Assembling Sessions*

Philippe Darondeau!, Loic Hélouét! and Madhavan Mukund?

L IRISA, INRIA, Rennes, France
2 CMI, Chennai, India
philippe.darondeau@irisa.fr, loic.helouet@irisa.fr, madhavan@cmi.ac.in

Abstract. Sessions are a central paradigm in Web services, as they allow
the implementation of decentralized transactions with multiple partici-
pants. Sessions enable the cooperation of workflows while at the same
time avoiding the mixing of workflows from distinct transactions. Sev-
eral languages such as BPEL, ORC, AXML have been proposed to im-
plement Web Services. Sessions are usually implemented by attaching
unique identifiers to transactions. The expressive power of these lan-
guages makes the properties of the implemented services undecidable. In
this paper, we propose a new formalism for modelling web services. Our
model is session-based, but avoids using session identifiers. The model
can be translated to a dialect of Petri nets that allows the verification
of important properties of web services in terms of coverability in Petri
nets.

1 Introduction

Web services consist of interactions between multiple parties. In developing a
formal model for web services, we have to consider two different points of view.

The first focus is on the interactions themselves. These interactions are typ-
ically structured using what we will call sessions. An example of a session could
include sending an email or making an online payment. Informally, a session is
a functionally coherent sequence of interactions between agents playing specific
roles, such as server and client. Sessions are obtained as concrete instantiations
of templates that define patterns of interaction between agents in terms of some
“rules”. A template can have multiple parallel instantiations as sessions, each
with its own local “state”.

The second requirement is to capture the perspective of each agent. Typically,
agents participate in more than one session at a time: while composing a mail,
an agent may also participate in an online chat and, on the side, browse a
catalogue to select an item to purchase from an online retailer. While some
concurrent sessions may be independent of each other, there may also be non-
trivial connections between sessions. For instance, to purchase an item online,
one has to first participate in a session with the retailer to choose an item, then
make the online payment in a session with the bank, which typically returns the

* This work was partially funded by INRIA’s DST Associated Team, and by the
ARCUS program (Région Ile-de-France).

agent to the shopping session with a confirmation of the transaction. Thus, we
need a mechanism to describe how an agent moves between sessions, including
the possibility of invoking multiple concurrent sessions.

We propose a formal model for sessions to capture both these aspects. A
guiding principle is that the model should support some formal verification.
We base our approach on finite automata and model interaction through shared
actions. These shared actions can update local variables of agents, which permits
information to be transferred across agents. The local variables record the state
of an agent across sessions to permit coordination between sessions.

Our model can be translated into a class of Petri nets called reset Post-G
nets [4] for which coverability is decidable. In terms of our model, this means,
for instance, that asking whether a specific type of session occurs is decidable.

The paper is organized as follows. After briefly discussing related work, we
introduce our model through an example in the next section. This is followed
by a formal definition of our model of session systems. Section 4 translates the
semantics of session systems into post reset-G nets, and highlights decidability
results for our model. We end with a brief conclusion. Due to lack of space, and
also to improve readability, some proofs are only sketched.

Related work There have been other frameworks proposed for defining sessions
and mechanisms to orchestrate sessions into larger applications. The range of
approaches includes agent-centric formalisms, such as BPEL [3], workflow-based
formalisms such as ORC [5, 6], and declarative, rule-based formalisms such as
AXML [1,2]). Each of these approaches has its advantages and drawbacks.

A BPEL specification describes a set of independent communicating agents
equipped with a rich set of control structures. Each agent is associated with a
set of partners required to complete its activity and coordination across agents
is achieved through message-passing. Interactions are grouped into sessions im-
plicitly by defining correlations which specify data values that uniquely identify
a session—for instance, a purchase order number for an online retail transaction.
This makes it difficult to identify the structure of sessions from the specification
and workflows are often implicit, known only at runtime.

ORc is a programming language for the orchestration of services that may be
written in standard programming languages such as JAVA. It allows any kind
of algorithmic manipulation of data, with an orchestration overlay that helps
start new services and synchronize their results. ORC has better mechanisms to
define workflows than BPEL, but lacks the notion of correlation that is essential
to establish sessions among the participants in a service.

AXML is purely declarative. An AXML description defines a set of rules
for each site that provides and uses services. It deals very well with data since
the model is based on rewriting of semi-structured documents described, for
instance, in XML. However, the disadvantage of declarativeness is that AXML
cannot make workflows explicit. AXML does not have a native notion of session
either, and complex guarding mechanisms must be used to forbid transactions
from mixing.

