
From Automata Networks to HMSCs: a Reverse

Model Engineering Perspective

Thomas Chatain
IRISA/ENS Cachan-Bretagne, Campus de Beaulieu,

F-35042 Rennes cedex, France
Thomas.Chatain@irisa.fr

Löıc Hélouët
IRISA/INRIA, Campus de Beaulieu,

F-35042 Rennes cedex, France
Loic.Helouet@irisa.fr

Claude Jard
IRISA/ENS Cachan-Bretagne, Campus de Ker-Lann,

F-35170 Bruz cedex, France
Claude.Jard@bretagne.ens-cachan.fr

Abstract. This paper considers the problem of automatic abstraction,
from a low-level model given in term of network of interacting automata
to a high-level message sequence chart. This allows the designer to play
in a coherent way with the local and global views of a system, and opens
new perspectives in reverse model engineering. Our technique is based
on a partial order semantics of synchronous parallel automata and the
construction of a finite complete prefix of an event-structure coding all
the behaviors. We present the models and algorithms. The examples
presented in the paper have been processed by a small software prototype
we have implemented.

1 Introduction

Designing a distributed application is a complex task. At the final stage of the
modeling, once the different architectural decisions have been made, designers
usually obtain a set of communicating sequential components. During earlier
stages of software development, designers use more abstract and visual repre-
sentations such as scenarios. For instance, Message Sequence Charts (MSCs) [9]
are an appealing visual formalism to capture system requirements. They are par-
ticularly suited for describing scenarios of distributed telecommunication soft-
ware [7]. Several variants of MSCs appear in the literature (sequence diagrams ,
message flow diagrams, object interaction diagrams, Live Sequence Charts) and
are used in a number of software engineering methodologies including UML [8].
They provide the designer with a global view of the dynamic behavior of the
system, given in a declarative manner.

However, there is often a gap between the local view defined as sequential
components and the more global view described by scenarios. Some scenarios
cannot be implemented by sequential machines, and some compositions of se-
quential machines do not have finite representation in terms of MSCs. This is
why a lot of recent works have been developed to automatically generate com-
municating automata (at least a skeleton) from MSCs [1,5] in the context of a
top-down design methodology. Obviously, building a bridge in the opposite di-
rection is also an interesting problem, as it would allow designers to play freely
with any style of specification (global declarative or distributed imperative) while
preserving the coherence of both views. A solution to this problem could also
be the basis of another important challenge called “aspect modeling”, in which
a new feature described as a set of scenarios can be added safely to an already
existing model of communicating machines. This will imply sophisticated formal
techniques, since the required transformations modify dramatically the structure
of the automata.

This context motivates our work on some “reverse distributed model engi-
neering”. We begin with simple models, which are networks of synchronous paral-
lel finite state automata for the imperative aspect, and MSCs for the declarative
aspect. The problem is thus to automatically obtain a MSC from an automata
network, which codes all the runs of the system, runs being defined as partial
orders of transition occurrences. The finiteness of the automata and the syn-
chronous communication ensure that such a transformation is possible. This
question has already been addressed from the theoretical point of view in term
of formal languages in [3]. They show that any single Büchi automaton with a
structural property, called diamond, and with all its states accepting, is able to
generate the language of a bounded MSC. However, this problem is undecidable
for asynchronous communicating finite state machines. This justifies our choice
to consider synchronous networks and to propose an original algorithm to pro-
duce a concrete MSC, as readable as possible. Figure 1 shows an example of such
network, which consists of two automata A0 and A1, synchronized on their com-
mon event x. Figure 1 gives the corresponding MSC we would like to compute.
Notice that the MSC graph is complex due to the fact that this example was
designed to show all the tricky aspects of the transformation. A more realistic
example is treated in Section 4.

