
Smart card attacks
Weaknesses detection

Code securing

Software Countermeasures for Control Flow
Integrity of Smart Card C Codes

Jean-François Lalande
Karine Heydemann – Pascal Berthomé

Inria / Supélec (IRISA) – INSA CVL / Univ. Orléans (LIFO)
UPMC - (LIP6)

ESORICS 2014
September 7-11, Wroclaw, Poland

1 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Physical attacks
Goals

Introduction: 1 smart card attacks

Smart card are subject to physical attacks

Security is of main importance for the card industry

Physical attacks:

Means: laser beam, clock glitch, electromagnetic pulse, . . .

Goal: disrupting execution of smartcard programs, producing
a faulty execution

See this Do this

2 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Physical attacks
Goals

Introduction: 1 smart card attacks

Smart card are subject to physical attacks

Security is of main importance for the card industry

Physical attacks:

Means: laser beam, clock glitch, electromagnetic pulse, . . .

Goal: disrupting execution of smartcard programs, producing
a faulty execution

See this Do this
2 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Physical attacks
Goals

Attack model

At low level, physical attacks can:

induce a bit flip

overwrite a bit/byte with controlled values

overwrite a bit/byte with random bits

At program level, physical attacks can have different impacts:

Disturb the value of some variables

Modify the control flow by overwriting instructions when
fetched:

Change a branch direction
Execute some NOPs
Execute an unconditional JMP

We focus on attacks that result in a jump, called a jump attack

3 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Physical attacks
Goals

Attack example

Let us consider such an authentication code:

1 uint user tries = 0; // initialization of the number of tries for this session
2 uint max tries = 3; // max number of tries
3 while (...) /∗ card life cycle: ∗/
4 {
5 incr tries(user tries);
6 res = get pin from terminal(); // receives 1234
7 pin = read secret pin(); // read real pin: 0000
8 if (compare(res, pin))
9 { dec tries(user tries);

10 do stuff(); }
11 if (user tries >= max tries)
12 { killcard(); }
13 }

Simplified authentication code with pin check

4 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Physical attacks
Goals

Attack example

Let us consider such an authentication code:

1 uint user tries = 0; // initialization of the number of tries for this session
2 uint max tries = 3; // max number of tries
3 while (...) /∗ card life cycle: ∗/
4 {
5 incr tries(user tries);
6 res = get pin from terminal(); // receives 1234
7 pin = read secret pin(); // read real pin: 0000
8 if (compare(res, pin)) ⇒ NOP ... NOP
9 { dec tries(user tries);

10 do stuff(); }
11 if (user tries >= max tries)
12 { killcard(); }
13 }

Simplified authentication code with pin check

4 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Physical attacks
Goals

Security problems and contributions

Several questions appear:

How to deal with low level attacks when working at source
code level?

Use a high level model of attacks

How to identify harmful attacks?

Simulate attacks and distinguish weaknesses

How to implement countermeasures?

Protect code at source level using counters

Are the proposed countermeasures effective?

Study formally and experimentally their effectiveness

5 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Outline

2 Weaknesses detection
? Attack simulation ? Distinguisher ? Analysis result

Secured C
source

code

Control Flow Securing
Countermeasure Injection

C
source

code

Attack simulation

Classification
bad

good error
killcard

Visualization

Weaknesses
detection

Distinguisher

Code
Securing

6 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 }
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240 goto dest;
241 while (i−−)
242 {
243 dest:buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 }
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240 goto dest;
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 dest:cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 }
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240 goto dest;
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 dest:cpk[16+i] = key[16 + i];
246 }
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240 goto dest;
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 dest:}
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240 goto dest;
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 }
247 dest:;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240 dest:
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 }
247 ; goto dest;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 dest:buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 }
247 ; goto dest;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 dest:cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 }
247 ; goto dest;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 dest:cpk[16+i] = key[16 + i];
246 }
247 ; goto dest;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i];
245 cpk[16+i] = key[16 + i];
246 dest:}
247 ; goto dest;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Simulation by insertion of jump attack

