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Mandatory Access
Control

Access control for software
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DAC : Discretionary Access Control
» Permissions defined by Owner
MAC : Mandatory Access Control

» Permissions defined by Administrator (Independent
User)

Controls a software, a database, etc...
For a Java software classicaly:

» The operating system enforce a DAC policy
» Extra tools provide a Mandatory Access Control
Mechanism

RBAC: Role based Access Control



reacloriava NAC mechanism for Java software

J.-F. Lalande

3/22

Mandatory Access

Control Two running modes:
» All permissions are granted
» The software is sandboxed
Sandboxed software:
» Network is limited
» Read and Write permission are very limited
» Graphical operations can be forbidden
Limitations:
» On what URL ?
» On what system object ?
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Class control:

Mandatory Access
Control

permission java.lang.RuntimePermission "accessClassInPackage.sdo
.foo";

I/O control:

permission java.io.FilePermission "tmpFoo", "write";

permission java.io.FilePermission "<<ALL FILES>>", "read,write,
delete,execute";

permission java.io.FilePermission "${user.home}/—", "read";

Network control:

permission java.net.SocketPermission "«.ensi—bourges.fr:1—",
accept,listen,connect,resolve”
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Mandatory Access
Control

JAAS example policy file

Example of policy file: ~/.java. policy

keystore "${user.nome}${/}.keystore";

grant codeBase "file:${java.home}/lib/ext/—" {
permission java.security.AllPermission;

b

grant codeBase "http://www.ensi—bourges.fr/files/" {

permission java.io.FilePermission "/tmp", "read";
permission java.lang.RuntimePermission "queuePrintJob";

b

» The user has to write the policy
» He cannot be helped by the developer

—_— O OO ~NOO N DO N —
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Mandatory Access 10 give to developpers a solution that:
s » Provides a way to define the policy in the code
» Introduces roles in collaborative software
» Gives an RBAC API for the software

The users will be able to:
» Collect needed permission and take a decision
» Choose a role in the software

Security:

» |s this sufficient to control a possible vulnerability in
the software ?
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REAC inearation Inspired from SELinux rules:

allow <subject> <IT> <object>

Javadoc comment before methods:

[
x @allowlT Root {all}

* @allowl|T User{awt} "accessClipboard"

x @allowlIT User{file:(read);file:(write)} "config.txt" «/

DO N —
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A parsed rule in the Java code:
I
REAC M « @allowIT Root {file:(read);file:(write)} "config.txt" */

public void convertConfiguration()

[
x @allowlT Root {file:(read);} "password.txt" «/
public void authenticate(String password)

D ~N O NN D O N —

will produce:

grant Principal test.JAAS.ExamplePrincipal "Root" {
permission java.io.FilePermission "config.txt", "read";
permission java.io.FilePermission "config.txt", "write";

permission java.io.FilePermission "password.txt", "read";};

DO N —
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Mandatory Access

Control

RBAC integration
Collaborative app.
Implementation
Dynamic security

Conclusion

Tag loading and policy deployment

Parser and File Loader
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RBAG intogration Login module provides to the software:
» Hypothesis: the authentication is done
» Called at any time of the software
» Proposes to a user to obtain a role

The login module then checks:
» That the user can take this role
» That the right policy is loaded in JAAS
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Mandatory Access

Control

RBAC integration
Collaborative app.
Implementation
Dynamic security

Conclusion

Login module

JAAS Login Module
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Figure: Login module

« Access Restriction!
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Benefits of this architecture:
» |t eases the security policy generation
Sestina » It allows sandboxing the application

» It adds an authentication security level before using
the application

» |t simplifies the writing of policies for developers

The design of the policy is
» Collaborative for developers
» Controlled user by user by the administrator
» Gives guarantees for users
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Mandatory Access
Control Java Collaborative Application: Users
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Figure: Java collaborative application
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Mandatory Access
Control

Java Collaborative Application ]

RBAC integration

Collaborative app.
Implementation
Dynamic security

Conclusion
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Implementation

Policy tags

/:j:,\:
« @allowlT Root {file:(read);file:(write)} "config.txt"
x @allowlT User {file:(read)} "config.txt" */

public void convertConfiguration()

generates...

grant Principal test.JAAS.ExamplePrincipal "Root" {
permission java.io.FilePermission "config.txt", "read";
permission java.io.FilePermission "config.txt", "write";
|3
grant Principal test.JAAS.ExamplePrincipal "User" {
permission java.io.FilePermission "config.txt", "read";

b

T DN O N —

oD ~N ™ NN D O N —
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The user choose the Root role:

Listing 1: Console output for a read+write operation

Password linked to the username in the userfile:

Implementation a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Hash of the inputed password :
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Authentication succeeded!!

Please pick a role :

————>Root

Role pick succeeded.

Actions done once authenticated ..........

The file exists in the current working directory
the file has been read!

The file config. txt was created (write test)!
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Listing 2: Console output for a read+write operation

Password linked to the username in the userfile:
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3

e Hash of the inputed password :
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Authentication succeeded!!

Please pick a role :
————>User
Role pick succeeded.

Actions done once authenticated ..........

The file exists in the current working directory

the file has been read!

java. security . AccessControlException: access denied
(java.io.FilePermission config. txt write)
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What about a software vulnerability ?

» Hypothesis: an attack succeeds against the software
» If the choosen role is root...
Dynamic security » ... the attacker will be able to write in config.txt !

For example:

» A Peer-to-peer application with a network
vulnerability

» A web server application on a Tomcat platform

The permissions are 99% of the time useless...
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[
* @allowlT Root {file:(read);file:(write)} "config.txt" x/
public void convertConfiguration()

%
Dynamic security + @allowlT Root {file:(read);} "password.txt" «/
public void authenticate(String password)

These permissions are useless:
» Permissions on config.txt are useless in
authenticate ()
» Permissions on password.txt are useless in
convertConfiguration()

o0 ~N O N D O N —
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[
+ @allowlT Root {file:(read);file:(write)} "config.txt" /
public void convertConfiguration()

/I Vulnerability at this point: injecting this code:

L, this.passwordFileObject.printin("hacked password");

/%
x @allowlT Root {file:(read);} "password.txt" */
public void authenticate(String password)

» Arbitrary access is allowed to password.txt

» Even if multi-threaded, the code have no reason to
have permanent access to password.ixt

—_— ek OO ~NI OO DO NY —
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Dynamic security

Proposed solution

To dynamically enforce the policy when required:

%%

x @allowlT Root {file:(read);file:(write)} "config.txt" «/
public void convertConfiguration() {
RBAC.loadPolicy("root_convertConfiguration");

/I Vulnerability at this point: insecting this code:
this.passwordFileObject.printin("hacked password"); / This will fail !

RBAC.unloadPolicy("root_convertConfiguration");
1
/%

x @allowlIT Root {file:(read);} "password.txt" */
public void authenticate(String password) {
RBAC.loadPolicy("root_authenticate");

RBAC.unloadPolicy("oot_authenticate");
}

—_ ed ed ed ed e ek o OO N DN GO N
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Conclusion

Conclusion and perspectives

The implemented RBAC module proposes:
» A tag parser and policy generator
» A login module for software integration
» A dynamic method of policy enforcement

What next ?
» Extract automatically policies from source code
» Link JAAS to SELinux ?



» Questions ?

<o <P o«

Q>




	Mandatory Access Control
	RBAC integration
	Collaborative app.
	Implementation
	Dynamic security
	Conclusion

