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Abstract. We introduce dynamic communicating automata (DCA), an exten-
sion of communicating finite-state machines that allows for dynamic creafion
processes. Their behavior can be described as sets of messagacgegharts
(MSCs). We consider the realizability problem for DCA: given a dynam&aM
grammar (a high-level MSC specification), is there a DCA defining theesseh

of MSCs? We show that this problem is decidable in doubly exponential time, a
identify a class of realizable grammars that can be implementéidityDCA.

1 Introduction

Requirements engineering with scenario-based visuaulges such as message se-
quence charts (MSCs) is a well established practice in ingludowever, the require-
ments phase usually stops when a sufficiently |dngiée base of scenarios covering
expected situations of the modeled system has been cresitbdugh more elabo-
rated formalisms have been proposed, such as HMSCs [13hasitional MSCs [8],
or causal MSCs [6], requirements frequently consist in aefiset of finite behaviors
over a finite set of processes. The existing higher-levestants are often neglected.
A possible reason might be that, in view of their huge expvegsower, MSC specifi-
cations are not always implementable. As a part of the effoeht in the requirements
design is lost when designers start implementing a systeemasios remain confined
to expressions of finite examples, and the higher-leveltcocis are rarely used. An-
other reason that may prevent designers from using higt-Esenarios is that most
models depict the interactions of an a pribixied set of processes. Nowadays, many
applications rely on threads, and most protocols are dedifpr an open world, where
all the participating actors are not known in advance. A fitsp towards MSCs over an
evolving set of processes was made by Leucker, Madhusudaiakhopadhyay [11].
Their fork-and-join MSC grammarallow for dynamic creation of processes and have
good properties, such as decidability of MSO model checkitayvever, it remains un-
clear how to implement fork-and-join MSC grammars. In matar, a corresponding
automata model with a clear behavioral semantics based @sNSnissing. Dynamic
process creation and its realizability are then two imparissues that must be consid-
ered jointly.

This paper introduces dynamic communicating automata (P& model of pro-
grams with process creation. In a DCA, there are three typextmons: (1) a new
process can be created, (2) a message can be sent to an a&xésihg process, and
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(3) a message can be received from an existing process.dBexcare identified by
means of process variables, whose values can change dyligrdiering an execution
of an automaton and be updated when a message is receivedsageds sent through
bidirectional unbounded FIFO channels, which are avalédbbny pair of existing pro-
cesses. Our model extends classical communicating fitdte-snachines [5], which
allow only for actions of the form (2) and (3) and serve as aplé@mentation model for
existing specification languages such as HMSCs or compnaitMSCs.

In a second step, we propose dynamic MSC grammars (DMG fat)si®a specifi-
cation language. They are inspired by the fork-and-joimgrers from [11] but closer
to an implementation. We keep the main idea of [11]: whenldinig a grammar, MSCs
are concatenated on the basis of finitely many process figeatiWhile, in [11], the
location of identifiers can be changed by means of a very géaed powerful split-
operator, our grammars consider an identifier as a pebbiehvean be movetbcally
within one single MSC. In addition to process identifiers,imteoduce a new means of
process identification that allows for a more concise dpson of some protocols.

Given an implementation model and a specification formaligm realizability
problem consists in asking whether a given specificationesowith a corresponding
implementation. Realizability for MSC languages has bedarsively studied in the
setting of a fixed number of processes [2, 12, 1]. In a dynaraiméwork where DMGs
are seen as specifications and DCA as distributed impletn@mawe have to consider
a new aspect of realizability, which we calloximity realizability This notion requires
that two processes know each other at the time of (asynchg)mommunication. We
show that proximity realizability can be checked in doubtpenential time. Note that
the representation of the behavior of each process mayreetpiinitely many states
(due to the nature of languages generated by the grammadrhanthe notion of prox-
imity realizability does not take into account the struetof processes. The next step
is then to identify a class of DMGs that is realizable in tepfifinite DCA.

The paper is organized as follows: Section 2 introduces MS@stions 3 and 4
present dynamic communicating automata and dynamic MS@meas, respectively.
In Section 5, we define proximity realizability and show ttiegt corresponding decision
problem can be solved in doubly exponential time. Moreawerpresent an implemen-
tation of local-choice MSC grammars in terms of finite DCAcfs@n 6 concludes with
some directions for future work. Missing proofs can be foumg8].