We will use the notion of unfolding, and the fact it can be finitely generated
by a finite complete prefix. This is based on the unfolding theory, as presented
in [4,2]. In the paper, we adopt nevertheless a direct approach, without using
Petri nets as usual, in order to avoid to introduce a new intermediary formal
model. The question of using the finite prefix as a generator of the unfolding is
also new up to our knowledge.

The rest of the paper is organized as follows. Section 2 defines formally au-
tomata networks, MSCs and the notion of runs. The next section 3 is devoted
to the generation of possible runs by the construction of a finite complete prefix
of the unfolding. Section 4 presents how the MSC automaton and the referenced
basic MSCs are extracted from the prefix. We conclude by a discussion sum-

marizing the approach and proposing a few perspectives. All the proofs of the
propositions and theorems are available in the research report [10].

1

2

0

1

2

0
a

b

c

e

x
d

x

b

ab cd

b cex cd

hmsc Global view

A0 A1

b

msc b
A0 A1

c

d

msc cd

A0 A1

a

b

msc ab

A0 A1

c

e

x

msc cex

Fig. 1. A network of two synchronized automata and its scenario view.

2 Definition of Automata Networks and MSCs

2.1 Networks

An initialized labelled automaton is a tuple A = 〈S, Σ,→, s0〉 where S is a finite
set of states, Σ is a set of labels, → ⊆ S ×Σ × S is a set of labelled transitions,
and s0 ∈ S is the initial state. For a transition t = (s, a, s′) ∈ →, we denote

α(t)
def

= s its source, β(t)
def

= s′ its target, and λ(t)
def

= a its label.

I
def

= {1, . . . , n} denotes a finite set of indices. We consider the synchronous

parallel composition of the initialized labelled automata Ai = 〈Si, Σi,→i, s
0
i 〉i∈I

The network of Figure 1 is formally defined by:

S0 = {0, 1, 2} S1 = {0, 1, 2}
Σ0 = {a, b, x} Σ1 = {c, d, e, x}
s0
0 = 0 s0

1 = 0
→0 = {(0, a, 1), (1, b, 2), (2, x, 0), (2, b, 2)}
→1 = {(0, c, 1), (1, e, 2), (2, x, 0), (1, d, 0)}

In an interleaving semantics, the network behavior is defined as the (global)
initialized labelled automaton A = 〈S, Σ,→, s0〉 where:

– S
def

= S1 × · · · × Sn

– Σ
def

=
⋃

i∈I Σi

– ((si)i∈I , a, (s′i)i∈I) ∈ → iff







∀i ∈ {1, . . . , n}

{

(si, a, s′i) ∈ →i

∨ (si = s′i ∧ a /∈ Σi)
∧ ∃i ∈ {1, . . . , n} (si, a, s′i) ∈ →i

– s0 def

= (s0
1, . . . , s

0
n)

10

20

00
a

b

x

b

11

21

01
a

b

b

c

c

c

d

d

d
12

22

02
a

b

b

e

e

e

Fig. 2. The synchronized product.

A B C

m

n

o

msc SynchroBarrier

Fig. 3. bMSC representation of rendez-vous

Intuitively, we force the automata to evolve synchronously when they execute
a transition labelled by the same name. In the other case, they evolve indepen-
dently. Figure 2 shows the product automaton of our example. Sequential runs
are the different paths in the graph of the product automaton. Unfortunately,
this notion of run does not enlight the causal relations between the different
occurrences of transitions (seen as atomic events), as done in MSCs. In our con-
text, the right notion of run is the partial ordering of events that have occurred.
Hence, runs of a system will be defined as basic MSCs.

2.2 Message Sequence Charts

MSCs are composed of basic scenarios (or bMSCs), that depict interactions
among several objects. These interactions are then composed hierarchically by

means of operators (loop, choice, sequence, ...). For the sake of simplicity, we will
only consider a single hierarchical level. Interactions in the automata networks
we consider are synchronous (i.e. Rendez-vous communication): they are block-
ing, and involve several participants. For this reason, communications in bMSCs
will be represented by references to other bMSCs describing how a communica-
tion mechanism is implemented. Such Rendez-vous can be implemented using a
synchronization barrier, as depicted in Figure 3. In MSCs, referencing inside a
diagram is allowed by inline expressions. Here, we will only consider references
to simple bMSCs depicting communications among a given set of components.
We do not allow reference nesting, and will not use inline expressions with opt,
alt or loop.

