
Petri nets with semi-structured data

Eric Badouel1, Löıc Hélouët1, Christophe Morvan1,2

1: INRIA Rennes Bretagne Atlantique
2: Université Paris-Est

eric.badouel,loic.helouet@inria.fr, christophe.morvan@u-pem.fr

Abstract. This paper proposes Structured Data Nets (SDN), a Petri
net extension that describes transactional systems with data. In these
nets, tokens are semi-structured documents. Each transition is attached
to a query, guarded by patterns, (logical assertions on the contents of its
preset) and transforms tokens. We define SDNs and their semantics. We
then consider their formal properties: coverability of a marking, termina-
tion and soundness of transactions. Unrestricted SDNs are Turing com-
plete, so these properties are undecidable. We thus use an order on doc-
uments, and show that under reasonable restrictions on documents and
on the expressiveness of patterns and queries, SDNs are well-structured
transition systems, for which coverability, termination and soundness are
decidable.

1 Introduction

Web services and business processes are now widely used applications. Many
solutions exist to design such systems, but their formal verification remains dif-
ficult due to the tight connection of workflows with data [19, 14, 25]. For instance,
in an online shop one faces situations where a workflow depends on data (if the
age of the client is greater than 50, then propose service S), and conversely data
depend on a flow (return an offer with the minimal price proposed among the 5
first values returned by sub-contractors). These systems have to be open: they
must accept user inputs and manage multiple concurrent interactions. Openness
also raises robustness issues: a system must avoid interferences among distinct
transactions, and be robust for all inputs, including erroneous or obfuscated
ones. Last, a transactional system usually manages its own data: catalog, clients
database, stock,... which contents influences the execution of the current trans-
actions.

Thus, exact descriptions of transaction systems lead naturally to infinite
state models with infinite data and zero tests, that can be captured only by
Turing powerful formalisms for which verification problems are undecidable. As
a consequence, one has to work with abstractions of these systems to apply
automated analysis techniques. Coarse grain approximations can rely on finite
discretizations of data or on bounds on the number of transactions in a system.
These straightforward techniques allow one to get back to the familiar models of
finite state systems or (variants of) Petri nets for which verification techniques

are well-studied and decidable (model-checking for automata, coverability and
reachability techniques for Petri nets). However, such bounded discretization
that completely abstracts from data is usually too coarse.

This paper introduces Structured Data nets (SDN), a variant of Petri nets
where tokens are (semi-structured) documents, and transitions transform data.
A token represents a piece of information that either belongs to a database
associated with the system, or is attached to some ongoing transaction. Each
transition of an SDN is attached a query, that is used to transform data, and is
guarded by patterns expressing constraints on tokens in its input places. When
firing a transition, the corresponding input documents are consumed and new
documents computed as the result of queries applied to the input documents
are produced in its output places. Fresh data are introduced in the system
using an input transition that non-deterministically produces new documents
corresponding to new transactions. Termination of a transaction is symbolized
by the consumption of a document by an output transition. We define semi-
structured documents as trees whose nodes carry information given by lists of
attributes/values (à la XML). We show that considering documents of bounded
depth labeled by well-quasi ordered values, one can provide a well-quasi order-
ing on documents. We define SDNs and their semantics, and we consider formal
properties of this model, such as coverability of a marking, termination and
soundness of transactions. In their full generality, SDNs are Turing complete, so
all these properties are undecidable. However, we prove that as soon as SDN ma-
nipulate well-quasi ordered documents, and meet some reasonable restrictions on
the expressive power of patterns and queries (monotonous with respect to order-
ing), SDNs are well-structured transition systems. If in addition an SDN meets
effectiveness requirements, well-structure yields that coverability of a marking is
decidable. As a consequence, termination and soundness are also decidable. All
these properties hold for a single initial marking of a net, but can be extended
to handle symbolically unbounded sets of initial markings satisfying constraints
defined by a pattern. Even if some information systems can not be represented
by these well-structured SDNs, this decidable setting lays at a reasonable level
of abstraction: it does not fix an a priori bound on the number of transactions,
nor impose finiteness of data values.

Our model borrows elements from Petri nets, but also from data-centric mod-
els such as AXML [2] and business artifacts [22]. It is not the first extension of
Petri nets which handles complex types attached to tokens: Petri nets with to-
ken carrying data have been proposed by [19]. For this extension, coverability
of a configuration is decidable. However, data is not really transformed through
the workflow, and is mainly used to adapt the structure of flows of an affine
nets at runtime. Colored Petri nets [18] can also be considered as Petri nets
with data. However, it is well-known that colors give a huge expressive power to
nets, and can be used to encode arithmetic operations. It is hence hard to find
a reasonable syntactic subclass of colored nets that is amenable to verification.
Yet, our model could be simulated with complex coloring mechanisms. Several
formalisms handling data have also been designed outside the Petri net com-

munity. Programming languages such as BPEL [6] and ORC [20] have been
proposed. BPEL is the de facto standard to design Business processes. A BPEL
specification describes a set of independent communicating agents. Coordina-
tion is achieved through message-passing. Interactions are grouped into sessions
implicitly through correlations, which specify data values that uniquely identify
a session—for instance, a purchase order number. Orc [20] is a programming
language for the orchestration of services. It allows algorithmic manipulation
of data, with an orchestration overlay to start services and synchronize their
results. Data-centric approaches such as Active XML (AXML) [2] or tree
pattern rewriting systems (TPRS) [14] define web services as a set of guarded
rules that transform semi-structured documents described, for instance, in XML.
They do not make workflows explicit, and do not have a native notion of trans-
action either. To implement a workflow in an AXML specification, one has to
integrate explicitely control states to AXML documents, guards and rules. Decid-
ability of coverability has been proved for the subclass of ”positive” AXML [3],
in which rules can only append data to a document, and for TPRS manipulat-
ing documents of bounded depth. Artifact-centric approaches such as busi-
ness artifacts [22] describe the logic of transactions for systems equipped with
databases. The workflow of a transaction is defined using automata, or logical
rules. A transaction carries variables, which are instantiated by values collected
along the workflow or entered by the user. Verification of business artifacts has
been proved feasible in a restricted setting [10]. In their original version, business
artifacts only consider sequential processing of cases. They have inspired Guard
Stage Milestones (GSM) [17], that allows parallelism among tasks. Recently we
have introduced a grammar based artifact-centric case management system [7]
which enables transparent distribution of tasks.

One can also mention several initiatives to model web-services in the π-
calculus community. Session types [16] have been proposed as a formal model
for web services. The expressive power of the whole π-calculus and session types
do not allow for verification of reachability or coverability properties. [4] uses
WSTS to show that a fragment of spatial logic that can express safety properties
is decidable for well-typed π-calculus processes. An effective forward coverability
algorithm for π-calculus with bounded depth has been proposed in [25]. Last,
several formalisms such as µ-se [9], CASPIS [8], COWS [24], have been proposed
to model web-services.

This paper is organized as follows: Section 2 introduces the basic elements of
our model, namely documents and tree patterns. Section 3 shows how documents
can be ordered. Section 4 defines Structured Data Nets, and their semantics. We
then consider formal properties of this model, and in particular coverability of
a marking, termination, and soundness of transactions in Section 5. Section 6
concludes this work and gives future lines of research.

