
Concurrent secrets with quantified suspicion
Loı̈c Hélouët

INRIA Rennes, Campus de Beaulieu,
35042 Rennes Cedex, France
Email: loic.helouet@inria.fr

John Mullins
Polytechnique Montréal,

Email: John.Mullins@polymtl.ca

Hervé Marchand
INRIA Rennes, Campus de Beaulieu,

35042 Rennes Cedex, France
Email: herve.marchand@inria.fr

Abstract—A system is considered as opaque if behaviors that
should be kept secret cannot be discovered by any user of the
system. Deciding opacity of distributed systems was originally
addressed as a boolean question, and then extended to a prob-
abilistic setting. This paper considers a different quantitative
approach that measures the efforts that a malicious user should
make to discover a secret. This effort is measured as a distance
w.r.t a regular profile specifying a normal behavior. This leads
to several notions of quantitative opacity. When attackers are
passive, i.e. they only observe the system, quantitative opacity
can be brought back to a language inclusion problem, and
is PSPACE-complete. When attackers are active, i.e. perform
particular actions leading to secret leakage within a finite horizon,
quantitative opacity becomes a partial observation quantitative
game, where an attacker wins if it has a strategy to learn a secret
without deviating too much from its profile. Within this active
setting, the complexity of opacity is EXPTIME-complete.

I. INTRODUCTION

Opacity of a system is a property that says that occurrences of
runs from a particular subset S (the secret) can not be detected
by malicious users. Opacity can be used to model privacy issues
(the operations performed by John on his bank account should
not be learned by other users), but also to assess security of
systems, for instance by guaranteeing that sensible operations
such as payment or root commands cannot be detected and then
hacked by attackers. Many attacks work only in a particular
context that should not be too easily detected by attackers.
The literature is full of examples of root compromise attacks
that allow malicious users to gain privileges just by exhausting
resources such as file descriptors during root operations. A
way to enhance security of distributed systems is to ensure
opacity of such operations, i.e., ensure that an attacker can not
decide whether other users are performing sensitive operations.

Classical formal approaches to address secrecy of high-level
operations and more generally privacy of users secrets are
non-interference, introduced by [7] and opacity, introduced
by [4], [2]. In non-interference, actions of the system are
divided into high (classified) actions and low (public) ones,
and a system is non-interferent iff one can not infer from
observation of low operations that high-level actions were
performed. The original definition given by [7] says that a
system is non-interferent iff occurrence of high actions cannot
affect ”what an user can see or do”. This implicitly means that
users have, in addition to their standard behavior, observation
capacities. Non-interference is usually characterized as a
low-level equivalence between the considered system and a
version of it where high-level actions are forbidden. This

generic definition can be instantiated in many ways, by
considering different modeling formalisms (automata, Petri nets,
process algebra,...), and equivalences (language equivalence,
bisimulation(s),...) representing the discriminating power of an
attacker (see [11] for a survey).

Opacity is a generalization of non-interference. The secrets
to hide in a system are sets of runs that should remain
indistinguishable from other behaviors. Here, the distinction
between high and low level actions is forgotten: even if actions
a and b in isolation are considered harmless, the sequence
aabb can be a secret to hide. A system is considered as opaque
if, from its observation, one can not deduce that the current
execution belongs to the secret. In the standard setting, violation
of opacity is a passive process: attackers only rely on their
partial observation of runs of the system. Checking whether a
system is opaque is a PSPACE-complete problem [5].

A first result of this paper is to consider active opacity, that
is opacity in a setting where attackers of a system perform
actions in order to collect information on secrets of the system.
Performing actions in our setting means playing standard
operations allowed by the system, but also using observation
capacities to infer whether a sensible run is being performed.
Checking opacity in an active context is a partial information
reachability game, and is shown EXPTIME-complete.

We then address opacity in a quantitative framework,
characterizing the efforts needed for an attacker to gain hidden
information with a cost function. Within this setting, a system
remains opaque if the cost needed to obtain information
exceeds a certain threshold. This cost is measured as a distance
of the attacker’s behavior with respect to a regular profile,
modeling that deviations are caught by anomaly detection
mechanisms. We use several types of distances, and show that
quantitative and passive opacity remains PSPACE-complete,
while quantitative and active opacity remains EXPTIME-
complete.

Opacity with passive attackers has been addressed in a
quantitative setting by [3]. They show several measures for
opacity. Given a predicate φ characterizing secret runs, a
first measure quantifies opacity as the probability of a set
of runs which observation suffice to claim the run satisfies
φ. A second measure considers observation classes (sets of
runs with the same observation), and defines the restrictive
probabilistic opacity measure as an harmonic mean (weighted
by the probability of observations) of probability that φ is
false in a given observation class. Our setting differs from the

setting of [3] is the sense that we do not measure secrecy as the
probability to leak information to a passive attacker, but rather
quantify the minimal efforts required by an active attacker to
obtain information.