In our framework, a bMSC is defined as a finite set of events. Each event is
represented as the vector of its predecessors on each instance. The absence of
predecessor on an instance is denoted by the null event •. We associate a label to
each event, which will serve to note the corresponding transition of the automata.
For example, considering a system with three instances, the event e3 denoted by
((e1, (1, a, 2)), •, (e2, (3, a, 4))) is a synchronization event between the first and
the third instance, and having the events e1 and e2 as immediate predecessors
on these instances. There is no immediate predecessor on the second instance
since it does not participate in the synchronization. The labels are (1, a, 2) and
(3, a, 4), denoting for instance the transitions to synchronize in an automata
network. Formally, a bMSC over a set of instances I is a tuple B = (E, Σ, A, Θ),
where E = {(ei, σ)i∈I , σ ∈ Σ} is a set of events such that each ei ∈ {•}∪E×Σ.
E contains local events (events such that |{ei 6= •}| = 1) and interactions (events
such that |{ei 6= •}| > 1). Σ is a local alphabet, A is an alphabet of local actions
and interaction names, and Θ : Σ −→ A assigns a global name to events.

When fi = (e, σ), we denote πi(f) = e. We will say that e is a predecessor of
f , and write e→ f when ∃i ∈ I such that πi(f) = e. E also contains a specific
event ⊥ = (•, . . . , •)i∈I called the initial event that has no predecessor. We will
say that an event is minimal in a bMSC iff ⊥ is the unique predecessor of all its
components. A bMSC must also satisfy the following properties :

i) the reflexive and transitive closure →∗ of → is a partial order.
ii) (synchronization) ∀e = (ei)i∈I ∈ E, we require that ∃!a, ∀i ∈ I, ei 6=
• =⇒ Θ(σi) = a. This property means that all components participating to
an event must synchronize.

iii) (local sequencing) ∀i ∈ I, ∀e ∈ E, ei 6= • =⇒ πi(e) = ⊥ or (πi(e))i 6= •
iv) (no choice) ∀(e, e′) ∈ E2, ∀i ∈ I, e 6= e′ =⇒ πi(e) 6= πi(e

′). This property
forbids the introduction of choices in a bMSC.

bMSCS are good candidates to model causal relations in runs of a distributed
system. Causality between events is defined by →∗. When neither e →∗ e′, nor
e′ →∗ e, we will say that e and e′ are independent (or concurrent). The set of
minimal events in B w.r.t →∗ is denoted by min(E). We will say that an event
is minimal for an instance i ∈ I if the predecessor event on component i is ⊥. It
is maximal for this instance if it is not a predecessor event for an event on this

instance. The minimal (resp. maximal) event on instance i (when it is defined)
will be denoted by mini(E)(resp. maxi(E)). A bMSC B1 is a prefix of a bMSC
B2 if and only if E1 ⊆ E2 and ∀e ∈ E1, Θ1(e) = Θ2(e). The empty bMSC is the
tuple B∅ = ({⊥}, ∅, ∅, ∅). Figure 4 is an example of bMSC. This bMSC defines
the behavior of 2 instances A0 and A1. Events a, b, c, e are local actions, and
reference x represents a synchronous interaction between A0 and A1.

