
Robustness of Time Petri Nets under architectural
constraints ?

S. Akshay1,2, Loı̈c Hélouët1, Claude Jard1,2, Didier Lime3 and Olivier H. Roux3

1 INRIA/IRISA Rennes, France
2 ENS Cachan Bretagne, Rennes, France

3 LUNAM Université, École Centrale de Nantes, IRCCyN (CNRS UMR 6597), Nantes, France

Abstract. This paper addresses robustness issues in Time Petri Nets (TPN) un-
der constraints imposed by an external architecture. The main objective is to
check whether a timed specification, given as a TPN behaves as expected when
subject to additional time and scheduling constraints, specified by another TPN
that constrains the specification via read arcs. Our robustness property says that
the constrained net does not exhibit new timed or untimed behaviors. We show
that this property is not always guaranteed but that checking for it is always de-
cidable in 1-safe TPNs. We further show that checking if the set of untimed be-
haviors of the constrained and specification nets are the same is also decidable.
Next we turn to the more powerful case of labeled 1-safe TPNs with silent tran-
sitions. We show that checking for the robustness property is undecidable even
when restricted to 1-safe TPNs with injective labeling, and exhibit a sub-class
of safe TPNs (with silent transitions) for which robustness is guaranteed by con-
struction. We demonstrate the practical utility of this sub-class with a case-study
and prove that it already lies close to the frontiers of intractability.

1 Introduction

Robustness is a key issue for the implementation of systems. Starting from a descrip-
tion of a system, one wants to ensure that the considered system can run as expected on
a given architecture with resource constraints (e.g., processors, memory), scheduling
schemes on machines implementing several components of the system, imprecision in
clocks, possible failures and so on. Once a system is implemented on a given architec-
ture, one may discover that it does not behave as expected: some specified behaviors are
never met or unspecified behaviors appear. In this paper, we consider systems in which
time and concurrency play an important role.

We address the problem of robust implementability of safe Petri nets. Precisely, we
consider a Petri net model of a concurrent system, which is then constrained by another
Petri net defining some implementation details (for example, the use of resources). We
want to connect these two models in such a way that implementation features can only
restrict the set of possible behaviors of the original model, and does not create new
behaviors. Thus, if the implementation features can only restrict (but not enlarge) the
set of original behaviors, we say the model is robust with respect to the implementation

? This work was funded by the project ANR ImpRo (ANR-2010-BLAN-0317)

constraints. We consider these issues in the setting of Time Petri nets. Time Petri nets
(TPNs) are Petri nets which transitions are equipped with timing constraints, given as
intervals. As soon as a transition is enabled, a clock attached to this transition is reset
and starts measuring time. A transition is then allowed to fire if it is enabled and if
its clock’s value lays within the time interval of the transition. When a TPN contains
read arcs, places that are read can enable/disable a transition, but tokens from read
places are not consumed at firing time. Figure 1-a is an example of TPN with read
arcs. Transitions are represented as black rectangles, places as circles, flows as thick
lines joining transitions ans places, and dotted lines represent read arcs. Transitions
can be labeled by an observable letter, or unobservable, and constraints are represented
as intervals labeling transitions. Note that in litterature, robustness in timed automata
usually refers to invariance of behaviors under small time perturbations. We use the term
“robustness” is a more general context: we consider preservation of specified behaviors
when new architectural constraints (scheduling policies, resources, ...) are imposed.

We consider bipartite architectures: a specification of a distributed system is given
as a TPN, called the ground net and the architectural constraints are specified by an-
other TPN, called the controller. The controller net can read places of the ground net,
but cannot consume tokens from the ground net, and vice versa. The net obtained by
considering the ground net in the presence of the controller is called the controlled net.
Though this problem resembles supervisory control, there are some important differ-
ences. Supervisory control is used to restrict the behaviors of a system in order to meet
some (safety) property P . The input of the problem is the property P , a description of
the system, and the output a controller that restricts system: the behavior of a system
under control is a subset of the original specification satisfying P . In our setting, there is
no property to ensure, but we want to preserve as much as possible the specified behav-
iors. We will show in the example below that architectural contraints may add behaviors
to the specification. This situation can be particularly harmful, especially when the ar-
chitecture changes for a system that has been running properly on a former architecture.
New faults that were not expected may appear, even when the overall performance of
the architecture improves. Detecting such situations is a difficult task that should be au-
tomated. The last difference with supervisory control is that we do not ask for synthesis
of a controller. In our setting, the controller represents the architectural constraints, and
is part of the input of the robustness problem. The question is then whether the ground
net preserves its behaviors when controlled.

More specifically, we consider the following questions. We first ask if the untimed
language of the controlled net is contained in the untimed language of the ground net.
This problem is called untimed robustness. Next, we ask if the untimed language is ex-
actly the same despite control, called the untimed equivalence problem. The last prob-
lem considered is timed robustness, which asks if the timed language of the controlled
net is contained in the timed language of the ground net.

Let us consider the example of Figure 1-a. It contains a ground net N1, with four
transitions a, a′, b, b′, and a controller C1, that acts as a global scheduler allowing firing
of a or b. In N1, transitions a, a′ and b, b′ are independant. The net N1 is not timed
robust w.r.t. the scheduling imposed by C1: in the controlled net, a can be fired at time 3
which is impossible in N1 alone. However, if we consider the restriction of N1 to b, b′,

2

the resulting subnet is timed robust w.r.t C1. Figure 1-b shows a ground netN2 with four
unobservable transitions, and one observable transition c. This transition can be fired at
different dates, depending on wheter the first transition to fire is the left transition (with
constraint [1, 2]) or the right transition (with constraint [2, 3]) below the initially marked
place. The net C2 imposes that left and right transitions are not enabled at the same time,
and switches the enabled transition from time to time. With the constraints imposed by
C2, c is firable at date 5 in the controlled net but not at date 6 while it is firable at both
dates 5 and 6 inN2 alone. This example is timed robust w.r.t C2, as it allows a subset of
its original behaviors.

Our results are the following: The problem of checking untimed robustness for 1-
safe TPNs is decidable. The timed variant of this problem is decidable for 1-safe TPNs,
under the assumption that there are no ε transitions and the labeling of the ground net is
injective. However, with arbitrary labeling and silent transitions this problem becomes
undecidable. Further, even with injective labeling, timed robustness is undecidable as
soon as the ground net contains silent transitions. We then show a natural relaxation
on the way transitions are controlled and constrained, which ensures timed robustness
of nets. In the untimed setting we also consider the stronger notion of equivalence of
untimed languages and show that it is always decidable to check this property with or
without silent transitions. The paper is organized as follows: Section 2 introduces our
model of Petri nets, and the problems considered in the paper. Section 3 shows de-
cidability of robustness in the untimed setting, or when nets are unlabelled. Section 4
shows that this problem becomes undecidable in the timed setting as soon as silent tran-
sitions are introduced. Section 5 shows conditions on ground nets and control schemes
ensuring timed robustness. Section 6 provides a small case-study to show the relevance
of our condition, before concluding with Section 7. Missing proofs can be found in
appendix.

