∈ {1, . . . , n+ 1}, σ ∈ {0, . . . , B + 1}, εi ∈ {0, 1} for all i. Let CI be the
set of all configurations of I.

The intuitive understanding of a configuration, made formal in the next defi-
nition, is the following: (i, σ, εi, . . . , εn) represents a situation where after having
summed a subset of {A1, . . . , Ai−1}, we got a sum σ and εj is 1 if and only if we
are to pick Aj in the future.

Definition 10 (Transition function). The transition function TI : CI → CI ,
is defined as follows:

TI(i, σ, εi, . . . , εn) =

{
(i, σ) if i = n+ 1

(i+ 1,min (B + 1, σ + εiAi) , εi+1, . . . , εn) otherwise

It should be clear, by definition of a subset sum that we have the following
simulation result.

Lemma 11. For any configuration c = (i, σ, εi, . . . , εn) and k ∈ {0, . . . , n+ 1−
i},

T
[k]
I (c) = (i+ k,min

(
B + 1, σ +Σi+k−1

j=i εjAj
)
, εi+k, . . . , εn)

Proof. By induction.

A consequence of this simulation by iterated function, is that we can refor-
mulate satisfiability in terms of reachability.

Lemma 12. I is a satisfiable instance ( i.e., admits a subset sum) if and only

if there exists a configuration c = (1, 0, ε1, . . . , εn) ∈ CI such that T
[n]
I (c) =

(n+ 1, B).



3.2 Solving a SUBSET-SUM problem with a piecewise affine function

In this section, we explain how to simulate the function TI using a piece-
wise affine function and some encoding of the configurations for a given I =
(B,A1, . . . , An).

Definition 13 (Encoding). Define p = dlog2(n + 2)e, ω = dlog2(B + 2)e,
q = p+ ω + 1 and β = 5. Also define 0? = 1 and 1? = 4. For any configuration
c = (i, σ, εi, . . . , εn), define the encoding of c as follows:

〈c〉 =

i2−p + σ2−q, 0?β−n−1 +

n∑
j=i

ε?i β
−i


Also define the following regions for any i ∈ {1, . . . , n+1} and α ∈ {0, . . . , β−1}:

R0 = [0, 2−p−1]× [0, 1] Ri = [i2−p, i2−p + 2−p−1]× [0, β−i+1] (i > 1)

Ri,α =
[
i2−p, i2−p + 2−p−1

]
×
[
αβ−i, (α+ 1)β−i

]
Ri = ∪α∈NβRi,α

Rlini,1? =
[
i2−p, i2−p + (B + 1−Ai)2−q

]
×
[
1?β−i, 5β−i

]
Rsati,1? = Ri,1? \Rlini,1?

The rationale behind this encoding is the following. On the first coordinate we
put the current number i, “shifted” by as many bits as necessary to be between 0
and 1. Following i, we put σ, also shifted by as many bits as necessary. Notice that
there is one padding bit between i and σ; this is necessary to make the regions
Ri disjoint from each other. On the second component, we put the description
of the variables εj , written in basis β to get some “space” between consecutive
encodings. The choice of the value 1 and 4 for the encoding of 0 and 1, although
not crucial, has been made to simplify the proof as much as possible.

The region R0 is for initialization purposes and is defined differently for the
other Ri. The regions Ri correspond to the different values of i in the config-
uration (the current number). Each Ri is further divided into the Ri,α which
correspond to all the possible values of the next ε variable (recall that it is en-
coded in basis β). In the special case of ε = 1, we cut the region Ri,1? into a linear
part and a saturated part. This is needed to emulate the max(σ +Ai, B + 1) in
Definition 10: the linear part corresponds to σ + Ai and the saturated part to
B + 1.

Figure 1 and Figure 2 give a graphical representation of the regions.

Lemma 14. For any configuration c = (i, σ, εi, . . . , εn), if i = n+ 1 then 〈c〉 ∈
Rn+1,0? , otherwise 〈c〉 ∈ Ri,ε?i . Furthermore if εi = 1 and σ +Ai 6 B + 1, then

〈c〉 ∈ Rlini,1? , otherwise 〈c〉 ∈ Rsati,1? .

We can now define a piecewise affine function which will mimic the behavior
of TI . The region R0 is here to ensure that we start from a “clean” value on the
first coordinate.
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Fig. 1. Graphical representation of the regions

Definition 15 (Piecewise affine simulation).

fI(a, b) =



(2−p, b) if (a, b) ∈ R0

(a, b) if (a, b) ∈ Rn+1

(a+ 2−p, b− 0?β−i) if (a, b) ∈ Ri,0?
(a+ 2−p +Ai2

−q, b− 1?β−i) if (a, b) ∈ Rlini,1?
((i+ 1)2−p + (B + 1)2−q, b− 1?β−i) if (a, b) ∈ Rsati,1?