The sequential composition of two bMSCs B1 = (E1, Σ1, A1, Θ1), B2 =
(E2, Σ2, A2, Θ2) is the bMSC B = (E, Σ1 ∪Σ2, A1 ∪A2, Θ), where :

E =

E1 ∪

(

E2 \
(

{⊥} ∪ {mini(E2)|i ∈ I}
)

)

∪







(e′1, . . . e
′
n)|∃i ∈ I, ∃(e1, . . . , en) ∈ mini(E2)

∧∀j ∈ I, e′j =

{

(maxj(E1), σ) if ej = (⊥, σ)
ej otherwise







Θ(σ) = Θ1(σ) if σ ∈ Σ1, Θ2(σ) otherwise

More intuitively, sequential composition merges two bMSCs along their common
instances axes by addition of an ordering between the last event on each instance
of B1 and the first event on the same instance in B2.

A High-level Message Sequence Chart (HMSC) is a tuple H = (N,→
,M, n0, F), where N is a set of nodes,→⊆ N×M×N is a transition relation,M
is a set of bMSCs, n0 is the initial node, and F is a set of accepting nodes. HMSCs
can be considered as finite state automata labelled by bMSCs. A HMSC H de-

fines a set of paths PH . For a given path p = n0
M1−→ n1

M2−→ n2 . . .
Mk−→ nk ∈ PH

we can associate a bMSC Bp = M1 ◦M2 ◦ · · · ◦Mk. The runs of a HMSC H are
the prefixes of all bMSCs generated by paths of H . The run associated to the
empty path is B∅.

2.3 Runs as Partial Orders

A run of an automata network Ai = 〈Si, Σi,→i, s
0
i 〉i∈I is defined as a bMSC

M = (E, Σ, A, Θ), with the following properties:

i) Σ =
⋃

i∈I

−→i. Hence, for an event e = (ei)i∈I , each ei is of the form

ei = (e′, t), and we will denote τi(e)
def

= t, αi(e)
def

= α(t) and βi(e)
def

= β(t).

We define βi(⊥)
def

= s0
i .

ii) A =
⋃

i∈I

Σi.

iii) Θ(t) = λ(t)
iv) (local sequencing) ∀i ∈ I ei 6= • =⇒ αi(e) = βi(πi(e))

As Σ, A, Θ are implicit for a given set of events E, we will often denote a
bMSC B = (E, Σ, A, Θ) by its set of events E. Intuitively, an event e 6= ⊥
represents the synchronization of actions of the automaton Ai such that ei 6= •;
and ei = (e′, t) means that the local action on automaton Ai is t, and the

previous action that concerned the automaton Ai was e′. Note that property
iii) implies that for a given component i ∈ I and for any chain ⊥ −→ e1 =
(⊥, t1) −→ e2 = (e1, t2) . . . −→ ek = (ek−1, tk) such that ∀j ∈ 1..k, ej

i 6= •, the
sequence t1.t2 . . . tk is a path of automaton Ai.

A0 A1

a c

b e

x

msc Run

Fig. 4. A run as defined as a bMSC with inline references.

This run corresponds to the concatenation of the bMSCs AB and CEX of
Figure 1. Its events are:

0 = ⊥, 3 = ((1, (1, b, 2)), •),
1 = ((0, (0, a, 1)), •), 4 = (•, (2, (1, e, 2))),
2 = (•, (0, (0, c, 1))), 5 = ((3, (2, x, 0)), (4, (2, x, 0)))

The question now is to represent all the possible runs. This is the role of
the unfolding, which superimposes all the runs, shares the common prefixes and
distinguishes the different histories using the notion of conflict.

3 Generation of Runs

3.1 Unfolding

We consider the union of all possible runs, forming a new event set E. The
absence of choices is no more guaranted. This is why we define the conflict
relation # on the events as follows:

e # e′ iff ∃f, f ′ ∈ E















f 6= f ′

f →∗ e
f ′ →∗ e′

∃i ∈ I πi(f) = πi(f
′)

Informally, two events are in conflict if they have a common ancestor event
that branches on a same instance.