Several papers deal with control of Petri Nets where transitions are divided into un-
timed controllable and uncontrollable transitions. Among them, Holloway and Krogh [8]
first proposed an efficient method to solve a control problem for a subclass of Petri Nets
called safe marked graph. Concerning TPNs, [6] propose a method inspired by the ap-
proach of Maler [10]. The controller is synthesized as a feedback function over the state

• •

• • •

C

N

[1, 2]
a

[3,∞)
a′

[1, 3]
b′

[1,∞)
b

[1, 2] [2, 3]

[2, 3] [1, 2]

[1, 1]c

[1, 1]

[1, 1]

[1, 2]

[1, 2]

Fig. 1. Illustrative examples (a) and (b) - (unlabeled transitions depict silent moves)

3

space. However, in all these papers, the controller is given as a feedback law, and it is
not possible to design a net model of the controlled system. To overcome this prob-
lem, [7] propose a solution using monitors to synthesise a Petri Net that models the
closed-loop system. The method is extended to real time Supervisory Control in [11].
The supervisor uses enabling arcs (which are equivalent to read arcs) to enable or block
a controllable transition. In [13], robustness is addressed in a weaker setting called
schedulability: given an TPN N , the question is whether the untimed language of N ,
and the language of the underlying untimed net (i.e. without timing constraints) is the
same. This problem is addressed for acyclic nets, or with restricted cyclic behaviors.

2 The model and the questions

Let Q+,R+ denote the set of non-negative rationals and reals respectively. Then, I
denotes the set of time intervals, i.e., intervals in R+ with end points in Q+ ∪ {+∞}.
An interval I ∈ I can be open (I−, I+), closed [I−, I+], semi-open (I−, I+], [I−, I+)
or unbounded [I−,+∞), (I−,+∞), where I− and I+ ∈ Q+.

2.1 Time Petri nets

Definition 1 (place/transition net with read arcs). A time Petri net (TPN for short)
with read arcs is a tuple N = (P, T,W,R, I) where P is a finite set of places, T is
a finite set of transitions, with P ∩ T = ∅, W : (P × T) ∪ (T × P) → {0, 1} and
R : (P × T) → {0, 1} s.t., W−1(1) ∩ R−1(1) = ∅ are flow relations and Is : T → I
is a map from the transitions of N to time intervals I.

Every TPN can be seen as a union of an untimed Petri Net N = (P, T,W,R) and
of a timing function I . The untimed net N will be called the underlying net of N .

Semantics. The net defines a bipartite directed graph with two kinds of edges: there
exists a (consume) arc from x to y (drawn as a solid line) iff W (x, y) = 1 and there
exists a (read) arc from x to y (drawn as a dashed line) iff R(x, y) = 1. For all x ∈
P ∪ T , we define the following sets: •x = {y ∈ P ∪ T | W (y, x) = 1} and x• =
{y ∈ P ∪ T | W (x, y) = 1}. For all x ∈ T , we define ◦x = {y ∈ P | R(y, x) = 1}.
These definitions extend naturally to subsets by considering union of sets. A marking
m : P → N is a function such that (P,m) is a multiset. For all p ∈ P , m(p) is the
number of tokens in the place p. A transition t ∈ T is said enabled by the marking
m if m(p) > 0 for every place p ∈ (•t ∪ ◦t). en(N,m) denotes the set of transitions
of N enabled by m. The firing of an enabled transition t produces a new marking m′

computed as ∀p ∈ P,m′(p) = m(p)−W (t, p) +W (p, t). We fix a marking m0 of N
called its initial marking. We say that a transition t′ is in conflict with a transition t iff
(•t ∪ ◦t) ∩ (•t′) 6= ∅ (firing t′ consumes tokens that enable t).

The semantics of a TPN is usually given as a timed transition system (TTS) [9].
This model contains two kinds of transitions: continuous transitions when time passes
and discrete transitions when a transition of the net fires. A transition tk is said newly
enabled by the firing of the firable transition ti from the marking m, and denoted

4

↑en(tk,m, ti), if the transition tk is enabled by the new marking (m \ •ti) ∪ t•i but
was not by m \ (•ti). We will denote by ↑en(m, ti) the set of transitions newly enabled
by the firing of ti from m. A valuation is a map ν : T → R+ such that ∀t ∈ T, ν(t) is
the time elapsed since twas last newly enabled. For δ ∈ R+, ν+δ denotes the valuation
that associates ν(t) + δ to every transition t ∈ T . Note that ν(t) is meaningful only if t
is an enabled transition. 0 is the null valuation such that ∀t,0(t) = 0.

The semantics of TPN N is defined as the TTS (Q, q0,→) where a state of Q is
a couple (m, ν) of a marking and valuation of N , q0 = (m0,0) and →∈ (Q × (T ∪
R+) × Q) is the transition relation describing continuous and discrete transitions. The
continuous transition relation is defined ∀δ ∈ R+ by:

(m, ν)
δ−→ (m, ν′) iff ν′ = ν + δ

and ∀tk ∈ en(m),

{
ν′(tk) ≤ I+s (tk) and Is(tk)is of the form [a, b] or (a,b]
ν′(tk) < I+s (tk) and Is(tk)is of the form [a,b) or (a,b)

Intuitively, time can progress iff letting time elapse does not violate the upper constraint
I+s (t) of any transition t. The discrete transition relation is defined ∀ti ∈ T by:

(m, ν)
ti−→ (m′, ν′) iff

ti ∈ en(m),m′ = (m \ •ti) ∪ t•i
ν(ti) ∈ Is(ti),
∀tk, ν′(tk) = 0 if ↑en(tk,m, ti) and ν(tk) otherwise.

Intuitively, transition ti can fire if it was enabled for a duration included in the time
constraint Is(t). Firing ti from m resets the clocks of newly enabled transitions.

A run of a TTS is a sequence of the form p1
α1−→ p2

α2−→ . . .
αn−−→ pn where p1 = q0,

and for all i ∈ {2..n}, (pi−1, αi, pi) ∈→ and αi = ti ∈ T or αi = δi ∈ R+. Each
finite run defines a sequence over (T ∪ R+)∗ from which we can obtain a timed word
over T of the form w = (t1, d1)(t2, d2) . . . (tn, dn) where each ti is a transition and
di ∈ R+ the time at which transition ti is fired. More precisely, if the sequence of labels
read by the run are of the form δ0δ1 . . . δk1t1δk1+1δk1+2 . . . δk2t2 . . . tn, then the timed
word obtained is (t1, d1) . . . (tn, dn) where di =

∑
0≤j≤ki δj . We define a dated run

of a TPN N as the sequence of the form q1
(d1,t1)−−−−→ q2 . . .

(dn,tn)−−−−→ qn, where di’s are
the dates as defined above and each qi is the state reached after firing ti at date di.

We denote by Ltw(N) the timed words over T generated by the above semantics.
This will be called the timed (transition) language of N . We denote by Lw(N) the
untimed language of sequences of transitions obtained by projecting onto the first com-
ponent. Furthermore, given a timed wordw over T , if we consider a subset of transitions
X ⊆ T , we can project w onto X to obtain a timed word over X . We will denote this
projected language by Ltw(N)|X . For simplicity, we did not consider final states in our
TTS, and hence define prefix-closed languages as is standard in Petri nets. Our results
will still continue to hold with an appropriate definition of final states.