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240 dest:
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i]; goto dest; // 16 6= triggering times
245 cpk[16+i] = key[16 + i];
246 }
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Full coverage of attacks simulation by using gcov information

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240 dest:
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i]; if (trigger time) goto dest; // 16 6= triggerring times
245 cpk[16+i] = key[16 + i];
246 }
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Full coverage of attacks simulation by using gcov information

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 dest:buf[i] ˆ= key[i];
244 cpk[i] = key[i]; if (trigger time) goto dest; // 16 6= triggerring times
245 cpk[16+i] = key[16 + i];
246 }
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Full coverage of attacks simulation by using gcov information

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 dest:cpk[i] = key[i]; if (trigger time) goto dest; // 16 6= triggerring times
245 cpk[16+i] = key[16 + i];
246 }
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Full coverage of attacks simulation by using gcov information

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i]; if (trigger time) goto dest; // 16 6= triggerring times
245 cpk[16+i] = key[16 + i];
246 dest:}
247 ;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Full coverage of attacks simulation by using gcov information

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Simulation of jump attacks

237 void aes addRoundKey cpy(uint8 t ∗buf, uint8 t ∗key, uint8 t ∗cpk)
238 {
239 register uint8 t i = 16;
240
241 while (i−−)
242 {
243 buf[i] ˆ= key[i];
244 cpk[i] = key[i]; if (trigger time) goto dest; // 16 6= triggerring times
245 cpk[16+i] = key[16 + i];
246 }
247 dest:;
248 } /∗ aes addRoundKey cpy ∗/

Function of an implementation of AES

Full coverage of attacks simulation by using gcov information

7 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Harmful and harmless attacks classification

How to evaluate the effect of (simulated) attacks?

define a functional scenario (with fixed inputs/outputs):
be able to distinguish unexpected from expected outputs

Secured C
source

code

Control Flow Securing
Countermeasure Injection

C
source

code

Attack simulation

Classification
bad

good error
killcard

Visualization

Weaknesses
detection

Distinguisher

Code
Securing

8 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Attacks classification

Considered scenario

Encryption of a fixed input by AES (Levin 07), SHA and
Blowfish (Guthaus et al. 01)

Distinguisher classes (harmful/harmless):

bad: during execution a benefit has been obtained by the
attacker;

bad j>1: (jumpsize ≥ 2 lines) the encryption output is wrong;
bad j=1: (jumpsize = 1 line) the encryption output is wrong;

good: output is unchanged

error or timeout: error, crash, infinite loop;

killcard: attack detected: the card is turned out of service!

9 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Attacks classification

Considered scenario

Encryption of a fixed input by AES (Levin 07), SHA and
Blowfish (Guthaus et al. 01)

Distinguisher classes (harmful/harmless):

bad: during execution a benefit has been obtained by the
attacker;

bad j>1: (jumpsize ≥ 2 lines) the encryption output is wrong;
bad j=1: (jumpsize = 1 line) the encryption output is wrong;

good: output is unchanged

error or timeout: error, crash, infinite loop;

killcard: attack detected: the card is turned out of service!

9 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Attacks classification

Considered scenario

Encryption of a fixed input by AES (Levin 07), SHA and
Blowfish (Guthaus et al. 01)

Distinguisher classes (harmful/harmless):

bad: during execution a benefit has been obtained by the
attacker;

bad j>1: (jumpsize ≥ 2 lines) the encryption output is wrong;
bad j=1: (jumpsize = 1 line) the encryption output is wrong;

good: output is unchanged

error or timeout: error, crash, infinite loop;

killcard: attack detected: the card is turned out of service!

9 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Attacks classification

Considered scenario

Encryption of a fixed input by AES (Levin 07), SHA and
Blowfish (Guthaus et al. 01)

Distinguisher classes (harmful/harmless):

bad: during execution a benefit has been obtained by the
attacker;

bad j>1: (jumpsize ≥ 2 lines) the encryption output is wrong;
bad j=1: (jumpsize = 1 line) the encryption output is wrong;

good: output is unchanged

error or timeout: error, crash, infinite loop;

killcard: attack detected: the card is turned out of service!