Lemma 16 (Simulation is correct). For any configuration c ∈ CI , 〈TI(c)〉 =
fI(〈c〉).

Notice that we have defined f over a subset of the entire space and it is clear
that this subspace is not stable in any way1. In order to match the definition of
a piecewise affine function, we need to define f over the entire space or a stable
subspace (which contains the initial region). We follow this second approach
and extend the definition of f on some more regions. More precisely, we need to
define f over Ri = Ri,0∪Ri,1∪Ri,2∪Ri,3∪Ri,3 and at the moment we have only
defined f over Ri,1 = Ri,0? and Ri,4 = Ri,1? . Also note that Ri,4 = Rlini,4 ∪ Rsati,4

and we define f separately on those two subregions.

In order to correctly and continuously extend f , we will need to further split
the region Ri,3 into linear and saturated parts Rsloi,3 and Rshii,3 : see Figure 2.

1 For example R1,1 ⊆ f(R0) but f is not defined over R1,1.



Definition 17 (Extended region splitting). For i ∈ {1, . . . , n} and α ∈
{0, . . . , β − 1}, define:

Rlini,3 = Ri,3∩
{

(a, b)
∣∣ bβi − 3 6

2−p−1 + i2−p − a
2−p−1 − (B + 1−Ai)2−q

}
Rsati,3 = Ri,3\Rlini,3

It should be clear by definition that Rsati,3 = Rsloi,3 ∪ Rshii,3 and that the two
subregions are disjoint except on the border.

Definition 18 (Extended piecewise affine simulation).

fI(a, b) =


(a+ 2−p, 0) if (a, b) ∈ Ri,0
(a+ 2−p, 3β−i − b) if (a, b) ∈ Ri,2
(a+ 2−p +Ai2

−q(bβi − 3), 0) if (a, b) ∈ Rlini,3
((i+ 3

2 )2−p − (bβi − 3)(2−p−1 − (B + 1)2−q), 0) if (a, b) ∈ Rsati,3

i2−p i2−p + 2−p−1

β−i+1

0

i2−p + (B + 1 −Ai)2
−q

Ri,0 : (a+ 2−p, 0)

Ri,0? : (a+ 2−p, b− 0?β−i)

Ri,2 : (a+ 2−p, 3β−i − b)

Rlin
i,3 : (a+ 2−p +Ai2

−q(bβi − 3), 0)
Rsat

i,3 : (?)

Rlin
i,1? : (a+ 2−p +Ai2

−q, b− 1?β−i) Rsat
i,1? :

((i+ 1)2−p + (B + 1)2−q,
b− 1?β−i)

β−i

2β−i

3β−i

4β−i

(?) : ((i+ 1)2−p + 2−p−1 − (bβi − 3)(2−p−1 − (B + 1)2−q), 0)

Fig. 2. Zoom on one Ri with the subregions and formulas

This extension was carefully chosen for its properties. In particular, we will
see that f is still continuous, which is a requirement of the piecewise affine func-
tions we consider. Also, the domain of definition of f is f -stable (i.e. f(dom f) ⊆
dom f). And finally, we will see that f is somehow “reversible”.



Lemma 19 (Simulation is continuous). For any i ∈ {1, . . . , n}, fI(Ri) is
well-defined and continuous over Ri.

Lemma 20 (Simulation is stable). For any i ∈ {1, . . . , n}, fI(Ri) ⊆ Ri+1.
Furthermore, f(R0) ⊆ R1 and f(Rn+1) ⊆ Rn+1.

We now get to the core lemma of the simulation. Up to this point, we were
only interested in forward simulation: that is given a point, what are the iterates
of x. In order to prove the NP -hardness result, we need a backward result: given
a point, what are the possible preimages of it. To this end, we introduce new
subregions of the Ri which we call unsaturated. Intuitively, Runsati corresponds
to the encodings where σ 6 B, that is the sum did not saturate at B + 1. We
also introduce the Rfin region which will be the region to reach. We will be
interested in the preimages of Rfin.