The unfolding of the synchronous parallel composition of the initialized la-
belled automata Ai = 〈Si, Σi,→i, s

0
i 〉i∈I is the set U of all events that are not

in self-conflict: U
def

= {e ∈ E | ¬(e # e)}. Graphically, we draw a circle for each
event, and an arc from e′ to e, labelled by i each time ei = (e′, t). Figure 5 shows
the shape of the unfolding of the network of Figure 1.

1

c

⊥

a

d

e

b

1

0

0

1
1

x0

1
c d1

1

c

d

e

1

1
1

1
c d1

a b

0

0 x0

b

0

x0

1

0

b x0

1
0

0

1

1

c

⊥

a

d

e

b

1

0

0

1
1

x

0

1

b0

Fig. 5. The unfolding of the network of Figure 1 and its finite complete prefix.

A (finite) run (also called a configuration) of the unfolding is a
bMSC B = (F, Σ, A, Θ) where Σ, A, Θ are defined as usual, and
F is a finite subset of E which is conflict-free and causally closed,

i.e:

{

∀e, f ∈ F ¬(e # f)
∀f ∈ F ∀e ∈ E e→∗ f =⇒ e ∈ F

Proposition 1. The unfolding contains all the possible runs.

3.2 A Trivial Solution for MSC Extraction

As explained previously, our goal is to compute a global declarative view defined
as a MSC from a distributed imperative view of a distributed system given by
a network of automata. The existence of a trivial solution to this problem is
guaranteed by the following proposition.

Proposition 2. Let A = (S, Σ,−→, s0) be the global initialized labelled au-

tomaton obtained by synchronous product of automata (Ai)i∈I . Let H =
(S, b(Σ),−→′, s0, S) be the HMSC where b(σ) is the bMSC containing a sin-

gle local action performed by an automaton or a single interaction per-

formed by all automata involved in a synchronous communication, and

−→′= {(n, b(σ), n′)|(n, σ, n′) ∈−→)}. Then, the set of runs of H and the set

of runs of (Ai)i∈I are equivalent.

We can imagine the resulting HMSC by having a look on Figure 2. Clearly,
it does not fulfill our goal of reverse model engineering. We must try to fill as
much as possible the bMSCs.

3.3 Finite Complete Prefix

The unfolding U of an automata network is an infinite structure. However, it is
possible to work on a finite representation of U called a finite complete prefix.

For a configuration c ⊆ U and for an automaton i ∈ I, we define the last

event ↑i c that concerned i in c as the event f ∈ c such that:

(fi 6= • ∨ f = ⊥) ∧ @f ′ ∈ c πi(f
′) = f

Proposition 3. For a configuration c ⊆ U and for an automaton i ∈ I, ↑i c is

unique.

We denote ↑ c, the vector (↑i c)i∈I of last events. The global state vector
associated with a configuration c is also defined as the states of each automaton
after having performed the event ↑i c, i.e.

GState(c)
def

= (βi(↑i c))i∈I

For all e ∈ U , dee
def

= {f ∈ E | f →∗ e} is a configuration, called the local

configuration of e. We define the set C of cut-off events of an unfolding as:

e ∈ C iff ∃f ∈ dee \ {e} GState(dfe) = GState(dee)

Actually the event f for a cut-off event e is generally not unique. We define the
regeneration configuration, denoted ∂e of a cut-off event e ∈ C as the intersection
of the local configurations dfe of the events f ∈ dee\{e} such that GState(dfe) =
GState(dee):

∂e
def

=
⋃

f∈dee\{e}
GState(dfe)=GState(dee)

dfe.

Proposition 4. For all e ∈ C, GState(∂e) = GState(dee).

The set {e ∈ U | @f ∈ C f →+ e} is a finite complete prefix of the unfolding
U .

Theorem 1. The finite complete prefix is a finite generator of the unfolding.

The following algorithm computes the finite complete prefix U .

