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Abstract. This paper considers realizability of schedules by stochastic
concurrent timed systems. Schedules are high level views of desired
executions represented as partial orders decorated with timing constraints,
while systems are represented as elementary stochastic time Petri nets.
We first consider logical realizability: a schedule is realizable by a net N if
it embeds in a time process of N that satisfies all its constraints. However,
with continuous time domains, the probability of a time process that
realizes a schedule is null. We hence consider probabilistic realizability up to
α time units, that holds if the probability that N logically realizes S with
constraints enlarged by α is strictly positive. Upon a sensible restriction
guaranteeing time progress, logical and probabilistic realizability of a
schedule can be checked on the finite set of symbolic prefixes extracted
from a bounded unfolding of the net. We give a construction technique
for these prefixes and show that they represent all time processes of a
net occurring up to a given maximal date. We then show how to verify
existence of an embedding and compute the probability of its realization.

1 Introduction

Correct scheduling of basic operations in automated systems (manufacturing or
transport systems,...) is a way to manage at best available resources, avoid unde-
sired configurations, or achieve an objective within a bounded delay. Following
a predetermined schedule is also a way to meet QoS objectives. For instance,
changes to predetermined schedules in metro networks may cause congestion and
reduce QoS. Schedules provide high-level views for correct ordering of important
operations in a system, consider time issues and provide optimal dates for a
production plan. They can be seen as partial orders among basic tasks, decorated
with dates and timing constraints, that abstract low-level implementation details.

Designing a correct and optimal schedule for a system is a complex problem.
Occurrence dates of events can be seen as variables, and correct and optimal
schedules as optimal solutions (w.r.t. some criteria) for a set of constraints over
these variables. Linear programming solutions have been proposed to optimize
scheduling in train networks [8, 9]. The size of models for real systems that run
for a full day call for approximated solutions usually provided by experts. When
a high-level schedule and the low-level system that implements it are designed in
a separate way, nothing guarantees that the system is able to realize the expected



schedule. This calls for tools to check realizability of a schedule by a system.
One can notice that optimal and realizable schedules are not necessarily robust
if they impose tight realization dates to systems that are subject to random
variations (delays in productions, faults. . . ). In metro networks, trains delays
are expected and are part of the normal behavior of the system. To overcome
this problem, metro schedules integrate small recovery margins that avoid the
network performance to collapse as soon as a train is late. Note also that for
systems where time issues are defined with continuous variables, the probability
to execute a given event at a precise date is zero. Furthermore, being able to
realize a schedule does not mean that the probability to meet optimal objectives
is high enough. Beyond logical realizability, a schedule shall hence be considered
as realizable if it can be approached with a significant probability.

This paper addresses realizability of schedules by stochastic timed systems.
We define schedules as labeled partial orders decorated with dates and timing
constraints, and represent systems with elementary stochastic time Petri nets
(STPN for short), a model inspired from [13]. We particularly emphasize on
resources: non-availability of a resource (represented by a place) may block
transitions. This leads to the definition of a blocking semantics for STPNs that
forbids firing a transition if one of its output places is filled. We then propose a
notion of realizability: a schedule S is realizable by an STPN N if S embeds in a
symbolic process of N that meets constraints of S. We prove that upon some
reasonable time progress assumption, realizability can be checked on a finite set
of symbolic processes, obtained from a bounded untimed unfolding [16, 12] of N .
Symbolic processes are processes of the unfolding with satisfiable constraints on
occurrence dates of events. A symbolic framework to unfold time Petri nets was
already proposed in [4, 6] but blocking semantics brings additional constraints
on firing dates of transitions. Embedding of a schedule in a process of N only
guarantees logical realizability: the probabilty of a time process in which one event
is forced to occur at a precise date is 0. We use transient analysis of STPNs [13]
to compute the probability that a schedule is realized by a symbolic time process
of N up to an imprecision of δ. This allows to show that N realizes S ± δ with
strictly positive probability, and then define a notion of probabilistic realizability.

The paper is organized as follows: Section 2 introduces schedules and our
variant of stochastic time Petri nets with blocking semantics. Section 3 defines a
notion of symbolic processes. Section 4 shows how to verify that a schedule is
compatible with at least one process of the system and measure the probability
of such realization. Due to lack of space, proofs and several technical details are
provided in an extended version available at hal.inria.fr/hal-01284682.

2 Schedules and Stochastic Time Petri Nets

A schedule describes causal dependencies among tasks, and timing constraints on
their respective starting dates. Schedules are defined as decorated partial orders.
We allow timing constraints among tasks that are not causally related.
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Definition 1 (schedule). A schedule over a finite alphabet A is a quadruple
S , 〈N,→, λ, C〉 where N is a set of nodes, → ⊆N ×N is an acyclic precedence
relation, λ : N → A is a labeling of nodes, and C : N ×N 7→ Q>0 is a partial
function that associates a time constraint to pairs of nodes. A dating function
for a schedule S is a function d : N → Q≥0 that satisfies all constraints of C and
→: 〈n, n′〉 ∈ → implies d(n′) ≥ d(n), and C(n, n′) = x implies d(n′)− d(n) ≥ x.

This model for schedules is inspired from [8, 9]. Intuitively, if C(n, n′) = x,
then n′ cannot occur earlier than x time units after n, and if 〈n, n′〉 ∈ →,
then n (causally) precedes n′. Constraints model the minimal times needed to
perform tasks and initiate the next ones in production cells, the times needed
for trains to move from a station to another, etc. A schedule S is consistent
if the graph 〈N,→ ∪ {〈n, n′〉 | C(n, n′) is defined}〉 does not contain cycles.
Obviously, consistent schedules admit at least one dating function. A frequent
approach is to associate costs to dating functions and to find optimal functions
that meet a schedule. A cost example is the earliest completion date. Optimizing
this cost amounts to assigning to each node the earliest possible execution date.
However, these optimal schedules are not the most probable ones. For the earliest
completion date objective, if an event n occurs later than prescribed by d, then
all its successors will also be delayed. In real systems running in an uncertain
environment (e.g., with human interactions or influenced by weather conditions),
tight timings are impossible to achieve. Finding a good schedule is hence a
trade-off between maximization of an objective and of the likelihood to stay close
to optimal realizations at runtime.

We want to check whether a consistent schedule S with its dating function d
can be realized by a system. Systems are described with a variant of Petri nets
with time and probabilities, namely stochastic time Petri nets [13]. We will show
how to check that (S, d) is realizable by an STPN N , and then how to measure
the probability that (S, d) is realized by N . Roughly speaking, an STPN is a time
Petri net with distributions on firing times attached to transitions. As for Petri
nets, the semantics of our model moves tokens from the preset of a transition to
its postset. The time that must elapse between enabling of a transition and its
firing is sampled according to the distribution attached to the transition. The
major difference with [13] is that we equip our STPNs with a blocking semantics.
Due to blockings, stochastic time Petri nets are safe (1-bounded). This semantics
restriction is justified by the nature of the systems we address: in production
chains, places symbolize tools that can process only one item at a time. Similarly,
when modeling train networks, an important security requirement is that two
trains cannot occupy the same track portion, which can only be implemented
with such a blocking semantics. Standard time or stochastic Petri nets do not
assume a priori bounds on their markings. A way to force boundedness is to add
complementary places to the original Petri net and then study it under the usual
semantics [7]. However, this trick does not allow to preserve time and probability
issues in STPNs with blockings.