Definition 21 (Unsaturated regions). For i ∈ {1, . . . , n+ 1}, define

Runsati = [i2−p, i2−p +B2−q]× [β−n−1, β−i+1 − β−n−1]

Rfin = [(n+ 1)2−p +B2−q − 2−q−1, (n+ 1)2−p +B2−q]× [β−n−1, 2β−n−1]

Lemma 22 (Simulation is reversible). Let i ∈ {2, . . . , n} and (a, b) ∈ Runsati

Then the only points x such that fI(x) = (a′, b′) are:

– x = (a− 2−p, b′ + 0?β−i+1) ∈ Ri−1,0? ∩Runsati−1
– x = (a− 2−p, βi − b′ + 0?β−i+1) ∈ Ri−1,2 ∩Runsati−1
– x = (a − 2−p − Ai2−q, b′ + 1?β−i+1) ∈ Rlini−1,1? ∩ Runsati−1 (only if a > 2−p +
Ai2
−q)

The goal of those results in to show if there is a point in Rfin which is
reachable from R0 then we can extract, from its trajectory, a configuration which
also reaches Rfin. Furthermore, we arranged so that Rfin contains the encoding
of only one configuration:(n+ 1, B) (see Lemma 12).

Lemma 23 (Backward-forward identity). For any point x ∈ Rfin, if there

exists a point y ∈ R0 and an integer k such that f
[k]
I (y) = x then there exists a

configuration c = (1, 0, ε1, . . . , εn) such that f
[k]
I (〈c〉) ∈ Rfin.

Lemma 24 (Final region is accepting). For any configuration c, if 〈c〉 ∈
Rfin then c = (n+ 1, B).

3.3 Complexity result

We now have all the tools to show that REACH-REGION-TIME is an NP -hard
problem.

Theorem 25. REACH-REGION-TIME is NP -hard for d > 2.



Proof. Let I = (B,A1, . . . , An) be a instance of SUBSET-SUM. We consider the
instance J of REACH-REGION-TIME defined in the previous section with maxi-
mum number of iterations set to n (the number of Ai), the initial region set
to R0 and the final region set to Rfin. One easily checks that this instance has
polynomial size in the size of I. The two directions of the proofs are:

– If I is satisfiable then use Lemma 11 and Lemma 16 to conclude that there
is a point x ∈ R0 in the initial region such that f

[n]
I (x) ∈ Rfin so J is

satisfiable.

– If J is satisfiable then there exists x ∈ R0 and k 6 n such that f
[k]
I (x) ∈

Rfin. Use Lemma 23 and Lemma 16 to conclude that there exists a config-

uration c = (1, 0, ε1, . . . , εn) such that 〈T [k]
I (c)〉 = f

[k]
I (〈c〉) ∈ Rfin. Ap-

ply Lemma 24 and use the injectivity of the encoding to conclude that

T
[k]
I (c) = (n+ 1, B) and Lemma 12 to get that I is satisfiable.

4 Solving of Bounded Time Reachability

In the previous section we focused on what we can do with a reachability prob-
lem, and specifically how to solve a NP-hard problem with it. In this section, we
take any such reachability problem and focus on how to actually solve it. More
precisely we are interested in the complexity of solving the REACH-REGION-TIME

problem.

4.1 Notations and definitions

For any i = 1, . . . , d, let πdi : Id → I denote the ith projection function, that
is, π(x1, . . . , xd) = xi. Let gd : Id+1 → Id be defined by gd(x1, . . . , xd+1) =
(x1, . . . , xd). For a square matrix A of size (d+ 1)× (d+ 1) define the following
pair of projection functions. The first function h1,d takes as input a square matrix
A of size (d+ 1)× (d+ 1) and returns a square matrix of size d× d which is the
upper-left block of A. The second function h2,d takes as input a square matrix A
of size (d+1)×(d+1) and returns the vector of size d given by [a1,d+1 · · · ad,d+1]T

(the last column of A minus the last element).

Let s denote the size function, its domain of objects will be overloaded and
understood from the context. For x ∈ Z, s(x) is the length of the encoding of x
in base 2. For x ∈ Q with x = p

q we have s(x) = max(s(p), s(q)). For an affine

function f we define the size of f(x) = Ax + b (where all entries of A and b
are rationals) as: s(f) = max(maxi,j(s(ai,j)),max(s(bi))). We define the size of
a polyhedron r defined by Ax 6 b as: s(r) = max(s(A), s(b)).

We define the size of a piecewise affine function f as: s(f) = maxi(s(fi), s(ri))
where fi denotes the restriction of f to ri the ith region.

We define the signature of a point x as the sequence of indices of the regions
traversed by the iterates of f on x (that is, the region trajectory).