A common feature of these formalisms is that they aim to describe imple-
mentations of web services or orchestrations. BPEL, OrRC and AXML can easily
simulate Turing Machines, hence rendering undecidable simple properties such
as the termination of a service. The model introduced in the next section can be
translated to a class of Petri Nets. This is not the first time Petri Nets are used
to model workflows in web services, as shown in [7-9].

2 DMotivational example

To motivate the constructs that we incorporate into our model, we look at an
example. We model an online retail system with three types of participants:
clients (the buyers), servers (the sellers), and banks. The interactions between
these entities can be broken up into two distinct phases: selecting and confirming
the items to be purchased online, and paying for these items. The first phase,
online sale, only concerns clients and servers while the second phase, online
payment, involves all three types of entities.

In an online sale, a client logs in to a server and selects a set of items to
buy. Selecting an item involves browsing the items on offer, choosing some of
them, perhaps revoking some earlier choices and finally deciding to pay for the
selected items. At this point, the client has to choose between several modes of
payment. Once this choice is made, the online sale interaction is suspended and
the second phase is triggered.

The second phase, online payment, involves the client and the server as well as
a bank that is chosen by the server according to the mode of payment selected
by the client. The server transfers the transaction amount to the bank. The
bank then asks the client for credentials to authenticate itself and authorize this
transaction. Based on the information provided by the client, the bank either
accepts or rejects the transaction. This decision is based on several parameters,
including the correctness of the authentication data provided and the client’s
credit limit. For simplicity, we can omit the details of how the bank arrives at
this decision and abstractly model this as a nondeterministic choice between
success and failure of the payment.

When the payment phase ends, the client and server resume their interaction
in the online sale. If the payment was successful, the server generates a receipt.
Otherwise, the server generates an appropriate error notification. In case of a
payment failure, the client can choose to abort the sale or retry the payment.

This example illustrates both aspects of web services identified in the Intro-
duction. Online sale and online payment are examples of sessions—structured
interactions involving multiple agents. On the other hand, the clients, servers
and banks that participate in these sessions are examples of agents, each with
its own control structure that determines how it evolves and moves from one
session to another.

We propose to use finite-state automata to describe session schemes and
agents. These prescribe the underlying structure from which concrete sessions
are instantiated.

C, S:Browse

C, 5:Add

C, S:Exit

B, S:GetTransaction N C, B:Authenticate

Fig. 2. Session template for Payment

Figure 1 depicts a session scheme for online sale, while Figure 2 shows a
scheme for online payment. In these automata, transitions are labelled by shared
actions, such as PayCardA and Authenticate. Each shared action is annotated with
the names of the participants: for instance, C, S : Login indicates that the action
Login is shared by C and S. Here, C' and S are not agents but abstract roles, to
be played by actual agents when the scheme is instantiated as a concrete session.

Each session scheme has a start node, denoted by an incoming arrow and
global final nodes marked by an outgoing arrow. Nodes with double circles are
return nodes where one or more participants can exit the session without termi-
nating the session itself. A session terminates when all participants have exited.

To ensure coordination between agents and across sessions, we need to equip
the system with data. Each agent will have a set of local variables that are
updated as it evolves. In addition, each concrete session will have variables to
indicate its state, including the identities of the agents playing the various roles
defined in the underlying session scheme. We will allow transitions to be guarded,
so that a shared action may be enabled or disabled depending on the current
state of the participating agents.

A typical example of the type of situation we have to take care of is the mixing
of payment information across different online sale sessions for the same client.
For instance, an authorization for a low-value transaction may be misused to
complete a high-value purchase that is beyond the client’s credit limit. To avoid
this, we can use local variables to enforce that each client and server pair can be
involved in at most one active online sale session at a time.

Spawn(OnlinePay(*,* self)) Spawn(OnlineSale(*,self)) Join(OnlineSale(self,Seller))

Join(OnlinePay(cid,self,Bank)) Join(OnlinePay(self,sid,*))

Bank Seller Buyer
Fig. 3. Agents for Banks, Sellers and Buyers

Similarly, we can use auxiliary variables and guards to prevent undesirable
situations such as entering a payment session without a preceding sale session.

The other half of the system description consists of specifications for the
agents. The agents Bank, Seller and Client are shown in Figure 3. There is one
automaton for each agent: in this example, each agent has only a single state.

The typical actions of an agent are to spawn a new instance of a session
scheme and to join an existing session. In this example, OnlinePay sessions are
spawned by the bank and joined by the buyer and seller while OnlineSale sessions
are spawned by the seller and joined by the buyer. The actions Spawn and Join
refer to a session scheme with parameters that denote the association of agents
to roles. For instance the bank’s action Spawn(OnlinePay(* * self)) spawns a new
instance of the session scheme OnlinePay in which the current bank agent, self,
plays the third role and the other two roles are left open for arbitrary agents. On
the other hand, the buyer’s action Join(OnlineSale(self,Seller)) says that the agent
is willing to join any existing OnlineSale session in which the other participant is
an instance of Seller, while Join(OnlinePay(self,sid,*)) says that the agent wants
to join an OnlinePay session with a specific seller agent sid in the second role,
but without any constraint on the bank agent playing the third role.