The paper is organized as follows: Section II introduces our
model for distributed systems, and the definition of opacity.
Section III recalls the standard notion of opacity usually found
in the literature and its PSPACE-completeness, shows how to
model active attackers with strategies, and proves that active
opacity can be solved as a partial information game over an
exponential size arena, and is EXPTIME-complete. Section IV
introduces quantification in opacity questions, by measuring
the distance between the expected behavior of an agent and its
current behavior, and solves the opacity question with respect
to a bound on this distance. Section V enhances this setting by
discounting distances, first by defining a suspicion level that
depends on evolution of the number of errors within a bounded
window, and then, by averaging the number of anomalies
along runs. The first window-based approach does not change
the complexity classes of passive/active opacity, but deciding
opacity for averaged measures is still an open problem.

II. MODEL

Let Σ be an alphabet, and let Σ′ ⊆ Σ. A word of Σ∗

is a sequence of letters w = σ1 . . . σn. We denote by w−1

the mirror of w, i.e., w−1 = σn . . . σ1.The projection of w
on Σ′ ⊆ Σ is defined by the morphism πΣ′ : Σ∗ → Σ′∗

defined as πΣ′(ε) = ε, πΣ′(a.w) = a.πΣ′(w) if a ∈ Σ′ and
πΣ′(a.w) = πΣ′(w) otherwise. The inverse projection of w
is the set of words which projection is w, and is defined as
π−1

Σ′ (w) = {w′ ∈ Σ∗ | πΣ′(w′) = w}. For a pair of words
w,w′ defined over alphabets Σ and Σ′, the shuffle of w and
w′ is denoted by w||w′ and is defined as the set of words
w||w′ = {w′′ | πΣ(w′′) = w ∧ πΣ′(w′′) = w′}. The shuffle of
two languages L1, L2 is the set of words obtained as a shuffle
of a words of L1 with a word of L2.

Definition 1: A concurrent system S = (A, U) is composed
of:
• A finite automaton A = (Σ, Q,−→, q0, F)
• A finite set of agents U = u1, . . . un, where each ui is a

tuple ui = (Ai,Pi,Si,Σio), where Ai,Pi,Si are automata
and Σio an observation alphabet.

Agents behave according to their own logic, depicted by a finite
automaton Ai = (Σi, Qi,−→i, q

i
0, Fi) over an action alphabet

Σi. We consider that agents moves synchronize with the system
when performing their actions. This allows modeling situations
such as entering critical sections. An agent ui observes a subset
of actions, defined as an observation alphabet Σio ⊆ Σ1.

Every agent ui possesses a secret, defined as a regular
language L(Si) recognized by automaton Si = (Σ, QSi ,−→S

i

, qS0,i, F
S
i). We equip every agent ui with a profile Pi =

(Σ, QPi , δ
P
i , s

P
0,i, F

P
i), that specifies its ”normal” behavior. We

consider that the profile of an agent is prefix-closed. Hence,

1A particular case is Σio = Σi, meaning that agent ui observes only what
it is allowed to do.

FPi = QPi , and if w.a belongs to profile L(Pi) then w is also
in user ui’s profile. In profiles, we mainly want to consider
actions of a particular agent. However, for convenience, we
define profiles over alphabet Σ, and build them in such a way
that L(Pi) = L(Pi)‖(Σ \ Σi)

∗.
We assume that the secret Si of an user ui can contain

words from Σ∗, and not only words in Σ∗i . This is justified
by the fact that an user may want to hide some behavior that
are sensible only if they occur after other agents actions (u1

plays b immediately after a was played by another agent). For
consistency, we furthermore assume that Σi ⊆ Σio, i.e., an user
observes at least its own actions. Two users may have common
actions (i.e., Σi ∩ Σj 6= ∅), which allows synchronizations
among agents. We denote by ΣU = ∪

i∈U
Σi the possible actions

of all users. Note that ΣU ⊆ Σ as the system may have its
own internal actions.

Intuitively, in a concurrent system, A describes the actions
that are feasible with respect to the current global state of the
system (available resources, locks, access rights,...). The overall
behavior of the system is a synchronized product of agents
behaviors, intersected with L(A). Hence, within a concurrent
system, agents perform moves that are allowed by their current
state if they are feasible in the system. If two or more agents can
perform a transition via the same action a, then all agents that
can execute a move conjointly to the next state in their local
automaton. More formally, a configuration of a concurrent
system is a tuple C = (q, q1, . . . , q|U |), where q ∈ Q is a
state of A and each qi ∈ Qi is a local state of user ui. The
first component of a configuration C is denoted state(C).
We consider that the system starts in an initial configuration
C0 = (q0, q

1
0 , . . . , q

|U |
0).

A move from a configuration C = (q, q1, . . . , q|U |) to a
configuration C ′ = (q′, q′1, . . . , q

′
|U |) via action a is allowed

• if a 6∈ ΣU and (q, a, q′) ∈−→, or
• if a ∈ ΣU , (q, a, q′) ∈−→, there exists at least one

agent ui such that (qi, a, q
′
i) ∈−→i, and for every qj

such that some transition labeled by a is firable from qj ,
(qj , a, q

′
j) ∈−→j .

