
Fundamenta Informaticae nnn (2015) 1–48 1

DOI 10.3233/FI-2015-0000

IOS Press

Petri Nets with Structured Data

Eric Badouel
INRIA Rennes
eric.badouel@inria.fr

Loı̈c Hélouët C

INRIA Rennes
loic.helouet@inria.fr

Christophe Morvan
Université Paris-Est
christophe.morvan@u-pem.fr

Abstract. This paper considers Structured Data Nets (StDN): a Petri net extension that describes
open systems with data. The objective of this language is to serve as a formal basis for the analysis
of systems that use data, accept inputs from their environment, and implement complex workflows.
In StDNs, tokens are structured documents. Each transition is attached to a query, guarded by pat-
terns, (logical assertions on the contents of its preset) and transforms tokens. We define StDNs and
their semantics. We then consider their formal properties: coverability of a marking, termination and
soundness of transactions. Unrestricted StDNs are Turing complete, so coverability, termination and
soundness are undecidable for StDNs. However, using an order on documents, and putting reason-
able restrictions both on the expressiveness of patterns and queries and on the documents, we show
that StDNs are well-structured transition systems, for which coverability, termination and soundness
are decidable. We then show the expressive power of StDN on a case study, and compare StDNs
and their decidable subclasses with other types of high-level nets and other formalisms adapted to
data-centric approaches or to workflows design.

Keywords: Petri nets, Well-Quasi Orders, Structured Data

1. Introduction

Web services and business processes are now widely used systems. Many solutions exist to design such
systems, but their formal verification remains difficult due to the tight connection of workflows with

Address for correspondence: INRIA Rennes Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France
CCorresponding author

2 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

data [1, 2, 3]. For instance, in an online shop, one faces situations where a workflow depends on data
(if the age of the client is greater than 50, then propose service S), and conversely data depend on the
way a workflow is executed (return an offer with the minimal price proposed among the 5 first values
returned by sub-contractors). These systems have to be open: they must accept user inputs and manage
multiple concurrent interactions. Openness also raises robustness issues: a system must avoid undesired
interferences among distinct requests (a payment for some item should not trigger delivery of another
unpaid item) and be robust for all inputs, including erroneous or malicious ones. Processing of a case (a
request from an external user) is made of several steps that follow the logics of some business process,
driven by the data attached to the processed request. Last, a web-based system such as a commercial
website usually manages its own data, like catalogs, clients database or stock, which contents influences
the execution of transactions.

Thus, exact descriptions of systems such as commercial sites or web-based information systems lead
naturally to infinite state models with unbounded data, counters, and control flows that depend on the
value of data or counters, that can only be captured by Turing powerful formalisms for which verification
problems are undecidable. As a consequence, one has to work with abstractions of these systems to apply
automated analysis techniques. Coarse grain approximations can rely on finite discretizations of data or
on bounds on the number of ongoing requests in a system. These straightforward techniques allow one
to get back to the familiar models of finite state systems or (variants of) Petri nets for which verification
techniques are well-studied and decidable (model-checking for automata, coverability and reachability
techniques for Petri nets). However, such bounded discretization that completely abstracts from data is
usually too imprecise.

This paper introduces Structured Data nets (StDN), a variant of Petri nets where tokens are structured
documents, and transitions transform these documents. A token represents a piece of information that
either belongs to a database associated with the system, or is attached to some ongoing request. Each
transition of an StDN is attached a query used to transform data. It is guarded by patterns expressing
constraints on tokens in its input places. When firing a transition, the corresponding input documents
are consumed and transformed by queries into new documents in its output places. new requests are
introduced in the system using a designated input transition that non-deterministically produces new
documents corresponding to the request. Termination of a request is symbolized by the consumption
of a document by a designated output transition. We define structured documents as trees whose nodes
carry information given by lists of attributes/values (à la XML). We show that considering documents
of bounded depth labeled by well-quasi ordered values, one can provide a well-quasi ordering on docu-
ments. We define StDNs, their semantics, and consider their formal properties, such as coverability of
a marking, termination and soundness of transactions. In their full generality, StDNs are Turing com-
plete, so all these properties are undecidable. However, we prove that as soon as StDN manipulate
well-quasi ordered documents, and meet some reasonable restrictions on the expressive power of pat-
terns and queries (monotony with respect to ordering), StDNs are well-structured transition systems. If a
well-structured StDN meets, in addition, effectiveness requirements (namely one can effectively compare
markings, and effectively compute a finite representation for the set of predecessors of a marking), then
coverability of a marking is decidable. As a consequence, termination and soundness are also decidable.
All these properties hold for a single initial marking of a net, but can be extended to handle symbolically
unbounded sets of initial markings satisfying constraints defined by a pattern. Even if some information
systems can not be represented by well-structured StDNs, this decidable setting lies at a reasonable level
of abstraction: it does not fix an a priori bound on the number of ongoing requests nor impose bounded

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 3

data domains.
There exist several Petri net variants to model business processes and transactions: workflow nets [4]

or Jackson Nets [5], for example. However these models focus on processing a single case, and do not
consider data. Furthermore, our model is not the first extension of Petri nets that handles data or complex
types attached to tokens. Colored Petri nets [6] is a Turing powerful kind of Petri nets where tokens have
colors ranging on unbounded sets, and transitions transform these colors. Nets that manipulate explicitly
structured data such as PrT -Nets [7] or XML nets [8] have also been proposed. Considering decidability
for nets with complex tokens and extended flow relations, there are variants of Petri nets with decidable
coverability e.g. Petri nets with tokens carrying data [1], and nested nets [9]. Several subclasses of
Generalized self-modifying nets, i.e., nets with standard tokens and markings but polynomial flow rela-
tions also have decidable coverability [10]. These classes include transfer and reset Petri nets. Outside
of the Petri net community, several models have also been proposed to specify systems with data and
business processes: Active XML (AXML) [11], business artifacts [12], Guard-Stage-Milestones [13],
ORC [14], BPEL [15], session systems [16], TPRS [2], Guarded attributed grammars [17] and others.
One can also mention initiatives to model web-services in the π-calculus community [18, 19, 20, 21].
Section 6 performs an in-depth comparison of our work with several of these models, and with several
extensions of Petri nets. In particular it compares decidable subclasses of StDNs with net variants for
which coverability is decidable.

This paper is organized as follows: Section 2 introduces the basic elements of our model, namely
documents and tree patterns. It then shows how documents can be ordered. Section 3 defines Structured
Data Nets, and their semantics. Then it considers formal properties of this model, and in particular
coverability of a marking, termination, and soundness of transactions. Section 4 illustrates the use of
Structured Data nets on a case study, namely a travel agency. Section 5 compares StDNs with other high-
level Petri nets extensions, and section 6 lists other models for web-based systems, business processes
and systems handling data. Section 7 concludes this work and gives future lines of research.

2. Trees, Documents and their Ordering

2.1. Preliminaries

In this section, we introduce basic notations that will be used in the paper, and the key concepts of Well
Quasi Orders and Well-Structured Transition Systems.

We denote by ℘(A) the set of all subsets of A, and by M(A) the multisets with elements in set
A. Every X ∈ M(A) is a map X : A → N, where X(a) gives the multiplicity of element a ∈ A in
X . For a pair of multisets M1,M2, we denote by M1]M2 the multiset that contains M1(a) + M2(a)
occurrences of a ∈ A. We further letMf (A) define the set of finite multisets, i.e., the subset ofM(A)
which contains the multisets X such that X(a) 6= 0 for only a finite number of elements a ∈ A.

For a given set X of elements, a relation R on X is a subset of X × X . We denote by R∗ the
reflexive and transitive closure of R, that is, (x, y) ∈ R∗ iff x = y, or there exists e1, . . . , en ∈ X such
that (x, e1) ∈ R , (en, y) ∈ R, and (ei, ei+1) ∈ R for every i ∈ 1..n − 1. Two elements x, y of X
are said incomparable (with respect to R) is (x, y) 6∈ R and (y, x) 6∈ R. An antichain of R is a set of
pairwise incomparable elements.

In the rest of the document, we will define Structured Data Nets, and show that for some subclasses
of the model, the usual techniques to check coverability apply. Structured Data Nets will manipulate

4 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

semi-structured documents a la XML, that can be represented as labeled trees. A tree T = (V,E, rootT)
consists of a set V of vertices with a distinguished vertex, rootT ∈ V , called the root of the tree, together
with a set of edges E ⊆ V × (V \ {rootT }), such that: i) every vertex v ∈ V \ {rootT } has a unique
predecessor, i.e. a vertex v′ such that (v′, v) ∈ E, and rootT has no predecessor, ii) the set of edges is
acyclic, iii) for every vertex v ∈ V \ {rootT } there exists a unique path from the root to v, i.e. a finite
sequence v0, . . . , vn such that v0 = rootT , (vi−1, vi) ∈ E for 1 ≤ i ≤ n and vn = v. A node v is a
parent of a node v′ in a tree iff (v, v′) ∈ E. A node v is an ancestor of a node v′ iff (v, v′) ∈ E∗. A tree
is labeled in A if it comes equipped with a labeling function λ : V → A. The depth of a tree T is the
maximal length of a sequence of consecutive edges in T .

A binary relation ≤ over a set of elements X is a well quasi order (wqo) iff

• it is a quasi order: ≤ is reflexive and transitive (but not necessarily antisymmetric).

• it is well-founded: any infinite sequence x1, . . . , xn, . . . contains two elements xi and xj such that
i < j and xi < xj .

Equivalently, a quasi order is a wqo if it contains no infinite strictly decreasing sequences nor infinite
antichains. Let ↑ x = {y | x ≤ y} denote the upward closure of an element x. Upward closure easily
extends to sets of elements, i.e., ↑X =

⋃
x∈X
↑ x. A set X is upward closed if ↑ X = X . Any upward

closed set in a wqo has a finite basis (a finite setB(X) ⊆ X such that
⋃
x∈B(X) ↑ x = X). This property

ensures the existence of a finite representation for infinite upward closed sets of elements.
A transition system is a tuple (X,→, x0), where X is a set of configurations, → ⊆ X × X is a

move relation depicting how a system can move from one configuration to another, and x0 is the initial
configuration. A well-structured transition system (WSTS) is a tuple (X,≤,→, x0) where (X,→, x0) is
a transition system, (X,≤) is a wqo, and relations ≤, and→ are compatible, that is x ≤ y and x → x′

implies that there exists a sequence of moves y → y1 → · · · → yk → y′ such that x′ ≤ y′. WSTS
have good properties with respect to coverability. The coverability question is defined as follows: for a
given pair of initial configuration x0 and target configuration y, can one reach a configuration y′ greater
than y starting from x0 ? With some additional properties, coverability in WSTS can be checked using a
fixpoint algorithm that computes a basis for the set of all possible predecessors of upward closed sets of
configurations [22, 23]. For an upward closed set X of configurations of a WSTS, we denote by pre(X)
the set of predecessors of elements of X by→, i.e., pre(X) = {y | ∃x ∈ X, y → x}. Coverability can
then be rephrased as: does x0 ∈ Pre∗(↑ y) ? This definition does not suffice to provide an algorithm
to check coverability, as Pre∗(↑ y) is not necessarily finite. In addition to well-structuredness, a key
property to guarantee is that one can represent sets of predecessors of upward closed sets with a finite
basis, and compute this basis effectively. A WSTS has an effective pred-basis iff for any x ∈ X , there
exists an algorithm that can compute a finite basis PredB(x) for Pre(↑ x).

A standard set saturation algorithm to check coverability of a configuration y from an initial configu-
ration x0 is as follows. The algorithm starts with a finite basis B0 for the upward closed set Y0 =↑ y. At
each step i, the algorithm, computes a basisBi = Bi−1∪PredB(↑ Bi−1). A configuration y is coverable
from x0 iff there exists an index k and a element b ∈ Bk such that b ≤ x0. The algorithm stops at step m
if there exists b ∈ Bm with b ≤ x0, or if ↑ Bm+1 = ↑ Bm. In the latter case,Bm is a basis for Pre∗(↑ y).
It was proved in [22, 23] that this algorithm is correct and that it terminates for effective WSTS where
effectiveness means that i) the comparison relation ≤ is effective and ii) (backward-effectiveness) the
WSTS has an effective pred-basis.

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 5

2.2. Documents and Tree Patterns

Our model of net is a variant of Petri nets manipulating structured data. These data are encoded as trees,
and queried using tree patterns and queries. Tokens of Structured Data Nets are documents represented
by finite trees whose nodes are labeled with attribute/value pairs, i.e. by a finite set of equations of the
form a = v where tag a denotes a data field or an attribute and v its associated value. This is captured
by the notion of tag system: a tag system lists possible attributes, and for each attribute, a domain of
legal values. For instance, we can define a tag system with two attributes name and age, whose domains
are respectively strings of at most 255 characters and positive integers. More formally, a tag system
τ = (Σ,D) consists of a set Σ of tags and a set D indexed by Σ such that for every σ ∈ Σ, the set Dσ
of possible values for attribute σ is non-empty. A valuation associated with a tag system τ = (Σ,D)
is a partial function ν : Σ → D whose domain of definition, denoted tag(ν), is finite and such that
∀σ ∈ tag(ν), ν(σ) ∈ Dσ. We denote by Valτ the valuations associated to tag system τ .

Definition 2.1. (Document)
A document D ∈ Docτ associated with a tag system τ is a finite tree labeled by valuations in Valτ .

We denote by Docτ the set of all documents with tag system τ . If v is the node of a document, we let
tag(v) be a shorthand for tag(λ(v)) and let v ·σ denote λ(v)(σ) when σ ∈ tag(v). We use tree patterns to
address boolean properties of trees. A tree pattern is also a labeled finite tree, whose edges are partitioned
into parent edges and ancestor edges, and whose nodes are labeled by constraints. A constraint with tag
system τ = (Σ,D) is defined by a partial function C : Σ → ℘(D) whose domain, denoted tag(C),
is finite and such that ∀σ ∈ tag(C), C(σ) ⊆ Dσ. We denote by Consτ the set of constraints with tag
system τ . For convenience, we will often define constraints in an (in-)equational way. For instance if Dσ
is the set of integers then 5 ≤ σ ≤ 20 constrains the value of σ to lay within the set of integers ranging
between 5 and 20. We also write σ = ? to state that σ can take any value in Dσ.

Definition 2.2. (Tree Pattern)
Let τ be a tag system. A tree pattern over τ is a tuple P = (V,Pred, Anc, λ), where V is a set of nodes
containing a particular root node rootP , Pred,Anc ⊆ V × V are disjoint set of edges and (V,Pred ∪
Anc, rootP , λ) is a finite tree labeled by constraints in Consτ .

Edges of Pre in a pattern represent pairs of nodes (v, v′) in documents where v is the parent of v′.
Edges of Anc in a pattern represent pairs of nodes (v, v′) in documents where v is an ancestor of v′. For
a fixed tag system τ , we denote by Patτ the set of patterns over τ . As for documents, we let tag(v), for v
a node of a tree pattern, be an abbreviation for tag(λ(v)) and let v · σ denote λ(v)(σ) when σ ∈ tag(v).
We further use v · σ = ? as a shorthand for v · σ = Dσ which means that v must carry the tag σ but the
value of this tag is not constrained. This situation should not be confused with σ 6∈ tag(v) which does
not constrain node v to carry tag σ (see Figure 1 for an illustration).

We adopt the following graphical convention: Patterns will be represented as trees. Single edges
in these trees will denote the parent relation, and double edges the ancestor relation. Nodes will be
represented as sets of constraint equations. We will also denote by ∗ = {} the empty constraint: nodes
tagged with ∗ in a pattern are attached a constraint function that is undefined for every σ ∈ Σ, i.e. they
can be mapped to document nodes that carry any set of tags and any valuation.

Figure 1 is an example of tree pattern. It describes the set of trees which have at least five nodes
v0, v1, v2, v3, and v4 with the following properties. v0 is the root of the tree, v1 is not a leaf node (i.e.

6 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

∗

{a = ?, b = ?}

∗

{a = 10}

{b ≤ 30}

Figure 1. A tree Pattern

it has at least one successor node v2) and it carries tags a and b (tag(v1) ⊇ {a, b}) with no particular
constraints on their values: λ(v1)(a) = Da, λ(v1)(b) = Db. Node v3 is an immediate successor of the
root, it carries tag a (tag(v2) ⊇ {a}) and the value attached to tag a is 10. Node v4 is some successor
node of v3 tagged by b and the value attached to b is lower than 30. Pattern satisfaction is formally
defined as follows:

Definition 2.3. (Pattern Satisfaction)
A document D = (VD, ED, rootD, λ) satisfies a tree pattern P = (VP ,PredP , AncP , λP), denoted
D |= P , when there exists an injective map h : VP → VD such that:

1. h(rootP) = rootD,

2. ∀v ∈ VP tag(v) ⊆ tag(h(v)),

3. ∀v ∈ VP ∀σ ∈ tag(v) h(v) · σ ∈ v · σ,

4. ∀(v, v′) ∈ PredP , (h(v), h(v′)) ∈ ED,

5. ∀(v, v′) ∈ AncP , (h(v), h(v′)) ∈ E∗D (where E∗D is the reflexive and transitive closure of ED),
and

6. ∀(v, v′) 6∈ (PredP ∪ AncP)∗, (h(v), h(v′)) 6∈ E∗D

∗

{a = ?}

∗ {3 ≤ b}

{10 ≤ b} {a = 3}

P

{}

{}

{a = 0}

{} {}

{b = 3}

{b = 10}

{a = 3}

D1

{}

{a = 3}

{a = 0}

{} {b = 10}

{b = 3}

D2

Figure 2. A tree pattern P and two documents D1, D2

Remark 2.4. Let us comment on Condition 6 of Def. 2.3. This requirement means that if two nodes do
not belong to a single path in a pattern, then their image must not appear in a single path in the documents

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 7

that satisfy the pattern. This definition of pattern matching is called injective matching. Non-injective
pattern matching has also been proposed in the litterature, but injective patterns are more expressive than
their non-injective counterpart [24]. For instance, non-injective patterns cannot express that a document
contains a node with two children tagged a. Another advantage of working with injective patterns is
that one can check more efficiently that a document satisfies a pattern. We refer readers to [24] for
more information on injective patterns and on the complexity of related algorithms. We hence define
Structured Data Nets using an injective notion of pattern satisfaction. In the rest of the paper, this will
also simplify notations and proofs, as documents satisfying a pattern can be obtained form the structure
of the pattern by choosing appropriate values for constrained nodes and adding nodes to the pattern
between nodes in ancestor relation, or by adding totally new subtrees. To illustrate Def. 2.3, consider
the pattern P and the documents D1, D2 in Figure 2. Document D1 satisfies pattern P and document
D2 does not satisfy P even though one can find an injective map h that satisfies Conditions 1 to 5 of
Def. 2.3. This map however does not satisfy Condition 6 since it forces all immediate successors of the
root of the pattern to match with nodes that belong to the same path.