2 Documents and Tree patterns

Our model of net is a variant of Petri nets manipulating structured data. These
data are encoded as trees, and queried using tree patterns and queries.

A tree T = (V,E) consists of a set V of vertices with a distinguished vertex,
root(T) ∈ V , called the root of the tree, together with a set of edges E ⊆ V ×V ,
such that for every vertex but the root v ∈ V \ {root(T)} there exists a unique
path from the root to v, i.e. a finite sequence v0, . . . , vn such that v0 = root(T),
(vi−1, vi) ∈ E for 1 ≤ i ≤ n and vn = v. In particular, (i) every vertex but
the root v ∈ V \ {root(T)} has a unique predecessor, i.e. a vertex v′ such that
(v′, v) ∈ E, and the root has no predecessor. A tree is labelled in A if it comes
equipped with a labelling function λ : V → A. The depth of a tree T is the
maximal length of a sequence of consecutive edges in T .

Tokens of Structured Data Nets are documents represented by finite trees
whose nodes are labelled with attribute/value pairs, i.e. by a finite set of equa-
tions of the form a = v where tag a denotes a data field or an attribute and v
its associated value. For that purpose we let a tag system τ = (Σ,D) consist of
a set Σ of tags and a set D indexed by Σ such that for every σ ∈ Σ, the set Dσ
of possible values for attribute σ is non-empty. A valuation ν ∈ Valτ associated
with a tag system τ = (Σ,D) is a partial function ν : Σ → D whose domain of
definition, denoted tag(ν), is finite and such that ∀σ ∈ tag(ν), ν(σ) ∈ Dσ.

Definition 1 (Documents). A document D ∈ Docτ associated with a tag
system τ is a finite tree labelled by valuations in Valτ .

If v is the node of a document, we let tag(v) be a shorthand for tag(λ(v))
and let v · σ denote λ(v)(σ) when σ ∈ tag(v). We use tree patterns to address
boolean properties of trees. A tree pattern is also a labelled finite tree, whose
edges are partitioned into ordinary edges and ancestor edges, and whose nodes
are labelled by constraints. A constraint, denoted by C ∈ Consτ , is defined by
a partial function1 C : Σ → ℘(D) whose domain, denoted tag(C), is finite and
such that ∀σ ∈ tag(C), C(σ) ⊆ Dσ. For instance if Dσ is the set of integers then
5 ≤ σ ≤ 20 constrains the value of σ to lay within the set of integers ranging
between 5 and 20, and σ =? allows σ to take value in the whole set of integers.

Definition 2 (Tree Pattern). A tree pattern, P ∈ Patτ , is a tuple P =
(V,Pred, Anc, λ), where Pred,Anc ⊆ V×V are disjoint set of edges and (V,Pred∪
Anc, λ) is a finite tree labelled by constraints in Consτ .

As for documents, we let tag(v), for v a node of a tree pattern, be an abre-
viation for tag(λ(v)) and let v · σ denote λ(v)(σ) when σ ∈ tag(v). We further
let v · σ =? as an shorthand for v · σ = Dσ which means that v must carry the
tag σ but the value of this tag is not constrained. This situation should not be
confused with σ 6∈ tag(v) which does not constrain node v to carry tag σ (see
Figure 1 for an illustration). Pattern satisfaction is formally defined as follows:

1 ℘(D) denotes the set of subsets of D

Definition 3 (Pattern Satisfaction). A document D = (VD, ED, λ) satisfies
a tree pattern P = (VP ,Pred, Anc, λP), denoted D |= P , when there exists an
injective map h : VP → VD such that:

1. h(root(P)) = root(D),
2. ∀v ∈ VP tag(v) ⊆ tag(h(v)),
3. ∀v ∈ VP ∀σ ∈ tag(v) h(v) · σ ∈ v · σ,
4. ∀(v, v′) ∈ PredP (h(v), h(v′)) ∈ ED, and
5. ∀(v, v′) ∈ AncP (h(v), h(v′)) ∈ E∗D2.

∗

{a =?, b =?}

∗

{a = 10}

{b ≤ 30}

Fig. 1. A tree pattern where ∗ = {} denotes the empty constraint. It describes the set
of trees which have five nodes v0, v1, v2, v3, and v4 with the following properties. v0 is
the root of the tree v1 is not a leaf node (i.e. it has at least one successor node v2) and
it carries tags a and b (tag(v1) ⊇ {a, b}) with no particular constraints on their values:
λ(v1)(a) = Da, λ(v1)(b) = Db. Node v3 is an immediate successor to the root, it carries
tag a (tag(v2) ⊇ {a}) and the value attached to tag a is 10. Node v4 is some successor
node of v3 tagged by b and the value attached to b is lower than 30.

3 Ordering Trees

We shall not distinguish between two isomorphic trees, i.e. when there exists a
bijection ϕ : V t → V t

′
between their respective sets of vertices such that (v, v′) ∈

Et ⇐⇒ (ϕ(v), ϕ(v′)) ∈ Et′ (and thus also ϕ(vt0) = vt
′

0), and λ(v) = λ(ϕ(v)).
If (A,≤) is an ordered set (respectively a quasi-ordered set, i.e. ≤ is a reflexive

and transitive relation) then the set of trees labelled in A can be ordered (resp.
quasi-ordered) by setting, for any pair of trees T1 = (V1, E1, λ1) and T2 =
(V2, E2, λ2), T1 ≤ T2 when there exists an injective map f :V1→V2 such that:

1. f(root(T1)) = root(T2),
2. (v, v′) ∈ E1 =⇒ (f(v), f(v′)) ∈ E2, and
3. ∀v ∈ V1, λ1(v) ≤ λ(f(v)).

Hence T1 ≤ T2 if T2 can be obtained from T1 by adding new edges and/or
replacing existing labels by greater ones. For instance, given an order relation,
≤σ, on Dσ and a subset of tags, Σ′ ⊆ Σ, one obtains a quasi-order on Docτ
associated with the quasi-order on valuations Valτ given by:

ν ≤Σ′ ν′ ⇐⇒ tag(ν) ∩Σ′ ⊆ tag(ν′) ∧ ∀σ ∈ tag(ν) ∩Σ′ ν(σ) ≤σ ν′(σ)

Thus, restricted to tags in Σ′, valuation ν′ has a larger domain and associates
greater values to tags for which both ν and ν′ are defined (see Figure 2 for an
illustration). Note that Σ′ ⊆ Σ′′ =⇒ ≤Σ′′⊆≤Σ′ .
2 R∗ denotes the reflexive and transitive closure of relation R.

{a = 2, g = 3}

{b = 5}

{c = 10} {d = 20}

D1 : {a = 4}

{b = 3}

{c = 15}

{e = 12}

{d = 30}

{f = 4}

D2 : {a =?}

{5 ≤ c ≤ 11}

P1 : {a =?}

{10 < d}

P2 :

Fig. 2. Documents and patterns: Assume all the domains Dσ are given by the set
N of natural numbers with their usual ordering, then D1 ≤{a,c,d} D2. Pattern P1 is not
monotonous since e.g. D1 ≤{a,c} D2, D1 |= P1 and D2 6|= P1. By contrast pattern P2

is monotonous.

Definition 4 (Monotony). A pattern P is monotonous if D1 ≤Σ′ D2 and
D1 |= P implies D2 |= P where Σ′ is the set of tags occurring in P .