The local state of agents that cannot execute a remains
unchanged, i.e., if agent uk is such that a ∈ Σk and
(qj , a, q

′
j) 6∈−→j , then qk = q′k. A run of S = (A, U) is

a sequence of moves ρ = C0
a1−→ C1 . . . Ck. Given a run

ρ = C0
a1−→ C1 . . .

ak−→ Ck, we denote by l(ρ) = a1 · · · ak
its corresponding word. The set of run of S is denoted by
Runs(S), while the language L(S) = l(Runs(S)) is the set
of words labeling runs of S. We denote by Conf(S) the
configurations reached by S starting from C0. The size |S|
of S is the size of its set of configurations. Given an automa-
ton A, Pi,or Si, we denote by δ(q,A, a) (resp δ(q,Pi, a),
δ(q, Si, a)) the states that are successors of q by a transition
labeled a, i.e. δ(q,A, a) = {q′ | q a−→ q′}. This relation
extends to sets of states the obvious way, and to words, i.e.
δ(q,A, w.a) = δ(δ(q,A, w),A, a) with δ(q,A, ε) = {q}. Last,
for a given subalphabet Σ′ ⊆ Σ and a letter a ∈ Σ′, we define
by ∆Σ′(q,A, a) the set of states that are reachable from q in A

by sequences of moves which observation is a. More formally,
∆Σ′(q,A, a) = {q′ | ∃w ∈ (Σ \ Σ′)∗, q′ ∈ δ(q,A, w.a)}.

III. OPACITY FOR CONCURRENT SYSTEMS

The standard boolean notion of opacity introduced by [4],
[2] says that the secret of ui in a concurrent system S is opaque
to uj if, every secret run of ui is equivalent with respect to
uj’s observation to a non-secret run. In other words, uj cannot
say with certainty that the currently executed run belongs to
L(Si). Implicitly, opacity assumes that the specification of the
system is known by all participants. In the setting of concurrent
system with several agents and secrets, concurrent opacity can
then be defined as follows:

Definition 2 (Concurrent Opacity): A concurrent system S
is opaque w.r.t. U (noted U -Opaque) if

∀i 6= j,∀w ∈ L(Si) ∩ L(S), π−1

Σjo
(πΣjo

(w)) ∩ L(S) * L(Si)

Clearly, U -opacity is violated if one can find a pair of users
ui, uj and a run labeled by a word w ∈ L(Si)∩L(S) such that
π−1

Σjo
(πΣjo

(w))∩L(S) ⊆ L(Si), i.e. after playing w, there in no
ambiguity for uj on the fact that w is a run contained in u′is
secret. Unsurpisingly, checking opacity can be brought back to
a language inclusion question, and is hence PSPACE-complete.
This property was already shown in [5] with a slightly different
model (with a single agent j which behavior is Σ∗j and a secret
defined as a sub-language of the system A).

Theorem 3 ([5]): Deciding whether S is U -opaque is
PSPACE-complete.
Proof:[sketch] The proof of PSPACE-completeness consists
in first showing that one can find a witness run in polynomial
space. One can chose a pair of users ui, uj in logarithmic
space with respect to the number of users, and then find a run
after which uj can estimate without error that ui is in a secret
state. Then, an exploration has to maintain uj’s estimation of
possible configuration of status of ui’s secret with |Conf |∗|Si|
bits. It is also useless to consider runs of length greater than
2|Conf |∗|Si|. So finding a witness is in NPSPACE and using
Savitch’s lemma and closure of PSPACE by complementation,
opacity is in PSPACE. Hardness comes from a reduction from
universality question for regular languages. We refer interested
readers to appendix for a complete proof. �

The standard notion of opacity considers accidental leakage
of secret information to an honest user uj that is passive,
i.e. that does not behave in order to obtain this information.
One can also consider an active setting, where a particular
agent uj behaves in order to obtain information on a secret
Si. In this setting, one can see opacity as a partial information
reachability game, where player uj tries to reach a state in
which his estimation of S′is states in contained in FSi .

Following the definition of non-interference by Goguen &
Messeguer [7], we also equip our agents with observation
capacities. These capacities can be used to know the current
status of resources of the system, but not to get directly
information on other agents states. We define a set of atomic
propositions Γ, and assign observable propositions to each
state of A via a map O : Q→ 2Γ. We next equip users with

additional actions that consist in asking for the truth value of a
particular proposition γ ∈ Γ. For each γ ∈ Γ, we define action
aγ that consists in checking the truth value of proposition γ,
and define ΣΓ = {aγ | γ ∈ Γ}. We denote by aγ(q) the truth
value of proposition γ in state q, i.e., aγ(q) = tt if γ ∈ O(q)
and ff otherwise. Given a set of states X = {q1, . . . qk}, the
refinement of X with assertion γ = v where v ∈ {tt, ff}
is the set X\γ=v = {qi ∈ X | aγ(qi) = v}. Refinement
easily extends to a set of configurations CX ⊆ Conf with
CX\γ=v = {C ∈ CX | γ(state(C)) = v}.