For simplicity, we only consider closed intervals of the form [a, b] with a < b
and open intervals of the form [a,+∞). A probability density function (PDF) for
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a continuous random variable X is a function fX : R→ [0, 1] that describes the
relative likelihood for X to take a given value. Its integral over the domain of X
is equal to 1. A cumulative distribution function (CDF) FX : R → [0, 1] for X
describes the probability for X to take a value less than or equal to a chosen value.
We denote by Σpdf the set of PDFs, Σcdf the set of CDFs, and we only consider
PDFs for variables representing durations, i.e., whose domains are included in
R≥0. The CDF of X can be computed from its PDF as FX(x) =

∫ x
0
fX(y) dy. A

marking is a function that assigns 0 or 1 token to each place p ∈ P .

Definition 2 (stochastic time Petri net). A stochastic time Petri net (STPN
for short) is a tuple N = 〈P, T,•(), ()•,m0, eft, lft,F ,W〉 where P is a finite set
of places; T is a finite set of transitions; •() : T → 2P and ()• : T → 2P are
pre and post conditions depicting from which places transitions consume tokens,
and to which places they output produced tokens; m0 : P → {0, 1} is the initial
marking of the net; eft : T → Q≥0 and lft : T → Q≥0 ∪ {+∞} respectively specify
the minimum and maximum time-to-fire that can be sampled for each transition;
and F : T → Σpdf and W : T → R>0 respectively associate a PDF and a strictly
positive weight to each transition.

For a given place or transition x ∈ P ∪T , •x will be called the preset of x, and
x•the postset of x. We denote by ft the PDF F(t), and by Ft the associated CDF.
To be consistent, we assume that for every t ∈ T , the support of ft is [eft(t), lft(t)].
This syntax of STPNs is similar to [13], but we equip them with a blocking
semantics, defining sequences of discrete transition firings, and timed moves. We
will say that a transition t is enabled by a marking m iff ∀p ∈ •t,m(p) = 1. We
denote by enab(m) the set of transitions enabled by a marking m.

For a given marking m and a set of places P ′, we will denote by m− P ′ the
marking that assigns m(p) tokens to each place p ∈ P \ P ′, and m(p)− 1 tokens
to each place p ∈ P ′. Similarly, we will denote by m+P ′ the marking that assigns
m(p) tokens to each place p ∈ P \ P ′, and m(p) + 1 tokens to each place p ∈ P ′.
Firing a transition t is done in two steps and consists in: (1) consuming tokens
from •t, leading to a temporary marking mtmp = m − •t, then (2) producing
tokens in t•, leading to a marking m′ = mtmp + t•.

The blocking semantics can be informally described as follows. A variable
τt is attached to each transition t of the STPN. As soon as the preset of a
transition t is marked, τt is set to a random value ζt (called the time-to-fire of t,
or TTF for short) sampled from [eft(t), lft(t)] according to ft. We will assume
that every CDF Ft is strictly increasing on [eft(t), lft(t)], which allows to use
inverse transform sampling to choose a value (see for instance [17] for details).
Intuitively, this TTF represents a duration that must elapse before firing t once
t is enabled. The value of τt then decreases as time elapses but cannot reach
negative values. When the TTF of a transition t reaches 0, then if t• is empty in
mtmp, t becomes urgent and has to fire unless another transition with TTF 0 and
empty postset fires; otherwise (if t• is not empty in mtmp), t becomes blocked : its
TTF stops decreasing and keeps value 0, and its firing is delayed until the postset
of t becomes empty; in the meantime, t can be disabled by the firing of another
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transition. The semantics of STPNs is urgent : time can elapse by durations that
do not exceed the minimal remaining TTF of enabled transitions that are not
blocked. If more than one transition is urgent, then the transition that fires is
randomly chosen according to the respective weights of urgent transitions. We
formalize the semantics of STPNs in terms of discrete and timed moves between
configurations that memorize markings and TTFs for enabled transitions.

Definition 3 (configuration of an STPN). A configuration of an STPN is
a pair CN , 〈m, τ〉 where m is a marking, and τ : enab(m)→ R≥0 is a function
that assigns a positive real TTF τi , τ(ti) to each transition ti enabled by m. A
transition t is enabled in a configuration 〈m, τ〉 iff it is enabled by m.

Definition 4 (firable and blocked transitions). A transition t is firable in
〈m, τ〉 iff it is enabled by m, all places of its postset are empty in m − •t, and
its TTF is equal to 0. We denote by fira(〈m, τ〉) the set of firable transitions of
〈m, τ〉. A transition t is blocked in 〈m, τ〉 iff it is enabled by m, its TTF τ(t)
is equal to 0, and one of its postset places is marked in m − •t. We denote by
blck(〈m, τ〉) the set of blocked transitions in 〈m, τ〉.

Timed moves: A timed move 〈m, τ〉 δ−→ 〈m, τ ′〉 lets a strictly positive duration
δ elapse. To be allowed, δ must be smaller or equal to all TTFs of transitions
enabled by m and not yet blocked. The new configuration 〈m, τ ′〉 decreases TTFs
of every enabled and non-blocked transition t by δ time units (τ ′(t) = τ(t)− δ).
Blocked transitions keep a TTF of 0, and m remains unchanged.

Discrete moves: A discrete move 〈m, τ〉 t−→ 〈m′, τ ′〉 consists in firing a transition
t from a configuration 〈m, τ〉 to reach a configuration 〈m′, τ ′〉. Discrete moves
change the marking of a configuration, and sample new times to fire for transitions
that become enabled after the move. To define the semantics of discrete moves,
we first introduce newly enabled transitions.

Definition 5 (newly enabled transitions). Let m be a marking and t a
transition enabled by m. A transition t′ is newly enabled after firing of t from
m iff it is enabled by marking m′ = (m−•t) + t• and either it is not enabled by
m−•t or t′ = t. We denote by newl(m, t) , enab(m′)∩ ({t} ∪ (T \ enab(m−•t)))
the set of transitions newly enabled by firing of t from m.

The transition t fired during a discrete move is chosen among all firable
transitions of 〈m, τ〉. The new marking reached is m′ = (m−•t) + t•, and τ ′ is
obtained by sampling a new TTF for every newly enabled transition and keeping
unchanged TTFs of transitions already enabled by m and still enabled by m′.

Complete operational rules for STPN moves can be found in the extended
version. We will write 〈m, τ〉 → 〈m′, τ ′〉 iff there exists a timed or discrete move

from 〈m, τ〉 to 〈m′, τ ′〉, and 〈m, τ〉 ∗−→ 〈m′, τ ′〉 iff there exists a sequence of moves
leading from 〈m, τ〉 to 〈m′, τ ′〉. An initial configuration for N is a configuration
〈m0, τ0〉 where τ0 attaches a sampled TTF to each transition enabled by m0.