According to [25], tree patterns are already a reasonable subset of the XPATH standard [26], even if
they do not embed its whole power. Tree patterns are hence a good tradeoff between syntax simplicity
and expressiveness to query documents in StDNs. Requiring pattern matching to hold at the root of a
document is not a limitation. Indeed, for a pattern P with root v, one can design a new pattern P ′ that
has an additional node v′ such that (v′, v) ∈ Anc and λP ′(v′) = {}. Then, P ′ holds at the root of a
document D iff P holds at some node of D. On the other hand, using a child relation in patterns implies
that matching is not a simple embedding relation (in the usual sense used for graphs): at some places,
an edge-preserving embedding is required. This will have an impact to define an ordering on documents
together with a consistent notion of pattern monotony, as shown in next section.

2.3. Ordering Trees

We do not distinguish between isomorphic trees, i.e. when there exists a bijection ϕ : VT → VT ′

between their respective sets of vertices such that (v, v′) ∈ ET ⇐⇒ (ϕ(v), ϕ(v′)) ∈ ET ′ (and thus
also ϕ(rootT) = rootT ′), and λ(v) = λ(ϕ(v)).

If (A,≤) is an ordered set (resp. a quasi ordered set, i.e. ≤ is a reflexive and transitive relation) then
the set of trees labelled in A can be ordered (resp. quasi ordered) by setting T1 ≤ T2 for any pair of trees
T1 = (V1, E1, root1, λ1), T2 = (V2, E2, root2, λ2), when there exists an injective map f :V1→V2 such
that:

1. f(root1) = root2,

2. (v, v′) ∈ E1 =⇒ (f(v), f(v′)) ∈ E2, and

3. ∀v ∈ V1, λ1(v) ≤ λ(f(v)).

Hence T1 ≤ T2 if T2 can be obtained from T1 by adding new edges and/or replacing existing labels
by greater ones. For instance, given an order relation, ≤σ, on Dσ and a subset of tags, Σ′ ⊆ Σ, one
obtains a quasi order on Docτ associated with the quasi order on valuations Valτ given by:

ν ≤Σ′ ν
′ ⇐⇒ tag(ν) ∩ Σ′ ⊆ tag(ν ′) ∧ ∀σ ∈ tag(ν) ∩ Σ′, ν(σ) ≤σ ν ′(σ)

8 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

Thus, in restriction to tags in Σ′, valuation ν ′ has a larger domain and associates greater values to tags
for which both ν and ν ′ are defined (see Figure 3 for an illustration). Note that Σ′ ⊆ Σ′′ =⇒ ≤Σ′′⊆≤Σ′ .

Definition 2.5. (Monotony)
A pattern P is monotonous if, for any pair of documents (D1, D2), D1 ≤P D2 and D1 |= P implies

D2 |= P where ≤P
def
= ≤ΣP

is the order associated with the set ΣP of tags occurring in P .

{a = 2, g = 3}

{b = 5}

{c = 10} {d = 20}

D1 : {a = 4}

{b = 3}

{c = 15}

{e = 12}

{d = 30}

{f = 4}

D2 : {a = ?}

{5 ≤ c ≤ 11}

P1 : {a = ?}

{10 < d}

P2 :

Figure 3. Documents and patterns: Assume all the domains Dσ are given by the set N of natural numbers with
their usual ordering, then D1 ≤{a,c,d} D2. Pattern P1 is not monotonous since D1 ≤{a,c} D2, D1 |= P1 and
D2 6|= P1. Pattern P2 is monotonous.

As illustrated in Figure 3, a pattern that imposes upper bounds on attribute values is not monotonous.
Finding a wqo on structured data can serve to finitely represent collections of data of arbitrary sizes,
or to allow symbolic manipulations on families of trees. However, in contrast with Kruskal’s theorem,
which states that tree embedding is a well quasi order on the set of finite trees, the set (Docτ ,≤Σ′) is in
general not a wqo even if the set of tags is finite and their domains are finite or well quasi ordered. In
fact, (Docτ ,≤Σ′) is a strict rooted inclusion. Very often, tree comparison is defined as Kruskal’s tree
embedding, that only requires existence of a mapping that maps vertices in parent relation onto vertices
in ancestor relation. We can not use this comparison relation on documents, as the ancestor relation is
not precise enough to account for structural differences in databases or capture the notion of subfield. As
a counterpart strict rooted inclusion allows sets of pairwise incomparable elements of arbitrary sizes (as
shown in Figure 4).

{a = 0}

{a = 0}

a.b0.a

{a = 0}

{b = 0}

{a = 0}

a.b1.a

{a = 0}

{b = 0}

{b = 0}

{a = 0}

a.b2.a · · ·

{a = 0}

{b = 0}

{b = 0}

{a = 0}

a.bk.a

Figure 4. Let us consider tag system τ = ({a, b},D), with Da = Db = {0} and the trees shown above, denoted
a.bk.a, whose roots v0, tagged a with λ(v0)(a) = 0, are followed by a sequence v1, . . . , vk of nodes tagged b with
value λ(vi)(b) = 0, and end with a node vk+1 tagged a, with λ(vk+1)(a) = 0. The set of trees {a.bk.a | k ∈ N}
consists of pairwise incomparable elements for ≤{a,b}, hence they form an infinite antichain, whereas they form a
chain for standard tree embedding.

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 9

This problem can be avoided by restricting to trees of bounded depth. Let us denote by Docτ,≤n the
set of documents whose depth is less than or equal to n. In order for (Docτ,≤n,≤Σ) to be a wqo one
must also assume that the set of tags, Σ, is finite. If it is not the case, the family of trees reduced to their
root and all labelled with distinct tag would constitute an infinite antichain.

Proposition 2.6. Let τ = (Σ,D) a tag system where Σ is a finite set, Σ′ ⊆ Σ, and n ∈ N. If, for all
σ ∈ Σ′, (Dσ,≤σ) is a wqo then (Docτ,≤n,≤Σ′) is a wqo.

Proof:
First, note that since two documents that only differ on tags that do not belong to Σ′ are equivalent for
the equivalence relation induced by the quasi order ≤Σ′ , one can assume without loss of generality that
Σ′ = Σ. We know by [27] that the set of graphs GnΣ, of bounded depth labelled by well quasi ordered
tags, and ordered by strict subgraph inclusion ≤ is a well quasi order. Therefore the same result holds
for trees of bounded depth labelled by wqo, ordered by rooted strict subgraph inclusion ≤r. Indeed
one has T ≤r T ′ ⇐⇒ T ≤ T ′ where T is obtained from T by adding a node labelled with a
new symbol and by adding an edge from this node to the root of T . This additional node is the root
of T and any strict labelled-graph embedding from T to T ′ necessarily relates their roots (because of
their common label which does not appear elsewhere) and therefore also their unique successor nodes,
i.e. the roots of T and T ′. So it remains to prove that the order relation ν ≤Σ ν ′ ⇐⇒ tag(ν) ⊆
tag(ν ′) ∧ ∀σ ∈ tag(ν) ν(σ) ≤σ ν ′(σ) on valuations Valτ is a wqo. This order relation can
be expressed as: ν ≤Σ ν ′ ⇐⇒ ∀σ ∈ Σ′ ν(σ) ≤⊥σ ν ′(σ) where a valuation is viewed as a
function ν : Σ → D ∪ {⊥} where ⊥ is a new element added to each of the sets Dσ as a least element
(x ≤⊥σ y ⇐⇒ x = ⊥ ∨ x ≤σ y) and by letting ν(σ) = ⊥ ⇐⇒ σ 6∈ tag(ν). Then (Dσ ∪ {⊥} ,≤⊥σ)
is a wqo for every σ ∈ Σ′. As the Cartesian product of a finite family of wqos is a wqo, we have that
(Valτ ,≤Σ) is a wqo. ut

Working with well-quasi ordered sets of documents has many advantages. It allows to manipulate
infinite (upward closed) sets of documents represented by their basis.

Proposition 2.7. One can effectively compute a basis BSat(P) of the set P̂ = {D ∈ Docτ,≤n | D |= P}
of documents, with depth at most n, satisfying a monotonous pattern P , if the order ≤P associated with
the pattern is a wqo.

Proof:
Let D ∈ P̂ be a document that satisfies P , and h : VP → VD be an injective map that witnesses D |= P
according to Def. 2.3, denoted as h : D |= P . Note that this map may not be unique. We then define
the h-reduction of document D as the document red(h,D) obtained by the following transformations on
D: (i) we remove all nodes v such that the subtree rooted at this node lies outside the image of h, and
for every remaining node v: (ii) we restrict its valuation to the set of tags tag(v′) if v = h(v′), and (iii)
we replace its valuation by the empty valuation (i.e., we remove all its tags) if it does not belong to the
image of h. Then one has h : red(h,D) |= P by Def. 2.3 and red(h,D) ≤P D by definition of ≤P .
Thus the set BSat(P) of minimal elements of {red(h,D) | D ∈ Docτ,≤n ∧ h : D |= P } is a basis of
P̂ . As P is a monotonous pattern (see Def. 2.5), P̂ is upward-closed. It thus has a finite basis —because
≤P is a wqo. BSat(P) is thus a finite set because its elements are all pairwise incomparable and form
a basis of P̂ . Let us now detail how to compute BSat(P). The elements of BSat(P) are documents D

10 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

with depth at most n associated with a map h : D |= P such that for each node of D that belongs to
the image of h, i.e., v = h(v′) for some node v′ of P , one has tag(v) = tag(v′) and v · σ is a minimal
element for the upward closed set of values satisfying v′ · σ. Each node v of D that does not belong
to the image of h lies on a path between two nodes that belong to the image of h and has an empty set
of tags. By Remark 2.4 and in view of Condition (6) in Def. 2.3, documents in BSat(P) are derived
from the pattern by the rewrite system given below. We encode a pattern P with an expression [|P |]
where [|P |] = C

{{
[|P1|], · · · , [|Pn|]

}}
if C is the constraint attached to the root node and P1, . . . , Pn are the

patterns rooted at the successor nodes of the root of P . Note that there is no ordering on P1, . . . , Pn, that
describe subtrees in an unordered setting. The expression

{{
[|P1|], · · · , [|Pn|]

}}
hence designates a set of

sub-expressions, and we can safely write expressions of the formC
{{

[|P1|], · · · , [|Pn|]∪[|P ′1|], · · · , [|P ′n′ |]
}}

.
We further refine this encoding by associating an integer k to every node of the pattern. We hence refine
our notation and consider constraints of the form (C, k). In (C, k), number k indicates the maximal
number of nodes that can be inserted in the path from h(v′) to h(v) where v′ is the predecessor of v in
the pattern. More precisely, we let k = 0 if v is the root of the pattern or if the edge from v′ to v is a
predecessor edge. We let k = n− (d1 +d2 + 1) when the edge from v′ to v is an ancestor edge, d1 is the
depth of v′ in the pattern (the length of the path from the root to v′), and d2 is the depth of the subtree of
P rooted at node v. For instance the pattern in Fig. 2 is encoded by expression:

(∗, 0)
{{

({a = ?} , 2)
{{

(∗, 0)
{{ }}

, ({3 ≤ b} , 2)
{{ }}}}

, ({10 ≤ b} , 3)
{{ }}

, ({a=3} , 0)
{{ }}}}

If E is such an expression, or any subexpression thereof, we let min(E) denote the least integer k
such that (C, k) occurs in E and E − 1 denote the expression obtained by replacing each subexpression
(C, k) of E by (C, k − 1) assuming that min(E) ≥ 1. We have two kinds of rules which we apply in
prefix order, i.e. we always apply reductions of a predecessor node prior to the reduction of a node. The
first rule schema is

(C, k)
{{

expr
}}
→ V

{{
expr

}}
where V is a “minimal” valuation compatible with constraint C, i.e. such that tag(V) = tag(C) and for
every σ ∈ tag(C), V ·σ is a minimal element ofC(σ). Application of that rule explicitly creates the node
of the document associated with the given node of the pattern. The second rule schema corresponds to
the insertion of an intermediate node, thus associated with an empty valuation (represented by * symbol):

V
{{{

(Ci, ki)
{{
Ei
}}
| 1 ≤ i ≤ K

}}}
→ V

{{
∗ {(Ci, ki − 1) {Ei − 1} | i ∈ I }∪{(Cj , kj) {Ej} | j 6∈ I }

}}
where V is a valuation and I ⊆ {1, . . . ,K} is associated with a subset of successor nodes of the given
node in the pattern such that ki ≥ 1 and min(Ei) ≥ 1 for every i ∈ I . Rewriting ends after a certain
number of steps with an expression defining a document of BSat(P). The key idea behind the rewriting
is that an expression defines a reduced tree that embeds P , obtained by replacing a constraint by the
mimimal value satisfying it. Inserting an unconstrained node in an expression amounts to defining a
larger tree by inserting a new node between images of nodes that are in ancestor relation in the pattern,
as soon as this transformation does not creates a tree of depth greater than n. An embedding relation
remains a valid embedding after this insertion. The obtained tree is still reduced, as new nodes are
inserted between images of nodes of P . Now, the set of nodes appearing in a tree ofBsat(P) is bounded
(it is a subset of trees of depth at most n with the same number of leaves as P), and one can show that
any tree in the set of minimal reduced trees with k nodes satisfying P can be obtained by insertion of a
node in a tree from the set of minimal reduced trees with k − 1 nodes. In rewritings, non-deterministic
choice of an insertion position and of children of the new node ensures that all insertion possibilities

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 11

are considered. Hence, non-deterministic application of these rewriting rules generates all reduced trees,
that embed P , carry minimal values allowing satisfaction of constraints attached to nodes of P , and have
depth at most n. ut

3. Structured Data Nets

3.1. Definitions and semantics

We use Structured Data Nets, StDNs for short, to model complex workflows with data, such as interac-
tions within a webstore. Throughout the paper, we will use the term “transaction” to denote a workflow
that starts with an input of a user to the system, and ends when the input is completely processed, and a
result is returned to the user. This is a slight abuse of the term “transaction”, that is frequently understood
as an interaction that meets ACID properties (Atomicity, Consistency, Isolation, Durability). StDNs is
a variant of Petri nets where tokens are documents, and transitions transform these documents. Each
document is a piece of information that either belongs to a database owned by the system, or is part of
the values computed to answer some ongoing request, in which case documents are attached a unique
identifier associated with that request. Since the value of a token is a structured document, the current
state of a transaction is a distributed document: The value of all the tokens associated with the transac-
tion’s identifier. Documents follow a workflow, are transformed by transitions of the nets, and aggregate
data collected in the system. During its execution the workflow may create new documents or conversely
assemble pieces of data referring to the same transaction. This allows for the execution of several parallel
threads assembling data for the same request. Note also that during the execution of a workflow, some
information from the case (client’s name, ...) can be stored in the system for later use.

For convenience, we distinguish two particular transitions that are used to initiate and terminate
transactions. A transition tin, with no incoming place, delivers to the input place pin a token represent-
ing a new transaction. A transition tout, with no outgoing place, unconditionally consumes any token
from the output place pout. The consumption of a token by tout represents the ending of the correspond-
ing transaction, and the value of the token is the result that is returned to the caller, who initiated the
transaction.

A frequent ACID property required in transactional systems is to ensure isolation of transactions:
execution of two concurrent transactions results in a system state that would be obtained if transactions
were executed one after the other. This property is rather strong, and we want to ensure a weaker notion
of isolation, that ensures that two different transactions cannot mix. For instance, paying for ordered
items should not trigger delivery of someone else’s items in another transaction. This property can be
ensured using session numbers. We hence assign an identifier to every token. More precisely, a token is
a pair T = (D, id) where D is a document, the value of the token, and id ∈ N is an identifier. When
id = 0, it indicates that the data D is part of the local database of the system. Otherwise, id 6= 0
provides the identifier of the transaction that D belongs to. Thus identifiers of transactions are always
positive integers. In many cases, however, we do not need to know the identifier of each individual
transaction. A mechanism to distinguish transactions suffices. For instance such a mechanism is used
in [16] where sessions are identified with specific components of the current configuration of the system.
In Structured Data Nets, tokens’ identifiers induce a partition on the set of tokens. Knowing the partition
suffices for many purposes. Formalisms such as BPEL [28] use a more elaborated mechanism, called
correlations, to filter and group messages sharing commonalities.

12 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

In short, StDNs are Petri nets whose input arcs are constrained by patterns, and whose output arcs
are associated with queries. More precisely, each input arc (p, t) for p ∈ •t is attached a guard given by a
tree pattern 〈p, t〉. A useful pattern, denoted Ptt (tt stands for “true”) throughout the document, contains
a unique node v0 with an empty set of constraints. This pattern is thus satisfied by any document and
any input arc with 〈p, t〉 = Ptt simply checks existence of a document in place p. Transition t is enabled
in a marking M if in every of its input place p ∈ •t one can find a token Tp = (Dp, idp) ∈ M(p)
such that Dp |= 〈p, t〉 and all non-zero identifiers idp coincide. The latter condition ensures that all the
pieces of information, but those belonging to the local database, are pieces of data that belong to the
same transaction. When t fires, these tokens are removed from the current marking and some new tokens
are added to every output place p ∈ t•. For that purpose, each output arc (t, p) for p ∈ t• is attached
a query 〈t, p〉 that describes how to compute the value of the token(s) to add in place p ∈ t• from the
vector of input documents (Dp)p∈•t which enabled the firing of the transition. Newly created documents
are attached the common identifier found for transition firing or identifier 0 if they are stored in the local
database of the system. Queries can produce multisets of tokens.