We allow observation from any configuration for every user,
hence a behavior of a concurrent system with active attackers
shuffles behaviors from L(S), observation actions from Σ∗Γ
and the obtained answers. To simplify notations, we assume
that a query and its answer are consecutive transitions. The set
of queries of a particular agent uj will be denoted by ΣΓ

j .
Adding the capacity to observe states of a system forces

to consider runs of S containing queries followed by their
answers instead of simply runs over Σ∗. This leads to define
a new system

SΓ = (Σ ∪ ΣΓ ∪ {tt, ff}, C′,−→SΓ , C0)

with the constraint L(SΓ) ⊆ L(S)‖(ΣΓ.{tt.ff})∗. Formally,
a run of SΓ in an active setting is a sequence ρ = C0

e1−→SΓ

C1 . . .
ek−→SΓ Ck where C0, . . . , Ck are usual configurations,

each ei is a letter from Σ ∪ ΣΓ ∪ {tt, ff}, such that
• if ek 6∈ ΣΓ then Ck+1 ∈ δ(Ck,S, ek).
• if ek = aγ ∈ ΣΓ, then ek+1 = aγ(qk−1)2, and Ck−1 =
Ck+1. Intuitively, testing the value of a proposition does
not change the current state of the system. Furthermore,
playing action aγ from Ck−1 leaves the system in the
same configuration, but remembering that an agent just
made the query aγ . We will write Ck = Ck−1(aγ) to
denote this situation. The semantics of SΓ can be easily
obtained from that of S. If LTS(S) = (Conf,−→) is
an LTS defining runs of S , an LTS LTS(SΓ) recognizing
runs of SΓ can be built by adding a loop of the form

Ck
aγ−→ Ck(aγ)

aγ(qk)−→ Ck from each configuration Ck in
Conf .

We denote by Runs(SΓ) the set of runs of system S in an
active setting with observation actions ΣΓ. As usual, ρ is a
secret run of agent ui iff l(ρ) is recognized by automaton Si.
The observation of a run ρ by user uj is a word lj obtained by
projection of l(ρ) on Σj∪ΣΓ

j ∪{tt, ff}. Hence, an observation
of user j is a word lj(ρ) = α1 . . . αk where αm+1 ∈ {tt, ff}
if αm ∈ ΣΓ

j (αm is a query followed by the corresponding
answer.

Let w ∈ (Σj .(Σ
Γ
j .{tt, ff})∗)∗. We denote by l−1

j (w) the set
of runs of SΓ which observation by uj is w. A malicious agent
can only rely on his observation of S to take the decisions that
will provide him information on other users secret. Possible

2This entails that we assume that queries are faster than the rest of the
system, i.e. not event can occur between a query and its answer. We could
easily get rid of this hypothesis, by remembering in states of SΓ which query
(if any) was sent by an user, and returning the answer at any moment.

actions to achieve this goals are captured by the notion of
strategy.

Definition 4: A strategy for an user uj is a map µj from
Runs(SΓ) to Σj ∪ ΣΓ

j ∪ {ε}. We assume that strategies are
observation based, that is if lj(ρ) = lj(ρ

′), then µj(ρ) =

µj(ρ
′). A run ρ = q0

e1−→ q1 . . . qk conforms to strategy µj
iff, ∀i, µj(l(q0 −→ . . . qi)) 6= ε implies ei+1 = µj(l(q0 −→
. . . qi)) or ei+1 6∈ Σj ∪ ΣΓ

j .
Intuitively, a strategy indicates to player uj the next move to
choose (either an action or an observation or nothing. Even if
a particular action is advised, another player can play before
uj does. We will denote by Runs(S, µj) the runs of S that
conform to µj . Let µj be a strategy of uj and ρ ∈ Runs(SΓ)
be a run ending in a configuration C = (q, q1, . . . q|U |), we
now define the set of all possible configurations in which S
can be after observation lj(ρ) by uj under strategy µj . It is
inductively defined as follows:
• ∆µj (X,SΓ, ε) = X for every set of configurations X

• ∆µj (X,SΓ, w.e) =

∆
Σ
j
o
(∆µj (X,SΓ, w),SΓ, e) if e ∈ Σj

∆µj (X,SΓ, w) if e = aγ ∈ ΣΓ
j ,(

∆µj (X,SΓ, w)
)
\γ(q)

if e ∈ {tt, ff}
and w = w′.aγ for some γ ∈ Γ

Now, ∆µj ({C0},SΓ, w) is the estimation of the possible set
of reachable configurations that uj can build after observing
w. We can also define a set of plausible runs leading to
observation w ∈ (Σjo)

∗ by uj . A run is plausible after
w if its observation by uj is w, and at every step of
the run ending in some configuration Ck a test performed
by uj refine u′js estimation to a set of configuration that
contain Ck. More formally, the set of plausible runs after
w under strategy µj is Plj(w) = {ρ ∈ Runs(S, µj) |
lj(ρ) = w ∧ ρ is a run from C0 to a configuration C ∈
∆µj ({C0},SΓ, w)}.