2 Message Sequence Charts

A message sequence chart (MSC) consists of a number of pescés threads). Each
procesg is represented by a totally ordered set of evés)isThe total order is given by

a direct successor relatien,. An event is labeled by its type. The minimal element of
each thread is labeled withart. Subsequent events can then execute sBnceCeive
(7), or spawn ¢pawn) actions. The relatior:,, associates each send event with a cor-
responding receive event on a different thread. The exahahmessages between two
threads has to conform with a FIFO policy. Similary, relates a spawn eveatc E,
with the (unique) start action of a different threae: p, meaning thap has created.

Definition 1. AnMSCis a tupleM = (P, (Ep)per; <p, <s, <m, A) Where



(@ PCNIN={0,1,...} isanonempty finite set gfrocesses

(b) theE, are disjoint nonempty finite sets efents(we letE := Up673 E,),
(c) A: E — {!,? spawn, start} assigns dypeto each event, and

(d) <, <s, and<n, are binary relations onf.

There are further requirements: := (<,U<sU<p,)* is a partial order; \~!(start) =
{e € E | thereis noe’ € E such that’ <, e}; <, C U,p(Ep X Ep) and, for every
p € P, <, N (E, x E,) is the direct-successor relation of some total orderioy
(E, <) has a unique minimal element, denotedsiyrt(M); <s induces a bijection
between\~!(spawn) and A~ !(start) \ {start(M)}; < induces a bijection between
A7H(!) and A71(?) satisfying the following: for,es € E, ande), ey € E, with
e1 <m €} andes <q, €5, we have botlp # g ande; < es iff ] < €, (FIFO).

In Figure 1,M is an MSC with set of processés= {1,2,3,4}. An MSC can be
seen as one single execution of a distributed system. Taaeriafinite collections of
MSCs, specification formalisms usually provide a concatenaperator. It will allow
us to append to an MSC a partial MSC, which is a kind of suffix dloees not necessarily
have start events on each process. Met= (P, (E,)pep, <p, <s; <m,A) be an MSC
and letE’ C E be a nonempty set satisfyidg = {e € F | (e,e/) € <, U<sU <!
for somee’ € E'} (i.e., E’ is an upward-closed set containing oolympletemessages
and spawning pairs). Then, the restrictionldfto £’ is called apartial MSC(PMSC).
In particular, the new process set{is € P | E' N E, # 0}. The set of PMSCs is
denoted byP, the set of MSCs bjyl. Consider Figure 1. It depicts the simple M§C
with one event on procegse IN. Moreover,M;, My € P\ M.

Let M = (P, (Ep)pep, <p; <s; <m, A) be aPMSC. Foe € E, we denote byoc(e)
the unique procegs< P such that € E,. For everyp € P, there are a unique minimal
and a unique maximal event {it,,, < N (E, x E,)), which we denote bynin, (M)
andmax, (M), respectively. We leProc(M) = P. By Free(M), we denote the set of
processep € P such that\~!(start) N E, = (. Finally, Bound (M) = P\ Free(M).
Intuitively, free processes of a PMSW are processes that are not initiateddih In
Figure 1,Bound(l,) = {p}, Free(M;) = {1}, andFree(M,) = {1, 2}.

Visually, concatenation of PMSCs corresponds to drawimgtidal processes one
below the other. Fof = 1,2, let M* = (P, (E}),epi, <b, <i, <in, A’) be PMSCs.
Consider the structurd/ = (P, (E,)pep, <p, <s, <m,A) Where E, = E! & E’
forallp € P = P' U P? (assumingE}, = 0 if p ¢ P)and<, = <} U <3 U
{(max, (M"), min, (M?)) | p € P with E} # 0 andE? # (}. In addition, <, and
A arise as simple unions. ¥/ is a PMSC, then we set/! o M? := M. Otherwise,
M* o M? is undefined (e.g., if somee P? has a start event anfd) # ().