As illustrated in Figure 2, a pattern that imposes upper bounds on attribute
values is not monotonous.

Let us recall classical notions related to orders. A well quasi-order (wqo) is a
quasi order that is well-founded : any infinite sequence x1, . . . , xn, . . . contains two
elements xi and xj such that i < j and xi < xj . Equivalently, a quasi order is a
wqo if it contains no infinite strictly decreasing sequences nor infinite antichains
(sets of pairwise incomparable elements). Let ↑ x = {y | x ≤ y} denote the
upward closure of an element x. A set X is upward closed if ↑ X = X, and any
upward closed set in a wqo has a finite basis, namely a set B(X) ⊆ X such that⋃
x∈B(X) ↑ x = X. This property ensures the existence of a finite representation

for infinite upward closed sets of elements. Finding a wqo on structured data
can serve to finitely represent collections of data of arbitrary sizes, or to allow
symbolic manipulations on families of trees. However, in contrast with Kruskal’s
theorem, which states that tree embedding is a well quasi-order on the set of
finite trees, the set (Docτ ,≤Σ′) is in general not a wqo even if the set of tags is
finite and their domains are finite or well quasi-ordered. The reason is that the
order relation used here is a strict rooted inclusion, which allows construction of
sets of pairwise incomparable elements of arbitrary sizes (as shown in Figure 3).

{a = 0}

{b = 0}

{b = 0}

{a = 0}

Fig. 3. Let us consider tag system τ = ({a, b},D), with Da =
Db = {0} and the tree shown next, denoted a.bk.a, whose root
v0, tagged a with λ(v0)(a) = 0, is followed by a sequence
v1, . . . , vk of nodes tagged b with value λ(vi)(b) = 0, and
ends with a node vk+1 tagged a, with λ(vk+1)(a) = 0. The
set of trees {a.bk.a | k ∈ N} consists of pairwise incomparable
elements for ≤{a,b}, hence they form an infinite antichain,
whereas they form a chain for tree embedding.

This problem (existence of sets of pairwise incomparable elements of arbitrary
sizes) can be avoided by restricting to trees of bounded depth. Let us denote
Docτ,≤n the set of documents whose depth is less or equal to n. In order for
(Docτ,≤n,≤Σ) to be a wqo one must also assume that the set of tags, Σ, is

finite. If it is not the case, the family of trees reduced to their root and all
labelled with distinct tag whould constitute an infinite antichain.

Proposition 1. Let τ = (Σ,D) a tag system where Σ is a finite set, Σ′ ⊆ Σ,
and n ∈ N. If, for all σ ∈ Σ′, (Dσ,≤σ) is a wqo then (Docτ,≤n,≤Σ′) is a wqo.

Proof. First, note that since two documents that only differs on tags that do not
belong to Σ′ are equivalent for the equivalence relation induced by the quasi-
order ≤Σ′ , one can assume without loss of generality that Σ′ = Σ. We know
by [11] that the set of graphs GnΣ , of bounded depth labelled by well-quasi ordered
tags, and ordered by strict subgraph inclusion ≤ is a well-quasi order. Therefore
the same result holds for trees of bounded depth labelled by wqo, ordered by
rooted strict subgraph inclusion ≤r. Indeed one has T ≤r T ′ ⇐⇒ T ≤ T ′ where
T is obtained from T by adding a node labelled with a new symbol and by adding
an edge from this node to the root of T . This additional node is the root of T and
any strict labelled-graph embedding from T to T ′ necessary relates their roots
(because of their common label which does not appear elsewhere) and therefore
also their unique successor nodes, i.e. the roots of T and T ′. So it remains to
prove that the order relation ν ≤Σ ν′ ⇐⇒ tag(ν) ⊆ tag(ν′) ∧ ∀σ ∈
tag(ν) ν(σ) ≤σ ν′(σ) on valuations Valτ is a wqo. This order relation can be
expressed as: ν ≤Σ ν′ ⇐⇒ ∀σ ∈ Σ′ ν(σ) ≤⊥σ ν′(σ) where a valuation is
viewed as a function ν : Σ → D ∪ {⊥} where ⊥ is a new element added to each
of the sets Dσ as a least element (x ≤⊥σ y ⇐⇒ x = ⊥ ∨ x ≤σ y) and by letting
ν(σ) = ⊥ ⇐⇒ σ 6∈ tag(ν). Then (Dσ ∪{⊥} ,≤⊥σ) is a wqo for every σ ∈ Σ′. As,
the cartesian product of a finite family of wqos is a wqo, we have that (Valτ ,≤Σ)
is a wqo. 2

4 Structured Data Nets

Transactions are usually handled as follows: a new case (a structured document)
is created, then it follows a workflow, collecting data in the system. When the
transaction is completed, the computed values are returned to the caller. During
the workflow, several parallel threads may have been created, and a part of the
data of the case (client’s name, ...) can be stored in the system for later use.

For convenience, we distinguish two particular transitions that are used to
initiate and terminate cases. A transition tin, with no incoming place, which de-
livers to the input place pin a token representing a new transaction. A transition
tout, with no outgoing place, which unconditionally consumes any token from
the output place pout.

In addition to case management, a model for transactional systems that allow
concurrent threads and concurrent management of many cases has to provide
encapsulation of transactions. In a web store, for instance, paying a command
should not trigger delivery of someone else’s items in another transaction. En-
capsulation is often implemented by attaching a session number to a case. For-
malisms such as BPEL [23] allow for more elaborated mechanisms called corre-
lations to filter and group messages sharing commonalities. In general, it is not

useful to remember exactly the identity of a session, nor to order session iden-
tities. A mechanism allowing to differentiate distinct sessions suffices. In [5], we
have proposed session systems whose configurations are represented as graphs,
and sessions as components of these graphs. In structured data nets transactions
are handled by assigning an identifier to each individual token, thus inducing
a partition on the set of tokens. More precisely, a token is a pair T = (D, id)
where D is a document, the value of the token, and id ∈ N indicates when id = 0
that the data D is part of the local database of the system. Otherwise, id 6= 0
provides the identifier of the transaction that D belongs to. Thus identifiers of
transactions are positive integers.

Roughly speaking, each input arc (p, t) for p ∈ •t in a structured data
net is attached a guard given by a tree pattern 〈p, t〉. Transition t is enabled
in a marking M if in every of its input place p ∈ •t one can find a token
Tp = (Dp, idP) ∈M(p) such that Dp |= 〈p, t〉 and all non-null identifiers idP co-
incide. The latter condition ensures that all the pieces of information, but those
belonging to the local database, are concerned with the same transaction. These
tokens are then removed from the current marking and some new tokens should
be added to each of its output places p ∈ t•. For that purpose, each output arc
(t, p) for p ∈ t• is attached a query 〈t, p〉 that describes how to compute the
value of the token(s) to add in place p ∈ t• from the vector of input documents
(Dp)p∈•t which enabled the firing of the transition. Queries can produce multi-
sets of tokens. We denote by M(A) the multisets with elements in set A. Every
X ∈ M(A) is a map X : A → N, where X(a) gives the multiplicity of element
a ∈ A in X. We further let Mf (A) define the set of finite multisets,i.e., the
subset of M(A) which contains the multisets X such that X(a) 6= 0 for a finite
number of elements a ∈ A.