We now redefine the notion of opacity in an active context.
A strategy µj of uj to learn Si is not efficient if despite the use
of µj , there is still a way to hide Si for an arbitrary long time.
In what follows, we assume that there is only one attacker of
the system.

Definition 5 (Opacity with active observation strategy): A
secret Si is opaque for any observation strategy to user uj
in a system S iff @µj and a bound K ∈ N, such that ∀ρ ∈
Runs(S, µj), ρ has a prefix ρ1 of size ≤ K, l(Pl(lj(ρ1))) ⊆
L(Si). A system S is opaque for any observation strategy iff
∀i 6= j, secret Si is opaque for any observation strategy of uj .

Let us comment differences between passive (def. 2) and
active opacity (def. 5). A system that is not U-opaque may
leak information while a system that not opaque with active
observation strategy cannot avoid leaking information if uj
implements an adequate strategy. U-opaque systems are not
necessarily opaque with strategies, as active tests give additional
information that can disambiguate state estimation. However,
if a system is U-opaque, then strategies that do not use
disambiguation capacities do not leak secrets. Note also that
a non-U-opaque system may leak information in more runs

under an adequate strategy. Conversely, a non-opaque system
can be opaque in an active setting, as the system can delay
leakage of information for an arbitrary long time. Based on the
definition of active opacity, we can state the following result:

Theorem 6: Given a system S = (A, U) with n agents
and a set secrets S1, . . . Sn, observation alphabets Σ1

o, . . .Σ
n
o

and observation capacities ΣΓ
1 , . . . ,Σ

Γ
n, deciding whether S

is opaque with active observation strategies is EXPTIME-
complete.
Proof:[sketch] An active attacker uj can claim that the system
is executing a run ρ that is secret for ui iff it can claim with
certainty that ρ is recognized by Si. This can be achieved by
maintaining an estimation of the system’s current configuration,
together with an estimation of Si’s possible states. We build
an arena with nodes of the form n = (b, C, s, ES) contains a
player’s name b (0 or 1): intuitively, 0 nodes are nodes where
all agents but uj can play, and 1 nodes are nodes where only
agent uj plays. Nodes also contain the current configuration C
of S, the current state s of Si, an estimation ES of possible
configurations of the system with secret’s current state by uj ,
ESj = {(C1, s1), ...(Ck, sk)}.

Moves in this arena represent actions of player uj (from
nodes where b = 1 and actions from the rest of the system (see
appendix for details). Obviously, this arena is of exponential
size wrt the size of configurations of S.

A node n = (b, C, s, ES) is not secret if s 6∈ FSi , and secret
otherwise. A node is ambiguous if there exists (Cp, sp) and
(Cm, sm) in ES such that sp ∈ FSi is secret and sm 6∈ FSi . If
the restriction of ES to it second components is contained in
FSi , n leaks secret Si. The set of winning nodes in the arena
is the set of nodes that leak Si. Player uj can take decisions
only from its state estimation, and wins the game if it can
reach a node in the winning set. This game is hence a partial
information reachability game. Usually, solving such games
requires computing an exponentially larger arena containing
players beliefs, and then apply polynomial procedures for a
perfect information reachability game. Here, as nodes already
contain beliefs, there is no exponetila blowup, and checking
active opacity is hence in EXPTIME.

For the hardness part, we use a reduction from the problem
of language emptiness for alternating automata to an active
opacity problem. (see appendix for details) �

Moving from opacity to active opacity changes the complex-
ity class from PSPACE-complete to EXPTIME-complete.
This is due to the game-like nature of active opacity. However,
using observation capacities does not influence complexity:
even if an agent uj has no capacity, the arena built to verify
opacity of Si w.r.t. uj is of exponential size, and the reduction
from alternating automata used to prove hardness does not
assume that observation capacities are used.

IV. OPACITY WITH THRESHOLD DISTANCES TO PROFILES

So far, we have considered passive opacity, i.e. whether a
secret can be leaked during normal use of a system, and active
opacity, i.e. whether an attacker can force secret leakage with
an appropriate strategy and with the use of capacities. In this

setting, the behavior of agents is not constrained by any security
mechanism. This means that attackers can perform illegal
actions with respect to their profile without being discovered,
as long as they are feasible in the system.