Initialization

1. create the initial event: U = ⊥ = (•)i∈I , with GState({⊥}) = (s0
i)i∈I ;

2. C ← ∅;

Repeat until deadlock

1. select a tuple (xi)i∈I where xi ∈ {•}∪ →i, such that:

– ∃a ∈ Σ ∀i ∈ I

{

xi = • =⇒ a /∈ Σi

xi 6= • =⇒ λi(xi) = a
– ∀i ∈ I xi 6= • =⇒ ∃e′i ∈ U \ C, βi(e

′
i) = αi(xi)

2. build the event e = (ei)i∈I , where

{

ei = (e′i, xi) if xi 6= •
ei = • otherwise

3. if e /∈ U ∧ ¬(e # e) in U ∪ {e}
– U ← U ∪ {e};
– if ∃e′ ∈ dee with GState(de′e) = GState(dee):

then C ← C ∪ {e};

∂e←
⋃

f∈dee\{e}
GState(dfe)=GState(dee)

dfe

Figure 5 (right) shows the prefix obtained from our example. Let us consider
the event e, labelled by x. It is a cut-off event. Its regeneration configuration ∂e
is {⊥}. This is graphically represented by an oscillating arrow.

4 MSC Extraction

MSC extraction starts with the abstraction of the prefix. Intuitively, for a given
finite complete prefix, we define X as a subset of configurations that contains
the local configuration of the cut-off events, their regeneration configuration, the
local configuration of the terminal events, and that is closed under intersection.
X can be projected on each instance in order to obtain a network of “abstract
automata”. The product forms the HMSC automaton. Basic MSCs are obtained
by considering all the events occuring in an interval between two configurations
of X , and transitions are deduced from configurations inclusion.

We denote by P the finite complete prefix of the unfolding U of an automata
network. An event e is terminal if there exists no f ∈ U such that e→ f . Let X
be the set of configurations inductively defined as:

– {⊥} ∈ X

– for all e cut-off event, dee ∈ X ∧ ∂e ∈ X ;

– for all terminal event e, dee ∈ X ;

– for all x, x′ ∈ X , x ∪ x′ is a configuration =⇒ x ∩ x′ ∈ X .

We denote by Y
def

= {dee | e ∈ C} the local configurations of cut-off events.

For all x ∈ X , let us define Ex
def

= x \
⋃

x′∈X
x′(x

x′. The sets Ex are subsets of

elements that are not contained in any smaller configuration of X . They define
the bMSCs that will be extracted from the prefix.

For all x ∈ X , the sets Ex′ with x′ ∈ X, x′ ⊆ x are a partition of x. For
all event e ∈ x we denote E−1(e, x) the unique configuration x′ ∈ X such that
x′ ⊆ x and e ∈ Ex′ . Let us define an abstraction of the prefix P , where the
elements of X play the role of “macro-events”. For all i ∈ I we define the set Xi

of macro-events that concern i as:

Xi
def

= {x ∈ X | ∃e ∈ Ex, ei 6= • ∨ e = ⊥}

For the example of Figure 5, we have:

– X = {⊥,⊥cd,⊥ab,⊥abcex,⊥abb}
– E⊥ = ⊥, E⊥cd = cd, E⊥ab = ab, E⊥abcex = cex, E⊥abb = b
– X0 = {⊥,⊥ab,⊥abcex,⊥abb}, X1 = {⊥,⊥cd,⊥abcex}
– Y = {⊥cd,⊥abcex,⊥abb}

For all i ∈ I and for all x ∈ Xi \ {{⊥}}, the last event that concerned i in
x \Ex is ↑i (x \Ex). We define the macro-event that immediately precedes x on

i as πi(x)
def

= E−1(↑i (x \ Ex), x).
Using this definition, for each i ∈ I we can now define the initialized labelled

macro-automaton

Ai
def

= 〈Xi \ Y, {Ex | x ∈ Xi},→i, {⊥}〉

where

→i =
{(πi(x), Ex, x) | x ∈ Xi \ {{⊥}} ∧ x /∈ Y }
∪ {(πi(x), Ex, E−1(↑i ∂e, ∂e) | x ∈ Xi ∧ x = dee with e cut-off event}