Definition 5 (Query). An n-ary query Q : (Docτ)n → ℘(Mf (Docτ)) is a
function that non-determinically produces a finite multiset of documents from a
vector of documents given as input.

A query is simple when it non-deterministically returns an ordinary set:
Im(Q) ⊆ ℘(Docτ). A query is deterministic if it returns a singleton: Im(Q) ⊆
Mf (Docτ). As illutrated in Figure 4, non-deterministic queries can be used to
specify non-deterministic choices of the environment. Non-simple queries can be
used to produce several documents, and design creation of concurrent threads.

We leave voluntarily the queries underspecified, as our aim is to define generic
properties of nets depending on properties of their documents, query language,
and flow structure, but abstracting away as much as possible the query language.
Several mechanisms have been proposed to query structured data. Standard
query languages such as XQuery [27] and Xpath [26] use patterns to extract in-
formation from trees, and are usually described formally as tree pattern queries.
The definition of structured data nets is as follows:

Definition 6 (Structured Data Net). Let τ be a tag system. A structured
data net, or SDN, is a structure N = (P, PDB , T, F, 〈·, ·〉) where P is a set of
places, PDB ⊆ P is a subset of places corresponding to the local database of the

pcars pcomp

ppi

t

{id = car}

{type = Fiat} {price = 15K}

{id = companies}

{
name =
AXA

} {
name =
Insure+

}

p

p′

BankDecision

{id = item}

{
type =
screen

} {
price =
300

} {
order =
218

}

{id = item}

{
type =
screen

} {
price =
300

} {
order =
218

}{
granted =
tt

}

Fig. 4. The leftmost example depicts a part of broking system for a car insurance
system. Place pcars contains structured documents depicting cars and their price. A
token in pcomp lists several insurance companies. The place ppi is the starting point to
ask pro-forma invoices to companies. The transition t creates one structured document
per insurance company that appears in the database, by application of query 〈t, ppi〉
attached to flow arc from t to place ppi. The net on the right models a part of an
online shop in which a payment of some bought item needs to be granted by a bank.
Transition BankDecision models this decision. The query 〈BankDecision, p′〉 attaches
a new child to the document’s root indicating bank’s decision with a boolean. Hence,
it non-deterministically returns the input document augmented with either a true or a
false boolean tag.

net, T is a set of transitions, F ⊆ P×T∪T×P is a set of flow arcs. The respective
sets of input and output elements of x ∈ P ∪ T , preset and postset are denoted
•x = {y | (y, x) ∈ F } and x• = {y | (x, y) ∈ F }. The map 〈·, ·〉 : F → Patτ ∪Qτ
associates each input arc (p, t) ∈ F to a pattern 〈p, t〉 ∈ Patτ and each output
arc (t, p) ∈ F to an n-ary query 〈t, p〉 ∈ Qτ where n = |•t| is the number of
input places of t with a given enumeration of this set of places. SDN possess
two places pin and pout, and two transitions tin and tout such that •tin = ∅,
t•in = {pin}, •tout = {pout}, t•out = ∅, p•out = {tout}, and 〈pout, tout〉 = tt is the
trivial pattern reduced to its root labelled with the empty constraint ∗ = {}, i.e. tt
is the pattern matched by any document. Any transition such that •t∩ PDB 6= ∅
has also input places in P \PDB ensuring that a transition acts on the database
only in the context of the processing of a particular transaction. Finally tin is
the unique transition with an empty preset, tout is the unique transition with an
empty postset, and any place in P \ PDB has non-empty preset and postset.

Definition 7 (Behaviour of SDNs). A token T = (D, id) ∈ Tokτ is made
of a document D ∈ Docτ and a non-negative integer id ∈ N. A marking M :
P → Mf (Tokτ) assigns a finite multiset of tokens to each place such that for
all (D, id) ∈ M(p) one has id = 0 if and only if p ∈ PDB. Transition t 6= tin
is enabled in marking M and firing transition t in marking M leads to marking
M ′, denoted as M [t〉M ′, when

1. ∀p ∈ •t ∃Tp = (Dp, idp) ∈M(p) s.t. Dp |= 〈p, t〉, and
∃id ∈ N s.t. ∀p ∈ •t \ PDB idp = id,

2. ∀p ∈ t• ∃Xp ∈ 〈t, p〉
(

(Dp)p∈•t

)
,

pin

p1 p2

p3 p4

pout

Data1

Data2

tin

Qin

t1

Pin,1

PD1,1

Q1,D1

Q1,1
Q1,2

t2

P1,2

Q2,3

t3

P2,3
PD2,3

Q3,4

t4

P3,4
P4,4

Q4,out

t5

Pin,5

Q5,out

tout

Qout = tt

Fig. 5. We assume in this example that all
queries are simple and all but Qin are de-
terministic. Then input transition tin cre-
ates non deterministically a new transac-
tion by putting a token in place pin contain-
ing a document (e.g. a form) together with
a new identifier. According to the shape of
the token but also to the data contained in
place Data1 transitions t5 and t1 may be
enabled. For instance t1 may correspond to
the nominal behaviour while t5 is used when
the document is incomplete or ill-formed.
In the latter case the document is imme-
diately transfered to the output place pout.
In the former case the treatment is split by
t1 into two threads (concurrent actions t2
and t3) and the respective results are ag-
gregated by transition t4. Then the output
transition tout can withdraw the terminated
transaction from the system.

3. ∀p ∈ t• M ′(p) = M ′′(p) ∪ {(D, idp) | D ∈ Xp } where idp = id if p 6∈ PDB
and idp = 0 if p ∈ PDB, and ∀p 6∈ t• M ′(p) = M ′′(p); where M ′′ is the

marking given by: M ′′(p) =

{
M(p) if p 6∈ •t
M(p) \ {(Dp, idp)} if p ∈ •t .

The behaviour of transition tin is similar except that since it has no input places it
is always enabled and no identifier results from the enabling condition. It creates
a new identifier associated with the tokens created in input place pin.

When conditions 1 and 2 in Definition 6 are met we say that transition t is
enabled in marking M , denoted M [t〉. Note that the firing relation M [t〉M ′ is
non-deterministic due to the fact that first, one may find several token sets that
satisfy the patterns associated with the input places of t, and second, the queries
associated with the output places may also be non-deterministic. Marking M ′

is reachable from marking M when there exists a sequence of transition firings
leading from M to M ′. We denote R(M) the set of markings reachable from M .

5 Properties of Structured Data Nets

The main motivation for using formal notations and semantics is to derive auto-
mated tools to reason on the corresponding systems. For transactional systems,
one may want to check that a request with correct type is always processed
in a finite amount of time, regardless of current data. Another issue can be to
guarantee that a payment on an online store is always followed by the sending
of the purchased item to the buyer. Last, one may want to check some simple
business rules on transactions, confidentiality of some data, etc. In most cases,
the properties to check do not deal with global states of the modeled system, but

rather on the status of one particular transaction plus a limited environment.
Hence the properties of interest for SDNs are closer to coverability properties
than to reachability properties. In this section we formalize and address decid-
ability of reachability, coverability, termination (whether all transactions termi-
nate), and soundness (the question of whether all transactions terminate without
leaving pending threads in the system). We can formalize reachability, coverabil-
ity, termination and soundness as follows for an SDN with respect to a given
initial marking M0. We will assume w.l.o.g. that M0 contains no transaction:
∀p ∈ P ∀(D, id) ∈M0(p) id = 0.