9 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Weaknesses detection results

bad bad good error total
j > 1 j = 1

c jump attacks Attacking all functions at C level for all transient rounds

AES 7786 1104 17372 108 26370

29% 4.2% 65% 0.4% 100%

SHA 32818 1528 8516 412 43274

75% 3.5% 19% 1.0% 100%

Blowfish 70086 3550 134360 5725 213721

32% 1.7% 62% 2.7% 100%

bad j>1: (jumpsize ≥ 2 lines) the encryption output is wrong;

bad j=1: (jumpsize = 1 line) the encryption output is wrong;

10 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Attack simulation
Distinguisher
Analysis result

Weaknesses visualization

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

238 240 242 244 246 248 250

238

240

242

244

246

248

250

bad (j=1)

killcard

error

good

bad (j>1)

out−aes_addRoundKey_cpy.datu

Visualization of weaknesses for aes addRoundKey cpy

11 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Outline

3 Code securing
? Securing control flow constructs ? Verifying countermeasures
robustness ? Experimental results

Secured C
source

code

Control Flow Securing
Countermeasure Injection

C
source

code

Attack simulation

Classification
bad

good error
killcard

Visualization

Weaknesses
detection

Distinguisher

Code
Securing

12 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Goals

Code securing techniques for Control Flow Integrity often rely on:

Modified assembly codes (Abadi et al. 05)

Modified JVM (Iguchi-cartigny et al. 11, Lackner et al. 13)

Signature techniques of each basic block (Oh et al. 02,
Nicolescu et al. 03)

We aim at keeping the assembly code intact:

A certified compiler enable to certify the secured program

⇒ CFI countermeasures to be compiled by a certified compiler

Checks often performed at entry/exit of basic blocks:

CFI countermeasures should also check the flow inside basic
blocks

13 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing principle

Straight-line flow

of statements

f

g

Countermeasures

with counter cnt f

Countermeasures

with counter cnt g

Func

Countermeasures

1 counter by function

between two statements

Check of counter values

cnt = (cnt == val+N ?
cnt +1 : killcard());

14 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing details

L8:

L7:

L1:

...

Source codevoid f(){

}

void g(){

stmt1;

stmt2;

L6+N:

L7+N:

stmtN;

return;
}

L4:

L3:

L2: g();

15 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing details

L8:

L7:

L1:

...

Source codevoid f(){

}

void g(){

stmt1;

stmt2;

L6+N:

L7+N:

stmtN;

return;
}

L4:

L3:

L2: g();

L7

L7+N

L8

...

L2

L3

L4

L6+N

stmt1

stmt2

stmtN

return

Flow

c
a

ll
to

 g
(

)

15 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing details

L8:

L7:

L1:

...

Source codevoid f(){

}

void g(){

stmt1;

stmt2;

L6+N:

L7+N:

stmtN;

return;
}

L4:

L3:

L2: g();

L7

L7+N

L8

...

L2

L3

L4

L6+N

stmt1

stmt2

stmtN

return

Flow

c
a

ll
to

 g
(

)

attack

attack

15 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing details

L8:

L7:

L1:

...

Source codevoid f(){

}

void g(){

stmt1;

stmt2;

L6+N:

L7+N:

stmtN;

return;
}

L4:

L3:

L2: g();

L7

L7+N

L8

...

L2

L3

L4

L6+N

stmt1

stmt2

stmtN

return

Flow

c
a

ll
to

 g
(

)

attack

attack

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

DECL_INIT(cnt_g, val)

&cnt_g

DECL_INIT(cnt_g, val)

&
c
n

t_
g

15 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing details

L8:

L7:

L1:

...

Source codevoid f(){

}

void g(){

stmt1;

stmt2;

L6+N:

L7+N:

stmtN;

return;
}

L4:

L3:

L2: g();

L7

L7+N

L8

...

L2

L3

L4

L6+N

stmt1

stmt2

stmtN

return

Flow

c
a

ll
to

 g
(

)

attack

attack

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

DECL_INIT(cnt_g, val)

&cnt_g

DECL_INIT(cnt_g, val)

&
c
n

t_
g

cnt = (cnt == val+N
? cnt +1 : killcard());

15 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing details

L8:

L7:

L1:

...

