RBAC for Java

1= Generation of Role Based Access
Control Security Policies for Java
Collaborative Applications

J. Briffaut — X. Kauffmann-Tourkestansky
J.-F. Lalande — W. W. Smari

LIFO
Université d’Orléans / ENSI de Bourges
France

Electrical and Computer Engineering Department

University of Dayton
USA

SECURWARE’09

RBAC for Java
J.-F. Lalande

2/22

Mandatory Access
Control

Access control for software

v

vy

v

DAC : Discretionary Access Control
» Permissions defined by Owner
MAC : Mandatory Access Control

» Permissions defined by Administrator (Independent
User)

Controls a software, a database, etc...
For a Java software classicaly:

» The operating system enforce a DAC policy
» Extra tools provide a Mandatory Access Control
Mechanism

RBAC: Role based Access Control

reacloriava NAC mechanism for Java software

J.-F. Lalande

3/22

Mandatory Access

Control Two running modes:
» All permissions are granted
» The software is sandboxed
Sandboxed software:
» Network is limited
» Read and Write permission are very limited
» Graphical operations can be forbidden
Limitations:
» On what URL ?
» On what system object ?

rercierae JAAS permissions

J.-F. Lalande

4/22
Class control:

Mandatory Access
Control

permission java.lang.RuntimePermission "accessClassInPackage.sdo
.foo";

I/O control:

permission java.io.FilePermission "tmpFoo", "write";

permission java.io.FilePermission "<<ALL FILES>>", "read,write,
delete,execute";

permission java.io.FilePermission "${user.home}/—", "read";

Network control:

permission java.net.SocketPermission "«.ensi—bourges.fr:1—",
accept,listen,connect,resolve”

RBAC for Java
J.-F. Lalande

5/22

Mandatory Access
Control

JAAS example policy file

Example of policy file: ~/.java. policy

keystore "${user.nome}${/}.keystore";

grant codeBase "file:${java.home}/lib/ext/—" {
permission java.security.AllPermission;

b

grant codeBase "http://www.ensi—bourges.fr/files/" {

permission java.io.FilePermission "/tmp", "read";
permission java.lang.RuntimePermission "queuePrintJob";

b

» The user has to write the policy
» He cannot be helped by the developer

—_— O OO ~NOO N DO N —

RBAC for Java Objectives

J.-F. Lalande

6/22
Mandatory Access 10 give to developpers a solution that:
s » Provides a way to define the policy in the code
» Introduces roles in collaborative software
» Gives an RBAC API for the software

The users will be able to:
» Collect needed permission and take a decision
» Choose a role in the software

Security:

» |s this sufficient to control a possible vulnerability in
the software ?

RBAC for Java Language

J.-F. Lalande

7/22

REAC inearation Inspired from SELinux rules:

allow <subject> <IT> <object>

Javadoc comment before methods:

[
x @allowlT Root {all}

* @allowl|T User{awt} "accessClipboard"

x @allowlIT User{file:(read);file:(write)} "config.txt" «/

DO N —

reactrime | anguage deployment

J.-F. Lalande
8/22
A parsed rule in the Java code:
I
REAC M « @allowIT Root {file:(read);file:(write)} "config.txt" */

public void convertConfiguration()

[
x @allowlT Root {file:(read);} "password.txt" «/
public void authenticate(String password)

D ~N O NN D O N —

will produce:

grant Principal test.JAAS.ExamplePrincipal "Root" {
permission java.io.FilePermission "config.txt", "read";
permission java.io.FilePermission "config.txt", "write";

permission java.io.FilePermission "password.txt", "read";};

DO N —

RBAC for Java
J.-F. Lalande
9/22
Mandatory Access

Control

RBAC integration
Collaborative app.
Implementation
Dynamic security

Conclusion

Tag loading and policy deployment

Parser and File Loader

—

T

PROJECT

Parser

Database »

RBAC for Java Login modu|e

J.-F. Lalande

10/22

RBAG intogration Login module provides to the software:
» Hypothesis: the authentication is done
» Called at any time of the software
» Proposes to a user to obtain a role

The login module then checks:
» That the user can take this role
» That the right policy is loaded in JAAS

RBAC for Java
J.-F. Lalande
11/22
Mandatory Access

Control

RBAC integration
Collaborative app.
Implementation
Dynamic security

Conclusion

Login module

JAAS Login Module

LOGIN

e
@~ |

User/Role
File

APPLICATION

E> JAAS :>

Computer’s

Policy File Resources

Figure: Login module

« Access Restriction!

rercerma— Benefits for collaborative applications

J.-F. Lalande

12/22

Benefits of this architecture:
» |t eases the security policy generation
Sestina » It allows sandboxing the application

» It adds an authentication security level before using
the application

» |t simplifies the writing of policies for developers

The design of the policy is
» Collaborative for developers
» Controlled user by user by the administrator
» Gives guarantees for users

rReacoriaa (So)laborative design of the pOllcy

J.-F. Lalande

13/22

Mandatory Access
Control Java Collaborative Application: Users

RBAC integration

Collaborative app.