Reachability: Is a given marking M reachable from the initial marking: M ∈
R(M0)?

Coverability: Is a given marking M smaller than some reachable marking:
∃M ′ ∈ R(M0) s.t. M ≤M ′?
Termination of a transaction: Given a marking M such that a new trans-
action has just been created (M(pin) contains a token (D, id) which is the only
token with identifier id in M), can one reach a marking M ′ such that M(pout)
contains a token (D′, id) ? Does one always reach such a marking from M ? Is
termination possible or granted for any initial case given by a given marking M
or respectively for all initial cases in which the considered document satisfies a
given pattern P ?

Soundness: Given a marking M such that a new transaction has just been
created, does one always reach a marking M ′ such that M(pout) contains a
token (D′, id) and no other token of the form (D′′, id) with the same identifier
appears in M ′?

All questions above are undecidable if no restriction is imposed on the nature
of documents or queries. In the rest of the section, we consider a class of SDN
which is proved to be effective well-structured transition systems, a property
that guarantee the decision of coverability.

Theorem 1 (Undecidability). Reachability, coverability, termination and sound-
ness are undecidable problems for SDNs.

Proof. The proof proceeds by a coding of a Turing machine with an SDN. We
recall that a Turing machine is made of an infinite bi-directional tape divided
in both directions into an infinite number of consecutive cells and a finite state
device that can read and write the cell being examined by a read/write head and
that can also move that head along the tape in both direction. A cell contains a 0
or a 1, initially every cell has the default value 0. More precisely a Turing machine
consists of a finite set of states Q with some initial state q0 and a finite set of
instructions of the form [q, x, ω, q′] where q and q′ are states, x ∈ {0, 1} is the
possible value of the cell, and ω ∈ {0, 1, L,R} is an operation that corresponds
respectively to writing 0 or 1 in the current cell or moving the r/w-head to the
left or to the right. A configuration is a triple (q, u, v) ∈ Q × {0, 1}ω × {0, 1}ω
made of a state q ∈ Q and two infinite words coding respectively the content
of the left part of the tape, read from right-to-left, and the right part of the

tape, read from left-to-right. The r/w-head is positioned on the first cell of the
right-part of the tape. The transitions of the Turing machine are given as follows:

1. Writing a value y ∈ {0, 1} on the current cell: (q, u, x · v)
[q,x,y,q′]−−−−−−→ (q′, u, y · v).

2. Right move: (q, u, x · v)
[q,x,R,q′]−−−−−−→ (q′, x · u, v).

3. Left move: (q, y · u, x · v)
[q,x,L,q′]−−−−−−→ (q′, u, y · x · v).

{state = q}

{l = u1}

{l = un}

{l =]}

{r = v1}

{r = vm}

{r =]}

A reachable configuration (q, u, v) contains only
a finite number of non-null elements therefore
one can encode a configuration with a tree as
shown next where ∀i > n, ui = 0 and ∀i >
m, vi = 0. We let [q, u, v] denote this tree (even
though the representation is not unique). In
terms of this representation the moves of the
Turing machine can be simulated with the rules:

1. Writing a value y ∈ {0, 1} on the current cell: [q, u, x · v]
[q,x,y,q′]−−−−−−→ [q′, u, y · v].

2. [q, u, x · v]
[q,x,R,q′]−−−−−−→ [q′, x · u, v] and [q, u,]]

[q,0,R,q′]−−−−−−→ [q′, 0 · u,]].
3. [q, y · u, x · v]

[q,x,L,q′]−−−−−−→ [q′, u, y · x · v] and (q,], x · v)
[q,x,L,q′]−−−−−−→ (q′,], 0 · x · v).

Each of these rules can straightforwardly be represented by a transition r with
•r = r• = {pin} where pattern 〈pin, r〉 describes those configurations that enable
rule r and query 〈r, pin〉 describes the effect of r on such a configuration. Pat-
tern 〈tin, pin〉 = {[], q0,]]} produces the initial configuration. We complete the
description of the SDN by adding one transition haltq,x from pin to place pout
for each pair of state q and symbol x for which there is no move of the machine
of the form (q, x,−,−) where pattern 〈pin, haltq,x〉 tests that the state is q and
the symbol read is x and query 〈haltq,x, pout〉 witnesses the halting of the Turing
machine by creating a specific token, e.g. the empty configuration [], q0,]], in
the output place. For this SDN reachability or coverability of the final marking
with one token in pout are equivalent to termination or soundness thus all these
properties are undecidable. 2

This result is not surprising, as reachability or coverability are usually unde-
cidable for Petri nets with extended tokens like colored Petri nets. However, one
may note several important issues from the encoding of a Turing machine. First,
deterministic queries are sufficient for this encoding. Second, three distinct tags
and finite domains of values are sufficient to encode a configuration of a Turing
machine. An immediate question is whether one can rely on the structure of
the data and on simple restrictions to obtain decidability results. A first obvi-
ous useful restriction is to bound the depth of documents manipulated by the
system. By Proposition 1 the set of documents manipulated by the SDN is a
wqo when the domains of the data fields, attached to tree nodes, are wqo. This
restriction is reasonable, as it is unlikely that documents grow arbitrarily during
their lifetime in a system.

Definition 8. An SDN is well quasi ordered (is a wqo SDN for short), when

i) the domains of values used by document data fields are well-quasi ordered
(finite sets, integers, vectors of integers,...), and comparison is effective (one
can can effectively decide if x ≤σ y), and

ii) there exists a bound on the depth of all trees appearing in R(M0).

Let us comment on the restrictions in Definition 8. Assuming wqo values
in documents still allows to work with infinite domains like integers. However,
this restriction forbids to attach structured data such as queues of unbounded
sizes to nodes. Within the context of transactional systems, this is not a severe
limitation. Bounding the depth of documents is not a severe limitation either:
Most of transactional systems can be seen as protocols working with a finite
number of data fields or using finite forms, in which a finite number of entries
needs to be filled. One shall also note that the depth of standard structured
documents is usually very low: the structure helps decomposing an entry into
data fields, i.e. decomposing a concept into sub-concepts (a person is described
as someone with a first name and last name) and it is recognized [21] that 99% of
XML documents have depth smaller than 8, and that the average depth of XML
documents is 4. Note also that the depth restriction does not mean finiteness
of manipulated data: trees of arbitrary width still comply with this restriction,
and data values attached to nodes need not be chosen from finite domains.
This allows for instance for the manipulation of XML documents containing
arbitrary numbers of records. Nevertheless, we show at the end of this section
that considering well quasi ordered SDNs is not sufficient to obtain decidability.