In the context of partial orders, it is natural to consideedrizations. We fix the
infinite alphabet” = {l(p,q), ?(p,q), spawn(p,q) | p,q € IN with p # ¢}. For a
PMSCM = (P, (Ep)per, <p, <s, <m, ), We letposet(M) := (E',<’',\) where
E' = E\ A l(start), <’ = <N (E' x E'),and) : E' — X such that, for all
(e,€) € <5, we haveX (e) = spawn(loc(e), loc(é)), and, for all(e,é) € <, both
N(e) = (loc(e), loc(é)) and N (é) = ?(loc(e), loc(é)). The setLin(poset(M)) of
linearizationsof poset(M) is defined as usual as a subseft.
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Fig. 1. (Partial) message sequence charts

3 Dynamic Communicating Automata

Dynamic communicating automata (DCA) extend classicalmomicating finite-state
machines [5]. They allow for the dynamic creation of proesssandasynchronous
FIFO communication between them. Note that most of exigfiylgamic models lack
such asynchronous communication (see [4] for some refesdnEach procegsholds
a set of process variables. Their values represent prodestities thaty remembers
at a given time, and they allow to communicate with them. This model is close to
the threading mechanism in programming languages suchvasal#l Erlang, but also
borrows elements of the routing mechanisms in protocoldémpnted over partially
connected mesh topologies. Threads will be representegiigndgcally created copies
of the same automaton. At creation time, the creating thvelgass known process
identities to the created thread. A thread can communicéte amother one if both
threads know each other, i.e., they have kept their idestiti memory. This mecha-
nism is chosen to preserve the partial-order concurrendR€Es, which provide the
semantics of DCA.

We introduce DCA with an example. The DCA in Figure 2 come$wéts of pro-
cess variableX' = {x1,29,23}, messagedlsg = {m}, statesQ) = {so,..., 6}
where sy is the initial state, final stateE = {ss, s4, s¢}, and transitions, which are
labeled with actions. Each process associates with everghla in X the identity
of an existing process. At the beginning, there is one pscemsyl. Moreover, all
process variables have valuei.e., (z1,z2,23) = (1,1,1). When procesg moves
from s to s1, it executesr; <« spawn(sy, (self, self, z3)), which creates a new pro-
cess, say, starting insg. In the creating process, we obtain = 2. In proces2, on
the other hand, we initially havery, 25, 23) = (1,1, 1). So far, this scenario is cap-
tured by the first three events in the MSC of Figure 1. Proces$ itself might now
spawn a new processwhich, in turn, can create a proces#s which we initially have
(x1,22,23) = (3,3,1). Now assume that, instead of spawning a hew prodasgves
to statess so that it sends the message, (4, 3, 1)) to process3. Recall that process
3 is in states; with (z1,29,23) = (4,2,1). Thus,3 can execute:; ? (m, {z1}), i.e.,
receive(m, (4,3,1)) and setr; to 4. We then havéx,, zq, 23) = (4,2,1) on process
3. The DCA accepts, e.g., the behavidrdepicted in Figure 1.
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Fig. 2. A dynamic communicating automaton

Definition 2. A dynamic communicating automatdor simply DCA) is a tupled =

(X, Msg,Q, A, ., F) where X is a set ofprocess variabled/sg is a set ofmessages
Q is a set ofstates: € @ is theinitial state ' C (@ is the set offinal statesand
A CQ x Act 4 x Q is the set oftransitions Here, Act 4 is a set ofactionsof the form
x < spawn(s,n) (spawn actiojy = ! (m,n) (send actiop = ? (m,Y") (receive actioj

andrn(o) (variable renamingwherez € X,s € Q,n: (X W {self})*, 0 : X — X,

Y C X, andm € Msg. We say thatd is finite if X, Msg, and@ are finite.

We define the semantics of a DCA as a word language bvdihis language is the
set of linearizations of some set of MSCs and therefore gialthatural semantics in
terms of MSCs. Lefd = (X, Msg, Q, A, 1, F') be some DCA.

A configurationof A is a quadrupleP, state, proc, ch) whereP? C IN is a non-
empty finite set of active processes (or identitiegyte : P — @ maps each active
process to its current statgroc : P — PX contains the identities that are known
to some process, anch : (P x P) — (Msg x PX)* keeps track of the channels
contents. The configurations df are collected ilConf 4. We define a global transition
relation=-4 C Conf, x (X U {e}) x Conf, as follows: Fora € ¥ U {e},
¢ = (P, state, proc, ch) € Conf 4, andc’ = (P, state’, proc’, ch’) € Conf 4, we let
(¢c,a,c) € = 4 ifthere arep € P andp € IN with p = p (the process executingand
the communication partner or spawned process, X, so € @, n : (X W {self})¥,
YCX,0:X — X,and(s,b,s") € Asuch thatstate(p) = s, and one of the cases in
Figure 3 holds ¢ andc’ coincide for all values that are not specified below a line).