Source codevoid f(){

}

void g(){

stmt1;

stmt2;

L6+N:

L7+N:

stmtN;

return;
}

L4:

L3:

L2: g();

L7

L7+N

L8

...

L2

L3

L4

L6+N

stmt1

stmt2

stmtN

return

Flow

c
a

ll
to

 g
(

)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

DECL_INIT(cnt_g, val)

&cnt_g

DECL_INIT(cnt_g, val)

&
c
n

t_
g

attack

attack

15 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing details

L8:

L7:

L1:

...

Source codevoid f(){

}

void g(){

stmt1;

stmt2;

L6+N:

L7+N:

stmtN;

return;
}

L4:

L3:

L2: g();

L7

L7+N

L8

...

L2

L3

L4

L6+N

stmt1

stmt2

stmtN

return

Flow

c
a

ll
to

 g
(

)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

DECL_INIT(cnt_g, val)

&cnt_g

DECL_INIT(cnt_g, val)

&
c
n

t_
g

attack

attack

CHECK_INCR_FUNC(

cnt_g, val + N+1, CHECK_INCR_FUNC(

cnt_g, val + N+1,

*cnt_f, val_f + 2)

*cnt_f, val_f + 2)

15 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing details

L8:

L7:

L1:

...

Source codevoid f(){

}

void g(){

stmt1;

stmt2;

L6+N:

L7+N:

stmtN;

return;
}

L4:

L3:

L2: g();

L7

L7+N

L8

...

L2

L3

L4

L6+N

stmt1

stmt2

stmtN

return

Flow

c
a

ll
to

 g
(

)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

CHECK_INCR(*cnt_g, val)

CHECK_INCR(*cnt_g, val + 1)

CHECK_INCR(*cnt_g, val + 2)

CHECK_INCR(*cnt_g, val + N−1)

CHECK_INCR(*cnt_g, val + N)

DECL_INIT(cnt_g, val)

&cnt_g

DECL_INIT(cnt_g, val)

&
c
n

t_
g

attack

attack

CHECK_INCR_FUNC(

cnt_g, val + N+1, CHECK_INCR_FUNC(

cnt_g, val + N+1,

*cnt_f, val_f + 2)

*cnt_f, val_f + 2)

Nesting checks and coun-
ters updates are the key !

15 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing loops and conditional constructs

Countermeasures also designed for while/if constructs

f counter

cnt f

counter

while

while

then

else

counter

else

counter

then

f

16 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Countermeasure robustness?

Are these countermeasures effective for all possible jump attacks?

of course not, for a jump size equal to 1 C line!

what about attacks with jump size ≥ 2 C lines?

We model a Control Flow Construct (CFC) with a transition
system to verify countermeasure robustness and flow correctness

Model
for a
CFC

Model for
its secured

version
+ Attacks

All possible
inputs

control flows
equivalent ?

or

attack
detection

17 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Countermeasure robustness?

Are these countermeasures effective for all possible jump attacks?

of course not, for a jump size equal to 1 C line!

what about attacks with jump size ≥ 2 C lines?

We model a Control Flow Construct (CFC) with a transition
system to verify countermeasure robustness and flow correctness

Model
for a
CFC

Model for
its secured

version
+ Attacks

All possible
inputs

control flows
equivalent ?

or

attack
detection

17 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Formal verification of robustness

Model
for a
CFC

Model for
its secured

version
+ Attacks

All possible
inputs

control flows
equivalent ?