Definition 3.1. (Query)
An n-ary query Q : (Docτ)n → ℘(Mf (Docτ)) is a function that non-deterministically produces a
finite multiset of documents from a vector of documents given as input. We denote by Im(Q) the image
of function Q. A query is simple when it non-deterministically returns a unique document: Im(Q) ⊆
℘(Docτ). A query is deterministic if it returns a unique multiset of documents: Im(Q) ⊆Mf (Docτ).

We denote by Qτ the set of queries that manipulate documents from Docτ . We furthermore assume
that queries are always effective functions. We do not fix a particular syntax for queries: they can be
implemented with standard query languages such as XQuery [29], as tree transductions,... A query
always returns a result, but this result can be an empty multiset. Non-simple queries can be used to
produce several documents, or several copies of a same document. Let us illustrate this situation with
a car insurance broking system. Figure 5 depicts a marking before firing of transition t. Place pcars
contains structured documents depicting cars and their prices. In the represented marking, pcars contains
a single description of a car, with identifier 1235. Place pcomp is a local database. A document in pcomp
lists several insurance companies. The patterns 〈pcars, t〉 = Ptt and 〈pcomp, t〉 = Ptt attached to input
flows of transition t simply check the existence of documents in their respective places.

pcars pcomp

ppi

t

{car}

{type = Fiat}{price = 15K}

{companies} , 0{
name =

AXA

}{
name =

Insure+

}, 1235

Figure 5. A StDN depicting part of a broking system for car insurance.

The place ppi is the starting point to ask pro-forma invoices to companies. For a chosen car, transition

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 13

t creates one structured document in place ppi per insurance company that appears in the database, by
application of query 〈t, ppi〉 attached to flow arc from t to place ppi. Hence, 〈t, ppi〉 is not simple. To
leave the database unchanged by transition t, we attach to flow from t to place pcomp a query 〈t, pcomp〉
that simply copies the document used from place pcomp: Assuming an ordering on arguments where
document from pcars precedes the document from pcomp, we let 〈t, pcomp〉(d1, d2) = d2. The marking
obtained by firing transition t is depicted in Fig. 6.

pcars pcomp

ppi

t

{car}

{
type =

Fiat

}{
company =

Insure+

}{
price =

15K

}
{car}

{
type =

Fiat

}{
company =

AXA

}{
price =

15K

}

{companies} , 0{
name =

AXA

}{
name =

Insure+

}

, 1235 , 1235

Figure 6. Marking reached by firing transition t in marking shown in Fig. 5.

Non-deterministic queries can be used to specify non-deterministic choices of the environment. This
is illustrated by Figure 7, that models a part of an online shop in which a payment for some bought item
needs to be granted by a bank. The marking represented in the left part of the figure contains an order
awaiting for a clearance from a bank in place p. Transition BankDecision models this decision. The
query 〈BankDecision, p′〉 attaches a new child to the document’s root indicating bank’s decision with a
boolean valuation attached to tag granted. Hence, it non-deterministically returns the input document
augmented with either a true or a false boolean tag. A possible result obtained after firing transition
BankDecision is given in the right part of the figure.

As written earlier, we volontarily do not fix any specific query language. Our purpose is to define
generic properties of nets. These properties depend on those of documents, queries specifications, and
flow structure. But we aim at abstracting away the query language as much as possible. Several mech-
anisms have been proposed to query structured data. Standard query languages such as XQuery [29]
and Xpath [26] use patterns to extract information from trees, and are usually described formally as tree
pattern queries. The definition of structured data nets is as follows:

Definition 3.2. (Structured Data Net)
Let τ be a tag system. A structured data net, or StDN, is a structure N = (P, PDB, T, F, 〈·, ·〉) where
P is a set of places, containing two particular places pin and pout, PDB ⊆ P is a subset of places corre-

14 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

p

p′

BankDecision

{id = item}

{
type =

screen

}{
price =

300

}{
order =

218

}
, 1234

p

p′

BankDecision

{id = item}{
type =

screen

} {
price =

300

}{
order =

218

}{
granted =

tt

}, 1234

Figure 7. Modeling non-deterministic choices of the environment with non-deterministic queries.

sponding to the local database of the net, T is a set of transitions, containing two particular transitions
tin and tout F ⊆ P × T ∪ T × P is a set of flow arcs, and map 〈·, ·〉 : F → Patτ ∪ Qτ associates each
input arc (p, t) ∈ F to a pattern 〈p, t〉 ∈ Patτ and each output arc (t, p) ∈ F to a query 〈t, p〉 ∈ Qτ .

For any element of x ∈ P ∪ T , we call the preset of x the set of its input elements, and define
it as •x = {y | (y, x) ∈ F }. Similarly, the postset of x is the set of output elements from x, and is
defined as x• = {y | (x, y) ∈ F }. The map 〈·, ·〉 associates each input arc (p, t) ∈ F to a pattern
〈p, t〉 ∈ Patτ and each output arc (t, p) ∈ F to an n-ary query 〈t, p〉 ∈ Qτ where n = |•t| is the number
of input places of t with a given enumeration on this set of places. We furthermore require that •tin = ∅,
t•in = {pin},•pin = {tin}, •tout = {pout}, t•out = ∅, p•out = {tout}, and 〈pout, tout〉 = Ptt (the trivial
true pattern matched by any document). Any transition such that •t ∩ PDB 6= ∅ has also input places in
P \PDB ensuring that a transition acts on the database only in the context of the processing of a particular
transaction. Finally tin is the unique transition with an empty preset, tout is the unique transition with an
empty postset, and any place in P \ PDB has non-empty preset and postset.

Figure 8 shows an example of Structured Data Net. We adopt the following graphical convention.
Input and output transitions are represented by black rectangles. Standard transitions by white rectangles.
Places from P \ PDB are represented by plain circles, and places from PDB by dashed circles. We
assume in this example that all queries are simple and all but Qin = 〈tin, pin〉 are deterministic. Then
input transition tin creates non deterministically a new transaction by putting a token (D, id) in place pin
containing a document D (e.g. a form) together with a new identifier id. According to the shape of the
token but also to the data contained in place Data1 transitions t5 and t1 may be enabled. For instance t1
may correspond to the nominal behaviour to handle a document while t5 is used when the document is
incomplete or ill-formed. In the latter case the document is immediately transferred to the output place
pout. In the former case the treatment is split by t1 into two threads (concurrent actions t2 and t3) and
the respective results are aggregated by transition t4. Then the output transition tout can withdraw a
terminated transaction from the system as soon as place pout contains a document, as 〈pout, tout〉 = Ptt.

Definition 3.3. (Behaviour of StDNs)
A token T = (D, id) ∈ Tokτ is made of a documentD ∈ Docτ and a positive integer id ∈ N. A marking
M : P →Mf (Tokτ) assigns a finite multiset of tokens to each place such that for all (D, id) ∈ M(p)
one has id = 0 if and only if p ∈ PDB . Transition t 6= tin is enabled in marking M and firing transition
t in marking M leads to marking M ′, denoted as M [t〉M ′, when

1. ∃id ∈ N,∀p ∈ •t, ∃Tp = (Dp, idp) ∈M(p) s.t. Dp |= 〈p, t〉, and p 6∈ PDB ⇒ idp = id,

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 15

pin

p1 p2

p3 p4

pout

Data1

Data2

tin

t1

t2 t3

t4

t5

tout

Figure 8. General shape of a Structured Data Net

2. ∀p ∈ t•, ∃Xp ∈ 〈t, p〉
(

(Dp)p∈•t

)
, where Dp is the document identified in place p in 1.

3. Let id, Dp and Xp be respectively defined from 1. and 2., then:

• ∀p ∈ t• M ′(p) = M ′′(p)]{(D, idp) | D ∈ Xp } where idp = id if p 6∈ PDB and idp = 0
if p ∈ PDB , and

• ∀p 6∈ t• M ′(p) = M ′′(p);

where M ′′ is the marking given by:

M ′′(p) =

{
M(p) if p 6∈ •t
M(p) \ {(Dp, idp)} if p ∈ •t

The behaviour of transition tin is similar except that since it has no input place it is always enabled and
no identifier results from the enabling condition. Given a sequence of markings M0[t0〉M1 . . .Mn for a
StDN, a fresh identifier is an integer n > 0 such that for every i ∈ 0..n, and every token (D, id) of Mi,
id 6= n. To initiate a new case from any marking, tin uses query 〈tin, pin〉 to create a new document D,
attaches it a new fresh identifier id, and adds token (D, id) to input place pin.

When conditions 1 in Definition 3.3 is met we say that transition t is enabled in marking M , denoted
M [t〉. Note that the firing relation M [t〉M ′ is non-deterministic due to the fact that first, one may find
several token sets that satisfy the patterns associated with the input places of t, and second, the queries
associated with the output places may also be non-deterministic. MarkingM ′ is reachable from marking
M when there exists a sequence of transition firings leading from M to M ′. We denote by R(M) the

16 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

set of markings that are reachable from M . Let us comment on the requirement that tokens in a place of
PDB carry identifier 0. Identifier 0 is reserved for documents representing records in a local database of
the represented system. These documents can be used during transition firings: this represents read or
consumption of some recorded value. Conversely, new data can be appended to a database by creation
of a token (D, 0) in some place of PDB . Last, when a transition consumes tokens from several places of
P \ PDB , these tokens represent distinct pieces of data for the same transaction, and hence have to carry
the same identifier.

3.2. Undecidability

The main motivation for using formal notations and semantics is to derive automated tools to reason on
models of systems. For transactional systems, one may want to check that a request with correct type
is always processed in a finite amount of time, regardless of current data. Another issue is to guarantee
that, for instance, a payment on an online store is always followed by the sending of the purchased item
to the buyer. Last, one may want to check some simple business rules on transactions, confidentiality of
some data, etc. In most cases, the properties to be checked do not deal with global states of the modeled
system, but rather consider the status of one particular transaction in a limited environment. Most of
these questions boil down to checking whether there exists a marking in which a place p contains some
document D, regardless of the contents of other places. Therefore, the properties of interest for StDNs
are closer to coverability properties than to reachability properties. In this section we formalize and
address decidability of reachability, coverability, termination (whether all transactions terminate), and
soundness (the question of whether all transactions terminate without leaving pending threads in the
system). We can formalize reachability, coverability, termination and soundness as follows for an StDN
with respect to a given initial marking M0. We will assume w.l.o.g. that M0 contains no transaction:
∀p ∈ P \ PDB,M0(p) = ∅. Indeed, transition tin can non-deterministically introduce a new transaction
at any time.

Reachability: For a given marking M , is M reachable from the initial marking: M ∈ R(M0)?

Coverability: For a given marking M , assuming an ordering ≤ on markings, is M smaller than some
reachable marking: ∃M ′ ∈ R(M0) s.t. M ≤M ′?
Termination of a transaction: Given a marking M such that a new transaction has just been created
(M(pin) contains a token (D, id) which is the only token with identifier id in M), can one reach a
markingM ′ such thatM ′(pout) contains a token (D′, id)? This question can be reduced to a coverability
question. Furthermore, it is a weak form of termination since it only guarantees that a transaction may
terminate, and this termination may rely on information produced by other transactions. A stronger
termination property expresses that for every marking reachable from such a marking M one can reach a
markingM ′ such thatM ′(pout) contains a token (D′, id). Thus a system is terminating if any transaction
can reach completion no matter how its execution started. Verifying strong termination requires forward
accessibility techniques which are beyond the scope of this paper and which we intend to develop in
extensions to this work. In this paper we thus restrict to weak termination.

Soundness: Termination is not sufficient. We also want to guarantee that in any marking,M ′, witnessing
termination of a transaction, i.e., such that M ′(pout) contains a token (D′, id), then no other token
with identifier id –i.e., that takes part in the same transation – remains in M ′. We say, in that case,
that the transaction cleanly terminates: when it reaches the output place, no active thread associated

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 17

with it remains elsewhere in places of the net. The property that every transaction cleanly terminates is
called soundness. We call weak-soundness the restriction of this property when one only assumes weak-
termination: any transaction may terminate, and if it terminates it ends in a clean way, i.e., without leaving
documents related to the terminated transaction in the system. This problem can be addressed using
coverability techniques: one should be able to cover a marking witnessing termination, but markings
with several tokens carrying a similar identifier in pout and in other places must not be coverable.

Obviously, weak termination and weak soundness bring less guarantees than strong termination and
soundness, as a net in which some transactions can deadlock can be weakly terminating or weakly sound.
However, a StDN that does not meet weak soundness is ill-formed: it can terminate in configurations
that leave unexploited documents in the system. Standard definitions of soundness are sometimes called
”proper termination” [30]. Another definition was proposed in [31] for workflow nets: it requires in addi-
tion to proper termination that no transition of the workflow is dead. Since we restrict ourselves to weak
termination, and thus also to weak soundness, we omit in the following the adjective “weak” and assume
that the weak forms of termination and soundness are intended unless explicitely stated. All questions
above are undecidable if no restriction is imposed on the nature of documents or queries. We show in
theorem 3.4 below that StDN can encode Turing machines, and that termination or coverability questions
can be used to model the halting problem of a Turing Machine, which is known to be undecidable. In
Section 3.3, we consider a class of StDNs that are effective well-structured transition systems, a property
that guarantees the decision of coverability.

Theorem 3.4. (Undecidability)
Reachability, coverability, termination and soundness are undecidable problems for StDNs.

Proof:
We encode a Turing machine into an StDN. We recall that a Turing machine is made of an infinite bi-
directional tape divided in both directions into an infinite number of consecutive cells and a finite state
device that can read and write the cell being examined by a read/write head and that can also move
that head along the tape in both direction. A cell contains a 0 or a 1, initially every cell has the default
value 0. More precisely a Turing machine consists of a finite set of states Q with some initial state
q0 and a finite set of instructions of the form [q, x, ω, q′] where q and q′ are states, x ∈ {0, 1} is the
possible value of the cell, and ω ∈ {0, 1, L,R} is an operation that corresponds respectively to writing
0 or 1 in the current cell or moving the r/w-head to the left or to the right. A configuration is a triple
(q, u, v) ∈ Q × {0, 1}ω × {0, 1}ω made of a state q ∈ Q and two infinite words coding respectively
the contents of the left part of the tape, read from right-to-left, and the contents of the right part of the
tape, read from left-to-right. The r/w-head is positioned on the first cell of the right-part of the tape. The
transitions of the Turing machine are given as follows:

1. Writing a value y ∈ {0, 1} on the current cell: (q, u, x · v)
[q,x,y,q′]−−−−−→ (q′, u, y · v).

2. Right move: (q, u, x · v)
[q,x,R,q′]−−−−−→ (q′, x · u, v).

3. Left move: (q, y · u, x · v)
[q,x,L,q′]−−−−−→ (q′, u, y · x · v).

18 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

{state = q}

{l = u1}

{l = un}

{l =]}

{r = v1}

{r = vm}

{r =]}

A reachable configuration (q, u, v) contains only a finite num-
ber of non-null elements therefore one can encode a configu-
ration with a tree as shown next where ∀i > n, ui = 0 and
∀i > m, vi = 0. We let [q, u, v] denote this tree (even though
the representation is not unique). In terms of this representa-
tion the moves of the Turing machine can be simulated with
the rules:

1. Writing a value y ∈ {0, 1} on the current cell: [q, u, x · v]
[q,x,y,q′]−−−−−→ [q′, u, y · v].

2. [q, u, x · v]
[q,x,R,q′]−−−−−→ [q′, x · u, v] and [q, u,]]

[q,0,R,q′]−−−−−→ [q′, 0 · u,]].

3. [q, y · u, x · v]
[q,x,L,q′]−−−−−→ [q′, u, y · x · v] and [q,], x · v]

[q,x,L,q′]−−−−−→ [q′,], 0 · x · v].

Each of these rules can straightforwardly be represented by a transition r with •r = r• = {pin} where
pattern 〈pin, r〉 describes those configurations that enable rule r and query 〈r, pin〉 describes the effect
of r on such a configuration. Pattern 〈tin, pin〉 = {[q0,],]]} produces the initial configuration. We
complete the description of the StDN by adding one transition haltq,x from pin to place pout for each
pair of state q and symbol x for which there is no move of the machine of the form (q, x,−,−) where
pattern 〈pin, haltq,x〉 tests that the state is q and the symbol read is x and query 〈haltq,x, pout〉 witnesses
the halting of the Turing machine by creating a specific token, e.g. which document part is the empty
configuration [q0,],]], in the output place pout. Then, a Turing Machine halts if and only if its StDN
counterpart can reach a marking with one token T = (D, id), with D = [q0,],]] in pout. Recalling
that the halting problem for Turing Machines is undecidable, we immediately get that reachability of a
marking of a StDN is undecidable. For this StDN reachability or coverability of the final marking with
one token in pout are equivalent to (weak) termination or (weak) soundness thus all these properties are
undecidable. ut

3.3. WQO Structured Data Nets

The result of Theorem 3.4 is not surprising, as reachability or coverability are usually undecidable for
Petri nets with extended tokens like colored Petri nets. However, one may note several important issues
from the encoding of a Turing machine. First, deterministic queries are sufficient for this encoding.
Second, three distinct tags and finite domains of values are sufficient to encode a configuration of a
Turing machine. An immediate question is whether one can rely on the structure of the data and on
simple restrictions to obtain decidability results. A first obvious useful restriction is to bound the depth
of documents manipulated by the system. This restriction is reasonable, as it is unlikely that documents
depths grow arbitrarily during their lifetime in a system. Similarly, databases of arbitrary sizes can be
represented as arbitrarily large sets of bounded depth documents in places of PDB . Now, bounding the
depth of documents is not sufficient to obtain decidabiliy results: One can indeed use configurations
of Turing Machines as values for tags in bounded depth documents. We hence need restrictions on
the domains of valuations too. By Proposition 2.6 a set of bounded depth documents is a wqo when
the domains of the data fields attached to tree nodes are wqos. We can use this ordering to define the
interesting class of well quasi ordered StDNs, and then see how ordering on documents extend to their
markings.