Let us define the ordering relation on the set of markings induced by the
ordering of documents, and thus ultimately by the ordering of the data val-
ues appearing in these documents. The powerset of an ordered or quasi or-
dered set (A,≤) is equipped with the quasi order ≤ where X ≤ Y when an
injective map h : X → Y exists such that ∀x ∈ X x ≤ h(x). For multi-
sets X,Y ∈ M(A) we similarly let X ≤ Y ⇐⇒ |X| ≤ |Y | where |X| =
{(x, i) | x ∈ X ∧ 1 ≤ i ≤ X(x)} denotes the set of occurrences of X. Mark-
ings are compared componentwise up to an injective renaming of their trans-
actions. More precisely, we let M1 ≤ M2 when there exists an injective map
h : N → N such that h(0) = 0, and for every place p and every i ∈ N one has
πi(M1(p)) ≤ πh(i)(M2(p)) where πi(M(p)) = {D | (D, i) ∈M(p)} denotes the
multiset of documents in M(p) with identifier i. As the comparison between two
markings is performed up to a renaming of transactions, the exact identifier of
a token does not matter. The only concern is whether two tokens with the same
(respectively with different) identifier(s) are mapped to tokens with the same
(resp. with different) identifier(s). Hence, we can equivalently consider markings
as partitions of a multiset 3 of pairs from P ×Docτ,≤n. As a partition of a set X
in a set of subsets of X, any quasi order on X extends (using twice the powerset
extension) to a quasi order on set of partitions of X. With this representation
M1 ≤M2 when the two partitions are comparable for the extension to partitions

3 by partition of a multiset X we mean a partition of the set |X| of occurrences of X.

of the ordering ≤ on P × Docτ,≤n given by (p,D) ≤ (p′, D′) when p = p′ and
D ≤ D′.

Proposition 2. The set of markings over bounded depth documents whose data
have well quasi ordered domains is a wqo.

Proof. From proposition 1, we know that (Docτ,≤n,≤) is a wqo. Since the set
of places is finite, the ordering relation on P × Docτ,≤n is also a wqo. Last,
the product of two wqos forms a wqo [15], and we have seen that extending
the ordering to multisets and then to partitions also yields a wqo. Hence, the
ordering on markings over documents of bounded depth is a wqo. 2

An immediate followup to well quasi orderedness is to set restrictions to
obtain well-structured transition systems (WSTS) and reuse existing results to
check coverability. An n-ary query Q is said to be monotonous when

(∀i ∈ {1, . . . , n} Di ≤ D′i) =⇒ Q(D1, . . . , Dn) ≤ Q(D′1, . . . , D
′
n).

Proposition 3. A wqo SDN with monotonous patterns and queries is a WSTS,
more precisely (M1[t〉M ′1 ∧ M1 ≤M2) =⇒ (∃M ′2,M2[t〉M ′2 ∧ M2 ≤M ′2)

Proof. According to Definition 7 we distinguish the initial transition tin, which
is responsible for the creation of new identifiers, from the other transitions.
If t = tin: The transition tin is not guarded, and results in a non-deterministic
creation of new documents D1, . . . Dk with a fresh identity id in place pin, namely
M ′1 = M1]{(p, (D1, id))∪ · · · ∪ (p, (Dk, id))}. Then, one can find a fresh integer
id′ that is not used in M2 so that M2[tin〉M ′2 where M ′2 = M2] {(p, (D1, id

′))∪
· · · ∪ (p, (Dk, id

′))}. As M1 ≤ M2, there exists an injective map h such that for
every place p and every x ∈ Dom(h), πx(M1(p)) ≤ πh(x)(M2(p)). We extend this
map by letting h(id) = id′ to get πid(M

′
1(p)) ≤ πid′(M ′2(p)) and thus M ′1 ≤M ′2.

General case (t ∈ T \ {tin}): This transition is enabled when all the patterns
P1, . . . Pk attached to flow from places p1, . . . , pk in •t to t are satisfied by some
documents D1, . . . Dk, with the same identifier id for documents located in places
•t \ PDB , and with identifier 0 for documents from •t ∩ PDB . Upon firing, t
consumes D1, . . . Dk from •t, and outputs a set of newly created documents
D′1, . . . D

′
k′ with identifier id in places of t• \PDB , and with identifier 0 in places

of t• ∩ PDB where {D′1, . . . D′k′} = ∪p∈t•Xp for some Xp ∈ 〈t, p〉(D1, . . . , Dk).
As M1 ≤M2, there exists an injective mapping h such that for every identifier x
and every place p, πx(M1(p)) ≤ πh(x)(M2(p)). This also yields, for each identifier
x and each place p a map ϕp,x : πx(M1(p)) → πh(x)(M2(p)), such that Di ≤
ϕp,x(Di). Let us denote by ϕ =

⋃
ϕp,x the union of all these maps for p ∈ P ,

and x an identifier used in M1

Since guards are monotonous and Di ≤ ϕ(Di), one has ϕ(Di) |= Pi. From
the monotony of queries we deduce that for every place p ∈ •t, there exists X ′p ∈
〈t, p〉(ϕ(D1), . . . , ϕ(Dk)) with Xp ≤ X ′p. Thus transition t is enabled in marking
M2 and M2[t〉M ′2 with M ′2(p) = (M2 \ ({ϕ(D1), . . . , ϕ(Dk)} ∩M2(p))) ∪X ′p.

Let us now prove that M ′1 ≤M ′2. We can design a set of injective maps ϕ′p,x :
πx(M ′1(p))→ πh(x)(M

′
2(p)) witnessing M ′1 ≤M ′2. For every Di ∈M1(p)∩M ′1(p),

we define ϕ′p,x(Di) = ϕp,x(Di), as the documents that were not consumed remain
unchanged and hence comparable in both markings. Then, for each newly created
document D′i in Xp, as Xp ≤ X ′p, we necessarily have a document D′j in X ′p such
that D′i ≤ D′j . Hence we can set ϕ′p,x(D′i) = D′j , and obtain D ≤ ϕ′p,x(D) for
every D ∈M ′1(p). Hence, the map ϕ′ =

⋃
ϕ′p,x witnesses M ′1 ≤M ′2. 2

Coverability can be decided using a standard backward algorithm. For a set
of markings X, we let pre(X) = {M | ∃t ∈ T,M ′ ∈ X,M [t〉M ′}. We also let
basis(X) be a basis for an upward closed set X. Let M be the marking that one
tries to cover. The algorithm iteratively computes basis for the sets of markings
from which a marking in ↑ M can be reached in a finite number of steps. The
algorithm starts from the set X0 = {M}, that is a basis for all markings greater
thanM . Then it builds iterativelyXi+1 = Xi ∪ basis(pre(↑ Xi)), and stops when
a fixpoint is reached, or as soon as there exists M ′ ∈ Xi such that M ′ ≤ M0,
indicating that there exists a sequence of transitions from M0 to a marking
greater than M . It was proved in [1, 13] that this algorithms is correct and
terminates for effective WSTS where effectiveness means that i) the comparison
relation ≤ is effective and ii) (backward-effectiveness) one can effectively build
a finite basis for pre(↑M).

Corollary 1 (Coverability). Coverability is decidable for backward-effective
wqo-SDN with monotonous patterns and queries.

Proof. It remains to show that the comparison among markings is effective.
For any pair of documents D1, D2 ∈ Docτ , one can effectively check for the
existence of a mapping from D1 to D2, and compare the values of paired data
fields, as we have assumed that the domains of these datafields are effective
wqos. Then finding an identity preserving mapping among contents of places
(finite multisets) is also effective. 2

Backward effectiveness means that from an upward closed set of markings
one can effectively build a finite representation of the data input to a transition
that might have generated these contents. This property is easily met if the effect
of a transition on a place is to aggregates finite amount of data collected from its
input places (for instance the sum of positive integers collected in forms), or to
append a new branch to a document (in this case, the input data can be obtained
by considering subtrees of the documents appearing in the original marking).