An initial configurationis of the form({p},p — ¢, proc, (p,p) — ¢) € Conf 4 for
somep € IN whereproc(p)[z] = p for all z € X. A configuration(P, state, proc, ch)
is final if state(p) € F forallp € P, andch(p,q) = € for all (p,q) € P x P. A
run of DCA A4 on a wordw € X* is an alternating sequeneg, a1, c1, .. ., Gy, ¢, Of
configurations:; € Conf 4 and lettersy; € X' U {e} such thatw = aj.az...an, ¢
is an initial configuration and, for everye {1,...,n}, (¢c;_1,a;,¢;) € => 4.2 The
run isacceptingf ¢, is a final configuration. Thevord languageof A, denoted’(.A),
is the set of wordsw € X* such that there is an accepting run4ion w. Finally, the
(MSC) languageof A is L(A) := {M € M | Lin(poset(M)) C L(A)}. Figure 2
shows dinite DCA. It accepts the MSCs that look likel in Figure 1.

3 Here and elsewhere,w denotes the concatenation of wordanduv. In particular,a.c = a.



spawn — _ a :, Spavyn(p,p) b=1x <+ spav:/n(so, ) i
P :'PH’J{p} ?h (q,q):g proc (p)[x}:p
state’ (p) = s’ ifpe{qqd} . proc(p)[nly]] if nly] # self
state’(p) = 5o proc (Pl = if nly] = self
forally € X

a=!(p,p) b=al(mmn)  p=proc(p)z]
state' (p) = s’ ch'(p,p) = (m,7).ch(p,p)
wherey € P~ with
_ Jproc(p)n[y]] if nly] # self
"l = {p if n[y] = self

send

receive

a=7@p,p) b=z?7(mY)  p=proc(p)[z]

state’ (p) = s’ there isy € P~ such that
ch(p,p) = ch’(p, p).(m,7)
A forally € Y, proc’(p)[y] = v[y]
renaming — b= rn(0)
state’(p) = s proc’ (p)[y] = proc(p)o(y)]
forally € X

Fig. 3. Global transition relation of a DCA

DCA actually generalize the classical setting of commuimigafinite-state ma-
chines [5]. To simulate them, the starting process spavasatjuired number of pro-
cesses and broadcasts their identities to any other process

4 Dynamic MSC Grammars

In this section, we introduagynamic MSC grammak®MGs). They are inspired by the
grammars from [11], but take into account that we want to enpgnt them in terms of
DCA. We keep the main idea of [11] and use process identifietag active processes
in a given context. Their concrete usage is different, tiownd allows us to define
protocols such as the language of the DCA from Figure 2 in &rmompact way.

Let us start with an example. Figure 4 depicts a DMG with remmtnals N =
{S, A, B}, start symbolS, process identifiersl = {m, 72}, and five rules. Any rule
has a left-hand side (a non-terminal), and a right-hand(sidequence of non-terminals
and PMSCs). In a derivation, the left-hand side can be regladth the right-hand
side. This replacement, however, depends on a more suhtlgse of a rule. The
bottom left one, for example, is actually of the foun— ; a with o = M. A. Mo,
where f is a function that maps the first processogfwhich is considerefteg, to the
process identifiefr,. This indicates where has to be inserted when replacidgin a
configuration. To illustrate this, consider a derivatiordapicted in Figure 5, which is
a sequence of configurations, each consisting of an uppea éowler part. The upper
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Fig. 4. A dynamic MSC grammar

part is anamedMSC [11], an MSC where some processes are tagged with process
identifiers. The lower part, a sequence of PMSCs and nonistafsnis subject to further
evaluation. In the second configuration, which is of the f@¢f, A.3) (with named
MSC M), replacingA with « requires a renaming of processes: the first processof
tagged withrs, takes the identity of the second proces3tfwhich also carries,. The
other process af is considered newly created and obtains a fresh identitgr&dfter,
A can be replaced witho so that we obtain a configuration of the fo®t, M.y),
M being a PMSC. The next configuration(®t o M,~) where the concatenation
M o M is simply performed on the basis of process names and doeimciotle
any further renaming. Process identifiers might migrateudfn. Actually, M is a pair
(M, 1) whereM is a PMSC andk partially maps process identifiersto process pairs
(p, q), allowing 7 to change its location from to ¢ during concatenation (cf. the third
configuration in Figure 5, where, has moved from the second to the third process).

