
RBAC for Java

J.-F. Lalande

1/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Generation of Role Based Access
Control Security Policies for Java

Collaborative Applications

J. Briffaut – X. Kauffmann-Tourkestansky
J.-F. Lalande – W. W. Smari

LIFO
Université d’Orléans / ENSI de Bourges

France

Electrical and Computer Engineering Department
University of Dayton

USA

SECURWARE’09

RBAC for Java

J.-F. Lalande

2/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Access control for software

I DAC : Discretionary Access Control
I Permissions defined by Owner

I MAC : Mandatory Access Control
I Permissions defined by Administrator (Independent

User)

I Controls a software, a database, etc...
I For a Java software classicaly:

I The operating system enforce a DAC policy
I Extra tools provide a Mandatory Access Control

Mechanism
I RBAC: Role based Access Control

RBAC for Java

J.-F. Lalande

3/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

MAC mechanism for Java software

Two running modes:
I All permissions are granted
I The software is sandboxed

Sandboxed software:
I Network is limited
I Read and Write permission are very limited
I Graphical operations can be forbidden

Limitations:
I On what URL ?
I On what system object ?

RBAC for Java

J.-F. Lalande

4/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

JAAS permissions

Class control:

1permission java.lang.RuntimePermission "accessClassInPackage.sdo
.foo";

I/O control:

1permission java.io.FilePermission "tmpFoo", "write";
2permission java.io.FilePermission "<<ALL FILES>>", "read,write,

delete,execute";
3permission java.io.FilePermission "${user.home}/−", "read";

Network control:

1permission java.net.SocketPermission "∗.ensi−bourges.fr:1−", "
accept,listen,connect,resolve"

RBAC for Java

J.-F. Lalande

5/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

JAAS example policy file

Example of policy file: ~/. java. policy

1keystore "${user.home}${/}.keystore";
2
3grant codeBase "file:${java.home}/lib/ext/−" {
4permission java.security.AllPermission;
5};
6
7grant codeBase "http://www.ensi−bourges.fr/files/" {
8permission java.io.FilePermission "/tmp", "read";
9permission java.lang.RuntimePermission "queuePrintJob";
10};

I The user has to write the policy
I He cannot be helped by the developer

RBAC for Java

J.-F. Lalande

6/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Objectives

To give to developpers a solution that:
I Provides a way to define the policy in the code
I Introduces roles in collaborative software
I Gives an RBAC API for the software

The users will be able to:
I Collect needed permission and take a decision
I Choose a role in the software

Security:
I Is this sufficient to control a possible vulnerability in

the software ?

RBAC for Java

J.-F. Lalande

7/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Language

Inspired from SELinux rules:

1allow <subject> <IT> <object>

Javadoc comment before methods:

1/∗∗
2∗ @allowIT Root {all}
3∗ @allowIT User{awt} "accessClipboard"
4∗ @allowIT User{file:(read);file:(write)} "config.txt" ∗/

RBAC for Java

J.-F. Lalande

8/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Language deployment

A parsed rule in the Java code:

1/∗∗
2∗ @allowIT Root {file:(read);file:(write)} "config.txt" ∗/
3public void convertConfiguration()
4...
5/∗
6∗ @allowIT Root {file:(read);} "password.txt" ∗/
7public void authenticate(String password)
8...

will produce:

1grant Principal test.JAAS.ExamplePrincipal "Root" {
2permission java.io.FilePermission "config.txt", "read";
3permission java.io.FilePermission "config.txt", "write";
4permission java.io.FilePermission "password.txt", "read";};

RBAC for Java

J.-F. Lalande

9/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Tag loading and policy deployment

RBAC for Java

J.-F. Lalande

10/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Login module

Login module provides to the software:
I Hypothesis: the authentication is done
I Called at any time of the software
I Proposes to a user to obtain a role

The login module then checks:
I That the user can take this role
I That the right policy is loaded in JAAS

RBAC for Java

J.-F. Lalande

11/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Login module

Figure: Login module

RBAC for Java

J.-F. Lalande

12/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Benefits for collaborative applications

Benefits of this architecture:
I It eases the security policy generation
I It allows sandboxing the application
I It adds an authentication security level before using

the application
I It simplifies the writing of policies for developers

The design of the policy is
I Collaborative for developers
I Controlled user by user by the administrator
I Gives guarantees for users

RBAC for Java

J.-F. Lalande

13/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Collaborative design of the policy

Figure: Java collaborative application

RBAC for Java

J.-F. Lalande

13/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Collaborative design of the policy

Figure: Java collaborative application

RBAC for Java

J.-F. Lalande

14/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Policy tags

1/∗∗
2∗ @allowIT Root {file:(read);file:(write)} "config.txt"
3∗ @allowIT User {file:(read)} "config.txt" ∗/
4public void convertConfiguration()
5...

generates...