In this paper, we limit the study of robustness to TPNs where the underlying PN
is 1-safe, i.e., nets such that ∀p ∈ P, m(p) ≤ 1, for all reachable markings m in
the underlying PN. The reason for using a property of the underlying net is that de-
ciding if an untimed PN is 1-safe is PSPACE-complete, whereas checking if a TPN is
bounded is undecidable [12]. Reachability of a markingm in a safe net is also PSPACE-

5

complete [5]. For safe Petri nets a place contains either 0 or 1 token, hence we identify
a marking m with the set of places p such that m(p) = 1.

2.2 The Control relation

Let us consider two safe Time Petri nets N = (PN , TN ,WN , RN , IN ,m
0
N) and C =

(PC , TC ,WC , RC , IN ,m
0
C). C models time constraints and resources of an architecture.

One can expect these constraints to restrict the behaviors of the original net (we will
show however that this is not always the case), that is C could be seen as a controller.
Rather than synchronizing the two nets (as is often done in supervisory control), we
define a relation R ⊆ (PC × TN) ∪ (PN × TC), connecting some places of C to some
transitions of N and vice versa. The resulting net N (C,R) is still a place/transition net
defined byN (C,R) = (PN ∪PC , TN ∪TC ,WN ∪WC , RN ∪RC∪R, IN ∪IC ,m0

N ∪m0
C).

We call N the ground net, C the controller net and N (C,R) the controlled net.
The reason for choosing this relation is two-fold. Firstly, the definition of control

above preserves the formalism as the resulting structure is a time Petri net as well. This
allows us to deal with a single formalism throughout the paper. Secondly, one can define
several types of controllers. By allowing read arcs from the controller to the ground net
only, we model blind controllers, whose states evolve independently of the ground net’s
state. The net in Figure 1(a) is an example of such a controlled net. Conversely, if
read arcs are allowed from the ground net to the controller, controller’s state changes
depending on the current state of the ground net. For the sake of clarity, all examples in
the paper have blind controllers, but both types of control are possible.

Our goal is to compare the behaviors of N with its behaviors when controlled
by C under R, i.e., N (C,R). Therefore, the language of (timed and untimed) transi-
tions, i.e., Ltw(N),Ltw(C),Lw(N),Lw(C), are as usual but when talking about the
language of the controlled net, we will always mean the language projected onto transi-
tions of N , i.e., Ltw(N (C,R))|TN or Lw(N (C,R))|TN . Abusing notation, we will write
Ltw(N (C,R)) (similarly Lw(N (C,R))) to denote their projections onto TN .

2.3 The robustness problem

We will now formally define and motivate the problems that we consider in this paper.

Definition 2. Given 1-safe TPNs N and C, and a set of read arcs R ⊆ (PC × TN) ∪
(PN × TC), N is said to be untimed robust under (C, R) if Lw(N C,R) ⊆ Lw(N).

For time Petri nets, the first problem we consider is the untimed robustness problem,
which asks whether a given TPN N is untimed robust under (C, R). This corresponds
to checking whether the controlled net N (C,R) only exhibits a subset of the (untimed)
behaviors of the ground TPN N . The second question addressed is the untimed equiv-
alence problem, which asks if the untimed behaviors of the controlled net N (C,R) and
ground net N are the same, i.e., if Lw(N C,R) = Lw(N). In fact these questions can
already be asked for “untimed Petri nets”, i.e., for Petri nets without the timing function
Is and we also provide results for this setting.

Note however that untimed robustness only says that every untimed behavior of
the controlled net N (C,R) is also exhibited by the ground net N . However some timed

6

behaviors of the controlled netN (C,R) may not be timed behaviors of the ground netN .
For obvious safety reasons, one may require that a controlled system does not allow new
behaviors, timed or untimed. Thus, we would like to ensure or check that even when
considering timed behaviors, the set of timed behaviors exhibited by the controlled net
N (C,R) is a subset of the set of timed behaviors exhibited by the ground netN . We call
this the timed robustness property.

Definition 3. Given 1-safe TPNs N and C, and a set of read arcs R ⊆ (PC × TN) ∪
(PN × TC), N is said to be timed robust under (C, R) if Ltw(N C,R) ⊆ Ltw(N).

One can further ask if the timed behaviors are exactly the same, which means that
the controller is useless. Brought back to our setting, it means that the architectural
constraints do not affect the executions of the system, nor their timings. While untimed
equivalence of unconstrained and constrained systems seems a reasonable notion, timed
equivalence is rarely met, and hence seems a too restrictive requirement. We will see in
Section 4 that introducing silent transitions gives a new meaning to these notions.

3 Controlling (time) Petri nets

Let us first consider untimed 1-safe Petri nets. Let N be an untimed net, and C be an
untimed controller. We can observe that C can only restrict the behaviors of N , under
any choice ofR. HenceN is always untimed robust under (C,R). Furthermore one can
effectively check if the controlled net has the same untimed language as the ground net,
by building their marking graphs, and then checking inclusion. Thus, the robustness and
equivalence problems are decidable for untimed nets.

Proposition 1. Let N , C be two untimed 1-safe Petri nets. Then,

1. For any R ⊆ (PC × TN) ∪ (PN × TC), N is untimed robust under (C,R).
2. For a fixed set of read arcs R ⊆ (PC × TN) ∪ (PN × TC) checking if Lw(N) =
Lw(N (C,R)) is PSPACE-complete.

The proof of this proposition can be found in appendix. Part 1) comes from the
fact that a controller only restrics the set of reachable markings. Part 2) comes after
demonstration that it is sufficient to show inclusion Lw(N) ⊆ Lw(N (C,R)), which can
be done by exploration of the marking graph of the controlled net.

This property of untimed Petri nets has a counterpart for time Petri nets: let us
consider unconstrained nets N and C, i.e., such that IN (t) = [0,∞) for every t ∈ TN ,
and IC(t) = [0,∞) for every t ∈ TC . Let N and C be the underlying nets of N and
C. One can easily show that for any R, Lw(N C,R) ⊆ Lw(N). As any timed word
w = (a1, d1) . . . (an, dn) in Ltw(N C,R) (resp. in Ltw(N)) is such that a1 . . . an ∈
Lw(NC,R) (resp. Lw(N)) where each d1, . . . dn can be arbitrary dates, we also have
Ltw(N C,R) ⊆ Ltw(N). Thus, unconstrained time Petri nets are also untimed robust.

The question for Time Petri Nets is whether the controlled TPN only restricts the
set of behaviors of the original TPN. Unlike in the untimed case, in the timed setting the
controlled TPN may exhibit more (in fact, different set of) behaviors than the ground
TPN, because of the urgency requirement of TPNs. Consider the example in Figure 2.

7

1

•

1′

2

•

34

C

N
[2, 3] t [4, 5]t′

[0, 1]

[0, 1]

Fig. 2. An example of control of TPN through read-arcs leading to new behaviors

The ground net N always fires t in the absence of the controller C but in the presence
of C with R as in the picture, transition t is never fired and t′ is always fired. Thus set
of (timed and untimed) behaviors ofN andN (C,R) are disjoint. Discrepancies between
untimed languages can be checked using the state class graph construction [4, 9]. This
gives the following theorem and its corollary, which proofs are in appendix.