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 19

Definition 3.5. (WQO StDN)
An StDN is well quasi ordered (is a wqo StDN for short), when

i) the domains of values used by document data fields are well quasi ordered (finite sets, integers,
vectors of integers,...), with effective comparison (one can can effectively decide if x ≤σ y), and

ii) there exists a bound on the depth of all documents appearing inR(M0).

Let us comment on the restrictions in Definition 3.5. Assuming wqo values in documents still allows
to work with infinite domains like integers. However, this restriction forbids to attach structured data
such as queues of unbounded sizes to nodes. Within the context of transactional systems, this is not a
severe limitation. Note also that checking whether R(M0) contains only bounded depth documents can
be reduced to the question of whether a Turing Machine has a bounded number of configurations, and is
hence undecidable. However, this property is frequently met, and is not a severe limitation either: Most
of transactional systems can be seen as protocols working with a finite number of data fields or using
finite forms, in which a finite number of entries needs to be filled. Hence, applying a query usually does
not increase too much the depth of a document. Even when large sets of facts are recorded in a XML
document (think for instance of a patient record), these facts are not placed at growing depths (i.e., along
a single path of the tree representing this document), but are rather independent subdocuments (i.e, they
are placed on different branches of the tree), possibly with a creation date if these records need to be
ordered. Hence, large documents often have big width but are still of bounded depth. One shall also note
that the depth of standard structured documents is usually very low: The structure helps decomposing an
entry into data fields, i.e. decomposing a concept into sub-concepts (a person is described as someone
with a first name and last name) and it is recognized [32] that 99% of XML documents have depth
smaller than 8, and that the average depth of XML documents is 4. Note also that the depth restriction
does not mean finiteness of manipulated data: Trees of arbitrary width still comply with this restriction,
and data values attached to nodes need not be chosen from finite domains. This allows for instance for
the manipulation of XML documents containing arbitrary numbers of records. Still, as shown at the end
of this section, considering well quasi ordered StDNs is not enough to obtain decidability.

Let us define the ordering relation on the set of markings induced by the ordering on documents, and
thus ultimately by the ordering on the data values appearing in these documents. The powerset of an
ordered or quasi ordered set (A,≤) is equipped with the quasi order ≤ where X ≤ Y when an injective
map h : X → Y exists such that ∀x ∈ X x ≤ h(x). For multisets X,Y ∈ M(A) we similarly
let X ≤ Y ⇐⇒ JXK ≤ JY K where JXK = {(x, i) | x ∈ X ∧ 1 ≤ i ≤ X(x)} denotes the set of
occurrences of X . Markings are compared component-wise up to an injective renaming of the identifiers
of transactions. More precisely, we let M1 ≤ M2 when there exists an injective map h : N → N
such that h(0) = 0, and for every place p and every i ∈ N one has πi(M1(p)) ≤ πh(i)(M2(p)) where
πi(M(p)) = {D | (D, i) ∈M(p)} denotes the multiset of documents in M(p) with identifier i. As the
comparison between two markings is performed up to a renaming of transactions, the exact identifier
of a token does not matter. The only concern is whether two tokens with the same (respectively with
different) identifier(s) are mapped to tokens with the same (resp. with different) identifier(s). Hence, we
can equivalently consider markings as partitions of a multiset1 of pairs from P ×Docτ,≤n. As a partition
of a setX is a set of subsets ofX , any quasi order onX extends (using twice the powerset extension) to a
quasi order on the set of partitions of X . With this representation M1 ≤M2 when the two partitions are
1By partition of a multiset X we mean a partition of the set JXK of occurrences of X .

20 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

comparable for the extension to partitions of the ordering ≤ on P ×Docτ,≤n given by (p,D) ≤ (p′, D′)
when p = p′ and D ≤ D′.

Proposition 3.6. The set of markings over bounded depth documents whose data have well quasi ordered
domains is a wqo.

Proof:
From proposition 2.6, we know that (Docτ,≤n,≤) is a wqo. Since the set of places is finite, the ordering
relation on P × Docτ,≤n is also a wqo. Last, the product of two wqos forms a wqo [33], and we have
seen that extending the ordering to multisets and then to partitions also yields a wqo. Hence, the ordering
on markings over documents of bounded depth is a wqo. ut

An immediate followup to well quasi orderedness is to set restrictions to obtain well-structured tran-
sition systems (WSTS) and reuse existing results to check coverability. An n-ary query Q is said to be
monotonous when (∀i ∈ {1, . . . , n} Di ≤ D′i) =⇒ Q(D1, . . . , Dn) ≤ Q(D′1, . . . , D

′
n).

Proposition 3.7. Let N be a wqo StDN with monotonous patterns and queries, and let M1,M
′
1,M2 be

markings of N , then M1[t〉M ′1 and M1 ≤M2 implies ∃M ′2,M2[t〉M ′2 ∧ M ′1 ≤M ′2.

Proof:
According to Definition 3.3 we distinguish the initial transition tin, which is responsible for the creation
of new identifiers, from the other transitions.
If t = tin: The transition tin is not guarded, and results in a non-deterministic creation of new documents
D1, . . . , Dk with a fresh identity id in place pin, namely M ′1(pin) = M1(pin)] {(D1, id)) ∪ · · · ∪
(Dk, id)}, and M ′1(p) = M1(p) for every p 6= pin. Then, one can find a fresh integer id′ that is
not used in M2 so that M2[tin〉M ′2 where M ′2(pin) = M2(pin)] {(D1, id

′)) ∪ · · · ∪ (Dk, id
′)}, and

M ′2(p) = M2(p) for every p 6= pin. As M1 ≤ M2, there exists an injective map h such that for every
place p and every x ∈ Dom(h), πx(M1(p)) ≤ πh(x)(M2(p)). We extend this map by letting h(id) = id′

to get πid(M ′1(p)) ≤ πid′(M ′2(p)) and thus M ′1 ≤M ′2.
General case (t ∈ T \ {tin}): This transition is enabled when all the patterns P1 = 〈p1, t〉, . . . , Pk =
〈p1, t〉 attached to flows from places p1, . . . , pk in •t to t are satisfied by some documents D1, . . . , Dk,
with the same identifier id for documents located in places •t \PDB , and with identifier 0 for documents
from •t∩PDB . Upon firing, t consumesD1, . . . Dk from •t, and outputs a set of newly created documents
D′1, . . . D

′
k′ with identifier id in places of t• \ PDB , and with identifier 0 in places of t• ∩ PDB where{

D′1, . . . D
′
k′
}

= ∪p∈t•Xp for some Xp ∈ 〈t, p〉(D1, . . . , Dk). As M1 ≤ M2, there exists an injective
mapping h : N→ N from identifiers in M1 to identifiers in M2, such that for every identifier x and every
place p, πx(M1(p)) ≤ πh(x)(M2(p)). This also yields, for each identifier x and each place p a map
ϕp,x : πx(M1(p)) → πh(x)(M2(p)), such that for every document Di in M1(p) we have Di ≤ ϕp,xDi.
Let us denote by ϕ =

⋃
ϕp,x the union of all these maps for p ∈ P , and x an identifier used in M1.

Since guards are monotonous and Di ≤ ϕ(Di), one has ϕ(Di) |= Pi. From the monotony of
patterns, and as h preserves equality of identifiers, we have that t is also enabled from M2. From the
monotony of queries we deduce that for every place p ∈ •t, there exists X ′p ∈ 〈t, p〉(ϕ(D1), . . . , ϕ(Dk))
with Xp ≤ X ′p. Thus, there exists a marking M ′2 such that M2[t〉M ′2 with

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 21

M ′2(p) = M2(p) if p is not in •t,
M ′2(p) = M2(p) \ {(ϕ(Dp), 0)}] (X ′p × {0}), if p ∈ PDB ∩ •t, and
M ′2(p) = M2(p) \ {(ϕ(Dp), id

′)}] (X ′p × {id′}), if p ∈ (P \ PDB) ∩ •t, where id′ = h(id)

Let us now prove that M ′1 ≤ M ′2. We can design a set of injective maps ϕ′p,x : πx(M ′1(p)) →
πh(x)(M

′
2(p)) witnessing M ′1 ≤ M ′2. For every (Di, x) that is not consumed by firing of t, we define

ϕ′p,x(Di) = ϕp,x(Di), as the documents that were not consumed remain unchanged and hence compa-
rable in both markings. Then, for each newly created document D′i in Xp, as Xp ≤ X ′p, we necessarily
have a token (D′i, id) in M ′1(p), a document D′j in X ′p such that D′i ≤ D′j , and a token of the form
(D′j , h(id)) in M ′2(p) (this includes the case when p ∈ PDB and hence id = 0). Hence we can set
ϕ′p,x(D′i) = D′j , with the property that D ≤ ϕ′p,x(D) for every newly created document D′i with identi-
fier x in place p. Hence, we can keep the same map h, and yet obtain the property that for every identifier
x and every place p, πx(M ′1(p)) ≤ πh(x)(M

′
2(p)), which witnesses M ′1 ≤M ′2. ut

By Proposition 3.7 wqo StDNs with monotonous patterns and queries are WSTS. The standard back-
ward algorithm of section 2.1 to decide coverability can be adapted to wqo StDNs as follows: For a given
set of markings X , we let pre(X) = {M | ∃t ∈ T,M ′ ∈ X,M [t〉M ′}. The coverability algorithm
starts from setX0 = {M}, that is a basis for all markings greater thanM . Then, it iteratively computes a
basis Xi+1 = Xi ∪ predB(↑ Xi) for the sets of markings from which a marking in ↑M can be reached
in a finite number of steps. The algorithm stops when a fixed-point is reached, or as soon as a marking
M ′ ∈ Xi is found such that M ′ ≤ M0, indicating that there exists a sequence of transitions from M0 to
a marking greater than M . Now, wqo StDNs with monotonous patterns and queries are not necessarily
effective WSTS. Indeed, one needs an effective algorithm to build the pred-basis predB(↑ Xi). We will
say that a StDN is backward-effective if, given a marking M , one can effectively compute a basis for
predB(↑M).

Corollary 3.8. (Coverability)
Coverability is decidable for backward-effective wqo-StDN with monotonous patterns and queries.

Proof:
A consequence of Proposition 3.7 is that wqo-StDN with monotonous patterns and queries are WSTS.
Backward-effectiveness allows to compute a basis for predB(↑ M), and hence predB(↑ Xi), which
guarantees effectiveness of each step of the backward coverability algorithm. It remains to show that the
comparison among markings is effective. For any pair of documentsD1, D2 ∈ Docτ , one can effectively
check for the existence of a mapping from D1 to D2, and compare the values of paired data fields, as
we have assumed that the domains of these data-fields are effective wqos. Then finding an identity
preserving mapping among contents of places (finite multisets) is also effective. ut

In the rest of the document, we will refer to backward-effective wqo-StDN with monotonous patterns
and queries as effective StDNs. Backward effectiveness means that from a basis for an upward closed set
of markings X one can effectively build a finite representation of the set of predecessors of ↑ X . This
means being able to find the minimal data needed to fire some transition and reach ↑ X . This property is
easily met if the effect of a transition on a place is to aggregate finite amount of data collected from its
input places (for instance the sum of positive integers collected in forms), or to append a new branch to
a document (in this case, the consumed documents are subtrees of documents appearing ↑ X).

22 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

Let us now show that this result on coverability allows to prove more properties, and in particular
to address termination, soundness, and coverability for sets of initial markings described symbolically.
More precisely, we want to guarantee a property such as coverability or termination for any initial docu-
ment satisfying a given pattern P , i.e., any document in P̂ . From a practical point of view, this question
resumes to considering that the set of documents that can be generated by query 〈tin, pin〉 is exactly
P̂ . Note that in general, the set of documents generated by 〈tin, pin〉 needs not satisfy a single pat-
tern P . It may be the case that this set of initial cases is not upward closed (for instance, a query can
generate documents which nodes carry only odd integer values). However, a significant number of real
systems take as inputs forms without complex contraints on their data fields, which are upward closed
set of documents. Hence, considering upward closed sets of initial cases matching a pattern makes sense.
Theorem 3.9 addresses coverability, termination and soundness when sets of initial documents are de-
scribed by monotonous patterns. The coverability problem for the set of initial cases induced by P can be
rephrased as follows: assuming Im(〈tin, pin〉) = P̂ , and given a marking M to cover, is there a marking
M ′ greater than M in R(M0) for every initial marking M0 such that M0(pin) ∈ P̂ ? The termination
(resp. soundness) problems extends similarly to the set of markings containing a document that satisfies
P .

Theorem 3.9. (Weak) termination and (weak) soundness are decidable for effective STDNs. Coverabil-
ity for symbolic set of initial cases defined by a monotonous pattern are decidable for effective STDNs.

Proof:
Let M0 be a marking such that M0(pin) contains a token (D0, id) produced by transition tin (for some
identifier id). Let D⊥ denote the least document (reduced to an untagged root). The termination of
case (D0, id) is equivalent to the coverability of the marking Mend such that Mend(pout) = (D⊥, id)
(and where all other places are empty) by some marking reachable from M0. We recall that order on
markings is based on the partition induced by the identifier and thus the exact value of the identifier does
not matter. Decidability of soundness also stems from decidability of coverability. An StDN is sound if
it terminates and whenever place pout contains a token, one cannot find another place containing a token
with the same identifier, i.e. for each place p ∈ P \ {pout} the marking Mp with token (D⊥, id) in both
places pout and p and with no other tokens in other places is not coverable from the initial marking.

Coverability, termination and soundness have solutions for a single given initial marking, i.e. for a
particular chosen case. We would like to consider whether a given marking M can be covered when
starting from every possible input to the system. We suppose that the set of results output by query
〈tin, pin〉 is the symbolic set of documents from Docτ,≤n that satisfy a particular monotonous pattern
P .

Then, as P is monotonous, we can reuse the construction of Proposition 2.7 to build a basisBsat(P)
for all documents satisfying P . Noticing that R(M) ≤ R(M ′) when M ≤ M ′ for wqo StDNs with
monotonous queries and patterns, coverability can be verified for all cases initiated by 〈tin, pin〉 if it can
be proved for all initial markings M0 such that M0(pin) belongs to BSat(P) × {id} for any arbitrary
identifier id (again with a chosen database contents if needed). Let us denote by BM0,P this set of
markings. Note that it is sufficient to compute once the fixed-point Xm returned by the set-saturation
algorithm that builds a basis for Pre∗(↑M) and then compare this set with elements in BM0,P . Cover-
ability for all cases satisfying pattern P is guaranteed iff for every initial marking M0 in BM0,P , there
exists x ∈ Xm such that x ≤M0. This result obviously extends to termination and soundness. ut

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 23

The above decidability results do not extend to reachability:

Theorem 3.10. (Undecidability of reachability)
Reachability is undecidable, even for effective StDNs.

Proof:
It is known that reachability is undecidable for reset Petri nets [10], and a StDN can easily simulate a
reset Petri net. In section 5, we even prove that effective StDNs can simulate the more general class of
Reset Post-G nets. To model a Reset Petri net N , we create a StDN N ′, with only three places: pin
and pout and a database place pone, that will contain a single token. N ′ also contains usual transitions
tin, tout, and one transition per transition of N , the reset net to simulate. We also use a transition tone
from pin, with •t = {pin, pone} and 〈pin, t〉 = 〈pone, t〉 = Ptt. This transition will be used once to
select one particular instance of a document representing marking M0 of the reset net. At any time, the
contents of place pout contains at most one document, and encodes the current marking ofN . A marking
is encoded as a document D with a root node and a child labeled p for every place p of the reset Petri net
N , such that ν(p) = n indicates that place p of the reset net contains n tokens (see Section 5, Figure 20).
Represented this way, the set of tokens in some place p can be reset to 0, incremented or decremented
by monotonous queries. Enabledness of a transition t of N can be encoded by a pattern Pt that tests the
existence of a desired number of token in some place p, i.e. they are trees composed of a root, and one
child node with constraint of the form pi ≥ ni per place in •t. We hence set 〈pout, t〉 = Pt. For every
transition t, a monotonous query 〈t, pout〉 can be used to increment or decrement the value of a particular
node tagged by p, encoding consumption or creation of tokens. Such a query can even set the value
of tag p to 0, simulating a reset arc. These queries are monotonous, and transitions using this kind of
queries are also backward effective. Last, 〈tin, pin〉 is the query that produces document D0 representing
marking M0 of the reset nets. HenceN ′ is an effective net simulating N (only firings of tin and tout are
added to runs ofN). The general shape of the net is depicted Section 5, Figure 21. Undecidability of the
reachability problem for reset nets [10] concludes the proof. ut

This result should not be seen as a severe limitation: Many properties of transactional systems are not
expressed in terms of global states and do not need reachability. Moreover reachability is undecidable
for many extensions of Petri nets. We show in Section 5 similar encodings to simulate other extensions
of Petri nets such as Reset Post-G nets or Nested nets. The remaining questions to conclude with wqo-
StDN is whether this class is decidable, and whether well quasi orderedness of a net suffices to obtain
decidable properties. Unfortunately, both questions have negative answers:

Proposition 3.11. Well quasi orderedness of an StDN is undecidable. Coverability, reachability and
termination problems are undecidable for wqo StDNs.

Proof:
We design a wqo StDN that encodes a two counters machine. A two counters machine is given as a
pair of counters C1, C2 holding non-negative integers and a finite list of instructions l1, . . . ln each of
which, except the last one, is of one of the following forms: i) li : inc(C`) meaning that we increment
counter C` and then go to the following instruction, ii) lj : if (C` = 0), lk else dec(C`), lk′ indicating
that if counter C` is null we must proceed to instruction lk otherwise we decrement this counter and go
to instruction lk′ . The machine halts when it reaches the last instruction ln : Halt. A configuration of

24 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

tin pin

ti

tleave

tj,Z tj,NZ

pout tout

Figure 9. Encoding a counter Machine with wqo Structured Data Nets

a counter machine is given by the value of its counters, and the current instruction line. The machine
usually starts at instruction 0, with counters set to 0. It is well-known that one cannot decide if a counter
machine halts. For any counter machine, we can define an StDN (represented in Figure 9) that encodes
the moves of the machine.