We extend this setting to systems where agents behaviors
are monitored by anomaly detection mechanisms, that can raise
alarms when an user’s behavior seems abnormal. Very often,
abnormal behaviors are defined as difference between observed
actions and a model of normality, that can be a discrete event
model, a stochastic model,.... These models or profiles can be
imposed a priori or learnt from former executions. This allows
for the definition of profiled opacity, i.e. whether users that
behave according to predetermined profile can learn a secret,
and active profiled opacity, i.e. a setting where attackers can
perform additional actions to refine their knowledge of the
system’s sate and force secret leakage in a finite amount of
time without leaving their normal profile.

One can assume that the behavior of an honest user uj is a
distributed system is predictable, and specified by his profile Pj .
The definitions of opacity (def. 2) and active opacity (def. 5) do
not consider these profiles, i.e. agents are allowed to perform
legally any action allowed by the system to obtain information.
In our opinion, there is a need for a distinction between what
is feasible in a system, and what is considered as normal.
For instance, changing access rights of one of his file by an
agent should always be legal, but changing access rights too
many times within a few seconds should be considered as an
anomaly. In what follows, we will assume that honest users
behave according to their predetermined regular profile, and
that deviating from this profile could be an active attempt to
break the system’s security. Yet, even if an user is honest,
he might still have possibilities to obtain information about
other user’s secret. This situation is captured by the following
definition of opacity wrt a profile.

Definition 7: A system A is opaque w.r.t. profiles P1, . . .Pn
if ∀i 6= j,∀w ∈ L(Si) ∩ L(S),

w ∈ L(Pj)⇒ π−1

Σjo
(πΣjo

(w)) ∩ L(S) * L(Si)

Intuitively, a system is opaque w.r.t profiles of its users
if it does not leak information when users stay within their
profiles. If this is not the case, i.e. when w 6∈ L(Pj), then
one can assume that an anomaly detection mechanism that
compares users action with their profiles can raise an alarm.
Definition 7 can be rewritten as ∀i 6= j,∀w ∈ L(Si)∩L(Pj)∩
L(S), π−1

Σjo
(πΣjo

(w)) ∩ L(S) * L(Si) Hence, PSPACE-
completeness of opacity in theorem 3 extends to opacity with
profiles: it suffices to find witness runs in L(S)∩L(Si)∩L(Pj).

Corollary 8: Deciding whether a system A is opaque w.r.t.
a set of profiles P1, . . .Pn is PSPACE complete.

If a system is U-opaque, then it is opaque w.r.t its agents
profiles. Using profiles does not change the nature nor complex-
ity of opacity question. Indeed, opacity w.r.t. a profile mainly
consists in considering regular behaviors in L(Pj) instead of
L(Aj). In the rest of the paper, we will however use profiles to
measure how much users deviate from their expected behavior
and quantify opacity accordingly.

One can similarly define a notion of active opacity w.r.t.
profiles, by imposing that choices performed by an attacker
are actions that does not force him to leave his profile. This
can again be encoded as a game. This slight adaptation of
definition 5 does not change the complexity class of the
opacity question (as it suffices to remember in each node
of the arena a state of the profile of the attacker). Hence active
opacity with profiles is still a partial information reachability
game, and is also EXPTIME-complete. Passive opacity (profiled
or not) holds iff certain inclusion properties are satisfied by
the modeled system, and active opacity holds if an active
attacker has no strategy to win a partial information reachability
game. Now, providing an answer to these opacity questions
returns a simple boolean information on information leakage.
It is interesting to quantify the notions of profiled and active
opacity for several reasons. First of all, profiles can be seen
as approximations of standard behaviors: deviation w.r.t. a
standard profile can be due to errors in the approximation, that
should not penalize honest users. Second, leaving a profile
should not always be considered as an alarming situation: if
profiles are learned behaviors of users, one can expect that from
time to time, with very low frequency, the observed behavior
of a user differs from what was expected. An alarm should
not be raised as soon as an unexpected event occurs. Hence,
considering that users shall behave exactly as depicted in their
profile is a too strict requirement. A sensible usage of profiles
is rather to impose that users stay close to their prescribed
profile. The first step to extend profiled and active opacity to
a quantitative setting is hence to define what ”close” means.

Definition 9: Let u, v be two words of Σ∗. An edit operation
applied to word u consists in inserting a letter a ∈ Σ in u at
some position i, deleting a letter a from u at position i, or
substituting a letter a for another letter b in u at position i.

Let OPs(Σ) denote the set of edit operations on Σ, and
ω(.) be a cost function assigning a weight to each operation
in OPs(Σ). The edit distance d(u, v) between u and v is the
minimal sum of costs of operations needed to transform u in
v.

Several edit distances exist, the most known ones are
• the Hamming distance ham((u, v)), that assumes that
OPs(Σ) contains only substitutions, and counts the
number of substitutions needed to obtain u from v (u, v
are supposed of equal lengths).

• the Levenshtein distance lev((u, v)) is defined as the
distance obtained when ω(.) assigns a unit to every
operation (insertion, substitution, deletion). One can
notice that lev((u, v)) is equal to lev((v, u)), and that
max(|u|, |v|) ≥ lev((u, v)) ≥ ||u| − |v||.