Consider the STPN N1 of Figure 1, and suppose that N1 is in configuration
〈m, τ〉, with m(p1) = 1, m(p2) = m(p3) = 0, τ(t1) = 5.5. From this configuration,
one can let 5.5 time units elapse, and then fire t1. After this firing, the STPN
reaches marking m′ with m′(p1) = m′(p2) = 1, m′(p3) = 0. New TTFs d1, d2
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2

Fig. 1: a) An example STPN N1 and b) a time process of N1

are sampled for t1, t2, leading to a configuration 〈m′, τ ′〉, where τ ′(t1) = d1
and τ ′(t2) = d2. Let us suppose that d1 = 1.5 and d2 = 2.6. Then one can
let 1.5 time units elapse, but after this timed move, transition t1 cannot fire,
as place p2 contains a token. N1 is hence in a configuration 〈m′, τ ′′〉, where
τ ′′(t1) = 0, τ ′′(t2) = 1.1, and t1 is blocked. After letting 1.1 time units elapse,
transition t2 can fire, leading to marking m′′(p1) = m′′(p3) = 1,m′′(p2) = 0, and
t1 immediately fires at the same date.

Let us now assign probabilities to STPN moves. Randomness in STPNs
semantics mainly comes from sampling of TTFs. However, when several transitions
are firable from a configuration, weights are used to determine the probability
for a transition to fire first. Timed moves are achieved with probability 1: once
TTFs are set, there is a unique configuration allowing discrete moves. In a

move 〈m, τ〉 t−→ 〈m′, τ ′〉, m′ is built deterministically, but τ ′ is obtained by
sampling a random value ζt for each newly enabled transition t. Each ζt is chosen
according to CDF Ft, i.e., we have P(ζt ≤ x) = Ft(x) (for any x ∈ [eft(t), lft(t)]).
When more than one transition is firable from 〈m, τ〉, the transition that fires is
randomly chosen, and each transition tk in fira(〈m, τ〉) has a probability to fire
Pfire(tk) = W(tk)

/∑
ti∈fira(〈m,τ〉)W(ti). Note that, as STPNs have continuous

probability laws, the probability to choose a particular value ζt is the probability
of a point in a continuous domain and is hence null. However, in the next sections,
we will consider probabilities for events of the form τ(ti) ≤ τ(tj), which may
have strictly positive probability.

STPNs define sequences of moves ρ = (〈m, τ〉 ei−→ 〈m′, τ ′〉)i∈1...k, where ei is a
transition name in discrete moves and a real value in timed moves. Leaving prob-
abilities for the moment, STPNs can also be seen as generators for timed words
over T . A timed word over an alphabet A is a sequence 〈a1, d1〉 . . . 〈aq, dq〉 . . . in
(A×R≥0)∗, where each ai is a letter from A, each di defines the occurrence date
of ai, and d1, . . . , dq is an increasing sequence of positive real numbers. Letting
i1, . . . , iq denote the indices of discrete moves in ρ, we can build a timed word
uρ = 〈ai1 , d1〉 . . . 〈aiq , dq〉 ∈ (T ×R≥0)q that associates dates to transitions firings,
where d1 =

∑
j<i1

ej , and dj = dj−1 +
∑
ij−1<k<ij

ek for j ∈ {2, . . . , q}. The

timed language of an STPN N is the set L(N ) of timed words associated with
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its sequences of moves. We denote by L≤D(N ) the set of words in L(N ) whose
maximal date is lower than D.

As already highlighted in [2] for TPNs, timed languages give a sequential and
interleaved view for executions of inherently concurrent models. A non-interleaved
semantics can be defined using time processes, i.e., causal nets equipped with
dating functions. We recall that causal nets are finite acyclic nets of the form
CN , 〈B,E,•(), ()•〉, where for every b ∈ B, |b•| ≤ 1 and |•b| ≤ 1. Intuitively, a
causal net contains no conflict (pairs of transition with common places in their
presets) nor place receiving tokens from more than one transition.

Definition 6 (time process). A time process is a tuple TP , 〈CN, θ〉, where
CN , 〈B,E,•(), ()•〉 is a causal net, and θ : E → R≥0 associates a positive real
date to transitions of the net, and is such that ∀e, e′ ∈ E with e•∩•e′ 6= ∅ we have
θ(e) ≤ θ(e′). In time processes, places in B are called conditions, and transitions
in E are called events. The depth of a time process is the maximal number
of events along a path of the graph 〈B ∪ E,•() ∪ ()•〉. We will write e ≺ e′ iff
e•∩•e′ 6= ∅, and denote by � the transitive and reflexive closure of ≺.

Intuitively, conditions in B represent occurrences of places fillings, and events
in E are occurrences of transitions firings. Given an STPN N , for every timed
word u = 〈a1, d1〉 . . . 〈an, dn〉 in L(N ), we can compute a time process TPu =
〈B,E,•(), ()•, θ〉. The construction described below is the same as in [2]. It does
not consider probabilities and, as the construction starts from an executable
word, it does not have to handle blockings either. To differentiate occurrences of
transitions firings, an event will be defined as a pair e , 〈X, t〉, where t is the
transition whose firing is represented e and X is the set of conditions it consumes.
Similarly, a condition is defined as a pair b , 〈p, e〉, where p is the place whose
filling is represented by b, and e is the event whose occurrence created b.

We denote by tr(e) the transition t attached to an event e, and by pl(b)
the place p associated with a condition b. The flow relations are hence implicit:
•e = {b | e = 〈X, t〉 ∧ b ∈ X}, and similarly e•= {b | b = 〈p, e〉}, and for b = 〈p, e〉,
•b = e and b•= {e ∈ E | b ∈ •e}. We will then drop flow relations and simply
refer to time processes as triples TP , 〈B,E, θ〉. The time process TPu obtained
from a timed word u = 〈t1, d1〉〈t2, d2〉 . . . 〈tk, dk〉 ∈ L(N ) is built inductively as
follows. We assume a dummy initial event ⊥ that initializes the initial contents
of places according to m0. We start from the initial process TP0 = 〈B0, E0, θ0〉
with a set of conditions B0 = {(p,⊥) | p ∈ m0}, a set of events E0 = {⊥}, and a
function θ0 : {⊥} → {0}.

Let TPu,i = 〈Bi, Ei, θi〉 be the time process built after i steps for the prefix
〈t1, d1〉 . . . 〈ti, di〉 of u, and let 〈t, di+1〉 be the (i + 1)th entry of u. We denote
by last(p,Ei, Bi) the last occurrence of place p in TPu,i, i.e., the only condition
b = 〈p, e〉 with an empty postset. Then, we have Ei+1 = Ei∪{e}, where e = 〈t,X〉
with X = {b | b = last(p,Ei, Bi) ∧ p ∈ •t} and Bi+1 = Bi ∪ {〈p, e〉 | p ∈ t•}. We
also set θ(e) = di+1. The construction ends with TPu = TPu,|u|.