Let us formalize the components of a DMG. LUétbe a nonempty and finite set of
process identifiersA named MSQver IT is a pair(M,v) whereM is an MSC and
v : II — Proc(M). An in-out PMSCover II is a pair(M, u) whereM is a PMSC
andy : IT — Free(M) x Proc(M) is a partial mapping. We denote bjhthe set of
named MSCs and by hthe set of in-out PMSCs ovdll (we assume thalll is clear
from the context). We le)t range over named MSCs and over in-out PMSCs.

A derivation of a DMG is a sequence of configuratidi®, 3). The named MSC
M represents the scenario that has been executed so faf, iaral sequence of non-
terminals and in-out PMSCs that will be evaluated latercpealing from left to right.
If 5 = M.y for some in-out PMSCM, then the next configuration i§% o M, ).
However, the concatenatidiit o M is defined only if9t and M are compatible.
Formally, we define a partial operatiore _ : nM x mP — nM as follows: Let
(My,11) € nM and(Ma, p2) € mP. Then, (M, v1) o (Ma, ue) is defined ifAM; o My
is defined and contained M, and, for allr € IT such thaj(7) = (p, q) is defined, we
havev, (1) = p. If defined, we setM7, vy )o(Mas, us2) := (M, v) whereM = M;oMs,
v(m) = vy () if ua(m) is undefined, and () = ¢ if uo(7) = (p, ¢) is defined.
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Fig. 5. A derivation

Consider a configuratio(tt, A.v). Replacing non-terminall with a sequencex
includes a renaming of processes to make sure that thosartéfate in o and carry
identifierm have the same name as an existing proce8& carryingr. l.e., processes
that occur free i take identities of processes frof. To be able to distinguish
between free and bound processes;mve introduce the notion of an expression. Let
N be a set of non-terminals, ardd be a set of process identifiers. Arpressiorover
N andIl is a sequencea € (mP U N)* of the formug.(My, p1).uy ... (Mg, pg) . u,

k > 1andu; € N*, such thatM («) := Mj o...o My € P. We let Proc(a) :=
Proc(M(a)), Free(a) := Free(M(a)), and Bound(«) := Bound (M (a)).

Definition 3. A dynamic MSC grammafDMG) is a quadrupleG = (I, N, S, —)
wherell and A and are nonempty finite sets pfocess identifierand non-terminals
S € N is thestart non-terminaland — is a finite set ofrules A rule is a triple
r = (A, «, f) whereA € N is a non-terminalg is an expression oveX and I7 with
Free(a) # 0, and f : Free(a)) — II is injective. We may writeas A — a.

Inthe sequel, letG| := 11| +3°,_, ,(Je|+[M(c)]) be thesizeof G (|| denot-
ing the length ofx as a word and/ («)| the number of events a¥/ («)). Moreover,
we setProc(G) = UA—»M Proc(a).

A renamingis a bijective mappingr : IN — IN. For an in-out PMSCM =
(M, p) with M = (P, (Ep)pep, <p, <s; <m, ), We let Mo = (Mo, po) where
Mo = (0(P), (Es-1(3))pea(p). <p: <s: <m: A) andpo(r) = (o(p), o(q)) if p(m) =
(p, q) is defined; otherwiseyo () is undefined. For a rule = (A, a, f) with o =
ug-Miug ... Mp.ug, we setra := (A, ao, fo) whereas = ug. Moy ... Mpo.uyg
andfo(q) = f(oc=t(q)) for q € Free(ao).

A configurationof DMG G = (II, N, S, —) is a pair(9, 8) where9t € nM and
B e (mP U N)* If 3 = ¢, then the configuration is said to ffieal. Let Conf be
the set of configurations @¥. A configuration isinitial if it is of the form ((1,,,v), S)
for somep € N, wherel, is depicted in Figure 1 and(r) = p for all # € II. The
semantics of7 is given as the set of (hamed) MSCs appearing in final confiiguns
that can be derived from an initial configuration by meangt#tions==¢ C Conf, x
Conf, (for every ruler) and== C Conf, x Conf.