For a particular distance d(.) among words, the distance
between a word u ∈ Σ∗ and a language R ⊆ Σ∗ is denoted
d(u,R) and is defined as d(u,R) = min{d(u, v) | v ∈ R}.

We can now quantify opacity. An expected secure setting
is that no secret is leaked when users have behaviors that
are within or close enough from their expected profile. In
other words, when the observed behavior of agents u1, . . . uk
resemble the behavior of their profiles P1, . . . ,Pk, no leakage

should occur. Resemblance of ui’s behavior in a run ρ labeled
by w can be defined as the property d(πΣΓ,i(w), Pi)) ≤ K for
some choosen notion of distance d(.) and some threshold K
fixed by the system designers. In what follows, we will use the
Hamming and Levenshtein distances as a proximity measures
w.r.t. profiles. However, we believe that this notion of opacity
can be extended to many other distances. We are now ready
to propose a quantified notion of opacity.

Definition 10 (threshold profiled opacity): A system S is
opaque wrt profiles P1, . . . Pn with tolerance K for a distance
d iff ∀i 6= j,∀w ∈ L(Si) ∩ L(S),

d(w,L(Pj)) ≤ K ⇒ π−1

ΣjO
(πΣjO

(w)) ∩ L(S) * L(Si)

Threshold profiled opacity is again a passive opacity. In some
sense, it provides a measure of how much anomaly detection
mechanisms comparing users behaviors with their profiles are
able to detect passive leakage. Consider the following situation:
the system S is opaque w.r.t. profiles P1, . . .Pn with threshold
K + 1 but not with threshold K. Then it means there exists a
run of the system with K + 1 anomalies of some user uj w.r.t.
profile Pj , but no run with K anomalies. If anomaly detection
mechanisms are set to forbid execution of runs with more than
K anomalies, then the system remains opaque.

We can also extend the active opacity with thresholds. Let
us denote by StratK the set of strategies that forbid actions
leaving a profile Pj if the behavior of the concerned user uj
is already at distance K from Pj (the distance can refer to any
distance, eg, Hamming or Levenshtein).

Definition 11 (active profiled Opacity): A system S is opaque
wrt profiles P1, . . . Pn with tolerance K iff ∀i 6= j,@µj ∈
StratK such that it is unavoidable for uj to reach a correct
state estimation X ⊆ F iS in all runs of Runs(S, µj).

Informally, definition 10 says that a system is opaque if no
attacker uj of the system have a strategy that leaks a secret Si
and costs less than K units to reach this leakage. Again, we
can propose a game version for this problem, where attacker
uj is not only passive, but also has to play his best actions in
order to learn ui’s secret.

A player uj can attack ui’s secret iff it has a strategy µj
to force a word w ∈ L(Si) that conforms to µj , such that
d(w,Pj) ≤ K and π−1

ΣjO
(πΣjO

(w)) ∩ L(S) ⊆ L(Si). This can
be seen as a partial information game between uj and the rest
of the system, where the exact sate of each agent is partially
known to others. The system wins if it can stay forever is
states where uj’s estimates does not allow to know that the
secret automaton Si is in one of its accepting states. The arena
is built in such a way that uj stops playing differently from its
profile as soon as it reaches penalty K. This is again a partial
information rechability game and that is decidable on finite
arenas [6]. Fortunately, we can show (in lemma 12 below)
that the information to add to nodes with respect to the games
designed for active opacity (in theorem 6) is finite.

Lemma 12: For a given automaton A, one can compute an
automaton AK that recognizes words at distance at most K of
L(A), where the distance is either the Hamming or Levenshtein
distance.

Proof: Let us first consider the Hamming distance. For an
automaton A = (QR,−→R, q0R , FR), we can design an
automaton AKham = (QK ,−→K , qK0 , F

K) that recognizes
words at a distance at most K from the reference language
L(A). We have QK = QR × {0..K}, FK = Q × {0..K},
and qK0 = (q0, 0). Last, we give the transition function:
we have ((q, i), a, (q′, i)) ∈−→K iff (q, a, q′) ∈−→R, and
((q, i), a, (q′, i+ 1)) ∈−→K if (q, a, q′) 6∈−→R and i+1 ≤ K,
and there exists b 6= a such that (q, b, q′) ∈−→R. This way,
AKham recognizes sequences of letters that end on a state
(qf , i) such that qf is an accepting state of AR, and i ≤ K.
One can easily show that for any accepting path in AKham
ending on state (qf , i) recognizing word w, there exists a
path in AR of identical length recognizing a word w′ that
is at hamming distance at most K of w. Similarly, let us
consider any accepting path ρ = q0R

a1−→ q1 . . .
an−→ qf of

AR. Then, every path of the form ρk = (q0R , 0) . . .
ai1−→

(qi1, 1) . . . qik−1
aik−→ (qik, k) . . .

an−→ (qf , i) such that i ≤ K

and for every qij−1
aij−→ (qij , j), aij is not allowed in sate qij

is a path that recognizes a word at distance i of a word in R
and is also a word of AKR . One can show by induction on the
length of paths that the set of all paths recognizing words at
distance at most k can be obtained by random insertion of at
most k such letter changes in each path of AR. The size of
AKham is exactly |AR| ×K.