Let us now show that this result on coverability allows to prove more proper-
ties. For a pattern P , we define Sym(P) the symbolic set of initial cases induced
by P as the set of documents satisfying P . We are now ready to address the
termination, soundness, and coverability for symbolic sets of initial cases. The
latter coverability question makes sense if one assumes that the query 〈tin, pin〉
generates Sym(P). This is not always the case, and the set of documents gener-
ated by 〈tin, pin〉 needs not satisfy a single pattern P . It may even be the case
that this set of initial cases is not upward closed (for instance, a query can gen-
erate documents which nodes carry only odd integer values). The coverability
problem for the set of initial cases induced by P can be rephrased as follows:

assuming IMG(〈tin, pin〉) = Sym(P), and given a marking M to cover, can one
find an initial marking M0 such that M0(pin) ∈ Sym(P) and there exists M ′

greater than M in R(M0) ?

Theorem 2. Termination, soundness, and coverability for symbolic set of initial
cases defined by a monotonous pattern are decidable properties on the class of
backward-effective wqo-SDN with monotonous patterns and queries.

Proof. The termination of a case associated with an identifier id is equivalent
to the coverability of the marking with one token (D⊥, id) in place pout (and all
other places empty) by the marking resulting from the initialization of this case
(using transition tin) where D⊥ is the least document (reduced to an untagged
root).

Decidability of soundness also stems from decidability of coverability. An
SDN is sound if it terminates and whenever place pout contains a token, one
cannot find another place containing a token with the same identifier, i.e. for
each place p ∈ T \ {tout} the marking Mp with token (D⊥, id) in both place pout
and p and with no other tokens is coverable from the initial marking.

Coverability, termination and soundness have solutions for a single given ini-
tial marking, i.e. for a particular chosen case. We would like to consider whether
transactions terminate or cover a given marking M for all or for some possible in-
puts to the system. We suppose that the set of results output by query 〈tin, pin〉
is the symbolic set of documents from Docτ,≤n that satisfy a particular
monotonous pattern P . Then, one can compute the set BSat(P) of documents
obtained by replacing ancestor edges of P by sequences of edges with untagged
nodes in such a way that the depth of the obtained document remains smaller
than n, and replacing each constraint γ on values attached to a node of P by a
value selected from a basis for the upward closed set of values satisfying γ. This
basis exists as P is monotonous, and the domains are wqos. This set BSat(P)
forms a basis for all documents embedding P . Noticing that R(M) ≤ R(M ′)
when M ≤ M ′ for wqo and backward effective SDNs with monotonous queries
and patterns, coverability and termination can be verified for all cases initiated
by 〈tin, pin〉 if it can be proved for all elements in BSat(P). Note that it is suf-
ficient to compute the fixpoint returned by the backward coverability algorithm
and then compare this set with all minimal elements in BSat(P). 2

The above decidability results do not extend to reachability:

Theorem 3 (Undecidability of reachability). Reachability is undecidable,
even for backward effective wqo-SDN with monotonous patterns and queries.

Proof. An SDN can easily simulate reset Petri nets for which reachability is un-
decidable [12]. We need only to deal with place pin (in order to conform with
Definition 6 we can assume a transition t from pin to pout such that pattern
〈pin, t〉 is never satisfied). The content of place pin encodes a particular mark-
ing of the reset net: A document D with a root node and a child labeled p
with n children indicates that place p of the reset net contains n tokens. This

set of tokens can be manipulated as a whole, incremented or decremented by
monotonous queries. Enabledness of a transition can be encoded by a pattern
that tests the existence of a token in some place p, i.e. they are trees with a
root, a child node tagged p and one children. Monotonous queries can be used
to increment or decrement the number of children of a particular node tagged
by p, encoding consumption or creation of tokens. Last, a query can remove all
children of a document, simulating a reset arc. Such queries are monotonous,
and transitions using this kind of queries are also backward effective. It is also
obvious that one can design a transition that will fire only once, produce a set of
documents encoding the initial marking of a reset net, and will then ignore all
transactions produced by 〈tin, pin〉. Undecidability of the reachability problem
for reset nets [12] concludes the proof. 2

This negative result should not be seen as a severe limitation: reachability
is usually undecidable outside the class of Petri nets, and when considering
transactional systems, properties of interest are usually not expressed in terms
of global states.

Proposition 4. Well quasi orderedness of an SDN is undecidable. Coverability,
reachability and termination problems are undecidable for wqo SDNs.

Proof. We design a wqo SDN that encodes a two counters machine. A two coun-
ters machine is given as a pair of counters C1, C2 holding non-negative integers
and a finite list of instructions l1, . . . ln each of which, except the last one, is of
one of the following forms: i) li : inc(C`) meaning that we increment counter C`
and then go to the following instruction, ii) lj : if (C` = 0), lk else dec(Cj), lk′

indicating that if counter C` is null we must proceed to instruction lk otherwise
we decrement this counter and go to instruction lk′ . The machine halts when
it reaches the last instruction ln : Halt. A configuration of a counter machine
is given by the value of its counters, and the current instruction line. The ma-
chine usually starts at instruction 0, with counters set to 0. It is well-known that
one can not decide if a counter machine halts. For any counter machine, we can
define an SDN (represented in Figure 6) that encodes the moves of this machine.

First, we can encode a counter machine configuration as a document with
three nodes: a root, and its left and right children. The root is tagged by an
instruction number from l1, . . . , ln, the left and right children are tagged by c1
and c2 respectively with values given by non-negative integers. The correspond-
ing documents are of bounded depth with values from wqo domains. For each
instruction of the form li : inc(C`), we design a transition ti with •ti = t•i = pin
such that Pi = 〈p, ti〉 is the pattern reduced to a root whose tag has value li and
Qi = 〈ti, p〉 is the query that transforms a document into a document with root
li+1, and such that the value attached to the node with tag c` is incremented
by one, and the other one is left unmodified. For each instruction of the form
lj : if (C` = 0), lk else dec(Cj), lk′ we design two transitions tj,Z and tj,NZ such
that Pj,Z = 〈pin, tj,Z〉 is a pattern testing if the root of a document is labeled by
lj , and the value of node with tag c` is zero, Qj,Z = 〈tj,Z , pin〉 is the query that
transforms a document into a document with root lk, and such that the values

tin pin

Qin

ti

PiQi
tleave

Pleave

tj,Z

Pj,Z

Qj,Z

tj,NZ

Pj,NZ

Qj,NZ

pout

Qleave

tout

tt

Fig. 6. Encoding a counter Machine with wqo Structured Data Nets

attached to child nodes remain unchanged, Pj,NZ = 〈pin, tj,NZ〉 is the pattern
testing if the root of a document is labeled by lj , and the value of node with tag
c` is greater than zero, Qj,NZ = 〈tj,NZ , pin〉 is the query that transforms a doc-
ument into a document with root lk′ , and such that the value attached to node
with tag c` is decremented by one and the value attached to the other child node
remains unchanged. The initial configuration of the counter machine is created
by query Qin = 〈tin, pin〉 that produces a document with root labeled l0 and
two children nodes tagged respectively by c1, c2 with values 0. We set M0 as an
initial marking in which all places are empty. Transition tleave moves the token
from place p to pout if the root tag has value ln, i.e. the machine halted. Clearly,
the counter machine terminates iff one can reach a configuration in which pout
is not empty. Thus one cannot decide termination, and similarly the reachability
or coverability (of the marking with just one token in pout).