Figure 1-b is an example of a time process for STPN N1. In this example, event
tji (resp. condition pji ) denotes the jth occurrence of transition ti (resp. place pi).
This time process corresponds to the time word u = 〈t1, 5.5〉〈t2, 8.1〉〈t1, 8.1〉 ∈
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L(N1). It contains causal dependencies among transitions (e.g., from t11 to t12).
Event t21 cannot occur before t12 as t1 cannot fire as long as place p2 is filled.
However, this information is not explicit in the process. The timed language L(N )
of a TPN can be reconstructed as the set of linearizations of its time processes.
In these linearizations, ordering of events considers both causality and dates of
events: e must precede e′ 6= e in a linearization of a process if θ(e) < θ(e′) or if
e � e′. With blocking semantics, some causality and time-preserving interleavings
may not be valid timed words of L(N ): in the process of Figure 1-b, t21 cannot
occur before t12, even if both transitions have the same date. A correct ordering
among events with identical dates in a process TPu can however be found by
checking that a chosen ordering does not prevent occurrence of other transitions.

3 Unfolding of STPNs

A time process emphasizes concurrency but only gives a partial order view of
a single timed word. Many time processes of N1 have the same structure as
the process of Figure 1-b, but different dating functions. Indeed, there can be
uncountably many time processes with identical structure, but different real
dates. It is hence interesting to consider symbolic (time) processes, that define
constraints on events dates instead of exact dates. Similarly, to avoid recomputing
the structural part of each symbolic process, we will work with unfoldings, i.e.,
structures that contain all symbolic processes of an STPN, but factorize common
prefixes. Symbolic unfoldings were introduced for TPNs in [18] and used in [5]. In
this section, we show how to unfold STPNs with blockings and extract symbolic
processes out of this unfolding. Our aim is to find the minimal structure that
represents prefixes of all symbolic processes that embed a schedule of known
duration. We show that if a system cannot execute arbitrary large sets of events
without progressing time, unfolding up to some bounded depth is sufficient.

Definition 7 (time progress). An STPN N guarantees time progress iff there
exists δ ∈ Q>0 such that ∀t ∈ T, i ∈ N, and for every time word u = 〈t1, d1〉 . . .
〈ti, θ1〉 . . . 〈ti+1, θ2〉 . . . 〈tk, dk〉 ∈ L(N ) where ti denotes the ith occurrence of t,
we have θ2 − θ1 ≥ δ.

Time progress is close to non-Zenoness property, and is easily met (e.g., if no
transition has an earliest firing time of 0). Any execution of duration ∆ of an
STPN that guarantees time progress is a sequence of at most |T | · d∆δ e transitions.

As in processes, unfoldings will contain occurrences of transitions firings
(a set of events E), and occurrences of places fillings (a set of conditions B).
We associate to each event e ∈ E positive real valued variables doe(e), dof(e)
and θ(e) that respectively define the enabling, firability and effective firing
date of the occurrence of transition tr(e) represented by event e. Similarly, we
associate to each condition b positive real valued variables dob(b) and dod(b) that
respectively represent the date of birth of the token in place pl(b), and the date
at which the token in place pl(b) is consumed. We denote by var(E,B) the set
of variables

⋃
e∈E doe(e) ∪ dof(e) ∪ θ(e) ∪

⋃
b∈B dob(b) ∪ dod(b) (with values in
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R≥0). A constraint over var(E,B) is a boolean combination of atoms of the form
x ./ y, where x ∈ var(E,B), ./ ∈{<,>,≤,≥} and y is either a variable from
var(E,B) or a constant value. A set of constraints C over a set of variables V is
satisfiable iff there exists at least one valuation v : V → R such that replacing
each occurrence of each variable x by its valuation v(x) yields a tautology. We
denote by Sol(C) the set of valuations that satisfy C.

Definition 8 (unfolding). A (structural) unfolding of an STPN N is a pair
U , 〈E,B〉 where E is a set of events and B a set of conditions.

Unfoldings can be seen as processes with branching. As for processes, each
event e ∈ E is a pair e = 〈•e, tr(e)〉 where •e ⊆ B is the set of predecessor
conditions of e (the conditions needed for e to occur). A condition b ∈ B is a pair
b , 〈•b, pl(b)〉 where •b ⊆ E is the predecessor of b, i.e., the event that created
condition b. We assume a dummy event ⊥ that represents the origin of the initial
conditions in an unfolding. Function •(), ()•, pl() and tr() keep the same meaning
as for time processes. The main change between processes and unfoldings is that
conditions may have several successor events. Using relations ≺ and � as defined
for processes, we define the causal past of e ∈ E as ↑e , {e′ ∈ E | e′ � e}. A set
of events E′ ⊆ E is causally closed iff ∀e ∈ E′, ↑e ⊆ E′. We extend this notion to
conditions. Two events e, e′ are in conflict, and write e]′e, iff •e ∩•e′ 6= ∅. A set
of events E′ ⊆ E is conflict free if it does not contain conflicting pairs of events.
Two events e, e′ are competing iff tr(e)•∩ tr(e′)• 6= ∅ (they fill a common place).

Definition 9 (pre-processes of an unfolding). A pre-process of a finite
unfolding U = 〈E,B〉 is a pair 〈E′, B′〉 such that E′ ⊆ E is a maximal (i.e.,
there is no larger pre-process containing E′, B′), causally closed and conflict free
set of events, and B′ = •E′ ∪ E′•. PE(U) denotes the set of pre-processes of U .

We say that a condition b ∈ B is maximal in U = 〈E,B〉 or in a pre-process
of U when it has no successor event (b•= ∅), and denote the set of maximal
conditions of B by max(B). As for time processes construction, given a finite
pre-process 〈E′, B′〉 ∈ PE(U), and a place p of the considered STPN, we denote
by last(p,E′, B′) the maximal occurrences of place p w.r.t. ≺ in 〈E′, B′〉. A cut
of a pre-process is an unordered set of conditions. We denote by Cuts(E,B) the
set of cuts of pre-process 〈E,B〉.

Unfolding an STPN up to depth K is performed inductively, without consid-
ering time. We will then use this structure to find processes. Timing issues will
be considered through addition of constraints on occurrence dates of events.
Structural unfolding: Following [12], we inductively build unfoldings U0, . . . ,UK .
Each step k adds new events at depth k and their postset to the preced-
ing unfolding Uk−1. We start with the initial unfolding U0 , 〈∅, B0〉 where
B0 = {〈⊥, p〉 | p ∈ m0}. Each induction step that builds Uk+1 from Uk
adds new events and conditions to Uk as follows. Letting Uk = 〈Ek, Bk〉 be
the unfolding obtained at step k, we have Uk+1 = 〈Ek ∪ Ê, Bk ∪ B̂〉 where
Ê , {〈B, t〉 ∈ (2Bk× T ) \ Ek | ∃〈X,Y 〉 ∈ PE(Uk), B ⊆ Cuts(X,Y ),•t = pl(B)},
and B̂ , {〈e, p〉 ∈ Ê × T | e = 〈B, t〉 ∈ Ê ∧ p ∈ t•}. Intuitively, Ê adds an occur-
rence of a transition if its preset is contained in the set of conditions representing
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the last occurrences of places contained in some pre-process of Uk, and B̂ adds
the conditions produced by Ê.