As we shall see later, it useful to have both asynchronous and synchronous
versions of the Spawn and Join operations. We also need actions that model
premature session termination. This situation could arise due to an unpredictable
environment event, such as a network timeout, or a conscious decision by an
agent to abort a session, such as a client deciding to cancel a payment.

In general, a session system may involve an arbitrary number of clients,
servers and banks with some constraints enforced by variables and guards. For
instance, each client can participate in an arbitrary number of sessions, but
should only be able to perform a payment for one of them. While processing
a payment to a server S, a client C' can still browse the proposals of the same
server in another session and fill its cart. A server can be involved in an arbitrary
number of sessions, but can be in at most one payment session with each client.

3 Session systems

A session system has a finite set of agents identified by names. Each agent has
a finite data store and a finite repository of links to other agents.

Agents operate at two levels. Individually, an agent executes a sequence of
commands that determine its interactions with the other agents. Collectively,
interactions are grouped into sessions. Within sessions, sets of agents perform
synchronized actions, updating their respective data stores and link repositories.

An agent can create sessions from predefined session schemes or join existing
sessions. It can also kill sessions and quit them. Each agent has a set of local
variables—the state of an agent is given by the current values of these variables.

Session schemes provide templates for interaction patterns involving an ab-
stract set of roles. A session is an instance of such a scheme in which concrete
agents are associated with the abstract roles. A session progresses through the
execution of synchronized actions involving subsets of the participating agents.
These actions are enabled through guards that depend on the identities and
states of the participating agents.

There may be multiple instances of a given session scheme running at a given
time. Agents cannot “name” or “address” individual sessions. However, agents
can supply constraints when creating or joining sessions to filter out sessions
from the collection of active sessions.

Each session has a set of role variables that are used to describe the current
mapping of abstract roles to concrete agents as well as to record constraints on
the identity and type of agents that may join in the future to play roles that are
currently unassociated.

Agents can join existing sessions synchronously or asynchronously. Agents
that join a session synchronously are normally released just before the session
dies. If the session dies prematurely, these agents are woken up with a warning,
set via a special local variable.

3.1 Preliminaries

Let A denote a fixed, finite set of agents and B = {tt,ff} denote the set of
boolean values. We assume the existence of two distinguished values L and T,
whose interpretation will be explained later.

Each agent manipulates a set of local variables. For simplicity, we assume
that these variables are organized as follows. There is a fixed set X = X4 W
Xp of variable names. The set X 4 is the set of agent variables, including the
distinguished variable self. The variables in Xp are boolean and include the
distinguished variable warning. A valuation of X is a pair of maps V = (V4,Vp)
where V4 : X4 - AU{L} and Vi : Xp — BU{L}. The variable self is a fixed
read-only value: for agent a, V4 (self) always evaluates to a.

Each agent has a local copy of the set X. For a € A and = € X, a.x denotes
agent a’s local copy of x. Though variables are local to agents, shared actions can
observe and update local variables of all participating agents. When referring
to variables and valuations of multiple agents simultaneously, we write X% =
X% WX% and Ve = (V§,VE) to refer to the local variables and valuation of
agent a, respectively.

In addition, session schemes are controlled by a finite set Y of role variables,
including a distinguished variable owner. Variables in Y are used to keep track

of agents joining a session. A valuation of Y isamap W:Y — AU{L, T}. The
value T indicates that a role has been completed, so the corresponding agent is
released from the session. When W (y) is defined, we write y.2 an an abbreviation
for W (y).x, the local copy of variable z in agent W (y). In addition, we also equip
each session with a constraint map C : Y — 24 that specifies constraints on the
agents that can play each role. The set C(y) indicates the set of agents that is
compatibile with the role y. We interpret C(y) = § as an unconstrained role,
rather than as a role with no compatible agents that is impossible to fulfil.

3.2 Session schemes

A session scheme is a finite automaton with guarded transitions labelled by
shared actions. Formally, a session scheme over a set of role variables Y is a
tuple S = (N, ng, X, ¢,0), where:

— N is a finite set of session nodes, with an initial node ny.

— X is a finite alphabet of actions that includes the special action Die that
prematurely kills a session and returns a warning to each synchronously
participating agent, as described later.