First, we can encode a counter machine configuration as a document with three nodes: a root, and
its left and right children. The root is tagged by an instruction number from l1, . . . , ln, the left and
right children are tagged by c1 and c2 respectively with values given by non-negative integers. The
corresponding documents are of bounded depth with values from wqo domains. For each instruction
of the form li : inc(C`), we design a transition ti with •ti = t•i = pin such that Pi = 〈p, ti〉 is
the pattern reduced to a root whose tag has value li and Qi = 〈ti, p〉 is the query that transforms a
document into a document with root li+1, and such that the value attached to the node with tag c` is
incremented by one, and the other one is left unmodified. For each instruction of the form lj : if (C` =
0), lk else dec(C`), lk′ we design two transitions tj,Z and tj,NZ such that Pj,Z = 〈pin, tj,Z〉 is a (non
monotonous) pattern testing if the root of a document is labeled by lj , and the value of node with tag
c` is zero, Qj,Z = 〈tj,Z , pin〉 is the query that transforms a document into a document with root lk,
and such that the values attached to child nodes remain unchanged, Pj,NZ = 〈pin, tj,NZ〉 is the pattern
testing if the root of a document is labeled by lj , and the value of node with tag c` is greater than zero,
Qj,NZ = 〈tj,NZ , pin〉 is the query that transforms a document into a document with root lk′ , and such that
the value attached to node with tag c` is decremented by one and the value attached to the other child node
remains unchanged. The initial configuration of the counter machine is created by queryQin = 〈tin, pin〉
that produces a document with root labeled l0 and two children nodes tagged respectively by c1, c2 with
values 0. We set M0 as an initial marking in which all places are empty. Transition tleave moves the
token from place p to pout if the root tag has value ln, i.e. the machine halted. Clearly, the counter
machine terminates iff one can reach a configuration in which pout is not empty. Thus one cannot decide
termination, and similarly the reachability or coverability (of the marking with just one token in pout).

Let us now prove that one can not decide whether a net is wqo. One can add a transition tnobnd to
the above net such that •tnobnd = t•nobnd = pout, 〈pout, tnobnd〉 = tt, and 〈tnobnd, pout〉 is a query that
increases the depth of a document by 1, by inserting a children with some tag a between the root and its
first child (hence creating successive incomparable documents). Then the counter machine terminates iff
the corresponding StDN is not wqo. ut

Even though well quasi orderedness of a net is undecidable, acceptable restrictions ensure this prop-
erty. Queries that non-deterministically insert new integers, rationals or strings in existing forms are
backward effective and monotonous, and do not increase the depth of documents beyond a certain limit.

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 25

In many systems, queries are used to extract data from a data-set, i.e., a list of records that can usually
be represented by bounded depth documents. The result of data extraction is a list of records that can be
again assembled as a bounded depth document. Other queries compute new values from data-sets (sums,
means, etc.) and insert the results in a new document (a ”form”) of bounded depth and size. Such
queries are often backward effective and monotonous. So, one can restrict to queries that produce only
documents of bounded depth, which values domains are finite sets or wqo sets (such as integers) without
harming too much the expressiveness of the model.

Let us conclude this section by considering safety properties of effective StDNs. Verifying whether
all runs of the system avoid markings where a given place p contains a given documentDbad representing
an undesirable property boils down to reachability and is thus undecidable. If however we replace the
document to be avoided by an upward closed set Xbad of documents the question becomes decidable
since it reduces to coverability: “Is M0 ≥ M ′ for some M ′ ∈ Pre∗(↑ Mbad)?”, where Mbad = {M |
M(p) ∈ Basis(Xbad)× {id}} for an arbitrary identifier id, should receive a negative answer.

A similar and more interesting question can be asked for sets of initial cases satisfying a monotonous
pattern P . Namely: “Does there exists a marking M0 such that M0(pin) contains a token of the form
(D, id) where document D satisfies pattern P , and a run starting from M0 and ending in a marking M
such thatM(p) contains a token (xbad, id) with xbad ∈ Xbad ?”. The question can be formally written as:
“Does ↑ (XP,id) ∩ Pre∗(↑ Mbad) = ∅ ?” where XP,id is a set of initial markings such that M0(pin) =
(x, id) with x ∈ Bsat(P) . For effective StDNs, one can compute a basis Bbad for Pre∗(↑ Mbad) and
XP,id has also a basis B0 = {M |M(pin) = (x, id) ∧ x ∈ XP,id ∧M(p) = ∅ for p 6= pin}).

However, difficulties arise due to the fact that the safety question does not ask for inclusion of an
upward closed sets of markings into another one, which could be solved by comparing their basis, but
rather checks emptiness of their intersection. A marking in the intersection of ↑ B0 and ↑ Bbad is a
marking in which pin contains a token of the form (D, id), where D ≥ D′ for some D′ ∈ Bsat(P)
and D ≥ B′ for some B′ ∈ Bbad. As satisfaction of a pattern and ordering of documents imply root
preserving embeddings, such a marking exists if and only if one can find a pair of documents (D′, B′) in
Bsat(P)×Bbad whose roots allow the existence of such mappings. More precisely, let ν, ν ′ denote the
respective valuations of rootD′ and rootB′ , and letCTD′,B′ be the set of tags shared by both roots. There
exists a common document in ↑ D′∩ ↑ B′ if and only if ↑ ν(σ) ∩ ↑ ν ′(σ) 6= ∅ for every σ ∈ CTD′,B′ .
On the example of Figure 10, one can see two documents B1, B2 whose roots carry a common tag b with
integer valuation. The document B3 in this figure is greater than both B1 and B2 and hence belongs to
↑ B1 ∩ ↑ B2. We have made little assumptions on valuations, and even when every σ ∈ CTD′,B′ has
valuation in some well quasi ordered set, nothing guarantees that ↑ ν(σ)∩ ↑ ν ′(σ) 6= ∅ can be effectively
checked. If all valuations for roots of documents appearing in ↑ (XP,id) and Pre∗(↑ Mbad) take values
in wqos that are intersection effective (i.e, such that for every x one can effectively compute a basis for
↑ x ∩ ↑ x′), then our safety problem has a solution. Integers with their natural ordering, labeled graphs
with finite sets of labels ordered by embedding relations are examples of intersection effective wqos.

4. Case Study

Let us illustrate the main features and expressive power of Structured Data Nets on an example: a travel
agency. We use this case study not only to highlight interesting features of the model, but also possible
extensions, and discuss whether these extensions could hinder decidable classes. The workflow of a case

26 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

{
a = ”John”

b = 12

}

D′1 D′2

B1

{
b = 15

c = 4.5

}

D1 D2

B2 =⇒

a = ”John”

b = 15

c = 4.5

D1 D2 D′1 D′2

B3

Figure 10. Merging two documents with compatible roots

in our travel agency example is the following: a client enters the system with a document indicating the
origin of her travel, the city she wants to visit, and a maximum budget for this travel. Then the travel
agency seeks concurrently for hotel and flight offers, and builds a set of proposals that fit the customer’s
budget. Once an offer has been selected, a payment is performed: the customer enters her bank details,
and a clearance is asked to the bank. Upon positive answer from the bank, the travel documents are
printed, reservations are done, and the case in considered as completed. On the contrary, if the bank does
not accept payment, the travel is canceled.

We model more precisely this case study with a StDN. This StDN manipulates several types of
documents. Let us start with three documents shown in Figure 11. The first one is the client’s request.
It is a document of depth 1 containing information on both origin and destination, the desired departure
and return dates, and the maximal amount the client wishes to pay for the travel —including hotel and
flight prices. As a simplification, we assume that both origin and destination may be connected by air
travel. The second document is a flight request: It contains the same data fields as the client’s request,
but with document root labeled by tag FlightRequest . This type of document also contains an additional
data field, i.e, a new node carrying tag Status , which valuation belongs to the set {searching,booking},
indicating respectively that a search is currently carried out for this request, and that the search was
stopped to start the booking phase. The third document is a flight offer from a company. It contains
origin and destination cities, a company name, a price, and several departure and return dates which
combinations are proposed for the same price.

For convenience, we cut the whole structured data net depicting the workflow of the travel agency in
several parts, and explain the contents of each piece separately. Places with identical names in different
pictures represent the same place in the whole network. We start with the part of the StDN, depicted
in Fig. 12, that processes the arrival of a client’s request and initializes the workflow. Transition tin
non-deterministically creates a token (D, id) in place pin where D is a document representing a travel
request, as in Fig. 11. Hence, query 〈tin, pin〉 is a simple non-deterministic query. Transition split
separates a client’s request into flight and hotel requests. It consumes a Client demand, and applies
as soon as place pin contains such document. Hence we set 〈pin, split〉 = Ptt. Firing transition split
creates two documents: A flight request in place FlightRequest using query 〈split,FlightRequest〉, and
an hotel request in place HotelRequest using query 〈split,HotelRequest〉. Both budgets attached to
these documents must be lower than the overall travel budget. For simplicity we consider here that
queries deterministically apply a 60% rate to the overall budget to compute a bound for flight and hotel
prices. When a client request with identifier id is consumed by transition split, two documents with the

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 27

TravelRequest

{Origin = Paris}

{Destination = NewYork}

{Departure = 12/08/2015}

{Return = 19/08/2015}

{Budget = 5000}

FlightRequest

{Origin = Paris}
{Destination = NewYork}
{Departure = 12/08/2015}

{Return = 19/08/2015}

{Budget = 5000}

{Status = searching}

FlightOffer

Departure

{date =

12/08/2015}
{date =

13/08/2015}

Return

{date =

18/08/2015}
{date =

19/08/2015}

Company

{name = EZAir}

{Origin = Paris}

{Destination = NewYork}

{Price = 800}

Figure 11. Documents used by the travel agency: Travel request, Flight request, and Flight offer —where a node
labelled “label” is an abbreviation for a node with valuation {label = ∗} where label is a tag with value domain
{∗}.

same identifier id are created. They initiate concurrent search processes.

pin

FlightRequest HotelRequest

tin

split

Figure 12. Splitting a travel request into searches for hotels and flights.

Workflow given in Figure 13-a) tells how to search flights that comply with client’s wishes, initially
introduced in place FlightRequest, regarding desired destination, dates and budget. Various offers of
several companies are stored in place FlightOffers. Such an offer takes the form of a document as shown
in Fig. 11. Since this place is a database place one does not have to consider identifiers attached to doc-
uments contained in this place in order to fire transitions. At initial stage of reservation, a flight request
is a document (together with an identifier) whose status tag has value “searching”. Transition Search-
Flight is fired if there exists a flight request with status equal to “searching” in place FlightRequest,
and a flight offer document in place FlightOffers. We hence set 〈FlightOffers, SearchFlight〉 = Ptt,
and 〈FlightRequest, SearchFlight〉 = PSearching, where PSearching is the pattern depicted in Figure 13-
b). Transition SearchFlight simply reads a flight request and a flight offer, but does not consume them.
Hence, the query attached to output flow from transition SearchFlight to place FlightRequest simply re-

28 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

FlightRequest

FlightOffers

FProposal

SearchFlight

StopFSelection

a)

FlightRequest

{Status = searching}

b)

HotelRequest

HotelOffers

HProposal

SearchHotel

StopHSelection

c)

Figure 13. Searching for flights (Fig. a), pattern PSearching (Fig. b), and searching for Hotels (Fig. c).

turns the consumed flight request document to place FlightRequest. Similarly, the query attached to flow
from transition SearchFlight to place FlightOffer returns the selected flight offer document unchanged to
place FlightOffers. This can be easily defined by setting 〈SearchFlight,FlightRequest〉(D1, D2) = D1

and 〈SearchFlight,FlightOffers〉(D1, D2) = D2. The query attached to the output flow from transition
SearchFlight to place Fproposal returns an empty set if the flight offer and requests are not compat-
ible (inadequate date, destination or budget), and a new document that merges the request and offer
information tagged with the same identifier as the flight request otherwise. This way, one can non-
deterministically fill the contents of place FProposal with flight offers that comply with the client’s
wishes. One can notice that query 〈SearchFlight,Fproposal〉 is not monotonous, because applying this
query with expensive flight offers may result in empty answers while using this query with a cheap offer
produces an offer.

Note also that transition SearchFlight can fire an arbitrary number of times for the same client re-
quest. The search process can stop after an arbitrary number of steps as soon as at least one offer has
been found. This is modeled by transition StopSelection that can fire if there exists at least one flight
proposal document in place FProposal and a flight request that is still in the searching phase in place
FlightRequest, with identical identifier.

We hence define 〈FProposal, StopSelection〉 = Ptt and 〈FlightRequest, StopSelection〉 =
PSearching. One just needs to check existence of some flight proposal, and not consume it, so query
〈StopSelection,FProposal〉 simply copies the document selected from place FProposal. The status
of the selected flight request changes after firing transition StopSelection, which is modeled by a query
〈StopSelection,FlightRequest〉 that changes the valuation of node with tag Status to ”Booking” in the
selected flight request. Hence, after firing StopSelection, we have the following properties:

• pattern PSearching does not hold for the modified flight request,

• transitions SearchFlight and StopSelection can no longer be fired with the modified request as
input,

• place FProposal contains at least one valid offer carrying the same identifier as the modified flight
request with status ”booking“.

Selection of hotels, depicted on Figure 13-c), follows the same principle, and fills place HProposal

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 29

starting from a place HotelRequest containing hotel requests, and a database place HProposal containing
hotel offers.

Remark 4.1. Let us now comment on this implementation of database search.

• One can first notice that, since flight (resp. hotel) offers are not consumed by transition Search-
Flight (resp. SearchHotel), the same offer can be used twice, and hence several identical proposals
can be produced in place FProposal (resp. HProposal) for the same request. Second, the selection
process for a particular flight (resp. hotel) request stops after an arbitrary number of firings of
transition SearchFlight (resp. SearchHotel). Overall, this gives very little control on the obtained
contents of proposal places, that can contain a single document, or conversely several documents
but with redundancy. In some sense these operations are lazy counterparts of classical database
selection processes. At the end of this section, we will describe a system which copies the whole
content of a place in order to perform an exhaustive selection on this content.

• In the three parts of net represented so far, some places are read, and the consumed token is put
back to its origin place without modification. This calls for a harmless extension of our model with
read-arcs, which would avoid the definition of useless queries and output flows.

FlightRequest

FProposal HProposal

HotelRequest

CompleteOffers

Selection

merge

Choose

Figure 14. Selection of a flight and hotel offer fitting with a given budget.

CompleteOffer

flight hotel

{price = 3500}

Figure 15. A complete offer document.

30 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

The next step depicted in Fig. 14 consists in selecting a pair of flight and hotel offers that fits
the client’s budget. This is implemented in the following way: Flight and hotels are merged non-
deterministically to build complete offers, that fit the client’s budget. The overall price of the offer
is the sum of the flight offer’s price and of the hotel offer’s price. This information in merged into a
single complete offer document such as the one depicted in Fig. 15. In this schema, triangles are just
copies of the respective offers that were selected. The only new information added is the global price
of the offer just computed. The workflow depicted in Fig. 14 behaves as follows: Transition merge fires
when there exists an hotel request with status ”booking“, an hotel proposal, a flight request with sta-
tus ”booking“, and a flight proposal that all carry the same identifier. Query 〈merge,CompleteOffers〉
computes the sum of flight and hotel proposals prices, and returns an empty set if the overall price
is greater than 10

6 times the flight request budget (recall that this budget is 60% of the overall bud-
get). Otherwise, it returns a complete offer document containing the flight and hotel offers as children
of a root node tagged CompleteOffer, plus an additonal node with tag price whose value is the over-
all computed price. Queries 〈merge,FlightRequest〉, 〈merge,FlightOffer〉, 〈merge,HotelRequest〉
〈merge,HotelOffer〉 return the document used from their respective places to its original place. Tran-
sition choose consumes a complete offer, flight request and hotel request with identical identifier. This
is a way to select one of the offers proposed to a client, and to stop all computations for these requests
(no flight request/hotel request with the selected id appears in the net after firing choose. We hence only
define 〈FlightRequest,Choose〉 = 〈HotelRequest,Choose〉, 〈CompleteOffer,Choose〉 = Ptt. Query
〈Choose,Selection〉 copies the complete offer selected in place CompleteOffer to place Selection.

The mechanisms used to build a selection in Fig. 13 and 14 allow to simulate pattern matching on the
contents of several places and on valuations of several nodes. In the basic definition of StDN (Def. 3.2),
transitions are guarded by local patterns attached to each input arc, and apply to one token per place. The
constraints on data values used in patterns are also localized to a single node of a document (item 2 of
Def. 2.3). However, following the schema of Fig. 13 and 14, one can first non-deterministically merge
pairs of documents from distinct places (i.e. build a tree with a new root and the merged documents
as subtrees) and then check truth value of some pattern on the merged contents to simulate a global
constraint on the contents of several places. Similarly, one can copy tags and values from several nodes
of several documents to a newly created single node carrying tags and values from several other nodes,
and then use patterns to check locally a constraint on this node. Merging is a monotonous query, and is
backward effective. For this reason, extending the pattern matching mechanisms to handle contents of
several places, and valuations from several nodes does not harm decidability results demonstrated in this
paper.