1grant Principal test.JAAS.ExamplePrincipal "Root" {
2permission java.io.FilePermission "config.txt", "read";
3permission java.io.FilePermission "config.txt", "write";
4};
5grant Principal test.JAAS.ExamplePrincipal "User" {
6permission java.io.FilePermission "config.txt", "read";
7};
8...

RBAC for Java

J.-F. Lalande

15/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

With the Root role

The user choose the Root role:

Listing 1: Console output for a read+write operation
Password linked to the username in the userfile :
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Hash of the inputed password :
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Authentication succeeded!!

Please pick a role :
−−−− >Root
Role pick succeeded.
Actions done once authenticated
The file exists in the current working directory
the file has been read!
The file config. txt was created (write test) !

RBAC for Java

J.-F. Lalande

16/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

With the User role

The user choose the User role:

Listing 2: Console output for a read+write operation
Password linked to the username in the userfile :
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Hash of the inputed password :
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Authentication succeeded!!

Please pick a role :
−−−− >User
Role pick succeeded.

Actions done once authenticated
The file exists in the current working directory
the file has been read!
java. security .AccessControlException: access denied
(java. io .FilePermission config. txt write)

RBAC for Java

J.-F. Lalande

17/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

What about vulnerabilities ?

What about a software vulnerability ?

I Hypothesis: an attack succeeds against the software
I If the choosen role is root...
I ... the attacker will be able to write in config.txt !

For example:
I A Peer-to-peer application with a network

vulnerability
I A web server application on a Tomcat platform

The permissions are 99% of the time useless...

RBAC for Java

J.-F. Lalande

18/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Permissions are useless ?

1/∗∗
2∗ @allowIT Root {file:(read);file:(write)} "config.txt" ∗/
3public void convertConfiguration()
4...
5/∗
6∗ @allowIT Root {file:(read);} "password.txt" ∗/
7public void authenticate(String password)
8...

These permissions are useless:
I Permissions on config.txt are useless in

authenticate()
I Permissions on password.txt are useless in

convertConfiguration()

RBAC for Java

J.-F. Lalande

19/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Hypothetical vulnerability

1/∗∗
2∗ @allowIT Root {file:(read);file:(write)} "config.txt" ∗/
3public void convertConfiguration()
4...
5// Vulnerability at this point: injecting this code:
6this.passwordFileObject.println("hacked password");
7...
8/∗
9∗ @allowIT Root {file:(read);} "password.txt" ∗/
10public void authenticate(String password)
11...

I Arbitrary access is allowed to password.txt
I Even if multi-threaded, the code have no reason to

have permanent access to password.txt

RBAC for Java

J.-F. Lalande

20/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Proposed solution

To dynamically enforce the policy when required:

1/∗∗
2∗ @allowIT Root {file:(read);file:(write)} "config.txt" ∗/
3public void convertConfiguration() {
4RBAC.loadPolicy("root_convertConfiguration");
5...
6// Vulnerability at this point: insecting this code:
7this.passwordFileObject.println("hacked password"); // This will fail !
8...
9RBAC.unloadPolicy("root_convertConfiguration");
10}
11/∗
12∗ @allowIT Root {file:(read);} "password.txt" ∗/
13public void authenticate(String password) {
14RBAC.loadPolicy("root_authenticate");
15...
16RBAC.unloadPolicy("oot_authenticate");
17}

RBAC for Java

J.-F. Lalande

21/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Conclusion and perspectives

The implemented RBAC module proposes:
I A tag parser and policy generator
I A login module for software integration
I A dynamic method of policy enforcement

What next ?
I Extract automatically policies from source code
I Link JAAS to SELinux ?

RBAC for Java

J.-F. Lalande

22/22

Mandatory Access
Control

RBAC integration

Collaborative app.

Implementation

Dynamic security

Conclusion

Questions

I Questions ?

	Mandatory Access Control
	RBAC integration
	Collaborative app.
	Implementation
	Dynamic security
	Conclusion