—£: X xY — {L,4, T} defines for each shared action o € X and role y € Y
the participation of y in o.
o If {(o,y) = L, y is not involved in o: o can execute even if W(y) = L.
o If ¢(o,y) # L,y is involved in o: we must have W (y) # L for o to occur.
o If /(0,y) = T, y terminates with this action. Agent W(y) is released if
it joined the session synchronously.

— 0 C NxGxXxUxN,is a transition relation between nodes, where G is
the set of guards, and U is the set of update functions.

A transition (n, g, 0, u,n’) and means that a session can move from a node n
to a node n’ when guard g holds for the current valuations W and {V®},c 4.
These valuations are then updated as described by the update u.

A guard g is a boolean combination of assertions of the form y.x; and y; =
ya.x2. Let W be the current valuation of Y and {V,}.ca be the current
valuations of all the agents in the system. The literal y.z; is true if W(y) =
a € A and VE(y.xz1) = tt. The literal y1 = yo.z2 is true if W(yy) # T,
W(y2) =a € Aand W(yy) = V§(z2). We lift this in the usual way to define
the truth of the guard g.

The guard g and update u can only read and modify values of variables for
roles y such that ¢(o,y) # L.

3.3 Sessions

A session is an instance of a session template with roles assigned to agents in A.
Not all roles need to be defined in order for a session to be active—an action o
can be performed provided W (y) is defined for every role that takes part in o.

The constraint map C' controls which agents can join the session in as yet
undefined roles, as we shall see later.

We associate with each session a partial return map p from roles to states of
agents. If p(y) is defined, it means that the agent W (y) is blocked and waiting
for the session to end. Whenever W (y) terminates in this session, or the session
executes the action Die or it is killed by another agent, W (y) resumes in the state
p(y). In addition, if a session ends prematurely—that is, it dies or is killed—the
special variable warning is set to tt.

3.4 Agents

The behaviour of an agent a is described by a tuple (@, E, A, qo) where

— (@ is the set of control states, with initial state qq.

— ACQ x G x E xT is the transition relation, where GG is the set of guards
over X ®. For simplicity, we define a guard as any function that maps each
valuation V* = (V{,V5) of a to either tt or ff.

— F is a set of labels defining the effect of the transition, as described below.

Variable assignment x := e, where z € X and e is an expression over
AUBU{L}UX that is compatible with the type of x.

Asynchronous session creation ASpawn(s,l), where s is a session scheme,
and [is a list of constraints of the form y = x where y € Y and
x € X 4. The variables self and owner should not appear in the con-
straints. ASpawn(s,l) does not execute if V(z) = L for some variable x
occurring in the constraints.

The new session is created with a valuation W such that W (owner) =
V(self) and W (y) = L for every other y € Y. We also define the con-
straint map for the session as follows: V() € C(y) if and only if the
constraint y = «x is in [.

Synchronous session creation SSpawn(s,l), like asynchronous session cre-
ation, with the difference that the agent gives up control. This action sets
the return map p(owner) to the target state of the transition carrying
the spawn instruction to indicate where control returns when this agent’s
role terminates, when the session dies, or when the session is killed.

Asynchronous join AJoin(s,y,1), where the variable y is the role of ses-
sion scheme s that the process takes on joining the session and [specifies
constraints of the form y’' = 2/, with ¢/ € Y and 2/ € X4. AJoin(s,y,l)
does not execute if V(2’) = L for any variable 2’ occurring in the con-
straints.

Otherwise, it produces a pending join request (a,s,y,¢) where a =
V(self). The map ¢ : Y — 24 serves to filter out sessions from the
collection and is defined by V(z') € ¢(y’) if and only if the constraint
y' = 2’ appears in [.

The join request AJoin(s,y, 1) is granted with respect to a session of type
s with valuation W and constraint C' if W(y) = L and V(self) € C(y)
and also, for each y', W(y') € ¢(y'). Pending requests are dealt with
asynchonously: that is, control returns to the agent immediately, without
waiting for the join request to be granted.

Blocking join BJoin(s,y,1), like asynchronous join, except that with this
command, the agent gives up control until the join request is granted.
A blocking join is granted when a session of type s meeting contraint [
exists. When control returns, the agent continues in the target state of
the transition with the join instruction.

Synchronous join SJoin(s,y, 1), like blocking join, except that control re-
turns to the agent only after the session that it joins ends: that is, this
agent’s role terminates, the session dies or the session is killed. This ac-
tion sets the return map p(y) to the target state of the transition carrying
the spawn instruction to indicate where control returns.