The last part of the workflow is rather standard, and consists in payment of the selected offer. Tran-
sition BankInfo selects a complete offer and adds bank information (client’s name, bank name, account
and credit card number) to the offer. As bank information can be added to a document as soon as an offer
has been selected, we set 〈Selection,BankInfo〉 = Ptt. Adding bank information is designed as a non-
deterministic query 〈BankInfo,Selection+Bank〉, that simply adds data fields to an existing document,
and moves it to place Selection+Bank. We then model the bank’s decision as a transition BankDecision.
Again, decision of a bank regarding payment of a travel can occur as soon as bank information was
entered, so, 〈Selection+Bank,BankDecision〉 = Ptt. Query 〈BankDecision,Decision〉 nondeterminis-
tically adds a node to the document with tag Granted and boolean valuation ν(Granted). Once bank’s
decision is obtained, the client’s choices can be booked and printed if the payment was granted, or can-
celed otherwise. We set patterns 〈Decision,PrintTravel〉 = Pgranted=true (resp. Pgranted=false) where

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 31

Selection

Selection+Bank

Decision

pout

BankInfo

BankClearance

PrintTravel CancelTravel

tout

a)

CompleteOffer

flight hotel price=3500

Bank=General Bank

Client=John Smith

Card NB=1234

Granted=true

b)

Figure 16. The workflow for payment and termination of a case a), and a possible final document b)

Pgranted=true (resp. Pgranted=false) is a pattern that checks existence of a node with tag Granted with
value true (resp. false). Queries 〈PrintTravel, pout〉 and 〈CancelTravel, pout〉 simply copy a selected
document from place Decision to place pout. Hence, after bank’s decision either transition PrintTravel or
CancelTravel fires and moves the document to place pout, from which the transaction can be terminated.
This part of the workflow and a possible final document are described in Figure 16.

Note that our design of this case study is of bounded depth: All produced documents have depth at
most 3. It is however not monotonous. Let us again consider the part of the workflow depicted in Fig. 13,
and in particular the query QSF,FP = 〈SearchFlight,FProposal〉 that filters out flight offers that are
too expensive. When checking that a flight offer is compatible with the request, one needs to compare
the request’s budget with the price attached to a flight offer. Assuming the price attached to an offer
document DO is compatible with the expected budget, a new document is created in place Fproposal
(that collects eligible flights only). If we build a document D′O with the same destination and dates as
DO, but with a higher proposed price, the flight offer is rejected: Query QS,FP applied to D′O returns an
empty set, and thus adds no document to place FProposal. Assuming prices are given by integers one has
DO ≤ D′O, but QSF,FP (DO) 6≤ QSF,FP (D′O). A way to overcome this problem is to assume an upper
bound for prices, and use inverse order to compare them (price1 ≤ price2 iff value price1 is bigger
or equal to value price2). This way, prices are still wqos, and query QSF,FP becomes monotonous.
However, this reverted order trick cannot be used anymore if a pattern imposes lower bounds on prices
somewhere else in the net.

Note also that case termination is not guaranteed in the model of travel agency. Indeed, if no offer fits
the maximal budget of a client with respect to the hotel or flight, then a flight request document (respec-
tively a hotel request document) can remain forever in place FlightRequest (resp. in place HotelRequest).

32 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

The system as it is designed is not sound either: A selection of offers that are compatible with a client’s
budget may remain in place CompleteOffers after one particular offer has been selected and paid.

Structured Data nets are Turing complete (as proved in Theorem 3.4), so one can encode complex
programs and data structures using StDNs. In the rest of this section, we enumerate some syntactical
features which are missing in our model that can ease the design of a specification. Furthermore, we
show a few non-native operations that can be simulated with StDNs.

We have already discussed the possibility to add read arcs and global patterns without changing the
expressive power or decidability results of the model. Other missing features are needed to allow standard
operations in database systems. The first one is a selection operation over the contents of places. This
would allow to design filtering mechanisms, and implement operations such as ”select all flight offers
which price is lower than 10 000 euros”. The second database feature we consider is a join operation, that
would allow to implement operations of the form : ”merge all hotel and flight offer documents that agree
on the destination”. It is also very common in databases to select a record with the minimal/maximal
value with respect to some criterion (like the value of some datafield). Another frequent operation is
to select the p best records with respect to some criterion. As highlighted in Remark 4.1, selection
operations can be simulated by StDNs, but in a lazy way that uses non-deterministic transitions, and
gives no guarantee on termination of the selection, nor on exhaustivity of the returned solution, nor on
uniqueness of returned documents.

In our case study, selection of (some) flight offers meeting the budget constraint set in a flight request
is modeled by a piece of StDN in Fig. 13). It can easily be adapted to filter offers with respect to other
criteria, such as an upper bound on flight price, or to select flight offers that have the same destination
as some request. However, this simplistic selection process is implemented in a naive and somehow
unsatisfactory way. We now show how to perform an exhaustive selection on a place by first copying the
contents of this place, and then applying some filtering operation to this copy.

A solution to apply an operation to all tokens in a place is to count the number of documents appear-
ing in that place. Figure 17 is a gadget StDN that copies the contents of some place P1 into another place
P2 as soon as some transition start is fired. The copy is achieved after firing of transition end, that is
enabled only when the whole copy operation has been performed. In this gadget, we use an additional
intermediate place P ′1 to save documents consumed from P1 during the copy, and three places C1, C

′
1,

and C2, that respectively count the number of documents in places P1, P
′
1, and P2. More precisely, place

C1 (resp. C ′1, C2) contains a single document composed of a root node with a tag c1 (resp. c2, c
′
1) whose

value ν(ci) (resp. ν(c2), ν(c′1)) is the exact number of documents in places P1 (resp. P ′1, P2). Slightly
abusing our notations, we will write ν(Ci) to refer to the valuation attached to the single node of the sin-
gle document contained in place Ci. To ease presentation, we adopt the following convention: we attach
a pattern name to input flow arcs of the figure when the pattern is not trivial. Input flow arcs without
label are attached the trivial pattern Ptt. Similarly, we decorate output flow arcs with query names. We
also represent the value of each counter place Ci by an integer located in place Ci. We denote Ci=0 the
pattern that checks that a document has a root node with tag ci and value ν(ci) equal to 0, by Ci>0 the
pattern that checks that a document has a root node with tag ci and value ν(ci) greater than 0. These
patterns are attached to an input flow (Ci, t) from place Ci to some transition t. We denote by Ci++

(resp. Ci−−) the query that increments (resp. decrements) the value of tag ci in the counter document of
place Ci. These queries are attached to some output flow arc (t, Ci). Last, we denote by idPi the query
that copies the document with provenance Pi used as input argument by all queries attached to some
transition. For instance, on the drawing of Fig. 17, we have 〈C1, copy1〉 = C1>0, 〈P1, copy1〉 = Ptt,

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 33

〈copy1, C1〉 = C1−−, and ν(C ′1) = 0.
The net starts in a markingM with one token in place pinit, several tokens (D1, id1), . . . (Dk, idk) in

place P1, ν(C1) = k, M(P2) = M(P ′1) = ∅, ν(C2) = ν(C ′1) = 0. The principle of the copy gadget is
as follows : transition copy1 can be fired when place pcs contains a token (hence after firing of transition
start), place P1 contains a document, placeC1 contains a token with strictly positive valuation, and place
C ′1 contains a token. The effect of firing transition copy1 is to consume a document from P1, copy it into
P2 and P ′1, decrement ν(C1), and increment ν(C ′1) and ν(C2). Transition copy1 is the only transition
that can fire until ν(C1) = 0. As soon as ν(C1) = 0 (and hence ν(C ′1) = ν(C ′2) = k and M(P ′1) =
M(P2) = {(D1, id1) . . . , (Dk, idk)}), transition copy1 can not fire anymore, and the only transition that
is firable is transition back that moves a token from place pcs to place pbs. After firing of transition back,
transition back1 can fire until ν(C ′1) = 0. The effect of firing back1 is to move a document from place
P ′1 to place P1, decrement ν(C ′1) and increment ν(C1). As soon as ν(C ′1) = 0, transition back1 can
not fire, and the only firable transition is end, which terminates the copy operation. At the end of the
copy, we have ν(C1) = ν(C2) = k, ν(C ′1) = 0, M(P1) = M(P2) = {(D1, id1) . . . , (Dk, idk)} and
M(P ′1) = ∅.

pinit

pcs

pbs

pend

D1, . . . , Dk P1k C1

P ′10 C ′1

P2

0 C2

start

back

C
1
=

0

end
C ′
1 =

0

copy1

C
1
>
0

id
P

1

id
P 1

C
1 −
−

C
′
1
+
+

C
2
+
+

back1

C
′1
>

0

id
P

′
1

C
1
+

+

C
′1
−
−

Figure 17. A copy gadget with StDNs

After a copy, one can easily apply a chosen operation to all copies of documents in P2 (selection with
respect to a pattern, merge of all documents with the contents of one place,). This can be done via
an iterative process that consumes documents of P2 and allows some transition to fire until ν(C2) = 0.
As an illustration, let us get back to the travel agency example. Let us suppose that all flight offers have
been copied to some place P2, and that the number of flight offers in P2 is maintained in some counter
place C2. Then, we can select one particular flight request, compare it to all tokens in P2, and keep only

34 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

offers that are compatible with the flight request’s budget. This can be encoded for instance an in the
net of Fig. 18. It behaves as follows: a particular flight request is selected from the place containing all
flight requests using transition SelectOne. This selection can occur only once, as transition SelectOne
consumes a token from place pone. Query 〈SelectOne,OneRequest〉 simply moves the selected flight
request to place OneRequest. As soon as a particular flight request has been selected, and as long as
a copied document remains in place P2, transition SearchFlight can fire. As in the model of Fig. 13,
〈SearchFlight,FProposals〉 creates a new proposal in place FProposals if the selected offer’s price is
compatible with the selected request’s budget (it adds an empty set of documents to the place otherwise).
The major differences with the selection process described in Fig. 13 is that the iterative selection process
is applied to a single flight request at a time, that every flight offer in place P2 is consumed, and that the
transition also updates the contents of the counter C2 associated with place P2. When place P2 is empty,
place FProposals contains one proposal for each offer that was compatible with the budget of the selected
flight request.

Note that the copy gadget of Fig. 17 and the selection net of Fig. 18 are not monotonous, as they
use patterns that check that a counter is equal to zero. The copy gadget of Fig. 17 can be easily sim-
plified to transfer all documents from a place P1 to a place P2, to transfer only documents with chosen
characteristics, to reset the whole contents of place P1, etc. One can also design a gadget that erases all
tokens carrying the same identifier as some designated transaction. Such reset mechanisms can be used
for instance to enforce soundness of a system. Of course, implementing such gadget nets that address all
documents of a place requires implementing counting mechanisms. A similar result can be achieved by
extending patterns definition to allow negative patterns that would allow to check that a place does not
contain some kind of document. Flows carrying such negative patterns would however play the same
role as inhibitor arcs for Petri nets. Of course, using such features results in a loss of monotony for pat-
terns, and hence in undecidability of coverability, termination and boundedness. One can design similar
gadgets to select the maximal element from a set of records, the best p records out of n proposals, etc.
These gadgets are very low-level, and of course, one shall not expect designers of a workflow system
to specify at such a detail level. Hence, to be practical, StDNs should be equipped with a higher-level
syntax which semantics would be the underlying low-level StDN obtained by composition and special-
isation of gadgets. In the next section, we will show relations of StDNs with other extensions of Petri
nets, and in particular with reset and nested nets. Interestingly, we will show that wqo StDNs suffice
to simulate these nets, and hence that unbounded depth of documents, or non-monotonous patterns and
queries are not mandatory to encode interesting extensions of Petri nets.

5. Comparison with high-level nets

Structured Data nets is an extension of standard Petri nets with data and queries. Other high-level Petri
net extensions have been proposed for the design and orchestration of complex workflows. In this section,
we compare StDNs with existing Petri net variants.

Several net variants have been proposed to model workflows, such as for instance workflow nets [4].
These nets model transactions with forks, joins, and concurrent subtasks. They contain two particular
places representing input and output of the designed system. A data-centric variant of workflow nets
called Jackson nets have been proposed in [5]. These nets are workflow nets which can be described by
so-called Jackson types, i.e. expressions that define the structure of documents. Informally, a Jackson net

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 35

P2

C2

FlightRequest
pone

FProposals

OneRequest

SelectOne

SearchFlight

C
2 >

0

idOneRequestC
2 −
−

Figure 18. Selection of all flights compatible with a request after a copy.

describes in which order to fill the contents of a structured document with iterated or optional parts. This
approach is data-centric in the sense that the way data is organized influences the workflow. However,
contrarily to StDNs, in a Jackson nets the actual value of data in a document does not influence the
workflow. Jackson and workflow nets have another drawback: They describe the execution of a single
case, and can not be used to handle several transactions running concurrently. On the contrary, Structured
Data nets are designed to allow some form of isolation of distinct transactions through identifiers. Though
this is not the strict isolation in the sense of ACID properties, this differentiation among concurrent cases
is an interesting property for transactional web-based systems).

Structured data nets are not the first extension of Petri nets handling tokens with complex types. Since
StDNs are, in their full generality, Turing Powerful, they can simulate most of known Petri net extensions,
as for instance Colored Petri nets [6]. Colored Petri nets can also be considered as Petri nets with data.
However, it is well known that colors give a huge expressive power to nets, and can be used to encode
arithmetic operations. It is hard to find a reasonable syntactic subclass of colored nets that is amenable
to verification of simple properties. Yet, we are convinced that our model can certainly be defined using
complex coloring mechanisms. Our nets are close in spirit to PrT−Nets [7], that modify structured data
via manipulations that are guarded by First Order predicates. However, StDNs use guarding mechanisms
that can not be encoded in FO. XML nets [8] is another variant of nets that manipulates and transforms
structured data. Places of an XML net carry data and are constrained by DTDs to guarantee well-
formedness of documents, while transitions perform data manipulations described with the (Xmanila)
query language. Structured Data nets are close in spirit to XML nets, but keep XML transformations
as abstract as possible. Translating XML nets to StDNs would mainly require to use Xmanila as query
language, and to ensure that queries do not produce documents violating any DTD. Note also that this
work on StDNs emphasizes on semantics, decidability and formal properties of the model. Consequently,
the model was designed to allow for identifiable subclasses amenable to verification, which was not the
major concern of former works on XML Nets.

In the rest of this section, we compare the expressive power of effective StDNs with several Petri
net extensions. As we are interested by properties close to coverability, it is interesting to compare
effective StDNs with classes of nets for which coverability is decidable. Such nets include Generalized

36 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

Self Modifying nets[10], nested nets [9], or Petri nets with token carrying data [1]. In this last extension,
data is not really transformed through the workflow, but is mainly used to adapt the structure of flows of
a affine nets at runtime. Let us first compare StDNs with the classes of Generalized Self Modifying nets
depicted in [10] (GSM net for short).

Definition 5.1. (GSM Nets)
A Generalized SM net is a tuple N = (P, T, F,M0) where P is a set of places, T a set of transitions,
and M0 an initial marking, the flow F is a polynomial function of place contents of the form F (x, y) =∑

j∈J λjp
nj

ij
, where (x, y) ∈ P × T ∪ T × P , λj , nj ∈ N, and pij ∈ P , and J is a finite set.

The major difference between GSM and Petri nets is that the flow relation in GSM is a polynomial
function of place contents of the form F (x, y) =

∑
j∈J λjp

nj

ij
, where (x, y) ∈ P×T∪T×P , λj , nj ∈ N,

and pij ∈ P , and J is a finite set. For a marking M and a flow function F (x, y) =
∑

j∈J λjp
nj

ij
, we

denote by val(F (x, y),M) =
∑

j∈J λjM(pij)
nj the value obtained by replacing every variable pij by

M(pij). Informally, a transition t can fire in marking M if for every place p, M(p) is greater than
val(F (p, t),M). Similarly, the number of tokens put in a place p when firing transition t from M is
val(F (t, p),M). GSM nets can be separated into several subclasses with distinct properties, depending
on characteristics of functions attached to their input and output flows. We list some of them, and refer
to [10] for more classes and details on classes inclusion.

Definition 5.2. (GSM subclasses)
A GSM net is a
• Self Modifying net iff functions F (p, t) and F (t, p) use polynomials of degree at most 1.

• Post-G net iff only post arcs carry functions, and F (p, t) is always an integer for every p ∈ P, t ∈
T . Output flow functions can be polynomials.

• Reset Post-G net iff either F (p, t) = p (the whole contents of place p is consumed, this flow is a
reset arc) or F (p, t) ∈ N. Output flow functions can be polynomials.

• Transfer Post-G net iff it is a Reset postG nets such that if F (p, t) = p, then there exists a place
p′ such that F (t, p′) = p, i.e. transition t transfers the contents of place p into place p′.

• Post-SM net iff it is a Self Modifying-net in which F (p, t) is always an integer for every p ∈ P, t ∈
T . Output flow functions can be polynomials of degree at most 1.

• Reset Petri net iff it is a Reset Post-G Nets with standard output flow relation (F (t, p) ∈ N).

• Transfer Petri nets iff it is a Transfer Post-G Nets that contains only normal arcs or transfer arcs.

As shown on the examples of Figure 19, GSM nets can encode nets with inhibitor arcs, which yields
undecidability of termination, boundedness, coverability and reachability properties. However, several
classes with decidable properties have been identified [10]. In the above list, Self Modifying nets is the
only class with undecidable coverability, and all other mentioned classes are contained in the class of
Reset Post-G Nets, for which coverability is decidable.

One can first notice that markings of GSM nets remain standard Petri net markings, that can be
encoded very easily with bounded depth and WQO documents. Let M : P → N be a marking. We can
build a document DM for this marking that has a root with any tag, and |P | children nodes n1, . . . n|P |
with tags p1, . . . p|P |, and valuation ν(pi) = M(pi) attached to each node ni. Figure 20-b) shows an
example of such marking encoding. A similar encoding can be used and remains WQO for any kind of

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 37

p1

p2

p3

t1

p3

t2
p1

2.p2

a)

p1

p2

t1

t2

p1

p1

b)

p1

p2

t1 t2

p1 + p22

c)

p1

Figure 19. Examples of Generalized Self Modifying nets (borrowed from [10]). Net a) is a self modifying net
that contains an inhibitor arc: as soon as place p2 contains a token, constraint p2 = 2.p2 can not be satisfied. Net
b) is a transfer Petri net : when transition t2 fires, the contents of place p1 is moved to place p2. Net c) is a reset
post-G net: the whole contents of place p1 is consumed when t2 fires.

p1 p2

p3 p4

t1t2

a)

N

{p1 = 2} {p2 = 2} {p3 = 0} {p4 = 1}

b)

N

{p1 ≥ 0} {p2 ≥ 0}

c)

Figure 20. Encoding an integral marking of a net with a bounded document: Figure a) is a Petri net, with marking
m(p1) = 2,m(p2) = 2,m(p3) = 0,m(p4) = 1, and Figure b) shows document Dm associated with this marking.
Valuations attached to nodes copy the contents of places. Figure c) is the pattern Pt1 checking on a marking
document that the number of tokens in places of m allows firing of t1.

net provided the marking associates a multiset of elements from a finite domain to places. The question
is now whether firability of a transition t from a marking M is equivalent to satisfaction of some pattern
Pt by DM . Then, simulating the effect of a transition firing can be done by a query Qt that updates
deterministically the contents of DM .