Fig. 6. not realizable Fig. 7. 2-realizable

— For configuration€ = (M, A.y) andC’ = (M, a.y), M = (M, v), andr € —,
we letC == C’ if there is a renaming such thatro = (A, «, f), v(f(p)) = p
for all p € Free(a), and Proc(M) N Bound(a) = ().

— For configurationg = (9, M.y) andC’ = (', ~), we letC = C’ if M =
M o M (in particular,9t o M must be defined).

We define=¢ to be==¢ U U,e_, =>c- Thelanguageof G is the setL(G) :=
{M e M| Cy = ((M,v),e) for some initial configuratio, andv}.

Let us formalizeG = (I, NV, S, —) from Figure 4. Given the PMSCH; and M,
from Figure 1, we letM = (M1, 1), Mo = (Ms, pe), and Mo = (M o Ms, puy)
be in-out PMSCs withu; (71), pa (1), pe(72) undefined angh; (m2) = (1, 2). We have

S —fs MlAMgB S —fs M12.B B —fB Mo
A—)fA Ml.A.Mg A*)fA M12

wherefs(1) = fp(1) = m andfa(l) = f5(2) = me. Recall that=-}, isillustrated in
Figure 5. In a configuration, the part above a first non-teatfifithere is any) illustrates
anamed MSC. Note thdt(G) = L(.A) for the DCA A from Figure 2.

5 Realizability of Dynamic MSC Grammars

Definition 4. Let L. C M be an MSC language. We cdll (proximity) realizableif
there is a DCAA such thatL = L(.A). For B € IN, we say thatl is B-realizableif
there isa DCAA = (X, Msg, @, A, ¢, F) such thatL = L(A) and |X| < B.

The MSCM from Figure 1, considered as a singleton sef-igalizable. It is nob-
realizable. The singleton set from Figure 6 is not realigabk process 3 receives a
message from an unknown process. Adding a message ma&kesaiizable (Figure 7).

Theorem 5. For a DMG G, one can decide in exponential time (Wi&|) if L(G) is
empty, and in doubly exponential timelifG) is realizable.

Proof (sketch)LetG = (II,N,S,—) be a DMG. To answer the first question, we
build a tree automatonl that accepts all parse trees that correspond to successful
derivations ofG. Thus, we havel(As) = 0 iff L(G) = 0. To answer the second
question, we build a tree automatBgp for those parse trees that give rise to realizable



MSCs (considering an MSC as a singleton set). One can shdwL{l3g is realizable
iff all MSCs in L(G) are realizable. Thud,(G) is realizable iffL(Ag) \ L(Bg) = 0.
We restrict here to the more involved construction of the tnetomatorB;. To
illustrate the idea oB, we use the DMG7 from Figure 4. The left-hand side of Fig-
ure 8 depicts the parse treef G that corresponds to the derivation from Figure 5.
We, therefore, calt legal. Note that, for technical reasons, the functfofiom a rule
A — «is located at its non-terminal. The crucial point of the construction is
to record, during a derivation, only a bounded amount ofrimztion on the current
communication structure of the system. A communicatiomcstire is a partition of the
set of process identifiers together with a binary relatiat firovides information on
what processes know of other processes. The right-hand&iigure 8 depicts a run
of Bg ont. States, which are assigned to nodes, are framed by a réxtédngtate is
hence either a pair of communication structures (togetligr aznon-terminal, which
is omitted), or an element fromfrthat occurs inG. Our automaton works bottom-up.
Consider the upper right leaf of the run tree, which is lathelith its stateM . Sup-
pose that, when it comes to executiMg-, the current communication structufg
of the system contains two processes carryin@ndm,, respectively, that know each
other (represented by the two edges). When we apply, the outcome will be a new
structure,C1, with a newly created process that collects process identifi. Hence-
forth, the process carrying; is known to that carryingr,, but the converse does not
hold. Names of nodes are omitted; instead, identical nodes@nbined by a dotted
line. We conclude that applying — ¢, M2 has the effect of transforming, into
C,. Therefore(Cy, A, C4) is a state that can be assigned to {He f 4 )-labeled node,
as actually done in our example run. It is important here thatfirst structure”, of
a state(Cy, A, C1) is reducedmeaning that it restricts to nodes carrying process iden-
tifiers. The structure”;, however, might keep some unlabeled nodes, but only those
that stem from previously labeled ones. Hence, the set tdsste B will be finite,
though exponential ifZ|. Like elements of M, a triple (Cy, A, C1) can be applied to
a communication structure. E.g., the states that labelubeessors of the root trans-
form Dy into D;. It is crucial here that, at any time, communicating proesdshow
each other in the current communication structure. Now, arereduceD; to D, by
removing the middle node, as it does not carry a processifiemor does it arise from
an identifier-carrying node. ThugDy, S, D>) is the state assigned to the root. It is fi-
nal, asD, consists of only one process, which carries all the prockssifiers. A final
state at the root ensures that the run tree represents atitsrithat starts in the initial
configuration gathering all process identifiers, and endsragalizable MSC. O