4.2 Results

In order to solve a reachability problem, we will formulate it with linear algebra.
However a crucial issue here is that of the size of the numbers, especially when
computing powers of matrices. Indeed, if taking the nth power of A yields a
representation of exponential size, no matter how fast our algorithm is, it will
run on exponentially large instances and thus be slow.

First off, we show how to move to homogenous coordinates so that f becomes
piecewise linear instead of piecewise affine.

Lemma 26. Assume that f(x) = Ax + b with A = (ai,j)16i,j6d and let y =

A′(x, 1)T where A′ is the block matrix

(
A b
0 1

)
. Then f(x) = gd(A

′(x, 1)T ).

Remark 27. Notice that this lemma extends nicely to the composition of affine
functions: if f(x) = Ax + b and h(x) = Cx + d then h(f(x)) = gd(C

′A′(x, 1)T ).

We can now state the main lemma, namely that the size of the iterates of f
vary linearly in the number of iterates, assuming that f is piecewise affine.

Lemma 28. Let d > 2 and f ∈ PAFd. Assume that all the coefficients of f
on all regions are rationals. Then for all t ∈ N, s(f [t]) 6 (d + 1)2s(f)pt + (t −
1)dlog2(d+ 1)e where p is the number of regions of f . This inequality holds even
if all rationals are taken to have the same denominator.

Finally, we need some result about the size of solutions to systems of linear
inequalities. Indeed, if we are going to quantify over the existence of a solution
of polynomial size, we must ensure that the size constraints does not change the
satisfiability of the system.

Lemma 29 ([13]). Let A be a N × d integer matrix and b an integer vector.
If the Ax 6 b system admits a solution, then there exists a rational solution xs
such that s(xs) 6 (d+ 1)L+ (2d+ 1) log2(2d+ 1) where L = max(s(A), s(b)).

Proof. See Theorem 5 of [13]: s(xs) 6 s
(
(2d+ 1)!2L(2d+1)

)
.

Putting everything together, we obtain a fast nondeterministic algorithm
to solve REACH-REGION-TIME. The nondeterministism allows use to choose a
signature for the solution. Once the signature is fixed, we can write it as a linear
program of reasonable size using Lemma 28 and solve it. The remaining issue is
the one of the size of solution but fortunately Lemma 29 ensures us that there
is a small solution which can be found quickly.

Theorem 30. REACH-REGION-TIME is in NP .



5 Other results

In this section, we give succint proofs of the other result mentioned in the intro-
duction about CONTROL-REGION-TIME. The proof is based on the same arguments
as before.

Theorem 31. Problem CONTROL-REGION-TIME is coNP -hard for d > 2.

Proof. The proof is exactly the same except for two details:

– we modify f over Rn+1 as follows: divide Rn+1 in three regions: Rlow which
is below Rfin, Rfin and Rhigh which is above Rfin. Then build f such that
f(Rlow) ⊆ Rlow, f(Rfin) ⊆ Rfin and f(Rhigh) ⊆ Rlow.

– we choose a new final region R′fin = Rlow.

Let I = (B,A1, . . . , An) be an instance of NOSUBSET-SUM, let J be the
corresponding instance of CONTROL-REGION-TIME we just built. We have
to show that I has no subset sum if and only if J is “controlled”. This is the
same as showing that I has a subset sum if and only if J has points never
reaching R′fin.

Now assume for a moment that the instance is in SUBSET-SUM (as opposed
to NOSUBSET-SUM), then by the same reasoning as the previous proof, there
will be a point which reaches the old Rfin region (which is disjoint from R′fin).
And since Rfin is a f -stable region, this point will never reach R′fin.

And conversely, if the control problem is not satisfied, necessarily there is
a point which trajectory went through the old Rfin (otherwise if would have
reached either Rlow = R′fin or Rhigh but f(Rhigh) ⊆ Rlow). Now we proceed as
in the proof of Theorem 25 to conclude that there is a subset which sums to B,
and thus I is satisfiable.

Theorem 32. Problem CONTROL-REGION-TIME is in coNP .

Proof. Again the proof is very similar to that of Theorem 30: we have to build
a non-deterministic machine which accepts the “no” instances. The algorithm
is exactly the same except that we only choose signatures which avoid the final
region (as opposed to end by the final region) and are of maximum length (that
is t = T as opposed to t 6 T ). Indeed, if there is a such a trajectory, the
problem is not satisfied. And for the same reasons as Theorem 30, it runs in
non-deterministic polynomial time.
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