The structural unfolding of an STPN does not consider timing issues nor
blockings. Hence, an (untimed) pre-process of PE(UK) need not be the untimed
version of a time process obtained from a word in L(N ). Indeed, urgent transitions
can forbid firing of other conflicting transitions. Similarly, blockings prevent an
event from occurring as long as a condition in its postset is filled. They may
even prevent events in a pre-process from being executed if a needed place is
never freed. We will show later that, once constrained, time processes of N are
only prefixes of pre-processes in PE(UK) with associated timing function. To
introduce timing aspects, we now attach constraints on events and conditions of
pre-processes as follows:

Constraints: Let UK = 〈EK , BK〉 be the unfolding of an STPN N up to depth
K, and let E ⊆ EK be a conflict free and causally closed set of events, and
B = •E ∪ E• (B is contained in BK). We define ΦE,B as the set of constraints
attached to events and conditions in E,B, assuming that executions of N start
at a fixed date d0. Constraints must be set to guarantee that occurrence dates
of events are compatible with the earliest and latest firing times of transitions
in N , and that urgency or blocking is never violated. Let us first define the
constraints associated with each condition b = 〈e, p〉. Recalling that variable
dob(b) represents the date at which condition b is created, ΦE,B must impose
that for every b ∈ B0, dob(b) = d0.

For all other conditions b = 〈e, p〉, as the date of birth is exactly the occurrence
date of e, we set dob(b) = θ(e) for every b = 〈e, p〉. Despite this equality, we will
use both variables θ(e) and dob(b) for readability reasons. Recall that dod(b) is a
variable that designates the date at which a place is emptied by some transition
firing, dod(b) is hence the occurrence date of an event that has b as predecessor.
Within a conflict free set of events, this event is unique. In the considered subset
of conditions B, several conditions may represent fillings of the same place, and B
can hence be partitioned into B1]B2]· · ·]B|P |, where conditions in Bi represent
fillings of place pi. Due to blocking semantics, all conditions in a particular subset
Bi = {bi,1, bi,2, . . . , bi,k} must have disjoint existence dates, that is for every
j, j′ ∈ {1, 2, . . . , k} with j 6= j′, the intersection between [dob(bi,j), dod(bi,j)] and
[dob(bi,j′), dod(bi,j′)] is either empty, or limited to a single value. This constraint
can be encoded by the disjunction:

no-overlap(bi,j , bi,j′) ,dod(bi,j) ≤ dob(bi,j′) ∨ dod(bi,j′) ≤ dob(bi,j) if bi,j
• 6= ∅ ∧ bi,j′• 6= ∅,

dod(bi,j) ≤ dob(bi,j′) if bi,j
• 6= ∅ ∧ bi,j′•= ∅,

dod(bi,j′) ≤ dob(bi,j) otherwise.

Note that if bj � bj′ , then the constraint among events and transitions imme-
diately ensures dob(bj,i) ≤ dod(bj,i) ≤ dob(bj′,i) ≤ dod(bj′,i). However, we need
to add a consistency constraint for every pair of concurrent conditions bi,j , bi,j′

that belong to the same Bi. Hence, calling I(bi,j , E,B) the set of conditions that
represent the same place as bi,j and are concurrent with bi,j in 〈E,B〉, we have to

ensure the constraint non-blocking(bi,j) ,
∧
bi,j′∈I(bi,j ,E,B) no-overlap(bi,j , bi,j′).
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In words, condition bi,j does not hold during the validity dates of any concurrent
condition representing the same place. In particular, a time process of N cannot
contain two maximal conditions with the same place.

Let us now consider the constraints attached to events. An event e = 〈B, t〉 is
an occurrence of a firing of transition t that needs conditions in B to be fulfilled
to become enabled. Calling doe(e) the date of enabling of e, we necessarily have
doe(e) = max{dob(b) | b ∈ B}. Event e is firable at least eft(t) time units, and
at most lft(t) time units after being enabled. We hence have doe(e) + eft(t) ≤
dof(e) ≤ doe(e)+lft(t). However, execution of e does not always occur immediately
when e is firable. Execution of e occurs after e is firable, as soon as the places
filled by e are empty, i.e., e occurs at a date θ(e) that guarantees that no place
in t• is occupied. This is guaranteed by attaching to every event e the constraints
θ(e) = dob(b1), θ(e) = dob(b2), . . . , θ(e) = dob(bk), where {b1, b2, . . . bk} = e•,
and constraints non-blocking(b1), non-blocking(b2), . . . , non-blocking(bk). Last, as
semantics of STPNs is urgent, once firable, e has to fire at the earliest possible
date. This is encoded by the constraint θ(e) = min{x ∈ R≥0 | x /∈ ]dob(b), dod(b)[
for some b ∈

⋃
I(bi) ∧ x ≥ dof(e)}. Figure 2 shows the effect of blocking and

possible free firing dates for some event with a condition b in its postset. Horizontal
lines represent real lines, and intervals values in interval [dob(bi), dod(bi)] for
i ∈ 0, 1, 2. Suppose that I(b) = {b0, b1, b2}. Then [dob(b), dod(b)] have to be fully
inscribed in one of these thick segments. An event with b in its postset can occur
only at dates contained in these thick segments.

b

b0
dob(b0) dod(b0)

b1
dob(b1) dod(b1)

b2
dob(b2) dod(b2)

Fig. 2: Constraints on dates of birth of tokens in a shared place.

Written differently,

θ(e) =

{
dof(e) if

∧
b∈I(b1)∪...I(bk) dof(e) ≤ dob(b), and

min{dod(b) | ∀b′ ∈
⋃
bi∈e
•I(bi), dod(b) /∈ ]dob(b′), dod(b′)[} otherwise.

This formula can be translated in boolean combinations of inequalities over
variables of var(E,B). Similarly, event e = 〈B, t〉 must occur before all its
conflicting events. If an event e′ in conflict with e is executed, at least one
condition in B is consumed, and e cannot occur in a time process containing
e′. We hence need the additional constraint

∧
e′]e notMoreUrg(e, e′) to guarantee

that there exists no other event that is forced to occur before e due to urgency.
We define notMoreUrg(e, e′) as the following constraint:

notMoreUrg(e, e′) , θ(e) ≥ doe(e′)+lft(tr(e′))⇒ tiled(e, e′)∨
∨
e′′||e preempts(e′, e′′)
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where tiled(e, e′) , free(e′) ∩ [doe(e′) + lft(tr(e′)), θ(e)] = ∅, e′′||e refers to
events that are concurrent with e in the considered set of events E, free(e′) =
R≥0 \ {[dob(b), dod(b)] | ∃b′ ∈ e′•, b ∈ I(b′)} is the set of intervals in which
places attached to conditions in e′• are empty, and preempts(e′, e′′) , θ(e′′) ≤
min(]doe(e′) + lft(tr(e′)), θ(e)[ ∩ free(e′)) means e′′ disabled e′ by consuming a
condition in •e′′.