Query Query(s,l), where list [specifies constraints of the form xz = y for
x € X4 and y € Y (the variables self and owner may appear in these
constraints). Query(s,l) may execute even though V(z) = L for some
variable x occurring in the constraints. This command executes in an
atomic step when some session with scheme s and valuation W satisfies
all constraints « = y: that is, for every « € X4, if V() # L then V(z) =
W(y) and if V(z) = L then W(y) ¢ {L, T}. If the query succeeds, for
each constraint x = y, V(z) is updated to W(y). In particular, if V' (x)
was earlier L, x now acquires the value W (y).

Kill Kill, kills all sessions created by the agent V(self). This has the same
effect as when these sessions execute the action Die.

Quit Quit, agent V (self) leaves all sessions that it has entered. This has no
effect other than removing this agent from all session environments.

In addition to sessions and agents, our model presupposes a global scheduler

that manages sessions and serve requests for joining sessions. We do not give
details about how this scheduler is implemented—for instance, it could be via a
shared memory manager. We assume that the scheduler keeps track of all active
sessions and pending session requests. Serving a session request just consists of
finding a running session of type s whose valuation W is compatible with the
constraint ¢ of a session demand sd = (a, s, y, ¢) and assigning role y to agent a
in this running session. We denote this by a specific action labelled Serve.

4 Semantics of session systems

Session systems and configurations

— Let A be a set of agents, X a set of variables, Y a set of role variables and
S a set of sessions defined over X and Y. The tuple (A,S, X,Y) defines a
sesston system.

— A session configuration is a tuple (s,n, W, C, p), where s is a session scheme
name, n a state of session scheme s, W is a valuation of Y, C is a constraint
on roles and p is a return map.

— An agent configuration for an agent a € A is a pair (¢, V) where ¢ is a state
of the agent, and V is a valuation for variables in X.

— A session system configuration is a triple (¥, I, P), where ¥ associates a
configuration to each agent a € A, I' is a set of session configurations, and
P is a set of pending demands to join sessions.

Proposition 1. Let A be a finite set of agents and S be a set of session schemes
over finite sets of variables X and Y. If A and S are defined over finite sets of
states Qp and Qg, respectively, then the set C of session systems configurations
that are definable over A, S, X,Y is isomorphic to Q‘Ifl x 21XBIAL y AIXal Al
N¥, where K = |S|-|Qs| - [Y AP+ 4 |A] - |S] - [y [AIF

A session system moves from one configuration to another by performing
an action. The obvious actions are process moves from F (spawning a session,
joining a session, query, kill, quit) and session moves from X (shared actions,
including the special action Die). In addition, we have internal system moves
that serve requests to join a session.

Let x, X’ be two configurations of a session systems. We say that x’ is a
successor of x via action o € EU X U {Serve} if and only if starting from y, the
effect of applying o produces configuration x’.

Reset Post-G nets

A (labelled) Petri net is a structure (P, T,)\, mg, F') where P is a set of places,
T is a set of transitions, A is a function that associates a label to each transition
of T, mg : p — N associates a non-negative integer to each place of P, and
F:(PxT)J(T x P) — N is the flow relation.

A marking m : P — N distributes tokens across the places. A transition ¢ is
enabled at m if each place p has at least F'(p, t) tokens. When ¢ fires, the marking
m is transformed to a new marking m’ such that m’(p) = m(p)— F(p,t)+ F(t,p)
for every place p.

In a generalized self-modifying net (G-net), the flow relation is enhanced to
be of the form F : (P x T)U (T x P) — N[P]. In other words, the weights on
the edges between places and transitions are polynomials over P and the firing
rule is generalized so that these polynomials are evaluated to determine when a
transition is enabled and the effect of firing the transition.

In a reset Post-G net, the input polynomials F'(p,t) are restricted so that
F(p,t) = {p} or F(p,t) € N. The term reset refers to the fact that the only
non-trivial input weight to a transition corresponds to resetting a place.

In the rest of the paper, we will only consider Reset Post-G nets such that
F(p,t) =por F(p,t) € {0,1}, and such that F(t,p) € {0,1} or F(t,p) is a sum
of places p’ such that F(p’,t) = p’. Reset Post G nets are Petri Nets in which the
contents of places can be reset (when F(p,t) = p), and in which outgoing flows

fill places with a number of tokens that can be a polynomial over the contents of
places in the net (seen as variables). This class is very expressive, but yet several
properties (termination, coverabilty) remain decidable [4].

Claim. Let (A, S, X,Y) be a session system starting in a configuration xo. Then
the transition system (C, xo, —) is the marking graph of a Reset Post-G net.

We establish this claim by building a Reset Post-G net whose marking graph
is isomorphic to the set of configurations of a session system, and whose transi-
tions are Reset Post-G net transitions that encode moves from one configuration
to another.