Theorem 1. For 1-safe TPNs, the untimed robustness problem is PSPACE-complete.

Corollary 1. For 1-safe TPNs, the untimed equivalence problem is PSPACE-complete.

Next we consider timed robustness properties for TPNs. Then, we have

Theorem 2. For 1-safe TPNs, the timed robustness problem is decidable.

Proof (sketch). Let N and C be 1-safe TPNs, and R be a set of read arcs. We can
check if Ltw(N (C,R)) ⊆ Ltw(N) by using the state class timed automata construction
from [9]. It is shown that from the state class graph construction of a 1-safe TPN, N ,
we can build a deterministic timed automaton A over the alphabet TN , called the state
class timed automaton, such that Ltw(N) = Ltw(A). As a result, Ltw(N) can be com-
plemented and its complement is accepted by some timed automatonA′, which is com-
puted fromA (see [1] for details of complementation of deterministic timed automata).
On the other hand, the state class timed automaton B constructed from N (C,R) is over
the language TN ∪TC . By projecting this language onto TN , we obtain the timed (tran-
sition) language Ltw(N (C,R)). We remark that the timed automaton corresponding to
the projection, denoted B′, can be easily obtained by replacing all transitions of C in the
timed automaton B by ε-transitions [1,3]. Now we just check ifLtw(B′)∩Ltw(A′) = ∅,
which is decidable in PSPACE [1] (in the sizes of A′ and B′). ut

4 Controlling TPNs with silent transitions

We now consider ground nets which may have silent or ε-transitions. The (timed and
untimed) language of the ground net contains only sequences of observable (i.e., not
ε) transitions and the robustness question asks if the controller introduces new timed
behaviors with respect to this language of observable transitions. From a modeling per-
spective, robustness means that sequence of important actions remain unchanged with

8

architectural constraints, and hence this property should hold. Silent transitions can be
used to model unimportant or unobservable transitions in the ground net. In this setting,
it is natural to require that control does not add to the language of important/observable
transitions, while it may allow new changes in other transitions.

An example of such a control is given in the introduction in Figure 1 (b). In that
example, the ground net has a unique critical (visible) action c. All other transitions
are left unlabeled and so we do not care if the timed or untimed behaviors on those
transitions are different in the ground and controlled nets. Then the timed robustness
problem asks if c can occur in the controlled net at a date when it was not allowed to
occur in the ground net. A more practical example will be studied in detail in Section 6.

With this as motivation, we introduce the class of ε-TPN, which are TPNs where
some transitions may be silent, i.e. labeled by ε. The behavior of such nets is determin-
istic except on silent actions: from a configuration, if a discrete transition that is not
labeled ε is fired, then the net reaches a unique successor marking.

Definition 4. Let Σ be a finite set of labels containing a special label ε.

1. An LTPN over Σ is a structure (N , λ) where N is a TPN and λ : TN → Σ is the
labeling function.

2. An ε-TPN is an LTPN (N , λ) over Σ such that, for all t ∈ TN , if λ(t) 6= ε then
λ(t) 6= λ(t′) for any t′ 6= t ∈ TN .

For an ε-TPN or LTPN N , its timed (resp. untimed) language denoted Ltw(N , λ)
(resp. Lw(N , λ)) is the set of timed (resp. untimed) words over Σ \ {ε} generated
by the timed (resp. untimed) transition system , by ignoring the ε labels. A TPN N
from Definition 1 can be seen as the LTPN (N , λ) over Σ such that for all t ∈ TN ,
λ(t) = t, that is, λ is the identity map. An ε-TPN can be seen as an LTPN (N , λ) over
Σ = TN ∪ {ε} such that λ(t) = t or λ(t) = ε for all t ∈ TN . In [2] it was shown that
LTPNs are as powerful, language-wise, as timed automata. As a consequence, we have:

Proposition 2. [2] The universality problem for timed automata reduces to the univer-
sality problem for LTPNs, and hence universality for LTPNs is undecidable.

We are interested in the problem of checking timed robustness, i.e.,

Definition 5. Given two ε-TPNs (N , λ) and (C, λ′) over Σ and a set of read arcs R
from (PC × TN) ∪ (PN × TC),

– the controlled ε-TPN (N , λ)
(C,R) is defined as the ε-TPN (N (C,R), λ′′) over Σ

where λ′′(t) = λ(t) for t ∈ TN and λ′′(t) = ε for t ∈ TC .
– the timed robustness problem asks if Ltw((N , λ)C,R) ⊆ Ltw(N).

Note that the labels in C are ignored (i.e., replaced by ε), since robustness only com-
pares labels of the ground nets. We remark that untimed robustness and even untimed
equivalence are decidable for ε-TPNs and LTPNs, since Theorem 1 still holds in the
presence of ε or labels (indeed, the state class graph built in the proof is an untimed
object). We now consider timed robustness and show that this problem is undecidable
for ε-TPNs and LTPNs.

9

1
•

2
•

pt pa pt′

p′a

3

p̄a

•

1
•

2
•

3

[3, 4] ǫ
t1

ǫ [0, 0]

[0, 0] a
ta

[0, 0] ǫ
t2

ǫ [0, 0]

(U(N), λ′)

[3, 4] a
t

a[0, 0]
t′

(N , λ)

Fig. 3. Construction of a ε-TPN equivalent to a LTPN.

Theorem 3. Checking timed robustness is undecidable for ε-TPNs (and LTPNs).

The proof follows in three steps: First we show that LTPNs can be simulated by
ε-TPNs. Thus, ε-TPNs are expressively as powerful as LTPNs. Then, we show that
checking universality of a labeled net can be reduced to checking timed robustness of a
related net. Finally, we use Proposition 2 above, which shows that checking universality
of labeled nets is undecidable. Let us now prove the first step.

Lemma 1. Given an LTPN (N , λ) over Σ, there exists a ε-TPN (U(N), λ′) over Σ
such that Ltw(U(N), λ′) = Ltw(N , λ).

Proof. The construction is depicted in Figure 3. The idea is to have a unique transition
ta for each letter a which is urgent and will be fired for each transition labeled a in the
original net, and use ε-transitions (and extra places) to capture the timing constraints
on the different transitions (of the original net) labeled by a. Note that the place p̄a is
included in addition to ensure that the resulting net remains 1-safe.

Formally, given a LTPN (N , λ) over Σ, we construct the ε-TPN (U(N), λ′) as
follows. We split each transition t ∈ TN into two transitions t1 and t2 and also add a
place pt in U(N). Further for each action a ∈ Σ, such that λ(t̂) = a for some transition
t̂ ∈ TN , we add three places pa, p′a, p̄a and a transition ta. Then

– we replace every incoming edge into t in N , say (p, t) for some p, by the edge
(p, t1) in U(N).