Constraint notMoreUrg(e, e′) means that if e′ is in conflict with e, then at
least one condition in •e′ is consumed before e′ can fire, or if e′ becomes firable
before e fires, the urgent firing of e′ is delayed by blockings so that e can occur.
As for constraint attached to blockings, notMoreUrg(e, e′) can be expressed as a
boolean combination of inequalities. One can also notice that notMoreUrg(e, e′)
can be expressed without referring to variables attached to event e′ nor e′•, as
doe(e′) = max

bi∈
•
e′

dob(bi) and the intersection of I(b) and e′• is void.

For causally closed sets of events and conditions E ∪ B contained in some
pre-process of UK , the constraint ΦE,B applying on events and conditions of
E ∪B is now defined as ΦE,B =

∧
x∈E∪B ΦE,B(x) where:

∀b ∈ B,ΦE,B(b) = non-blocking(b)∧


dob(b) = d0 if b ∈ B0, and b is maximal,
dob(b) = d0 ∧ dob(b) ≤ dod(b) if b ∈ B0,
dob(b) = θ(•b) if b /∈ B0 and b is maximal,
dob(b) = θ(•b) ∧ dob(b) ≤ dod(b) otherwise.

∀e ∈ E,ΦE,B(e) =



doe(e) = max
b∈•e dob(b)

∧ doe(e) + eft(tr(e)) ≤ dof(e) ≤ doe(e) + lft(tr(e))

∧ dof(e) ≤ θ(e) ∧
∧
b∈•e dod(b) = θ(e)

∧
∧
b∈e• θ(e) = dob(b)

∧
∧
e′]e notMoreUrg(e, e′)

We can now define symbolic processes, and show how instantiation of their
variables define time processes of N . Roughly speaking, a symbolic process is a
prefix of a pre-process of UK (it is hence a causal net) decorated with a satisfiable
set of constraints on occurrence dates of events. Before formalizing symbolic
processes, let us highlight three important remarks. Remark 1: an unfolding
up to depth K misses some constraints on occurrence dates of events due to
blockings by conditions that do not belong to UK but would appear in some larger
unfolding UK′ , with K ′ > K. We will however show (Prop. 1 and 2 that with time
progress assumption, unfolding N up to a sufficient depth guarantees that all
constraints regarding events with θ(e) ≤ D are considered. This allows to define
symbolic processes representing the time processes of N that are executable in
less than D time units. Remark 2: unfoldings consider depth of events, and not
their dates. Hence, if a process contains an event e occurring at some date greater
than d, and another event e′ that belongs to the same pre-process and becomes
urgent before date d, then e′ must belong to the process, even if it lays at a
greater depth than e. Remark 3: Every pre-process 〈E,B〉 of UK equipped with
constraint ΦE,B is not necessarily a symbolic process. Indeed, some events in a
pre-process might be competing for the same resource. Consider for instance the
STPN of Figure 3-a). Its unfolding is represented in b), and two of its (symbolic)
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processes in c) and d). For readability, we have omitted constraints. One can
however notice that there exists no symbolic process containing two occurrences
of transition t3, because conditions p14 and p24 are maximal and represent the
same place p4.

p0 p1

p2

t0 t1t2

p3

t3

p4

[0, 4] [0, 4][5, 7]

[0, 3]

a)

p1
0 p1

1

t10

p1
2 p2

2

t12

p1
3

t11

t13 t23

p1
4 p2

4

b)

p1
0 p1

1

t10

p1
2 p2

2

t11

t13

p1
4

c)

p1
0 p1

1

t10

p1
2 p2

2

t21

t23

p2
4

d)

Fig. 3: An STPN with conflicts and blockings a), its symbolic unfolding b), and
two of its symbolic processes c) and d).

Definition 10 (prefixes of an unfolding). Let SPP = 〈E,B〉 be a pre-process
of UK . A symbolic prefix of SPP is a triple 〈E′, B′, ΦE′,B′〉 where E′ ⊆ E is a
causally closed set of elements contained in E, and B′ = •E′ ∪ E′•.

Symbolic prefixes are causally closed parts of pre-processes, but their con-
straints inherited from the unfolding UK may not be satisfiable.

Definition 11 (symbolic processes). A symbolic process of UK is a triple
Es = 〈E′, B′, ΦE′,B′〉 where 〈E′, B′, ΦE′,B′〉 is a symbolic prefix of some pre-
process PP = 〈E,B〉 of UK , ΦE′,B′ is satisfiable, and E′ is maximal w.r.t. urgent
events firing in PP, that is for every f ∈ B′•∩E, and letting Cf = pl−1(f•) ∩B′
denote the set of conditions whose place appears in the postset of e, the following
constraint is not satisfiable.

Φmax(f) ,


ΦE′,B′

∧ θ(f) ≤ maxe′∈E′ θ(e
′)
(
f fires before the last event in E’

)
∧ eft(f) + max

b∈•f dob(b) ≤ θ(f) (f is urgent)

∧
∨
X∈2Cf maxx∈X dod(x) ≤ θ(f) ≤ minx∈Cf\X dob(x)

(f is not blocked for the whole duration of the process)

Intuitively, Φmax(f) means that f , that is not in the symbolic process, becomes
urgent, is not blocked by conditions in B′, and has to fire before the execution of
the last event in E′. If Φmax(f) is satisfiable, then f should appear in the process.
A crux in the construction of symbolic processes of UK is to find appropriate
maximal and causally closed sets of events with satisfiable constraints. This can
be costly: as illustrated by the example of Figure 3, satisfiability of constraints is
not monotonous: the constraints for processes in Fig 3−c) and d) are satisfiable.
However, adding one occurrence of transition t3 yields unsatisfiable constraints.
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Satisfiability of a prefix of size n hence does not imply satisfiability of a larger
prefix of size n + 1. The converse implication is also false: if a constraint of a
prefix of size n is not satisfiable, appending a new event may introduce, blockings,
delay urgent transitions, yielding satisfiability of a constraint on a prefix of size
n+ 1. So, satisfiability of constraints is not a criterion to stop unfolding.

Definition 12 (executions of symbolic processes). Let Es = 〈E,B,Φ〉 be
a symbolic process of an unfolding UK . An execution of Es is a time process
TP = 〈E,B, θ〉 where θ is a solution for Φ. For a chosen θ, we denote by
Esθ = 〈E,B, θ〉 the time process obtained from Es. TP = 〈E,B, θ〉 is a time
process of UK if there exists a symbolic process Es = 〈E,B,Φ〉 of UK s.t. TP is
an execution of Es.

Informally, symbolic pre-processes select maximal conflict-free sets of events
in an unfolding. Symbolic processes extract executable prefixes from symbolic
pre-processes, and executions attach dates to events of symbolic processes to
obtain time processes. In the rest of the paper, we respectively denote by Es(UK)
and by E(UK) the set of symbolic processes and time processes of UK .

We can now show that upon time progress hypothesis, unfoldings and their
symbolic processes capture the semantics of STPNs with blockings. Given an
STPN that guarantees time progress with a minimal elapsing of δ time units
between successive occurrences of every transition, and given a maximal date D,
we want to build an unfolding UD of N that contains all events that might be
executed before D, but also all places and events which may impact firing dates
of these events. We can show that UD is finite and its processes are of depth
H = dD−d0δ e · |T | at most.