Figure 6 shows the network of macro-automata obtained from our example.
Let A = 〈S, Σ,−→, s0〉 be the synchronous product A1 × A2 × · · · × An. The
HMSC extracted from a finite complete prefix P is defined as HP = (S,−→′

, b(Σ), s0, S), where ∀σ ∈ Σ, b(σ) is the bMSC obtained by adding ⊥ as prede-
cessor of all minimal events to σ, and −→′= {(s, b(σ), s′)|∃s, σ, s′) ∈−→}. For
our example, the HMSC computed from the synchronous product in Figure 6 is
the resulting HMSC of Figure 1 announced in the beginning.

⊥ab

⊥⊥
ab

cex

b

cex

cd 0

1

ab cex
cd

cd b

Fig. 6. The network of macro-automata and its product

Theorem 2. Let P be a finite complete prefix of an automata network unfolding,

and let (Ai)i∈I be the set of “macro-automata” obtained from P . Let H be the

HMSC obtained from the synchronous product (Ai)i∈I . The runs of (Ai)i∈I and

the runs of H are equivalent.

Let us consider the more realistic example shown in Figure 7 (left). It is a sim-
ple connection and release protocol between two peers. The two peers (sender
and receiver) are presented on top of the figure. They are connected through
channels of size one. The automata of channels are given at the bottom of the
figure. In this protocol, the sender can initiate a connection by sending the Creq
message (”!” and ”?” characters denote the send and receive actions respec-
tively). After that, it can decide locally to close the connection by sending the
message Dreq, or receives the message Ddreq indicating that a distant discon-
nection has been made by the receiver. In case of collision (reception of Ddreq in
state 2), the connection is also closed. On the receiver side, after having received
the Creq, the received may decide to close the connection by sending the dis-
tant disconnection message Ddreq. If not, the Dreq message is received in state
1. In that case, it is required that the receiver alerts the sender by the Dconf
message to allow it to close locally the connection. Note that in case of collision,
it is possible to receive a message Dreq in state 0, which must be skipped.

1

2

0

1

2

0

!Creq

!Dreq

?Creq

?Dreq

?Dconf ?Ddreq

?Ddreq

?Dreq

!Dconf

!Ddreq

0

1 2

!Creq !Dreq
?Creq ?Dreq

0

1 2

!Ddreq !Dconf
?Ddreq ?Dconf

⊥

!Creq?Creq

!Dreq!Ddreq

?Dreq

!Dconf

?Dconf

?Ddreq?Dreq?Ddreq

!Creq

0
13

2
1

0

1
3

3

2

2

0

3 1

2 3

0 1

0 2 1

0

Fig. 7. The Connect-Disconnect protocol with channels of size one and its prefix.

Figure 7 (right) shows the prefix of the unfolding of this example. We show
three cut-off events, corresponding to the three basic patterns of the protocol,

which are local disconnection, distant disconnection and collision. The MSC view
produced by our method is shown in Figure 8.

!Req

Disc Collide Ddisc

hmsc Global view

S SR RS R

?Creq

!Ddreq

?Ddreq

msc Ddisc

S SR RS R

?Creq!Dreq

?Dreq

!Dconf

?Dconf

!Creq

msc Collide

S SR RS R

?Creq!Dreq

?Dreq

!Dconf

?Dconf

msc Disc

S SR RS R

!Creq

msc !Req

Fig. 8. MSC extracted from Automata of Figure 7.

5 Discussion

We have addressed the problem of reverse model engineering, and more precisely
the automatic translation of synchronous networks of finite automata into mes-
sage sequence charts. A trivial solution is to build the product automaton and to
interpret transition labels as basic MSCs. Unfortunately, this degenerated MSC
does not fulfill the requirements of reverse engineering, which are to present the
concurrent histories of the system using as much as possible a partial order view.