– we replace every outgoing edge from t in N , say (t, p′) for some p′, by the edge
(t2, p

′) in U(N).
– in U(N), we add edges from t1 to pt, from t1 to pa, from pa to ta,
– from ta to p′a and from p′a to t2. We also add an edge from p̄a to each transition t1

and from t2 to p̄a such that t is labeled by a. Note that this procedure is applied for
each action a and every transition t labeled by a, so as a result, we can obtain a net
with several outgoing edges from p′a or incoming edges to pa.

– Finally, for the timing constraints, we assign to each t1 in U(N) the constraint I(t)
assigned to t in N . All other transitions of U(N) are assigned the constraint [0, 0],
hence forcing them to be urgent.

10

C1, λ0

N1, λ1

•

•

(Nu, λu)(N , λ)

[1, 1] ǫ
t1

[2,∞)ǫ
t2

[1, 1] ǫ

[0, 1)

ǫ

s

[0,∞)

a

(Nu, λu) over Σ = {a ∪ ǫ}

Fig. 4. Reducing checking universality of LTPN to checking robustness of a new ε-TPN

Then, λ′ is defined by λ′(ta) = a for each ta, i.e., the transition of U(N) that was
added above for each a ∈ Σ, and λ′(t̃) = ε for all other transitions t̃ of U(N). By
construction, (U(N), λ′) is uniquely labeled. Each transition t of N is simulated by a
sequence of transitions t1, ta, t2 (place p̄a ensures atomicity of this sequence). Then we
can easily show that Ltw(U(N), λ′) = Ltw(N , λ). ut

Next we show a reduction from universality for LTPNs to robustness for ε-TPNs.

Lemma 2. The universality problem for LTPNs can be reduced to checking robustness
of ε-TPNs.

Proof. We use a gadget net (Nu, λu) which accepts the universal language of timed
words over Σ. Such a net is shown in Figure 4 (right). The net depicted in the figure is
only over the single discrete alphabet a, but we can by replicating it obtain the universal
net over any finite alphabet. Now, as shown in Figure 4 (left), we construct a ground net
(N1, λ1) which starts with a place and chooses between accepting the timed language
of the LTPN (N , λ) and the universal language by using (Nu, λu).

Formally, this is defined by adding arcs from the last transition on the left (resp.
right) side to the places in the initial marking of N (resp. Nu). Now by adding disjoint
time constraints [1, 1] and [2,∞) on the transitions, we ensure that (N1, λ1) always
chooses the left transition t1 and hence, in the absence of controller, the language ac-
cepted is L1 = {(w1, d1) . . . (wn, dn) ∈ (Σ × R+)∗ | (w1, d1 − 2) · · · (wn, dn − 2) ∈
Ltw(N , λ)} i.e., the timed language of (N , λ) delayed by 2. In the presence of the
controller (C1, λ0), only transition t2 can be fired (as t1 is disabled by the controller)
and hence, the language accepted is L2 = {(w1, d1) . . . (wn, dn) ∈ (Σ × R+)∗ |
(w1, d1 − 2) · · · (wn, dn − 2) ∈ Ltw(Nu, λu)} i.e., the universal language delayed by
2.

Then checking timed robustness corresponds to checking if L2 ⊆ L1, and check-
ing L2 ⊆ L1 reduces to checking that Ltw(N , λ) contains the universal language, or
equivalently if Ltw(N , λ) is universal, which is undecidable. Note that (N1, λ1) is not
uniquely labeled since every action a definitely occurs in (Nu, λu) and may also occur
more than once in (N , λ). Thus the above proof only shows that checking timed ro-
bustness for LTPNs is undecidable. But now, using Lemma 1, we can build the ε-TPN
(U(N1), λ′1) over Σ, with the same timed language as (N1, λ1). Hence by the above
argument checking robustness of ε-TPNs is also undecidable. ut

11

Note that checking if Ltw(N (C,R)) = Ltw(N), i.e., the timed language equivalence
is a weaker notion in the context of ε-TPNs than in TPN (it only requires preserving
timing for important observable actions), and hence could be relevant. For instance in
Figure 1(b), we may want to check if c can occur in the controlled net at every date
at which it can occur in the ground net (even if the other ε-transitions are perturbed).
Unfortunately, we easily obtain the undecidability of this problem as an immediate
corollary of the above theorem, and even in restricted settings (see Proposition 4 in
Appendix).

5 Ensuring robustness in TPNs with silent transitions

The situation for ε-TPNs is unsatisfactory since checking timed robustness is unde-
cidable. Hence, we are interested in restrictions that make this problem decidable, or
ensuring that this property is met by construction. In this section, we will show that we
can restrict the controlling set of read-arcs to ensure that a net is always timed robust.
Indeed, it is natural to expect that a “good” controller never introduces new behaviors
and we would like to ensure this.

Here, we consider the restriction in which all transitions of the ground nets that have
controller places in their preset are not urgent, i.e., the time constraint on the transition
is [α,∞) or (α,∞) for some α ∈ Q+. We call such controlled nets R-restricted ε-
TPNs. In this case we will show that R-restricted ε-TPNs are always timed robust (as
in the case of untimed PNs shown in Proposition 1). That is,

Theorem 4. Let N and C be two ε-TPNs, and R be a set of read arcs such that for
every (p, t) ∈ R ∩ (PC × TN), Is(t)+ =∞, then Ltw(N (C,R)) ⊆ Ltw(N).

Proof. We start with some notations. Let q(C,R) be a state of N (C,R) and ρ(C,R) be
a dated run of N (C,R). We denote by p̌N (q(C,R)) the projection of q(C,R) obtained
as follows: we keep in the state description, only places of the ground net and clocks
associated with uncontrollable transitions of the ground net. Note that the obtained state
is described by the same variables as a state of N but a priori, it is not reachable in the
ground net N . Similarly, we denote by p̌N (ρ(C,R)) the projection of a dated run of
N (C,R) onto the variables of N i.e. onto transitions of the ground net and states as
defined above. Finally, we denote the last state of the dated run ρ by last(ρ).

We will now prove that for all dated runs ρ(C,R) of N (C,R), there exists a dated
run ρ of N such that ρ = p̌N (ρ(C,R)). The proof is done by induction on the number
of transitions in the dated runs. The property obviously holds with no actions (same
initial states: q0 = p̌N (q0

(C,R))). Suppose it holds up to n ≥ 0 and consider some run

ρ′
(C,R)

= ρ(C,R) (d,t)−−−→ qf
(C,R) of N (C,R) such that ρ(C,R) is of size n.