We will show later that for several interesting classes of extended Petri nets models, marking encod-
ing and appropriate local patterns are sufficient to encode the semantics of a net with effective StDNs.
For instance, Figure 20-c) shows an example of pattern which satisfaction on a document DM is equiv-
alent to enabledness of transition t1 in the Petri net of Figure 20-a). However, it is already clear that for
some classes of GSM nets, checking firability of a transition t needs to compare the contents of a place
with polynomials over all place contents. This comparison can not be encoded by a simple pattern Pt, as
patterns only check local constraints on nodes, i.e. constraints on individual place contents. We can show
that no appropriate encoding with effective StDNs can solve this issue. Indeed, decidability properties
of effective StDNs and SM nets suffice to prove the following result:

38 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

Proposition 5.3. There exist GSM nets that can not be encoded by effective StDNs.

Proof:
The proof is straightforward: coverability is decidable for effective WQO StDNs, and undecidable for
(G)SM-nets [10]. ut

A typical example of net that has no effective StDN counterpart is the net of Figure 19-a). This net
is in fact a net with inhibitor arc : as soon as place p2 contains a token, the constraint m(p) > 2.m(p)
is violated, and this transition can not fire. Note that guards attached to flows in StDNs rely on existence
of a document satisfying some constraint on its valuations, not on absence of such document. One can
not either model an inhibitor arcs (p, t) by defining an unsatisfiable pattern 〈p, t〉, as this would forbid
firing of t regardless of whether p contains tokens or not. The translation of markings as described above
shows that a place p is empty when ν(p) = 0. One can hence check emptiness of a place p in marking
M using a pattern 〈p, t〉 that checks existence of a node np in DM carrying tag p and with valuation
ν(p) = 0. This pattern is obviously not monotonous. Fortunately, patterns of effective StDN suffice to
encode many other intersting variants of Petri nets.

Proposition 5.4. Effective StDN can simulate Reset post-G Nets.

Proof:
We show this proposition by providing a construction for wqo StDN that can simulate a Reset Post-G
nets with StDNs that. We have shown at the beginning of this section that any marking M of a reset
post-G net can be described by a structured document DM of bounded depth.

For a given Reset Post-G net N = (P, T, F,M0), we build a StDN N ′ = (P ′, T ′, F ′,M ′0), where
P ′ = {pinit, pone, pout}, P ′DB = {pone}, T ′ = T ∪ {tin, tone, tout}, M ′0(pout) = (DM0 , id) for some
arbitrary identifier id, and M ′0(pone) contains a single token which document is of any type (say • for
instance). The flow relation F ′ is built as follows:

• F ′ contains flow (tin, pin), with associated query 〈tin, pin〉 that returns DM0 .

• F ′ contains flows (pone, tone) and (pin, tone) which associated patterns are Ptt. F ′ also contains
flow (tone, pout), with associated query idpin (i.e, t moves one document from pin to pout. This
ensures that transition tone is fired only once in any execution ofN ′ and copies one initial marking
document DM0 .

• F ′ contains flows (pout, t) and (t, pout) for every transition t ∈ T . Guards are set as follows:
each guard Pt =< pout, t > is a pattern that checks existence of a node np with tag p and value
ν(p) > 0 if F (p, t) = p. If F (p, t) ∈ N, then pattern Pt checks existence of a node np with tag
p and value ν(np) ≥ F (p, t). Then each flow (t, pout) is associated with a query 〈t, pout〉 that
computes DM ′ from any input document DM , where M ′ is the marking obtained after firing t
from M . The query 〈t, pout〉 computes DM ′ as a simple update of value ν(p) attached to each
node np in DM as follows. If F (p, t) = p then ν ′(p) = 0 + val(F (t, p),M). If F (p, t) = x for
some x ∈ N, then ν ′(p) = ν(p) − x + val(F (t, p),m). Every query 〈t, pout〉 is hence clearly
deterministic, monotonous, and backward effective.

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 39

The structure of net N ′ is illustrated in Figure 21. Now it is obvious that at any time, net N ′ can
fire transition tin, but that only one document DM0 produced by this transition can be moved from pin to
pout. We now define a relation R from markings ofN to marking ofN ′ as follows: MN RMN ′ iff MN ′
is a marking that associates token (DMN , id) to place pout, or MN = M0 and MN ′(pout) = ∅. We can
easily show that considering firings of tinit and tone as unobservable moves, R is indeed a simulation
relation: M0RM

′
0, and for every M1 RM ′1 any move M1[t〉M2 of the initial net N can be simulated by

a sequence M ′1[t∗init.t.t
∗
init〉M ′2 of moves of N ′. ut

pin

pout

pone

tin

tout

tone t1

t2

.
.
.

Figure 21. Encoding Reset Post-G-Nets

One can notice that the patterns used to encode a Reset post-G net with a StDN are monotonous,
and that given a transition t and a marking M of the net N ′, one can easily recompute a basis for the
set of possible markings preceding M . According to [10], coverability is decidable for Reset post-G
nets, which is compatible with our results in section 3.3, and furthermore, reset Post-G nets subsume the
classes of reset Petri Nets, transfer post-G nets, transfer nets, post-G nets, post-SM nets, and of course
Petri nets. So the encoding of Proposition 5.4 works with all these classes of nets.

We can now compare effective StDNs with another high-level variant of nets with decidable cov-
erability, namely Nested Petri nets [9]. Nested Petri nets are labeled nets that use Petri net markings
as tokens. They are strictly more expressive than Petri and Reset nets. The semantics of nested nets is
defined using several kinds of moves: transfer moves, which can create, transfer or delete a token (a net
marking) from a place, independent inner moves of a net within a place, that simply consist in firing a
transition from a marking contained in some place, horizontal synchronization, which synchronizes two
inner moves of two nets contained in the same place, and vertical synchronization, that synchronizes an
inner move of a net within a place with a transfer move of the higher-level structure. Both synchroniza-
tion steps suppose that one transition carries some label a and the other one an adjacent label ā.

Definition 5.5. (Nested Petri nets)
A nested Petri net structure is an indexed set of nets Ni = (Pi, Ti, Fi, λi) where
N2, . . . ,Nk are called element nets, and N1 is called a system net. Pi’s and Ti’s are disjoint sets of
places and transitions, and every Fi ⊆ Pi × Ti × E ∪ Ti × Pi × E is a flow relation, where E denotes
a set of expressions. Every transition t from element and system nets carry a label λ(t) from a finite set
L. Two labels from L are adjacent if one of them is some letter a, and the other one its complement ā.
Element nets have markings over finite sets S2, . . . , Sk. We denote byM the set of markings of element
nets. A marking of an element net Ni associates a multiset of elements from Si to each place of Pi. A

40 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

marking of a nested net is a map that associates to places of its system net a multiset of markings from
its element nets. Flows of (element and system) nested nets are labeled by expressions that sum variable
names and constant from S2 ∪ · · · ∪ Sk ∪M, i.e. expressions of the form v1 + . . . vx + c1 + · · · + cy
where vi’s are variable names representing tokens, and cj’s are constant values. If the considered net is
N1, constants take value inM, and if the considered net is Ni, with i ∈ 2 . . . k, constants take values in
Si. Last, it is required that expressions on input arcs do not contain twice the same variable name, and
do not contain constants. In other words, expressions on input arcs are used to select some tokens (bind
variables), and constants in output arcs are used to create new tokens.

Figure 22 shows an example of nested Petri net structure. N1 is a system net with three transitions
labeled {a, b, c}, N2 and N3 are element nets with two transitions labeled respectively with {c̄, d} and
{d̄, e}. Markings of N1 associate multisets of markings of N2 and N3 to places of P1 = {p1, p2, p3}.
Markings of N2 associate multisets of elements from S2 = {s1, s2, s3} to places of P2 = {p4, p5}, and
markings of N3 associate multisets of elements from S3 = {s4} to places of P3 = {p6, p7}.

N1 :

p1

p2

p3

N2 :

p4 p5
p6 p7

v

v

v1

v1

v2

vv

v1 v1+s2

v1v1
v1

v1

v1+v2 v1

N3 :

a

b

c

c

d

d

e

Figure 22. Nested net example

We can now give the semantics of Nested nets. A binding for a set of variables V is a map associating
an element fromM∪ S2 ∪ . . . Sk to every variable in V . A binding for a transition t is a binding for the
set of all variables appearing in expressions labeling input arcs of t. For a binding b and an expression
e, we denote by b(e) the expression obtained by replacing every variable in e by its value. b(e) can be
interpreted as a multiset overM or any of the Si’s. A transition t of a net is firable from a marking M iff
there exists a binding b for t such that for every place p with input flow (p, t, ep,t), we haveM(p) ≥ b(e).

Firing an inner transition t from a marking M contained in some place of the system net consists
in finding a binding b for variables in expressions labeling input arcs of t that allows firing of t. Then
these tokens are consumed to produce a temporary marking Mtmp (Mtmp(p) = M(p) − b(ep,t) for
every place in •t) and new tokens are produced in output places to produce a final marking M ′ such that
M ′(p) = Mtmp(p) + b(et,p) for every place in t•. We write M a−→ M ′ when a move from M to M ′

using a transition carrying label a exists.
Transfer transitions behave similarly, but at the system net level, that is bindings take value inM.

Such transitions allow to create new element net markings in places of the system net, transfer or delete
markings. Similarly, we write M a−→ M ′ when a move from M to M ′ using a transition carrying label
a exists.

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 41

An horizontal synchronization consists in finding a pair of markings M1,M2 in the same place of

the system net such that M1
a−→ M ′1 and M2

a′−→ M ′2 such that a and a′ are adjacent labels, and then
applying the effect of both selected transitions to M1 and M2.

A vertical synchronization consists in finding a markings M1 in some place of the system net such

that an element net allows move M1
a−→M ′1, and a transition M2

a′−→M ′2 of the system net such that a
and a′ are adjacent labels, and then applying simultaneously the effect of selected transitions.

On the example of Figure 22, one can remark that the system netN1 can synchronize vertically with
a transition from a marking of the element net N2 via labels c, c̄, and that a pair of markings for nets
N2,N3 can synchronize horizontally via letters d, d̄.

Proposition 5.6. Effective StDNs can simulate nested Petri nets.

Proof:
Let (Ni)i∈1..k be a nested Petri net structure over an alphabet of labels L with initial marking M0 (that
associates a multiset of markings of nets N2, . . .Nk to places of N1). We use a net structure sim-
ilar to the one used for the encoding of a Reset post-G nets, but with adapted marking documents
and more transitions. We design a StDN N = (P ′, T ′, F ′,M ′0), where P ′ = {pin, pout, pone}, T ′ =
{tin, tout, tone} ∪ T0 × B, where B considers the set of all possible bindings for variables appearing in
element net structure, and T0 is a set of transitions representing possible moves of the net structure. More
precisely, we have: T0 = Tinner ∪ Ttransfer ∪ Thoriz ∪ Tvert with

Tinner = {tk | tk ∈ T2, . . . Tk}
Ttransfer = {tk | tk ∈ T1}
Thoriz = {tt1,t2 | t1, t2 ∈ T2, . . . Tk ∧ l(t2) = l(t1)}
Tvert = {tt1,t2 | t1 ∈ T1, t2 ∈ T2, . . . Tk ∧ l(t2) = l(t1)}

.

The flow of netN follows the same principle as for the encoding of reset post-G nets shown in proof
of Proposition 5.4, and illustrated in Figure 21, but including T0×{pout}∪{pout}×T0 in the construction
of the flow relation connected to place pout instead of T ×{pout}∪{pout}×T . The main difference lays
in the definition of markings for this net and of patterns and queries attached to flows from/to transitions
of Tinner ∪ Ttransfer ∪ Thoriz ∪ Tvert.
Markings: For every marking M of a nested net, we compute a document DM as follows : DM

has a root node n0 carrying tag N1, with |P1| children nodes n1, . . . n|P1| that carry respectively tags
p1, . . . p|P1|. The root and its children depict the system net level. Hence, every tree rooted at a node with
tag pq representing place pq is an encoding of a set of net markings. Let M(pi) = M1, . . .Mj be the set
of net markings attached to place pi in net N1. In document DM , every node ni has as many successors
n1
i , . . . n

j
i as there are net markings in M(pi). Each marking is a marking from an element net, that will

be again represented as a subtree. So, each node nqi of DM is attached a tag from N2, . . . Nk: the tree
starting at node nqi carries a tag Nx if it depicts a marking of net Nx. It now remains to build a subtree
rooted at nqi representing a marking of a standard Petri net. Then, every nqi carrying tag Nx has |Px|
children nq,1i , . . . n

q,|Px|
i , carrying tags p1,x . . . P|Px|,x representing places of net Nx. Each node nq,yi has

|Sx| successors, and each of these successors is attached a tag s ∈ Sx and a valuation ν(s) that associates
to tag s the number of tokens of type s that marking Mq associates to place y. Note that all documents
obtained from markings are of bounded depth. Figure 23 shows a marking document for the nested net
of Figure 22.

42 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

Patterns and Queries: It now remains to describe patterns and queries attached to transitions, that
encode the semantics of nested nets. Let t ∈ Ti, •t = p1, . . . pn and let the flow from pi to t be labeled
by an expression ei of the form v1 + · · · + vxi . For a binding b : {vi}i∈1..xi → Si, let b(ei) denote the
multiset obtained by replacing every variable in ei by its bound value in b, let Im(b) denote the set of
symbols used by b, and |b(ei)|j the number of occurrences of symbol sj ∈ Si in multiset b(ei).

The constraint on flow from pi to t is validated in marking M by binding b if M(pi) ≥ b(ei), i.e.
place pi contains more tokens of each kind than required by b(ei). Note that the number of possible
bindings for element nets expressions is finite. Transition t is firable in M if there exists a binding b such
that constraints of its input flows are validated in M by b. We let pattern Pt,inner,b denote a pattern that
checks existence of a marking of net of type Ni in some place of the nested net, for a fixed binding b.
If •t = p1, . . . pn, this pattern is simply a tree with root n0 with empty constraint, a children node n1

with empty constraint too, representing any place of the system net (the place in which one is looking for
some marking). Node n1 must have a successor n2 carrying tag Ni with n children nodes respectively
with tags p1, . . . pn. Each of these n nodes has k = |Im(b)| successors. Each of these successors is
tagged by a distinct constraint ν(sj) ≥ |b(ei)|j . If this pattern is satisfied by a marking document DM ,
then binding b allows firing transition t from M . Note that this pattern is monotonous.

We can now design a non-deterministic queryQt,inner,b that given a marking documentDM searches
a mapping µ associating nodes of Pt,inner,b to nodes of DM and computes the effect of firing transition
t from M with binding b. In some sense, µ chooses which marking (subtree of DM) is updated. The
effect of firing t with binding b results in a new marking M ′. One computes DM ′ from DM by changing
the value ν(sj) attached to nodes contained in the subtree representing an inner marking. These nodes
are leaves of DM in the image µ(Pt,inner,b), or their neighbors. Let the input flow from p to t be labeled
by some expression ei, and the output flow from t to p be labeled by an expression e′i (an expression of
the form v1 + · · · + vx + c1 + . . . cy), and let n be a node representing the number of tokens of type sj
in place p in the inner marking subtree selected by µ. Then, in DM ′ , node n is attached a new valuation
ν ′ such that tags of n remain unchanged, but ν ′(sj) = ν(sj)− |b(ei)|j + |b(e′i)|j .

One can similarly design patterns that check existence of a binding allowing a transfer transition, or
of a pair of bindings for two transitions performing a vertical/horizontal synchronization. Bindings for
transfer transitions apply to infinite sets of markings, but for such bindings, one needs not be exhaustive,
and it is sufficient to check that there exists as many markings in input places of a system net transition t
as there are variables in input flow expressions of t, which can be easily done on the document represen-
tation of a marking. Then queries attached to transfer transitions simply copy subtrees from the original
marking document, and create new subtrees corresponding to constants (there exists only a finite number
of such constants) in the output flows expressions.

As for the encoding of reset post-G nets, one can show that any firing of a transition t can be simulated
by a sequence of transitions t∗init.t.t

∗
init in the corresponding StDN, and find a simulation relation R

from any marking M of the nested net structure N1, . . .Nk to all markings of N such that pout contains
document DM . ut

A remaining question is whether effective StDNs can encode Petri nets with tokens that carry data
(PNTCD for short). Following the definition of [1], markings of PNTCDs are finite sequences of vec-
tors in NP \ 0P . Clearly, this kind of data structure can be represented very easily with bounded depth
documents, which are hence well-quasi ordered. Transitions of PNTCD are defined as matrices subtrac-
tions, multiplication and additions, that are proved to be backward effective (PNTCD are WSTS with

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 43

N1

p1 p2 p3

N2
N3

p4
p6 p7

{s1=0}{s2=1}

N2
N2

{s3=1} {s1=1}{s2=1}{s3=2}

{s4=1} {s4=2}

p5

p4

{s1=1}{s2=0}{s3=1} {s1=1}{s2=2}{s3=0}

p5 p4

{s1=2}{s2=0}{s3=1} {s1=1}{s2=1}{s3=0}

p5

Figure 23. Encoding for the marking of a nested net as a structured document.

effective pred-basis). Though we do not provide an encoding of the matrices operations in this paper, we
conjecture that PNTCD can be simulated with effective StDNs.