For a given session system (A, S, X,Y’), we build the following set of places:

— Pg,4 = {pg,a; - - -} that associates a place to each pair a € A and state ¢ of
agent a. Since the set of states Qp across all agents is finite, the set Pg 4 is
finite as well.

— Py 4 = {pv,a,.. .} that associates a place to each a € A and each valuation v
of the variables X. Since the variables in X range over finite domains, Py, 4
is a finite set.

— Ps¢ = {Psc,-.-} is a set of places indexed by the set of possible session
configurations—that is, there exists a place ps. for every tuple sc = (s,n, W, C, p)
that describes a valid session configuration.

— Finally, we have Pp = {psd, - ..}, a set of places indexed by the possible join
requests—that is, we have one place per tuple sd = (a, s, y, ¢) generated by
a join action.

We can now define the transitions of the net. As discussed earlier, each action
that transforms a session configuration is either a process move, a session move,
or an internal system move that serves a pending join request.

The mapping from session system moves to net transitions is not one to one.
This is because a move of an agent can, for instance, be enabled in more than
one valuation and address more that one kind of environment. However, this
number will always be finite, as we shall show later.

Let a be an agent. We design a set T, = [J,¢, T! by associating a set of net
transitions 7 for each transition ¢ of process a, as described below.

— Let t = (q,e,q') be an assignment transition of process a. Then, for ev-
ery valuation v satisfying the guard of e, we create a transition ¢., such
that A(te) = e, with preset {py,qa,Pq,a} and postset {pv a,Pq,a}, and flow
relations F'(py,a,t) = F(pg,a,t) = F(t,pv,a) = F(t,pg.a) = 1.

— When ¢t is an asynchronous session creation—that is, t = (g,e,¢’) with
e = ASpawn(s,l)—we create again one transition t,. for each valuation
v that satisfies the guard of the transition, with preset {py,a,Dq,a } and post-
set {Pv’,asPg’ 0> Psc}, where sc = (s,n, W, C, py) with W{(owner) = a and
W (y) = L for all other roles y, C' is generated by [and py is the empty map.
As for assignment transitions, we have F'(py q,t) = F(pga,t) = F(t,Dv,a) =
F(tqu’,a) = F(tvpsc) =1

— When t is a synchronous session creation—that is, ¢ = (g,e,q’) with e =
SSpawn(s,l)—we again create one transition ¢, . for each valuation v that
satisfies the guard of the transition, with preset {pyq,pqq} and postset
{Pv',asPsc}, where sc = (s,n, W, C, p) with W (owner) = a and W(y) = L
for all other roles y, C is generated by | and p(owner) = ¢'. We also have
F(pv,a,t) = F(pg,a:t) = F(t,pv,a) = F(t,psc) = 1. Note that during syn-
chronous session creation, agent a loses control, and will resume in state ¢’
after its role terminates. This information is kept in the return map p.

— When t is an asynchronous join—that is, t = (g, e, ¢') with e = AJoin(s,y,1)—
we create a transition ¢, . labelled by e for each valuation v that satisfies the
guard of the transition, with preset {py,q, Pq,o } and postset {py o, Pg’.a; Psd},
where sd = (a, s,y, ¢), with ¢ generated by I. The flow relation is given by
F(pv,aat) = F(pq,aat) - F(tapv’,a) = F(tqu’qa) = F(tvpsd) =1

— When ¢ is a synchronous join—that is, t = (g, €,¢’') with e = SJoin(s,y,1')—
we create a transition t, ... labelled by e for every valuation v that sat-
isfies the guard of the transition, and every session configuration sc =
(s,n,W,C,p) meeting constraint I’. The preset of each transition is
{Pv,a»Pq,a, Psc} and the postset is {py/ ¢, pse’ }, Where s¢’ = (s,n, W', C", p)
is an updated configuration in which W'(y) = a, p'(y) = ¢/, and C’ is ob-
tained by adding to C' the constraints in I’. The flow relation is given by
F(pv,a;t) = F(pq,aat) = F(psc;t) = F(tapv’,a) = F(tapsc’) =1.

— When ¢ is a blocking join—that is, t = (g, e,q’) with e = BJoin(s,y,l')—
we create a transition t,. s labelled by e for every valuation v satisfying
the guard of e, and every session configuration sc = (s,n, W, C, p) meeting
constraint I’. The preset of each transition is {py,a,Pg,a, Psc} and the postset
is {pv’.a: Pg’,a, Psc' }, where s¢’ = (s,n, W', C’, p) is an updated configuration
in which W'(y) = a, and C’ is obtained by adding to C' the constraints in .
Compared to a synchronous join, note that the return map p is unchanged
in s¢’, and control is returned to the agent executing the instruction via the
output place py . The flow relation is given by F'(pu.a,t) = F(pga,t) =
F(psc,t) = F(t,pv,a) = F(t,pg.a) = F(t,pser) = 1.