By the induction hypothesis, there exists ρ of N such that ρ = p̌N (ρ(C,R)). Now
consider transition t (occuring at date d): either t ∈ TC is a transition of the con-
troller and hence is silent in the controlled net by definition, so we can discard it, and
p̌N (ρ′

(C,R)
) = ρ; or t ∈ TN is a transition of the ground net and two cases may arise:

– either t is not controlled, then, two new cases may arise:

12

• no controlled transitions are in conflict with t in N (C,R) and since last(ρ) =
p̌N
(
last(ρ(C,R))

)
, it can occur in the ground net at the same date d;

• a controlled transition t′ is in conflict with t inN (C,R) and the controller blocks
t′ and allows the firing of t. But then, by definition, we have Is(t′)+ = +∞.
Thus, t′ is not urgent in the ground net, i.e., it is always possible to delay it and
hence fire t′ at a date greater than d in the ground net. As a result t can be fired
in the ground net at date d leading to a state qf = p̌N (qf

(C,R));
– or it is controlled, and then we have Is(t)+ = +∞ and so Is(t) = [α,∞) (or

(α,∞), but this is handled similarly so we only consider the closed case) for some
α ∈ Q+. Then, by induction hypothesis the previous transition of the ground net
and the controlled net were fired at the same date d′. Thus
• if there is no transition in conflict with t in the ground net, then in the controlled

net N (C,R), for the run last(ρ(C,R))
(d,a)−−−→ qf

(C,R), we are guaranteed that
d − d′ ≥ α. But in the ground net, t can be fired at any date d′′ ≥ d′ + α
(due to Is(t)+ = ∞) and so it is possible to fire t at date d leading to a state
qf = p̌N (qf

(C,R)) as before.
• if there are transitions in conflict with t in the ground net, the problematic cases

are when they either (i) disable t due to urgency or (ii) force t to be delayed by
an arbitrary amount possibly greater than α (for instance, a conflicting transi-
tion may empty and refill the preset of t after α time units) in the ground net.
But now any delay in firing of t forced on the ground net will also be forced on
the controlled net. Thus, if t is either disabled or forced to be delayed beyond
d in the ground net, then in the controlled net as well it will be disabled/ forced
to delay beyond d which contradicts our assumption t was firable in N (C,R)

at date d. If not, then the delay forced in the controlled net will be (possibly)
more than the delay forced in the ground net and hence t is firable at date d in
the controlled net implies (due to Is(t)+ = ∞) that t is firable at date d in the
ground net.

Then there exists a run ρ′ = ρ
(d,a)−−−→ qf of N such that qf = p̌N (qf

(C,R)) which
concludes the induction. ut

Note that while timed robustness is ensured for nets and control schemes that fulfill
conditions of theorem 4, timed equivalence remains undecidable for such nets. The
condition in Theorem 4 is quite restrictive but relaxing it rapidly leads to undecidability:

Proposition 3. The timed robustness problem is undecidable for ε-TPNs with at least
one read arc from a place of the controller to any transition t of the ground net such
that Is(t)+ 6=∞.

Proof. The proof of Theorem 3 actually gives the result if t is a silent transition. Now,
if t is a non-silent transition, then that proof does not work off-the-shelf anymore and
we need to modify the construction of Fig. 4. The resulting net is shown in Fig.5.

As before, (N , λ) is any LTPN on some alphabet Σ and (Nu, λu) is an ε-TPN
universal on Σ. Apart from those components, (N1, λ1) contains only one non-silent
transition (a 6∈ Σ). This transition furthermore has a controller place in its preset and its

13

C1, λ0

N1, λ1

•

• •

(Nu, λu)(N , λ)

[1, 1] a [2, 2]ǫ

[0, 0] ǫ ǫ [0, 0]

[2,∞) ǫ ǫ [0, 2]

[2, 2]

ǫ

Fig. 5. Reducing universality to rubustness in an ε-TPN

time interval has a finite upper bound. So, using Lemma 1, N1 and N (C,R)
1 can indeed

be transformed into ε-TPNs satisfying our relaxed condition.
Form the intial configuration, transition a can fire exactly at date 1. The two ε tran-

sition at the top of the ground net simulate an arbitrary delay greater than two, which
can occur only once before firing a. Hence, the timed language of the ground net is the
empty word plus the set of all the words of the form (a, x)w with x = 1 or x ≥ 3 and
w is either the empty word or any timed word in Ltw(N , λ) delayed by x time units.

Similarly, in the controlled net, a can only fire at a date greater than 2. So, the timed
language of the controlled net is the empty word plus the set of all the words of the form
(a, x)w with x ≥ 3 and w is either the empty word or any timed word in Ltw(N , λ)
delayed by x time units, or of the form (a, 3)w′ where w′ is either the empty word or
any timed word in Ltw(Nu, λu) delayed by 3 time units. Thus, the net is timed robust
iff Ltw(Nu, λu) ⊆ Ltw(N , λ), i.e., (N , λ) is universal. ut

6 A small case study

We consider a heater-cooler system depicted in Figure 6. This system improves the
hardness of a particular material by first heating and then cooling it. The heater-cooler is
equipped with two sensors: Toohot is raised when the heater reaches its maximal tem-
perature. If it occurs, the heating stops automatically. Cold is raised when the tempera-
ture is cold enough in the cooling stage. If it occurs, the cooler stops automatically. The
heater-cooler starts in the heating state and the operator can push the StartCooling
button if the constraints of the system allow it.

We assume architectural constraints imposing that the StartCooling action is not
allowed after 20 t.u. in the heating stage, and also disallowed before the date 120 t.u.
if the toohot sensor has been raised. The constraints are encoded as a controller C, and
read arcs as shown in Figure 6.

We can show that Lw(N C,R) = Lw(N). Hence, N is untimed robust and even
untimed equivalent under (C, R). The net N is not an ε-TPN, but can be converted to
an ε-TPN (by Lemma 1). The resulting net is R-restricted, so according to Theorem 4,
we have Ltw(N (C,R)) ⊆ Ltw(N) and then N is timed robust under (C, R).

14

heating

cooling

noheat

C1

C2

C3

[10,∞)

StartCooling

[20, 100]
Toohot

[30, 40] Cold

[20, 20] ε

[100, 100] ε

[15,∞)

StartCooling

•

•

Ground net N Controller C

Fig. 6. Case Study

7 Conclusion and discussion

We have defined and studied notions of timed and untimed robustness as well as un-
timed equivalence for time Petri nets. We are interested in whether we can check or/and
guarantee these properties for timed and untimed behaviors. We summarize the results
obtained in the table below.

TPN R-restricted ε-TPN ε-TPN LTPN
Untimed robustness Pc (thm 1) G (thm 4) Pc Pc

Untimed equivalence Pc (cor 1) Pc Pc Pc
Timed robustness D (thm 2) G (thm 4) U (thm 3) U (thm 3)

U stands for undecidable, D for decidable, Pc for PSPACE-complete, and G for guaranteed.

Overall, with injective labels and no ε, robustness is decidable. We think that timed
robustness of TPN is EXPSPACE-complete, but this need to be proved. However from
a modeling perspective it is important to allow silent transitions. With silent transitions,
untimed properties are still tractable, but timed properties become hard to check. To
overcome this problem, we proposed a sufficient condition to guarantee timed robust-
ness which we showed is already at the border of undecidability. To show its practical
relevance, we designed a small case-study. We also show that untimed equivalence is
easily decidable in all the cases. As for timed equivalence, this property is undecidable
in most cases. This is not really a surprise nor a limitation, as asking preservation of
timed behavior under architectural constraints is a rather strong requirement.