Corollary 6. For every DMGG = (II,N,S,—), L(G) is realizable iff L(G) is
(|Proc(G)| + a - |II|)-realizable where: = max{|a| | A — a}.

Arealizable DMG is not necessarily implementable as a fiDit&\, as the behavior
of a single process need not be finite-state. We will detezraisimple (but non-trivial)
class of DMGs that are finitely realizable. To guaranteedimess, we restrict to right-
linear rules: aruled — ¢ « isright-linear if « is of the formAM or M.B. Our class is
inspired bylocal-choice HMSCas introduced in [9]. Local-choice HMSCs are scenario
descriptions over a fixed number of processes in which evasice of the specification
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Fig. 8. A legal parse tree aff and a run o3¢

is taken by a root process for that choice. This root is inghaf executing the minimal
event of every scenario, and the subsequent messages odrettagiged to inform other
processes about the choice. Note that locality allows fezalbbck-free implementation
if the number of processes is fixed [7]. This is not guaranteedir setting.

To adapt the notion of local-choice to DMGs, we essentialylace “process” in
HMSCs by “process identifier”. l.e., the root process thaiades the next rule to be
applied must come with a process identifiethat isactivein the current rule. So, for a
right-linear ruler = A — ¢ (M, p1).«r, we setActive(r) = f(Free(M)) U dom(p).

Definition 7. A DMG (II,N, S,—) is local if, for every ruler = A — «, ris

right-linear and M («) has a unique minimal element. Moreoverif= M.B, then
there ism € Active(r) such that, for allB-rules B —, 3, M(8) has a unique
minimal element satisfyingg(loc(e)) = .

Theorem 8. LetG be alocal DMG such thak(G) is realizable. There is a finite DCA
A= (X, Msg,Q, A, ., F) such thatL.(A) = L(G). Hereby,| X | and| Msg| are poly-
nomial in|G|. Moreover,|Q| and|Act 4| are exponential inG|.

Proof (sketch)A state of.A will locally keep track of the progress that has been made to

implement a rule. The root process may choose the next rdlenéorm its communica-
tion partners about this choice. The main difficulty in theolementation is the correct
identification of process identities in terms of processaldes. We introduce a variable
z, for eachr € IT and a variable,, for eachp € Proc(G). As G is right-linear,L(G)

is indeed II| + | Proc(G)|-realizable. We pursue the following strategy of transinmt
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process identities: When a procegsis about to instantiate a non-terminal with a new
rule r, an arbitrary renaming is applied. We assume hereby, that the “free processes”
of r are known tap, though it is not clear to which variables they belong. Thuss

a simple guess, which has to be verified in the following. édjehe subsequent ex-
ecution can pass through only if that guess is correct. Tasoreis that identifiers of
free processes are held in local states and are sent in neesgagerms of events) so
that the receiving process can be sure to receive from thea@rocess. Yet, we need

to make sure that bound procesgesre correctly identified. The idea is to enforce an
update ofr, whenever a message is received from a process that “knpws” a0

6 Future Work

A nice theory of regular sets of MSCs over a fixed number of @sees has been estab-
lished [10] (a set of MSCs is regular if its linearization gmage is regular). We would
like to extend this notion to our setting. Preferably, argutar set of MSCs should have
an implementation in terms of a DCA. Note that, however, ihedrizations of a set of
(dynamic) MSCs are words over an infinite alphabet. Anotlllenge is to extend
the class of DMGs that can be implemented by finite DCA beybiadl of right-linear
specifications (and preferably without deadlock). Lastthiek that logics (e.g., MSO
logic) may serve as an alternative specification languagp @A implementations.
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