— When ¢ is a query—that is, t = (q,e,q') with e = Query(s,l)—we cre-
ate a transition ¢, .. labelled by e for every valuation v satisfying guard
of e, every session configuration sc = (s,n, W, C, p) meeting constraint I,
and every resulting valuation v’ computed from v and the variable assign-
ment in sc. The preset of each transition is {py a,Pq,a, Psc} and the postset
is {pv’,a:Pq’,as Psc}- The flow relation is given by F(pyq,t) = F(pga.t) =
F(pse,t) = F(t,pv.a) = F(t,pg,a) = F(t,psc) = 1. Note that this kind of
transition does not consume a token from the place ps.—it only tests the
presence of a token.

— When t is a kill—that is, t = (q,e,q¢') with e = Kill—we create a tran-
sition t, . for every valuation v satisfying guard of e. Each of these tran-
sitions has as preset {py,a,Pgat U {Psc; | sci = (s,n,W,C,p)} for some
s,n,W,C, p such that W(owner) = a. The postset of the transition is

{Pv',as P ,a} U {Pg, v} such that g; is the target state of some SJoin transi-
tion of process b. The flow relation is decomposed as follows: F(py q,t) =
F(pga,t) = F(t,pvr.a) = Ft,pg,0) = 1, F(Pse;st) = Dse; for every session
configuration owned by agent a, that is the transition consumes all sessions
created by a, and F(t,pg,) = Z Dsc,- Note that agent b can
pr(y)=aq; AW (y)=b

be blocked in at most one session, so we can be sure that > ps., < 1, that
is we return control to agent b only when it was blocked.

— When the considered transition ¢ is labelled Quit, we create a transition
ty,c for every valuation v satisfying the guard of e. Each of these transitions
has preset {puv,a,Pg,a} U NT, where NT = {ps, | s¢; = (s,n,W,C,p)}
for some s,n, W, C, p where W(y) = a for some role y. The postset of the
transition is {py’ 4, pg/,a} U NT', where NT' = {p;., | 3sc; € NT'} such that
each sc, = (s,n,W’,C,p) is obtained from s¢; = (s,n, W, C, p) by setting
W'(y) = T when W(y) = a. The flow relation is decomposed as follows:
F(po,a;t) = F(pga,t) = F(t,pv.a) = F(t,pg o) = 1 and F(psc,,t) = psc, for
every session configuration appearing in the preset—that is, the transition
consumes all sessions involving a, and F(t, pse;) = psc, for every sc; in NT".
This way, session configurations involving a, but with other remaining active
roles, are transformed into session configurations without agent a.

The next part of this translation concerns the internal behavior of sessions.
We will distinguish two kinds of transitions, depending on whether a session
terminates after playing an action or not.

Let us first consider transitions associated with sessions that do not termi-
nate; that is, the action is not Die. Let sc = (s,n, W, C, p) be a session configu-
ration, and let (n, g,0,u,n’) € § with guard g and update u. Executing such an
action transforms a configuration sc into a configuration s¢’ = (s,n’, W’ C’, p),
where W'(y) = T if £(o,y) = T and W’(y) = W(y) otherwise. Then for every
valuation v that satisfies g, we create a transistion ts., with preset {py q,Psc}
and postset {pser, por.a} U Fp,o, where Py o = {pgr.a | Iy, W(y) # W'(y) Aply) =
q¢" N W(y) = a} with v' = u(v). In other words, all agents that have joined the
session synchronously and leave the session during action ¢ resume in the con-
trol state defined at call time. The flow relation is F'(py,q, tscv) = F(Pses tsev) =
F(tsew,Pser) = F(tsc,vsPor,a) = 1 We also have, for every place pgr o in P, o,
F(tsc,vapq”,a) =1

For every session configuration sc = (s,n, W, C, p) such that action Die can
be executed from n, we create a transition ¢s. 4;c labeled by action Die with the
preset ps. and the postset P, = {py7 o | Jy, p(y) = ¢" AW(y) = a}. The flow
relation is F'(psc, tse,aic) = 1, and F(tsc gie,p) = 1 for every p in P,.

Finally, we have to translate system moves that serve pending join requests
into net transitions. Serving a request just consists of removing the request
from the set of pending requests and modifying the configuration of a session
compatible with this request in the set of session configurations.