Let b = 〈e, p〉 be a condition of an unfolding Un obtained at step n. Let block(b)
be the set of conditions that may occur in the same process as b, represent the
same place, and are not predecessors or successors of b in any unfolding Un+k
obtained from Un. Clearly, dates of birth and death of conditions in block(b) may
influence the date of birth and death of b, or even prevent b from appearing in
the same process as some conditions in block(b). However, in general, block(b)
need not be finite, and at step n, block(b) is not fully contained in a pre-process
of Un. Fortunately, upon time progress assumption, we can show that elements
of block(b) that can influence dob(b) appear in some bounded unfolding UK .

Proposition 1. Let N be a STPN guaranteeing time progress of δ time units
(between consecutive occurrences of each transition). For every date D ∈ R≥0 and
condition b in an unfolding Un, there exists K ≥ n s.t. {b′ ∈ block(b) | dob(b′) ≤
D} is contained in UK .

This proposition means that if some event cannot occur at dof(e) due to
a blocking, then one can discover all conditions that prevent this firing from
occuring in a bounded extension of the current unfolding.

Proposition 2. Let N be a STPN guaranteeing time progress of δ time units.
The set of time processes executable by N in D time units are prefixes of time
processes of UK , with K = dDδ e · |T |

2 containing only events with date ≤ D.
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4 Realizability of schedules

We can now address realizability of a schedule S, i.e., a high-level description of
operations of a system and of their timing constraints can be realized by a system
represented as a STPN N depicting low-level operations and distributions over
possible delays between enabledness and firing of transitions. The connection
between operations in S and N is defined via a realization function.

Definition 13 (realization function). A realization function for a schedule
S and an STPN N is a map r : A → 2T that associates a subset of transitions
from T to each letter of A, and such that ∀a 6= a′ ∈ A, r(a) ∩ r(a′) = ∅.

A realization function describes which low-level actions implement a high-level
operation of a schedule. Each letter a from A can be interpreted as an operation
performed through the firing of any transition from the subset of transitions r(a).
Allowing r(a) to be a subset of T provides some flexibility in the definition of
schedules: in a production cell, for example, a manufacturing step a for an item
can be implemented by different processes on different machines. Similarly, in a
train network, a departure of a train from a particular station in the schedule
can correspond to several departures using different tracks, which is encoded
with several transitions in an STPN. Realization functions hence relate actions
in schedules to several transitions in an STPN. The condition on realization
functions prevents ambiguity by enforcing each transition to appear at most once
in the image of r. Note that r(A) ⊆ T , that is the realization of a schedule may
need many intermediate steps that are depicted in the low-level description of a
system, but are not considered in the high-level view provided by a schedule. We
will call transitions that belong to r(A) realizations of A.

Definition 14 (embedding, realizability). Let S = 〈N,→, λ, C〉 be a sched-
ule, Es = 〈E,B,Φ〉 be a symbolic process of N and r : N → T be a realization
function. We say that S embeds into Es (w.r.t. r and d) and write S ↪→ Es iff
there exists an injective function ψ : N → E such that:

∀n ∈ N, tr
(
ψ(n)

)
∈ r
(
λ(n)

)
∀〈n, n′〉 ∈→, ψ(n) � ψ(n′)

@f ≤ ψ(min(n)), tr(f) ∈ r(A)

∀e ≤ f ≤ g, e = ψ(n) ∧ g = ψ(n′′) ∧ tr(f) ∈ r(A)

⇒ ∃n′, f = ψ(n′) ∧ n→∗ n′ →∗ n′′

S embeds in Es iff there is a way to label every node n of S by a letter from
r
(
λ(n)

)
and obtain a structure that is contained in some restriction of a prefix of

Es to events that are realizations of actions from A and to a subset of its causal
ordering. Note that there can be several ways to embed S into a process of N .

Definition 15 ((boolean) realizability). Let d be a dating function for a
schedule S, r be a realization function. S is realizable by Es (w.r.t. r and
d) iff there exists an embedding ψ from S to Es, and furthermore, Φψ,S,d ,
Φ ∧

∧
n∈N θ

(
ψ(n)

)
= d(n) is satisfiable. S is realizable by N (w.r.t. r and d) iff

there exists a symbolic process Es such that S is realizable by Es.
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We write Es |= S when S is realizable by Es, and N |= S when S is realizable
by N . An algorithm to compute a set ΨS,Es of embeddings of a schedule S in
a process Es is provided in the extended version. Once ΨS,Es is obtained, it
remains to show that for at least one embedding ψ ∈ ΨS,Es , Φψ,S,d is satisfiable
to prove that S is realizable by Es. We can then compute the set of symbolic
processes ES , {Es0 , Es1 , . . . , EsN−1} of UK that embed S and similarly for each

Esi ∈ ES the set of possible embedding functions Ψi , {ψi,0, ψi,1, . . . , ψi,Ni−1} for
which the constraints Φψi,j ,S,d are satisfiable.

To illustrate the construction of unfoldings and of processes, let us consider
the example of figure 4. This toy example depicts two train carousels that serve
stations. Line 1 serves stations A, B and C, and line 2 serves stations D, B′ and
C ′. Both lines share a common track portion between stations B,C and B′, C ′,
and line 1 uses two trains. A possible required schedule (top left of the figure) is
that one train leaves every 10 time units from station A on line 1, starting from
date 10, and one train leaves station C ′ every 10 time units, but starting from
date 15. Departures from A are nodes labeled by dA and departures from C ′ are
nodes labeled by dC′ . The bottom left picture shows the aspect of both lines
and stations. The center picture is an STPN model for this example, and we set
r(dA) = {t5} and r(dC′) = {t9}. We do not precise distributions, and focus on the
structural unfolding, on the right of the figure. Note that the topmost occurrence
of place OK, that plays the role of a boolean flag in a critical section can be
both consumed by occurrences t11 and t21 of transition t1, which is a standard
conflict. However, as events t14 and t24 both output a token in place A, their firing
times may influence one another even though they are not in conflict.

B

B’

dA

10

dA

20

dA

30

dC′

15

dC′

25

dC′

35

. . .

. . .

C

C’

A

D

1

2

B
t1 BC t2 C

t3

CA
t4At5AB

t6

B’ t7 BC’ t8
C’

t9

CDt10Dt11
DB

t12

OK

B1 D1 CA1

t11 t111 t14

BC1 DB’1 A1

t12 t112 t15

C1 B’1 AB1

OK1

t16

B2

t13

CA2

t24 t17 t21

A2 B’C’1 BC2

OK2

t27 t31

BC3BC’2

Fig. 4: A toy example: realizability of a partial schedule for two train carrousels
with shared track portions.
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Fig. 5: a) An example STPN b) A domain for τ(t1), τ(t2) allowing firing of t2.