Let us now prove that one can not decide whether a net is wqo. One can
add a transition tnobnd to the above net such that •tnobnd = t•nobnd = pout,
〈pout, tnobnd〉 = tt, and 〈tnobnd, pout〉 is a query that increases the depth of a
document by 1, by inserting a children with some tag a between the root and its
first child (hence creating successive incomparable documents). Then the counter
machine terminates iff the corresponding SDN is not wqo. 2

Even though well-quasi-orderedness of a net is undecidable, one still can
rely on restriction on queries to ensure this property. In many systems, queries
are used to extract data from a dataset (a list of records). The result is also
a list of records that can be again assembled as a bounded depth document.
Other queries compute new values from datasets (sums, means, etc.) and insert
the results is a new document (a ”form”) of bounded depth and size. So, one
can restrict to queries that produce only documents of bounded depth, which
values domains are finite sets or wqo sets such as integers without harming
too much the expressiveness of the model. Form filling queries that manipulate
integers, rationals or strings are also very often backward effective, provided the
mechanisms used to select the nodes carrying the values of interest to fill a form
are monotonous.

6 Conclusion

This paper has addressed an extension of Petri Nets which transitions manipu-
late structured data via patterns and queries. Without limitations, this model is

Turing Powerful. However, under some restrictions on the nature of queries and
on the shape of documents, interesting properties such as coverability are de-
cidable. We believe that limiting data to semi-structured documents of bounded
depth with wqo labels is a sensible approach: many information systems use
strings, booleans, etc, but do not need real values with arbitrary precision. The
major limitation w.r.t documents is that data structures such as files and queues
can not be encoded with our model.

Several improvements might be investigated. First, the coverability proof re-
lies on backward effectiveness of transitions to guarantee effectiveness of the
WSTS associated to a wqo SDN with monotonous queries and patterns. This
does not identify a particular class of queries. To be practical, we would like
to identify classes of non-trivial monotonous queries that ensure effectiveness.
Decidability results for positive active XML [3] use another form of monotonic-
ity: they assume that a document can only grow, which can be an adequate
assumption in case management systems. Considering positive SDN could be a
way to ensure effectiveness. Another improvement lies in pattern expressiveness:
currently, only individual constraints on data values are attached to nodes. One
could, however, consider patterns with constraints of the form v.σ ≤ v′.σ′, in-
volving values of several nodes, sets of patterns requiring matching on several
documents from a place, boolean combinations of patterns,... and see how these
extensions affect positive results. Another line of research concerns symbolic
manipulation of upward closed sets of documents. So far, we have considered
coverability for symbolic set of initial cases, but we can imagine to define sym-
bolic sets of initial markings, database contents, or target markings to cover.
Last, we could consider extensions of the model with some essential features
for web services and transactional systems, for example allowing for transaction
cancellation. Such feature is currently not handled by our model: one can even
remark that an SDN might not be sound, even when it is wqo and backward
effective. Actually, such an extension would mean adding features from reset
Petri nets to our model. Since coverability is decidable for reset Petri nets, this
extension could preserve decidability results obtained in this paper.

References

1. P.A. Abdulla, K. Cerans, B. Jonsson, and Y-K Tsay. General decidability theorems
for infinite-state systems. In Proc. of LICS’96, pages 313–321. IEEE, 1996.

2. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML:
A Data-Centric Perspective on Web Services. In BDA02, 2002.

3. S. Abiteboul, O. Benjelloun, and T. Milo. Positive active XML. In Proc. of
PODS’04, pages 35–45. ACM, 2004.

4. L. Acciai and M. Boreale. Deciding safety properties in infinite-state pi-calculus
via behavioural types. In ICALP (2), volume 5556 of LNCS, pages 31–42, 2009.

5. S. Akshay, L. Hélouet, and M. Mukund. Sessions with an unbounded number of
agents. In ACSD’14, volume 4281, pages 166–175. IEEE, 2014.

6. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business process
execution language for Web services (BPEL4WS). version 1.1, 2003.

7. E. Badouel, L. Hélouët, G.-E. Kouamou, and C. Morvan. A grammatical approach
to data-centric case management in a distributed collaborative environment. In
SAC’15, Salamanca, Spain, April 2015. ACM.

8. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and pipelines for
structured service programming. In FMOODS, volume 5051 of LNCS, pages 19–
38, 2008.

9. R. Bruni, I. Lanese, H.C. Melgratti, and E. Tuosto. Multiparty sessions in SOC.
In COORDINATION, volume 5052 of LNCS, pages 67–82, 2008.

10. E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems with data dependencies
and arithmetic. ACM Trans. Database Syst., 37(3):22, 2012.

11. G. Ding. Subgraphs and well-quasi-ordering. In Journal of Graph Theory, volume
16(5), pages 489 – 502, 1992.

12. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability
and undecidability. In Proc. of ICALP’98, volume 1443 of LNCS, pages 103–115.
Springer, 1998.

13. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

14. B. Genest, A. Muscholl, and Z Wu. Verifying recursive active documents with
positive data tree rewriting. In Proc. of FSTTCS 2010, volume 8 of LIPIcs, pages
469–480. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

15. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3), 2:326–336, 1952.

16. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284, 2008.

17. R. Hull, E. Damaggio, F. Fournier, M. Gupta, F.T. Heath, S. Hobson, M.H. Line-
han, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vacuĺın. Introducing the
guard-stage-milestone approach for specifying business entity lifecycles. In Proc.
of WS-FM 2010, volume 6551 of LNCS, pages 1–24. Springer, 2011.

18. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use - Volume 1, Second Edition. Monographs in Theoretical Computer Science.
An EATCS Series. Springer, 1996.

19. R. Lazic, Tom Newcomb, J. Ouaknine, A.W. Roscoe, and J. Worrell. Nets with
tokens which carry data. Fundam. Inform., 88(3):251–274, 2008.

20. J. Misra and W. Cook. Computation orchestration. Software and Systems Model-
ing, 6(1):83–110, 2007.

21. I. Mlynkova, K. Toman, and J. Pokorný. Statistical analysis of real XML data
collections. In Proc. of International Conference on Management of Data’06, pages
15–26. Tata McGraw-Hill, 2006.

22. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational spec-
ification. IBM Syst. J., 42:428–445, July 2003.

23. OASIS. Web Services Business Process Execution Language. Technical report,
OASIS, 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

24. R. Pugliese and F. Tiezzi. A calculus for orchestration of Web services. J. Applied
Logic, 10(1):2–31, 2012.

25. T. Wies, T. Zufferey, and T.A. Henzinger. Forward analysis of depth-bounded
processes. In FOSSACS, volume 6014 of LNCS, pages 94–108, 2010.

26. World Wide Web Consortium. XML path language (xpath). Technical report,
W3C, 1999. W3C Recommendation,http://www.w3.org/TR/xpath.

27. World Wide Web Consortium. XQuery 1.0: An XML Query Language. Technical
report, W3C, 1999. W3C Recommendation,http://www.w3.org/TR/xquery.