This work introduces new techniques that permit to recover a global partial-
order based view of a system described by composition of sequential components,
and hence seems relevant for reverse model engineering. The main algorithm is
the unfolding of the network of automata. It computes the set of all partial
order runs. Thanks to the finiteness of the system, this set is finitely generated
by a prefix. From this prefix, we showed a way to extract basic partial order
patterns (bMSCs). The removal of these patterns in the prefix, followed by a
local projection lead to an abstract network of “macro-automata”. A HMSC
with the same behavior as the initial automata network can then be produced by

computing the product of macro automata. An alternative could be to consider
a parallel construct in the HMSC, as proposed for instance in netcharts [6].

The algorithms have been implemented in a software prototype (a few thou-
sand of lines of C-code). The next step will be to be able to deal with more
complex systems. First, we have to relax the synchronous assumption to take
benefit of the asynchronous communication in MSCs. We think it is possible
to find a class of systems in which synchronous communication can be safely
replaced by an asynchronous one without changing the set of partial runs. Let
us recall nevertheless that asynchronous communicating automata and MSC de-
fine uncomparable languages. This means that a translation of automata into
MSC may not exists. Furthermore, deciding whether a network of asynchronous
automata defines a MSC language is an undecidable problem. Hence, to be ef-
fective in an asynchronous framework, our approach will necessarily apply to a
restricted class of automata. Secondly, the MSCs we obtain are dependent of
two things: the definition of cut-off events and the definition of configurations
that are extracted from the finite complete prefix. So far, an event is a cut off
event if its configuration has already been seen in its causal past. This leads to
some duplications of events in the finite complete prefix. The definition of cut-off
events can be refined using the adequate orders proposed by J. Esparza in [2].
This enhancement will reduce the duplication of events. Concerning the defini-
tion of configurations to extract (the X set), we can decide to share more or
less common prefixes in the bMSCs, and find a tradeoff between the number of
duplications and the size of the considered bMSCs. This could be parameterized.

References

1. L. Hélouët and C. Jard. Conditions for Synthesis of Communicating Automata
from HMSCs, 5th International Workshop on Formal Methods for Industrial Criti-
cal Systems (FMICS), ARE. Stefania-Gnesi, I. Schieferdecker (ed), GMD FOKUS,
Apr. 2000.

2. J. Esparza and S. Römer. An Unfolding Algorithm for Synchronous Products of
Transition Systems, Proc. of Concur 1999, Lecture Notes in Computer Science
1664, pp. 2-20, 1999.

3. A. Muscholl and D. Peled. From Finite State Communication Protocols to High-
Level Message Sequence Charts, Proc. of ICALP’01, Lecture Notes in Computer
Science 2076, pp. 720-731, 2001.

4. K. Mac Millan. A Technique of State Space Search Based on Unfolding, Journal
of Formal Methods and System Design, 9, 1-22 (1992), Kluwer.

5. M. Abdallah, F. Khendec, and G. Butler. New Results on Deriving SDL Specifi-
cations from MSCs, Proc. of 9th SDL Forum, pp. 51-66, Montreal.

6. M. Mukund, K.N. Kumar, and P.S. Thiagarajan. Netcharts: Bridging the Gap
between HMSCs and Executable Specifications, Proc. of Concur 2003, Lecture
Notes in Computer Science 2761, pp. 296-310, 2003.

7. E. Rudolph, O. Graubmann and J. Grabowski. Tutorial on Message Sequence
Charts, Computer Networks and ISDN Systems - SDL and MSC, Vol. 28, 1996.

8. G. Booch, I. Jacobson and J. Rumbaugh. Unified Modeling Language User Guide,
Addison-Wesley, 1997.

9. ITU, Message Sequence Charts, standard Z.120, 2000.
10. C. Jard, L. Hélouët and T. Chatain. From Automata Networks to HMSCs: a Re-

verse Model Engineering Perspective, INRIA/IRISA Research Report, Aug. 2005,
22 pages.