6. Related Work

Structured Data nets are a model for transactional systems with data, such as web-based applications.
They emphasize workflows and data manipulations. Many formalisms outside the Petri net community
have been proposed for the design and orchestration of complex workflows with data, like Active XML
(AXML) [11], Business artifacts [12], Guard stage milestones [13], ORC [14],... One can also men-
tion several initiatives to model web-services in the pi-calculus community (µ-se [19], CASPIS [20],
COWS [21], to mention only a few). None of the above cited formalisms can be qualified of “open
data-centric workflow model”, and they all are confronted to undecidability issues.

Business artifacts [12] describe the logic of transactions for systems equipped with databases. A
transaction carries variables, which are instantiated by values collected along the workflow or entered by
the user. The workflow of a transaction has been defined both using automata with guards on variables
values and on contents of database, or via logical rules defining the logic of a transaction. Verification of
Business Artifacts has been proved feasible in a class of specifications where cyclic behaviors can reuse
data in a restricted way [34]. In their original version, Business Artifacts consider sequential processing
of cases, and can not define parallel threads. They have inspired another model called Guard Stage
Milestones (GSM) [13] that allows some parallelism among tasks.

Session Systems is a model for transactional systems proposed in [16]. It allows for unbounded
numbers of concurrent transactions among unbounded numbers of agents. Upon some restrictions on the
behaviors of agents, verification of coverability properties and simple business rules are decidable. As
in our case, this model attaches unique identifiers to transactions. However, this model emphasizes more
on coordination among agents, and restricts the use of data to finite sets of variables with finite domains
owned by agents.

44 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

Programming languages approaches. BPEL (Business Process Execution Language) and ORC

are programming languages, that have been proposed to model complex workflows. BPEL [15] is an
executable language, and has become the standard to design Business processes. A BPEL specifica-
tion describes a set of independent communicating agents with a rich control structure. Coordination
is achieved through message-passing. Interactions are grouped into sessions implicitly through correla-
tions, which specify data values that uniquely identify a session—for instance, a purchase order number.
ORC [35] is a programming language for the orchestration of services. It allows algorithmic manipu-
lation of data, with an orchestration overlay to start new services and synchronize their results. ORC

has better mechanisms to define workflows than BPEL, but lacks the notion of transaction identity that
is essential to establish sessions among the participants in a service. ORC does not use structured data
a priori, but can handle any kind of data type. Data manipulations are implemented through functions
called sites. Data circulation is described by connecting inputs and outputs of sites via connectors. This
allow to apply arithmetic operations to elements of a stream, to filter elements, or conveniently select the
first value received from several streams.

Data-centric approaches. Several ingredient of our model are inspired from AXML. AXML [11]
defines web services as a set of guarded rules that transform semi-structured documents described, for
instance, in XML. However, it does not make workflows explicit, and does not have a native notion of
transaction either. To implement a sequential workflow in an AXML specification, one has to explicitly
integrate control states to documents, guards and rules, which can be cumbersome. A decidable subclass
of AXML called ”positive” AXML [36] has been identified. Rules in positive specifications can only
append data to a document. This monotonicity allows to decide simple properties. For recursion free
AXML, a simple logic (LTL-tree logic) has been shown decidable [37]. A different formalization of
AXML has been proposed in Tree Pattern Rewrite Systems (TPRS) [2]. TPRS systems define rules, that
can be applied to append data, synthesize or remove information from documents. Coverability of some
configuration is decidable when a specification can only reach configurations in which documents are of
bounded depth.

Process Algebras. A lot of efforts have also been devoted to services and transactional systems
modeling in the π-calculus community. Session types [18] have been proposed as a formal model for
web services, and have then been enhanced to capture various features such as multiple instantiations of
identical agents [38] and nested sessions [39]. Session types have been used to determine whether an
otherwise unconstrained set of processes adheres to a communication discipline specified by a session
type, or to model and verify security issues such as information flows and access control problems. The
expressive power of the whole π-calculus and session types do not allow for verification of reachability or
coverability properties. However, [40] uses WSTS to show that a fragment of spatial logic is decidable for
the fragment of well-typed π-calculus processes. The considered fragment can express safety properties.
A solution to covering problems for π-calculus with bounded depth has been proposed in [3]. This work
shows that for bounded depth π-calculus, a forward coverability algorithm (EEC) terminates, even if the
bound is unknown.

Several variants of π-calculus have been proposed to model services. A variant of ORC and π-
calculus is proposed by Lanese et al. [41]: processes communicate via streams, and choices of a process
are implemented as external choices (if-then-else constructs can be implemented this way). This model
has an interesting expressive power, as it allows to select values from (ordered) streams, minimal ele-
ments, etc. In particular, it allows for the selection of first arrived values (as in ORC), and this feature

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 45

can not be implemented in a simple way with our model. The counterpart of this expressiveness lies
in the undecidability of non-trivial properties (in the sense of Rice’s theorem). A multiparty session
formalism called µ − se is proposed by [19]. As in StDNs, they avoid an explicit handling of sessions
identities. Sessions in µ− se are located on sites, and allow participating processes to communicate in a
private way. Additional communications are allowed among processes that are located on the same site.
Arbitrary numbers of sessions can be created on a site, and a session can handle an arbitrary number of
joined processes. A merging mechanism allows a process to enter a session at any point, and persistent
sessions defining offered services can be specified. Communications are handled as usual in π-calculus.
The CASPIS formalism [20] was influenced by the π-calculus and by ORC, and designed to orchestrate
services. It provides pairwise sessions, modeled as service calls which create private names shared by the
caller and callee of a session, and pipelining, i.e. a way for a service P to call another serviceQwhenever
a new value is produced by P . Unlike the preceding π-calculus variants, CASPIS allows guarded sums
(i.e. internal choices), and gives ways to terminate sessions before their final completion. Conversation
types [42] is an extension of π-calculus that replaces channel based communications by context sensitive
message based communications. A conversation is a behavioral type describing multi party interactions
among processes. [42] provides typing mechanisms to ensure that conversations are implemented by
processes in a compatible way, and that processes can never get stuck during concurrent transactions.
A conversation allows for unbounded number of participants. The COWS approach (see for instance
[21]) introduces a complete language for the orchestration of stateful services. It proposes correlation
variables that implement correlations of messages as in BPEL, a wait operation to suspend processes for
a chosen time and a kill operation, that terminates terms within a delimited scope. Though data is not
a first class citizen in COWS, this formalism allows for data manipulation, and can use operations on
semi-structured data to perform message correlations à la BPEL.

Let us now compare features of StDNs with features of other formalisms. Our model is data centric:
it also allows complex manipulation of semi-structured data. It enables the specification of transactions,
data storage, and workflows. The model, its expressiveness and decidable properties can be adapted
by simply changing the pattern and query languages attached to flows. However, several convenient
modeling features are missing. Some of them are purely syntactical: Database operation (filtering, join,
etc.), global patterns, read arcs can be simulated by our model and could be seen as macros. However,
the model still misses simple ways to end a transaction: There is no way to kill a transaction, and one
has to wait for all document belonging to a failed transaction to be consumed by the final transition tout.
Mechanisms to reset all documents carrying some identifier can be implemented (as shown in section 4),
but only with non-effective StDNs. A second missing aspect of StDN that was successfully implemented
in π-calculus variants and in session systems is multiparty sessions. In StDNs, a transaction comes from
the environment. External choices can be modeled by non-deterministic transitions, and a terminated
case is erased, i.e, returned to the environment. However, a transaction is, in some sense, a point to
point conversation between a StDN and its environment, there is no notion of session users, or groups
contributing to a process.

46 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

7. Conclusion

This paper has defined an extension of Petri Nets whose transitions manipulate structured data via pat-
terns and queries. In its full generality this model is Turing Powerful. However, under some restrictions
on the nature of queries and on the shape of documents some interesting properties, such as coverability,
are decidable. We believe that limiting data to structured documents of bounded depth with wqo labels
is a sensible approach: many information systems use only strings, booleans, integers, but do not need
domains that are not well quasi ordered such as real numbers with arbitrary precision.

Several improvements might be investigated. An important issue is to identify classes of data op-
erations that allow StDNs to fall into decidable subclasses. Our coverability proof relies on backward
effectiveness of transitions to obtain effective StDNs, i.e. obtain effective WSTS. This does not identify
a particular class of queries. To be practical, we would like to identify classes of non-trivial monotonous
queries that ensure effectiveness. Decidability results for positive active XML [36], for instance, use an-
other form of monotonicity: documents can only grow. This is an adequate assumption in case manage-
ment systems. Considering positive StDN could be a way to ensure effectiveness. Another improvement
lies in pattern expressiveness. Currently, only individual constraints on data values are attached to nodes.
One could, however, consider patterns with constraints of the form v · σ ≤ v′ · σ′, involving values of
several nodes, sets of patterns requiring matching on several documents from a place or boolean com-
binations of patterns and see how these extensions affect the model properties. Another line of research
concerns symbolic manipulation of upward closed sets of documents. So far, we only have studied cov-
erability for symbolic set of initial cases, but we can imagine to define symbolic sets of initial markings,
database contents, or target markings to cover. In a similar way, we would like to use adapted safety
properties: as discussed in this paper, checking safety-like properties would probably require restricting
documents to well quasi ordered documents over intersection effective domains. We also want to con-
sider extensions of the model with some essential features for web services and transactional systems,
for instance to allow cancellation of a transaction. Such a feature is currently not handled by our model,
but is important, as an StDN might not be sound, even when it is effective. Another missing ingredient
is the possibility to define multiparty transactions, these are essential to design, for instance chat systems
or group communication.

So far, StDNs were not used on real case studies. Even if the formalism allows simulating any kind
of program, it is obviously too low-level to be used as an engineering tool. One way to circumvent
this drawback is to equip the language with a syntax adapted to users needs, containing macros (to
query, copy, sort, or filter data), and to define the semantics of systems depicted with this syntax trough
an equivalent StDN. Then a system defined this way can be verified if it falls in one of the decidable
classes highlighted in this paper. Most of real systems will fall in undecidable classes. This however
raises the issue of sound abstraction techniques from general classes of StDN to decidable subclasses to
allow verification of StDNs for real-life systems. Abstraction is also a key issue to improve efficiency of
coverability algorithms, which usually have high complexities.

Acknowledgements: We would like to thank anonymous reviewers who helped improving this work
through their careful reading and useful suggestions.

E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data 47

References

[1] Lazic R, Newcomb T, Ouaknine J, Roscoe AW, Worrell J. Nets with Tokens which Carry Data. Fundam
Inform. 2008;88(3):251–274.

[2] Genest B, Muscholl A, Wu Z. Verifying Recursive Active Documents with Positive Data Tree Rewriting. In:
Proc. of FSTTCS 2010. vol. 8 of LIPIcs; 2010. p. 469–480.

[3] Wies T, Zufferey T, Henzinger TA. Forward Analysis of Depth-Bounded Processes. In: FOSSACS. vol. 6014
of LNCS. Springer; 2010. p. 94–108.

[4] van der Aalst WMP. The Application of Petri Nets to Workflow Management. Journal of Circuits, Systems,
and Computers. 1998;8(1):21–66.

[5] van Hee KM, Hidders J, Houben G, Paredaens J, Thiran P. On the relationship between workflow models
and document types. Inf Syst. 2009;34(1):178–208.

[6] Jensen K. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use - Volume 1, Second
Edition. Monographs in Theoretical Computer Science. An EATCS Series; 1996.

[7] Genrich H. Predicate/Transition Nets. In: Petri Nets: Central Models and Their Properties, Advances in Petri
Nets 1986. vol. 254 of LNCS. Springer; 1986. p. 207–247.

[8] Lenz K, Oberweis A. Modeling Interorganizational Workflows with XML Nets. In: 34th Annual Hawaii
International Conference on System Sciences (HICSS-34); 2001. .

[9] Lomazova IA, Schnoebelen P. Some Decidability Results for Nested Petri Nets. In: Perspectives of System
Informatics. Springer; 1999. p. 208–220.

[10] Dufourd C, Finkel A, Schnoebelen P. Reset Nets Between Decidability and Undecidability. In: Proc. of
ICALP’98. vol. 1443 of LNCS. Springer; 1998. p. 103–115.

[11] Abiteboul S, Benjelloun O, Manolescu I, Milo T, Weber R. Active XML: A Data-Centric Perspective on
Web Services. In: BDA02; 2002. .

[12] Nigam A, Caswell NS. Business artifacts: An approach to operational specification. IBM
Syst J. 2003 July;42:428–445. Available from: http://dx.doi.org/10.1147/sj.423.0428.
doi:http://dx.doi.org/10.1147/sj.423.0428.

[13] Hull R, Damaggio E, Fournier F, Gupta M, Heath FT, Hobson S, et al. Introducing the Guard-Stage-Milestone
Approach for Specifying Business Entity Lifecycles. In: Proc. of WS-FM 2010. vol. 6551 of LNCS. Springer;
2011. p. 1–24.

[14] Kitchin D, Cook W, Misra J. A Language for Task Orchestration and Its Semantic Properties. In: CON-
CUR’06; 2006. p. 477–491.

[15] Andrews T, Curbera F, Dholakia H, Goland Y, Klein J, Leymann F, et al.. Business Process Execution Lan-
guage for Web Services (BPEL4WS). Version 1.1; 2003. Available from: http://xml.coverpages.org/
BPELv11-May052003Final.pdf.

[16] Akshay S, Hélouet L, Mukund M. Sessions with an unbounded number of agents. In: ACSD’14. vol. 4281.
IEEE; 2014. p. 166–175.

[17] Badouel E, Hélouët L, Kouamou GE, Morvan C. A Grammatical Approach to Data-centric Case Management
in a Distributed Collaborative Environment. In: SAC’15. ACM; 2015. p. 1834–1839.

[18] Honda K, Yoshida N, Carbone M. Multiparty asynchronous session types. In: POPL. ACM; 2008. p. 273–
284.

48 E. Badouel, L. Hélouët, C. Morvan / Petri Nets with Structured Data

[19] Bruni R, Lanese I, Melgratti HC, Tuosto E. Multiparty Sessions in SOC. In: COORDINATION. vol. 5052
of LNCS. Springer; 2008. p. 67–82.

[20] Boreale M, Bruni R, De Nicola R, Loreti M. Sessions and Pipelines for Structured Service Programming. In:
FMOODS. vol. 5051 of LNCS. Springer; 2008. p. 19–38.

[21] Pugliese R, Tiezzi F. A calculus for orchestration of Web services. J Applied Logic. 2012;10(1):2–31.

[22] Abdulla PA, Cerans K, Jonsson B, Tsay YK. General Decidability Theorems for Infinite-State Systems. In:
Proc. of LICS’96. IEEE; 1996. p. 313–321.

[23] Finkel A, Schnoebelen P. Well-structured transition systems everywhere! Theor Comput Sci.
2001;256(1-2):63–92. Available from: http://dx.doi.org/10.1016/S0304-3975(00)00102-X.
doi:10.1016/S0304-3975(00)00102-X.

[24] David C. Complexity of Data Tree Patterns over XML Documents. In: Mathematical Foundations of Com-
puter Science. vol. 5162 of LNCS; 2008. p. 278–289.

[25] Miklau G, Suciu D. Containment and equivalence for a fragment of XPath. J ACM. 2004;51(1):2–45.

[26] World Wide Web Consortium. XML Path Language (Xpath). W3C; 1999. W3C Recommendation,http:
//www.w3.org/TR/xpath.

[27] Ding G. Subgraphs and well-quasi-ordering. In: Journal of Graph Theory. vol. 16(5); 1992. p. 489 – 502.

[28] OASIS. Web Services Business Process Execution Language. OASIS; 2007. http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

[29] World Wide Web Consortium. XQuery 1.0: An XML Query Language. W3C; 1999. W3C
Recommendation,http://www.w3.org/TR/xquery.

[30] Gostellow K, Cerf V, Estrin G, Volansky S. Proper Termination of Flow-of-control in Programs Involving
Concurrent Processes. In: Application and Theory of Petri Nets ICATPN ’97. vol. 7(11) of ACM Sigplan.
Springer; 1972. p. 15–27.

[31] van der Aalst WMP. Verification of Workflow Nets. In: Application and Theory of Petri Nets 1997 ICATPN
’97. vol. 1248 of LNCS. Springer; 1997. p. 407–426.

[32] Mlynkova I, Toman K, Pokorný J. Statistical Analysis of Real XML Data Collections. In: Proc. of Interna-
tional Conference on Management of Data’06. Tata McGraw-Hill; 2006. p. 15–26.

[33] Higman G. Ordering by divisibility in abstract algebras. Proc London Math Soc (3). 1952;2:326–336.

[34] Damaggio E, Deutsch A, Vianu V. Artifact systems with data dependencies and arithmetic. ACM Trans
Database Syst. 2012;37(3):22.

[35] Misra J, Cook W. Computation Orchestration. Software and Systems Modeling. 2007;6(1):83–110.

[36] Abiteboul S, Benjelloun O, Milo T. Positive Active XML. In: Proc. of PODS’04. ACM; 2004. p. 35–45.

[37] Abiteboul S, Segoufin L, Vianu V. Static analysis of active XML systems. ACM Trans Database Syst.
2009;34(4).

[38] Deniélou P, Yoshida N. Dynamic multirole session types. In: POPL; 2011. p. 435–446.

[39] Demangeon R, Honda K. Nested Protocols in Session Types. In: CONCUR; 2012. p. 272–286.

[40] Acciai L, Boreale M. Deciding Safety Properties in Infinite-State Pi-Calculus via Behavioural Types. In:
ICALP (2). vol. 5556 of LNCS. Springer; 2009. p. 31–42.

[41] Lanese I, Martins F, Vasconcelos VT, Ravara A. Disciplining Orchestration and Conversation in Service-
Oriented Computing. In: SEFM. IEEE Computer Society; 2007. p. 305–314.

[42] Caires L, Torres Vieira H. Conversation types. Theor Comput Sci. 2010;411(51-52):4399–4440.