Implementation

Dynamic security s
=]
Conclusion §
c
@
<
S
3
<

JSM and

SandBox

JAAS Login Povlicy
Module File

Figure: Java collaborative application

[m] = = =

DA

rReacoriaa (So)laborative design of the pOllcy

J.-F. Lalande

13/22

Mandatory Access
Control

Java Collaborative Application]

RBAC integration

Collaborative app.
Implementation
Dynamic security

Conclusion

Authentication

JSM and
Administrator SandBox

User
File
Editor

JAAS Login Policy
Module File

Figure: Java collaborative application

[m] = = =

DA

RBAC for Java
J.-F. Lalande

14/22

Implementation

Policy tags

/:j:,\:
« @allowlT Root {file:(read);file:(write)} "config.txt"
x @allowlT User {file:(read)} "config.txt" */

public void convertConfiguration()

generates...

grant Principal test.JAAS.ExamplePrincipal "Root" {
permission java.io.FilePermission "config.txt", "read";
permission java.io.FilePermission "config.txt", "write";
|3
grant Principal test.JAAS.ExamplePrincipal "User" {
permission java.io.FilePermission "config.txt", "read";

b

T DN O N —

oD ~N ™ NN D O N —

reaciersava — \Afith the Root role

J.-F. Lalande

15/22
The user choose the Root role:

Listing 1: Console output for a read+write operation

Password linked to the username in the userfile:

Implementation a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Hash of the inputed password :
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Authentication succeeded!!

Please pick a role :

————>Root

Role pick succeeded.

Actions done once authenticated

The file exists in the current working directory
the file has been read!

The file config. txt was created (write test)!

reactorsava— \Nith the User role

J.-F. Lalande

16/22 The user choose the User role:

Listing 2: Console output for a read+write operation

Password linked to the username in the userfile:
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3

e Hash of the inputed password :
a94a8fe5ccb19ba61c4c0873d391e987982fbbd3
Authentication succeeded!!

Please pick a role :
————>User
Role pick succeeded.

Actions done once authenticated

The file exists in the current working directory

the file has been read!

java. security . AccessControlException: access denied
(java.io.FilePermission config. txt write)

RBAC for Java What about Vu|nerabilities ?

J.-F. Lalande

17/22
What about a software vulnerability ?

» Hypothesis: an attack succeeds against the software
» If the choosen role is root...
Dynamic security » ... the attacker will be able to write in config.txt !

For example:

» A Peer-to-peer application with a network
vulnerability

» A web server application on a Tomcat platform

The permissions are 99% of the time useless...

RBAG for Java Permissions are useless ?

J.-F. Lalande

18/22

[
* @allowlT Root {file:(read);file:(write)} "config.txt" x/
public void convertConfiguration()

%
Dynamic security + @allowlT Root {file:(read);} "password.txt" «/
public void authenticate(String password)

These permissions are useless:
» Permissions on config.txt are useless in
authenticate ()
» Permissions on password.txt are useless in
convertConfiguration()

o0 ~N O N D O N —

RBAC for Java Hypothet|cal Vulnerabi"ty

J.-F. Lalande

19/22

[
+ @allowlT Root {file:(read);file:(write)} "config.txt" /
public void convertConfiguration()

/I Vulnerability at this point: injecting this code:

L, this.passwordFileObject.printin("hacked password");

/%
x @allowlT Root {file:(read);} "password.txt" */
public void authenticate(String password)

» Arbitrary access is allowed to password.txt

» Even if multi-threaded, the code have no reason to
have permanent access to password.ixt

—_— ek OO ~NI OO DO NY —

RBAC for Java
J.-F. Lalande

20/22

Dynamic security

Proposed solution

To dynamically enforce the policy when required:

%%

x @allowlT Root {file:(read);file:(write)} "config.txt" «/
public void convertConfiguration() {
RBAC.loadPolicy("root_convertConfiguration");

/I Vulnerability at this point: insecting this code:
this.passwordFileObject.printin("hacked password"); / This will fail !

RBAC.unloadPolicy("root_convertConfiguration");
1
/%

x @allowlIT Root {file:(read);} "password.txt" */
public void authenticate(String password) {
RBAC.loadPolicy("root_authenticate");

RBAC.unloadPolicy("oot_authenticate");
}

—_ ed ed ed ed e ek o OO N DN GO N

RBAC for Java

J.-F. Lalande

21/22

Conclusion

Conclusion and perspectives

The implemented RBAC module proposes:
» A tag parser and policy generator
» A login module for software integration
» A dynamic method of policy enforcement

What next ?
» Extract automatically policies from source code
» Link JAAS to SELinux ?

» Questions ?

<o <P o«

Q>

	Mandatory Access Control
	RBAC integration
	Collaborative app.
	Implementation
	Dynamic security
	Conclusion