As further discussion, we remark that other criteria can be used for comparing the
controlled and ground nets such as (timed) bisimulation or weak bisimulation. While
this would be an interesting avenue to explore, a priori, they seem to be more restric-
tive and hence less viable from a modeling perspective. Possible extensions could be
to define tractable subclasses of nets, for instance by considering semantic properties
of the net rather that syntactic conditions ensuring decidability. It also seems possi-
ble to consider robustness of nets up to some small delay. Formally, we can fix a
delay as a small positive number δ, and define Lδtw(N) = {(w1, t1) . . . (wn, tn) |
∃(w1, t

′
1) . . . (wn, t

′
n) ∈ Ltw(N),∀i ∈ 1 . . . n, |t′i − ti| ≤ δ}. Then a possible ex-

tension of the definitions is to consider δ-robustness under C, R as the timed inclusion
Ltw(N (C,R)) ⊆ Lδtw(N).

15

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. Béatrice Bérard, Franck Cassez, Serge Haddad, Didier Lime, and Olivier H. Roux. Com-
parison of the expressiveness of timed automata and time Petri nets. In Paul Pettersson and
Wang Yi, editors, 3rd International Conference on Formal Modelling and Analysis of Timed
Systems (FORMATS 2005), volume 3829 of Lecture Notes in Computer Science, pages 211–
225, Uppsala, Sweden, September 2005. Springer-Verlag.

3. Beatrice Berard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of the
expressive power of silent transitions in timed automata. Fundam. Inform., 36(2–3):145–
182, 1998.

4. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems
using time Petri nets. IEEE transactions on software engineering, 17(3):259–273, March
1991.

5. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. Theoretical Com-
puter Science, 147(1-2):117–136, 1995.

6. Guillaume Gardey, Olivier (F.) Roux, and Olivier (H.) Roux. Safety control synthesis for
time Petri nets. In 8th International Workshop on Discrete Event Systems (WODES’06),
pages 222–228, Ann Arbor, USA, July 2006. IEEE Computer Society Press.

7. A. Giua, F. DiCesare, and M. Silva. Petri net supervisors for generalized mutual exclusion
constraints. In Proc. 12th IFAC World Congress, pages 267–270, Sidney, Australia, jul 1993.

8. L. E. Holloway and B. H. Krogh. Synthesis of feedback control logic for a class of controlled
Petri nets. IEEE Trans. on Automatic Control, 35(5):514–523, may 1990.

9. Didier Lime and Olivier (H.) Roux. Model checking of time Petri nets using the state class
timed automaton. Journal of Discrete Events Dynamic Systems - Theory and Applications
(DEDS), 16(2):179–205, 2006.

10. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for
timed systems. In E.W. Mayr and C. Puech, editors, Proc. STACS ’95, number 900 in LNCS,
pages 229–242. Springer–Verlag, 1995.

11. M. Uzam, A.H. Jones, and I. Yucel. Using a Petri-net-based approach for the real-time super-
visory control of an experimental manufacturing system. Journal of Electrical Engineering
and Computer Sciences, 10(1):85–110, 2002.

12. V. Valero, D. Frutos-Escrig, and F. Cuartero. On non-decidability of reachability for timed-
arc Petri nets. In Proc. 8th International Workshop on Petri Nets and Performance Models
(PNPM 99), 1999.

13. Dianxiang Xu, Xudong He He, and Yi Deng. Compositional schedulability analysis of real-
time systems using time Petri nets. IEEE Transactions on Software Engineering, 28(10):984
– 996, 2002.

A Appendix

A.1 Controlling Untimed Petri nets

Here we consider untimed robustness and equivalence in the context of untimed 1-
safe Petri nets. Let us denote by N an untimed net, by C an untimed controller, and
so on. We can first observe that C may only restrict the behaviors of N , under any
choice of R, thus the net is always untimed robust. Further, we can effectively check if
the controlled net has the same untimed language as the ground net, i.e., the untimed
equivalence problem is decidable.

16

Proposition 1. Let N , C be two untimed 1-safe Petri nets. Then,

1. For any R ⊆ (PC × TN), N is untimed robust under (C,R).
2. For a fixed set of read arcs R ⊆ (PC × TN), checking if N is untimed equivalent

to N (C,R) is PSPACE-complete.

Proof. (1) Observe that the net N is robust under (C,R) iff for all reachable markings
m ⊆ (PN ∪PC) ofN (C,R),m\PC is a reachable marking ofN and (en(N (C,R),m)\
TC) ⊆ en(N,m \ PC). But for a given N,C and R ⊆ (PC × TN), for any m ⊆
(PN ∪ PC), we have: (en(N (C,R),m) \ TC) ⊆ en(N,m \ PC) since t ∈ TN ∧ t ∈
en(N (C,R),m)⇒ (∀p ∈ ◦t∪ •t,m(p) > 0)⇒ (∀p ∈ ◦t∪ •t, (m \PC)(p) > 0)⇒ t ∈
en(N,m \ PC). Now, if m is a reachable marking of N (C,R) then there is a sequence
of transitions of N (C,R) leading to m, which means from the above property there is a
sequence of transitions of N leading to m \ PC . This completes the proof of (1).

(2) First note that since N is always robust under C,R, N is equivalent to N (C,R)

if and only if, Lw(N) ⊆ Lw(N (C,R)). One can check inclusion by exploration of the
marking graph of the controlled nets.

We adapt the proof of reachability complexity from [5] to our setting. First, one can
notice thatN is not equivalent under (C,R) iff one can find a markingm ofN (C,R) and
a transition t such that t is not fireable fromm inN (C,R), t is fireable fromm\PC inN
(we will a pair (m, t) of markings and transitions potential witnesses), and there is no
markingm′ reachable fromm by using only transitions of C such that t is fireable from
m′. A pair (m, t) is a potential witness iff •(t)∪ ◦(t) * m, and •(t)∪ (◦(t)∩PN) ⊆ m.
We can adopt the following strategy. Start from the initial marking m0, and maintain a
boolean rc, and two counters cg and cc, initially set to 0. For each reached marking, do
the following. Choose a transition t. If t is fireable from m, then increment cg, and test
if cg is greater that 2PC∪PN . If this is the case, then we have explored a path containing
loops, i.e. we have explored twice the same marking and we can stop. If t is not fireable,
then check if it is a potential witness. If this is the case, then memorize m set cc to
0, and do an exploration of the marking graph of C starting from m ∩ PC and using
controller’s transitions only to find a markingm′ allowing t. Slightly adapting the result
of [5] (which finds a marking and not a set of markings), this can be done in PSPACE,
more precisely using 2|PC | bits. If no such marking is found, then our potential witness
(m, t) shows that the controlled net is not equivalent. If a marking m′ is found, then
t is not fireable, and we can consider another transition from m. If m is a deadlock
marking, then we have found no witness for non-equivalence and we can stop. So, we
have an exploration algorithm that uses 2|PC ∪ PN | + 2|PC | bits to run, and which is
then in PSPACE. For the hardness part, we use again a result from [5], which shows that
coverability is PSPACE-Complete. Coverability of a marking m by a net N is satisfied
iff one can find a marking m′ ⊇ m of N that is reachable from m0. Let us consider this
marking m. We can build from N and m a new net N ′, by adding a transition tfail that
has as preset •(tfail) = {p ∈ P | m(p) = 1}. Obviously, from any marking that covers
m, transition tfail is fireable. Now, we can append a controller Cfail with no transition
and a single empty place pfail to N , and impose as read arc r = (pfail, tfail. In the
controlled net N ′{r},Cfail , transition tfail never fires. So, N ′{r},Cfail is not equivalent
if and only if m is coverable by N . As the complement of PSPACE problems is also
PSPACE, we have that equivalence in untimed setting is PSPACE-complete. ut

17

Theorem 1. For 1-safe TPNs, the untimed robustness problem is PSPACE-complete.