Let us now show that boolean realizability is not always a precise enough
notion to characterize feasability of a schedule. Consider the STPN of Figure 5,
and the two symbolic processes: one in which transition t1 fires, and another
one in which t2 fires. The probability of the first process is the probability that
a value v1 sampled to assign a TTF for t1 is smaller or equal to another value
v2 sampled independently to assign a TTF for t2. Clearly, the probability that
v1 ≤ v2 is equal to the probabilty that v1 ∈ [0, 1]. The probability of the second
process is equal to the probability that v1 ≥ v2, but the set of values allowing this
inequality is restricted to a single point v1 = 1, v2 = 1. Conforming to continous
probability distribution semantics, the probability of this point is equal to zero.
A schedule composed of a single node n with date 1 such that r

(
λ(n)

)
= {t2} is

realizable according to Definition 14, but with null probability. A more accurate
notion of realizability is to require that schedules embed into symbolic processes
of UK with strictly positive probability.

This raises a second issue: requiring a schedule to be realized with an exact
timing also leads to realizations with null probabilities. Consider the former
example: a schedule composed of a single node n, a realization function r s.t.
r(λ(n)) = {t2}, and a dating function d s.t. d(n) = 2. Assign interval [0, 3] to
transition t1 in the STPN of Figure 5-a) and interval [1, 4] to transition t2. The
probability that t2 fires from the initial marking is equal to the probability that
v1 ≥ v2, which is not null (we will explain later how to compute the probability
of such domain and the joint probability of v1, v2), and is equal to the probability
of the domain for values of v1, v2 depicted by the colored zone in Figure 5-b).
However, within this continuous domain of possible values, the probability to fire
t2 exactly at precise date 2 as required by dating function d is still null. We hence
consider realizability of a schedule up to some admissible imprecision α. Once an
injection ψ from a schedule S to a symbolic process Es is found, the constraint
to meet becomes: Φψ,S,d±α = Φ ∧

∧
n∈N max(d(n)− α, 0) ≤ θ(ψ(n)) ≤ d(n) + α.

Definition 16 (probabilistic realizability). A schedule with maximal date
D is realizable with non-null probability iff there exists an embedding ψ of S
into a symbolic process Es of UK s.t. P(Es ∧ Sol(Φψ,S,d±α)) > 0.

Intuitively, this definition requires that a symbolic process embeds S, and
that the probability that this process is executed and satisfies all timing con-
straints imposed by the STPN and by the dating function is non-null. This
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probability can be evaluated using a transient execution tree, as proposed
in [13]. Roughly speaking, nodes of this tree are abstract representations of
time domains for sampled values attached to enabled transitions (this is the
usual notion of state class, already used in [3, 15] to analyze time Petri nets).
In addition to state classes, transient tree nodes contain abstract represen-
tations of probability distributions. If the definition of distribution is appro-
priately chosen, for instance, using truncated sums of exponentials of the form

f(x) =

{∑
ckx

ake−λkx if x ∈ [a, b]
0 otherwise

then the distributions obtained by projection, multiplication, or variable
elimination can still be encoded as sums of exponentials, and memorized using
a finite set of parameters. The probability to fire a particular transition from
a state and move to a successor node is computed as an integration over the
time domains allowing this transition to fire first. The children of a node give a
probabilistic distribution on possible classes of successor states. As time progress
is guaranteeed in our model, a finite tree representing executions of an STPN or
of one of its processes up to some bounded duration can be built. As explained
in [13], the sum of probabilities attached to all paths of the tree can be used to
compute the probability of some properties. In our case, the sum of probabilities
of all paths that end with the execution of a chosen symbolic process gives the
probability to realize this process. Details on construction of a transient tree are
provided in the extended version.

5 Conclusion

Related work: we have addressed realizability of partially ordered timed sched-
ules by timed and stochastic concurrent systems with blocking semantics. Real-
izability in a timed setting has been addressed as a timed game problem [11],
with a boolean answer. The objective in this work is to check whether a player
in a timed game has a strategy to ensure satisfaction of a formula written in a
timed logic called Metric Interval Temporal Logic. Brought back to the setting
of realizability of schedules, the work of [11] can be used to answer a boolean
realization question, by translating a schedule to a formula. However, the work
of [11] lies in an interleaved setting: a sequential formula cannot differentiate
interleaved and concurrent actions. It does not address randomness in systems
and hence cannot quantify realizability. Scheduling of train networks was already
addressed as a contraint satisfaction problems [8]. The input of the problem is
given as an alternative graph (that can be seen as some kind of unfolding of a
systems’s behavior, decorated with time constraints. The algorithms in [8] use a
branch and bound algorithm to return an optimal schedule for the next 2 hours
of operation of a train network, but do not consider randomness.

Realizability is also close to diagnosis. Given a log (a partial observation of a
run of a system), and a model for this system, diagnosis aims at finding all possible
runs of the model of the system whose partial observation complies with the
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log. Considering a log as a schedule, the ability to compute a diagnosis implies
realizability of this high-level log by the model. Diagnosis was addressed for
stochastic Petri nets in [1]. In this work, the likelihood of a process that complies
with an observation is evaluated, and time is seen as a sequence of discrete
instants. Diagnosis was addressed for timed Petri nets in [4], where unfolding
of a timed Petri net is built to explain an observed log. [10] proposes temporal
patterns called chronicles that represent possible evolutions of an observed system.
A chronicle is a set of events, linked together by time constraints. The diagnosis
framework explains stream of time-stamped events as combinations of chronicles.
Assembling chronicles is some kind of timed unfolding. However, event streams are
not a concurrent model, and chronicles extraction does not consider randomness.

Schedulability can also be seen as conformance of an expected behavior (the
schedule) to an implementation (the Petri net model). Conformance was defined
as a timed input output conformance relation (tIOCO) relation between timed
input/output automata in [14]. More precisely, A1 tIOCO A2 iff after some timed
word, the set of outputs produced by A1 is included in the outputs produced by
A2. This relation cannot be verified in general (as inclusion of timed automata
languages is not decidable), but can be tested. Boolean realizability can be seen
as some kind of conformance test. Note however that tIOCO is defined for an
interleaved timed model without probabilization of transitions.

Assessment: The techniques described in this work first build an unfolding
UK up to a depth K that depends on the maximal date appearing in the
schedule, find symbolic processes of UK that embed the schedule, and then check
that at least one of them has non-null probability. So far, we did not consider
complexity issues. The size of an unfolding can grow exponentially w.r.t. its
depth. Checking satisfiability of a set of constraints with disjunctions can also be
costly. Satisfiability of constraints is not monotonous and hence cannot be used
to stop unfolding. However, embedding verification and unfolding can be done
jointly: one can stop a branch of unfolding as soon as a schedule does not embed
in the pre-process on this branch. Most of the constraints presented in this paper
can be simplified, and refer mainly to event variables. One can also notice that
atoms in constraints are rather simple inequalities, which could simplify their
verification. Computation of realization probability for processes can also be
improved. We use the transient tree construction of [13], that builds a symbolic
but interleaved representation of some processes. This is obviously very costly. We
are currently investigating ways to evaluate probabilities of symbolic processes
in a non-interleaved setting.

As future work, we would like to implement and improve this realizability
verification framework, and use it as a basis to prove more properties. For instance,
it might be interesting to prove that a schedule can be realized while ensuring
that the overall sum of delays w.r.t the expected schedule does not exceed some
threshold. Another improvement would be to provide means to compute an
exact value for the realization probability. We are also interested in the design of
controllers that maximize the probability of realization.
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