or

attack
detection

Our securing scheme for if, loops and sequential control flow
constructs verify:

any jump attack of more than 2 C lines is detected

or the control flow is correct

Verification performed with VIS model checker

18 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Experimental results I

Jump attacks simulated in the secured source code

bad bad good killcard error total
j > 1 j = 1

c jump attacks Attacking all functions at C level for all transient rounds

AES 29% 4.2% 65% 0.4% 26370

AES + CM 0% 0.2% 5.3% 94% 0.0% 337516

SHA 75% 3.5% 19% 1.0% 43274

SHA + CM 0% 0.3% 1.2% 98% 0.1% 427690

Blowfish 32% 1.7% 62% 2.7% 213721

Blowfish + CM 0% 0.2% 23% 75% 0.4% 1400355

Jump attacks simulated at C level

100% of harmfull attacks jumping more than 2 C lines are captured

19 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Experimental results II

Simulation of jump attacks at assembly level

ASM attacks injected on the fly using an ARM simulator

bad bad good killcard error total
j > 1 j = 1

asm jump att. Attacking the aes encrypt function at ASM level for the first transient round

aes encrypt 82.8% 1.9% 9.4% 5.9% 1892

aes encrypt + CM 0.2% ∼0% 20.2% 78.4% 0.7% 305255

Jump attacks simulated at ASM level

Reduction: 60% of harmfull attack are detected

Remaining attacks are harder to perform (82.8% ⇒ 0.2%)

20 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Experimental results III

Simulation of function call attacks

ASM attacks injected on the fly using an ARM simulator

bad bad good killcard error total
j > 1 j = 1

asm call att. Attacking all function calls at ASM level for the first transient round

AES 59.3% 33.1% 5% 420

AES + CM 0% 5% 94.8% 0.2% 420

SHA 48.7% 18% 33.3% 72

SHA + CM 0% 11.1% 84.7% 4.2% 72

Blowfish 21.4% 42.9% 35.7% 42

Blowfish + CM 0% 42.9% 40.5% 16.6% 42

Jump attacks simulated at ASM level

21 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Experimental results IV

100% of harmfull attacks are captured

22 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Weaknesses visualization

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

238 240 242 244 246 248 250

238

240

242

244

246

248

250

bad (j=1)

killcard

error

good

bad (j>1)

out−aes_addRoundKey_cpy.datu

Visualization of weaknesses for aes addRoundKey cpy

23 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Weaknesses visualization with CFI

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

Source line number

D
e
s
ti
n
a
ti
o
n
 l
in

e
 n

u
m

b
e
r

385 390 395 400 405 410 415 420 425

385

390

395

400

405

410

415

420

425

bad (j=1)

killcard

error

good

bad (j>1)

out−aes_addRoundKey_cpy.datu

Visualization of weaknesses for the secured version

24 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Securing code overheads - x86 and arm-v7m

Size (bytes)

AES SHA Blowfish

0

10000

20000

30000

40000

50000 x86 CFI overhead arm−v7m CFI overhead

Time (ms)

Overhead for 1ms of computation

AES SHA Blowfish

0

1

2

3

4

5

6
x86 CFI overhead arm−v7m CFI overhead

25 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Securing control flow constructs
Verifying countermeasures robustness
Experimental results

Demo

Demo: graphical tool for navigating into attacks !

http://dai.ly/x205n3x

26 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

http://dai.ly/x205n3x

Smart card attacks
Weaknesses detection

Code securing

Conclusion

Software coutermeasures for control flow integrity

Software-only effective countermeasures

Protection for jump attacks than more than 1 C statement

Secured C
source

code

Control Flow Securing
Countermeasure Injection

C
source

code

Attack simulation

Classification
bad

good error
killcard

Visualization

Weaknesses
detection

Distinguisher

Code
Securing

27 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Future work

New problems remain to be addressed

Reduce overhead!

Deal with jump attack of size one

And new challenges

Is this suitable for javacard apps?

Can we design software countermeasures for attacks
impacting variable values?

28 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Thank you!

(Diode Laser Station from Riscure)

Thank you!

...

29 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

Smart card attacks
Weaknesses detection

Code securing

Thank you!

(Diode Laser Station from Riscure)

Thank you!

Question?

29 / 28 J.-F. Lalande – K. Heydemann – P. Berthomé Software Countermeasures for Control Flow Integrity

	Smart card attacks
	Physical attacks
	Goals

	Weaknesses detection
	Attack simulation
	Distinguisher
	Analysis result

	Code securing
	Securing control flow constructs
	Verifying countermeasures robustness
	Experimental results