Proof. The proof follows from the state class graph construction [4, 9]. The state class
graph SCG(N) is a finite (untimed) transition system describing a regular language.
For every safe TPN N , we have Lw(SCG(N)) = Lw(N).As result, we obtain that
Lw(N) and Lw(N (C,R)) are regular. As checking inclusion of two regular languages
is decidable (and PSPACE-complete), untimed robustness is also decidable. A state of
the state class graph consists of a marking and of a finite set of constraints of the form
xt − x′t ≤ k, that can be remembered with a finite number of bits, hence exploring
the state class graph of a controlled net can be done in PSPACE, as in the proof of
proposition 1 (but with more bits needed to encode states). The hardness reduction
from a coverability problem is almost the same. We can append to a place p of net N
two transitions t1, t2 to obtain a new net N ′. Then we can design a controller C such
that Lw(N ′) = {w.t1 | w ∈ Lw(N)} and Lw(N (C,R)) = {w.t1 | w ∈ Lw(N)}.
Hence, N ′ is robust iff p is not coverable in N .

Corollary 1. For 1-safe TPNs, the untimed equivalence problem is PSPACE-complete.

Proof. Equivalence consists in checking inclusion in both ways, so the proof of theo-
rem 1 can be easily adapted to show decidability and complexity.

A.2 Ensuring robustness for restricted ε-TPNs

Theorem 4. Let N and C be two ε-TPNs, and R be a set of read arcs such that for
every (p, t) ∈ R ∩ (PC × TN), Is(t)+ =∞, then Ltw(N (C,R)) ⊆ Ltw(N).

Proof. We start with some notations. Let q(C,R) be a state of N (C,R) and ρ(C,R) be
a dated run of N (C,R). We denote by p̌N (q(C,R)) the projection of q(C,R) obtained
as follows: we keep in the state description, only places of the ground net and clocks
associated with uncontrollable transitions of the ground net. Note that the obtained state
is described by the same variables as a state of N but a priori, it is not reachable in the
ground net N . Similarly, we denote by p̌N (ρ(C,R)) the projection of a dated run of
N (C,R) onto the variables of N i.e. onto transitions of the ground net and states as
defined above. Finally, we denote the last state of the dated run ρ by last(ρ).

We will now prove that for all dated runs ρ(C,R) of N (C,R), there exists a dated
run ρ of N such that ρ = p̌N (ρ(C,R)). The proof is done by induction on the number
of transitions in the dated runs. The property obviously holds with no actions (same
initial states: q0 = p̌N (q0

(C,R))). Suppose it holds up to n ≥ 0 and consider some run

ρ′
(C,R)

= ρ(C,R) (d,t)−−−→ qf
(C,R) of N (C,R) such that ρ(C,R) is of size n.

By the induction hypothesis, there exists ρ of N such that ρ = p̌N (ρ(C,R)). Now
consider transition t (occuring at date d): either t ∈ TC is a transition of the con-
troller and hence is silent in the controlled net by definition, so we can discard it, and
p̌N (ρ′

(C,R)
) = ρ; or t ∈ TN is a transition of the ground net and two cases may arise:

– either t is not controlled, then, two new cases may arise:

18

• no controlled transitions are in conflict with t in N (C,R) and since last(ρ) =
p̌N
(
last(ρ(C,R))

)
, it can occur in the ground net at the same date d;

• a controlled transition t′ is in conflict with t inN (C,R) and the controller blocks
t′ and allows the firing of t. But then, by definition, we have Is(t′)+ = +∞.
Thus, t′ is not urgent in the ground net, i.e., it is always possible to delay it and
hence fire t′ at a date greater than d in the ground net. As a result t can be fired
in the ground net at date d leading to a state qf = p̌N (qf

(C,R));
– or it is controlled, and then we have Is(t)+ = +∞ and so Is(t) = [α,∞) (or

(α,∞), but this is handled similarly so we only consider the closed case) for some
α ∈ Q+. Then, by induction hypothesis the previous transition of the ground net
and the controlled net were fired at the same date d′. Thus
• if there is no transition in conflict with t in the ground net, then in the controlled

net N (C,R), for the run last(ρ(C,R))
(d,a)−−−→ qf

(C,R), we are guaranteed that
d − d′ ≥ α. But in the ground net, t can be fired at any date d′′ ≥ d′ + α
(due to Is(t)+ = ∞) and so it is possible to fire t at date d leading to a state
qf = p̌N (qf

(C,R)) as before.
• if there are transitions in conflict with t in the ground net, the problematic cases

are when they either (i) disable t due to urgency or (ii) force t to be delayed by
an arbitrary amount possibly greater than α (for instance, a conflicting transi-
tion may empty and refill the preset of t after α time units) in the ground net.
But now any delay in firing of t forced on the ground net will also be forced on
the controlled net. Thus, if t is either disabled or forced to be delayed beyond
d in the ground net, then in the controlled net as well it will be disabled/ forced
to delay beyond d which contradicts our assumption t was firable in N (C,R)

at date d. If not, then the delay forced in the controlled net will be (possibly)
more than the delay forced in the ground net and hence t is firable at date d in
the controlled net implies (due to Is(t)+ = ∞) that t is firable at date d in the
ground net.

Then there exists a run ρ′ = ρ
(d,a)−−−→ qf of N such that qf = p̌N (qf

(C,R)) which
concludes the induction. ut

Note that while timed robustness of a net is ensured for nets and control schemes
that fulfill conditions of theorem 4, timed equivalence remains undecidable for such
nets.

Proposition 4. Let N and C be two ε-TPNs, and R be a set of read arcs such that for
every (p, t) ∈ R ∩ (PC × TN), Is(t)+ = ∞, then checking whether Ltw(N (C,R)) =
Ltw(N) is undecidable.

Proof. Consider the net of Figure 3, and replace every time constraint in the ground net
by [0,∞). Exchange (N , λ) and (Nu, λu), and remove the token in the initial marking
of the controller (that is, the transition with a controller’s place in its preset will never
fire in the controlled net). Call this new net N2. Note that N2 fulfills the conditions
of theorem 4. Then the language of N2 is Ltw(N2) = Ltw(Nu) ∪ Ltw(N), that is, it
is the universal language. The language of the controlled net NC,R

2 is Ltw(NC,R
2) =

19

{(w1, d1) . . . (wn, dn) | ∃(w1, d
′
1) . . . (wn, d

′
n) ∈ Ltw(N),∀i ∈ 1..nd′i ≤ di + 2}.

Comparing Ltw(N2) and Ltw(NC,R
2) then amounts to checking that Ltw(N) is the

universal language. ut

Note that undecidability of timed equivalence holds event if controlled transitions
have [0,∞) constraints, or if controlled transitions are not ε transitions.

20