For every session demand sd = (a,s,y,¢) and session configuration sc =
(s,n, W, C, p) compatible with the request, we create a transition ts. sq labeled

by the internal action Serve. The preset of tsc sq iS {Psc;Psa} and its postset
is {pser}, where s¢’ = (s,n, W', C’, p) is the session configuration obtained by
updating configuration sc i.e. setting W’ (y) = a (and W'(y') = W (') for every
y' # y) and O’ is obtained from C by adding the constraints in ¢. The flow
relation is given by F(psc,tsc,sd) = F(Dsds tse,sa) = F(tse,sdyPser) =1

Note that for every transition of this translation, the flow relation from
the preset to the transition is either that of a standard Petri net or a reset
transition—that is, F(p,t) = p. The flow relation from the transition to a place
is either a standard Petri net flow relation—that is, F(¢,p) = 1—or a polyno-
mial over the contents of a set of places. Hence, the semantic model for session
systems corresponds to reset post-G nets.

Definition 2. Let x = (¥, I, P) be a configuration of a session system.

— We say that a configuration X' = (&', "', P') is reachable from configuration
x if and only if there exists a sequence of mowves starting from x that leads
to configuration x’.

— We say that x' covers x, and write x E X/, iff ¥/ = ¥, and for every
session configuration sc and session demand sd we have I'[sc] < I''[sc] and
P[sd] < P'[sd].

— We say that a configuration X' is coverable from x iff there exists a sequence
of moves starting from x and leading to a configuration X" such that x' C x".

— A session system is bounded iff there exists some constant B such that in
any reachable configuration x = (¥, I, P) we have I'[sc] < B and P[sd] < B
for every sc and sd.

Theorem 3. Let (A,S,X,Y) be a session system starting in a configuration xg.
Then coverabiliy of some configuration x € C is decidable. Termination—that is,
absence of infinite runs starting from xo is decidable.

Proof: This theorem stems directly from the properties of reset post-G Nets,
for which coverability of some configuration and termination are decidable. O

Theorem 4. Let (A,S,X,Y) be a session system starting in a configuration
Xo. Then reachability of some configuration x € C from xo and boundedness are
undecidable problems.

Proof Sketch: One can simulate reset Petri Nets with session systems. Thus,
boundedness and exact reachability are undecidable for session systems. O

5 Conclusion

We have proposed a session-based formalism for modeling distributed orchestra-
tions. We have voluntarily limited the expressiveness of the language to ensure

decidability of some important practical properties of the model. Indeed, many
properties of session systems, such as the possibility for an agent or for a session
to perform a given sequence of transitions, may be expressed as a coverability
problem on reset Post G-nets. However, deadlock and exact reachability are un-
decidable in general. A natural question is how to restrict the model to enhance
decidability.

A second issue is to consider is the implementation of session systems. The
natural implementation is a distributed architecture in which agents use only
their local variables. However, agents share sessions that have to be managed
globally, along with requests and queries. This means, in particular, that an
implementation of session systems has to maintain a kind of shared memory
that can be queried by agents. This can be costly, and a challenge is to provide
implementations with the minimal synchronization.

A third issue is to consider session systems as descriptions of security pro-
tocols, and to see whether an environment can break security through legal
use of the protocol. For instance, the well known session replay attack of the
Needham-Schroeder protocol can apparently be modelled by a simple session
type system, and the failure of the protocol (the existence of a session involving
unexpected pairs of users) can be reduced to a coverability issue. Whether such
an approach can be extended to more complex protocols for detecting unknown
security failures is an open question.

References

1. Serge Abiteboul, Omar Benjelloun, Ioana Manolescu, Tova Milo, and Roger Weber.
Active XML: A data-centric perspective on web services. In BDA02, 2002.

2. Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static analysis of Active XML
systems. pages 221-230, 2008.

3. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trick-
ovic, and Sanjiva Weerawarana. Business process execution language for web ser-
vices (BPEL4WS). version 1.1, 2003.

4. Catherine Dufourd, Alain Finkel, and Ph. Schnoebelen. Reset nets between decid-
ability and undecidability. In Proc. of ICALP’98, volume 1443 of Lecture Notes in
Computer Science, pages 103-115, 1998.

5. David Kitchin, William R. Cook, and Jayadev Misra. A language for task orches-
tration and its semantic properties. In CONCUR’06, pages 477491, 2006.

6. Jayadev Misra and William Cook. Computation orchestration. Software and Sys-
tems Modeling, 6(1):83-110, 2007.

7. Wil M. P. van der Aalst. The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21-66, 1998.

8. Wil M. P. van der Aalst and Kees van Hee. Workflow management: Models, Methods,
and Systems. MIT Press, 2002.

9. H.M.W. Verbeek and Wil M. P. van der Aalst. Analyzing bpel processes using petri
nets. Second International Workshop on Applications of Petri Nets to Coordination,
Workflow and Business Process Management, 8(1):59-78, 2005.