Let us now consider the Levenshtein distance. Sim-
ilarly to the Hamming distance, we can compute an
automaton AKLev that recognizes words at distance at
most K from L(A). Namely, AKLev = (Qlev,−→lev

, q0,Lev, Flev) where Qlev = Q × {0..K}, q0,lev =
(q0, 0), Flev = F × {0..K}. Last the transition relation
is defined as ((q, i), a, (q′, i)) ∈−→lev if (q, a, q′) ∈−→,
((q, i), a, (q, i+ 1)) ∈−→lev if @q′, (q, a, q′) ∈−→ (this
transition simulates insertion of letter a in a word),
((q, i), a, (q′, i+ 1)) ∈−→lev if ∃(q, b, q′) ∈−→ with b 6=
a (this transition simulates substitution of a character),
((q, i), ε, (q′, i+ 1)) ∈−→lev if ∃(q, a, q′) ∈−→ (this last
move simulates deletion of a character from a word in L(A).

One can notice that this automaton contains ε transition, but
after and ε-closure, one obtains an automaton without epsilon
that recognizes all words at distance at most K from L(A).
The proof of correctness of the construction follows the same
lines as for the Hamming distance, with the particularity that
one can randomly insert transitions in paths, by playing letters
that are not accepted from a state, leaving the system in the
same state, and simply increasing the number of differences.
Notice that if a word w is recognized by AKLev with a path
ending in a state (q, i) ∈ FLev, this does not mean that the
Levenshtein distance from L(A) is i, as w can be recognized
by another path ending in a state (q′, j) ∈ FLev with j < i. �

One can notice that the automata built in the proof of
lemma 12 are of size in O(K.|A|), even after ε-closure. Figure 1
represents an automaton A that recognizes the prefix closure
of a.a∗.b.(a+ c)∗, and the automaton A3

Ham.

s0 s1 s2
a b a, c

a

s0, 0

s0, 1

s0, 2

s0, 3

s1, 0

s1, 1

s1, 2

s1, 3

s2, 0

s2, 1

s2, 2

s2, 3

a b

a b

a b

a b

a, c

a, c

a, c

a, c

a

a

a

a

b, c

b, c

b, c

b

b

b

c

c

c

c

c

c

Fig. 1: An automaton A and the automaton A3
Ham that

recognizes words at Hamming distance ≤ 3 of L(A).

Theorem 13: Deciding threshold opacity for the Hamming
and Levenshtein distance is PSPACE complete.
Proof: First of all, one can remark that, for a distance d(.), a
system S is not opaque if there exists a pair of users ui, uj and
a word w in L(S) ∩ L(Si) such that d(w,L(Pj)) ≤ K, and
π−1

ΣjO
(πΣjO

(w)) ∩ L(S) ⊆ L(Si). As already explained in the
proof of theorem 3, w belongs to L(Si) if a state qw reached
by Si after reading w belongs to FSi . Still referring to the
proof of Theorem 3, one can maintain online when reading
letters of w the set reachj(w) of possible configuration and
states of Si that are reached by a run which observation is the
same as πΣjO

(w).
One can also notice that lev(w,L(Pj)) ≤ K iff w

recognized by PKj,lev, the automaton that accepts words at
Levenshtein distance at most K from a word in Pj . Again,
checking online whether w is recognized by PKj,Lev consists
in maintaining a set of states that can be reached by PKj,Lev
when reading w. We can denote by reachKj,Lev(w) this set
of states. When no letter is read yet, reachKj,Lev(ε) = {qK0 },
and if lev(w,L(()Pl)) > K, we have reachKj,Lev(w) = ∅,
meaning that the sequence of actions played by user uj have
left the profile. We can maintain similarly a set of states
reachKj,Ham(w) for the Hamming distance. In what follows,
we will simply use reachKj (w) to denote a state estimation
using Levenstein of Hamming distance.

Hence, non-opacity can be rephrased as existence of a
run, labeled by a word w such that reachj(w) ⊆ FSi and
reachKj (w) 6= ∅. The contents of reachj(w) and reachKj (w)
after reading a word w can be recalled with a vector of
h = |S| + |PKj | bits. Following the same arguments as in
Theorem 3, it is also useless to consider runs of size greater
than 2h. One can hence non-deterministically explore the whole
set of states reached by reachj(w) and reachKj (w) during any
run of S by remembering h bits and a counter which value is
smaller of equal to 2h, and can hence be encoded with at most
h bits. So, finding a witness for non-opacity is in NPSPACE,
and by Savitch’s theorem and closure by complementation of
PSPACE, opacity with a threshold K is in PSPACE.

For the hardness part, it suffices to remark that profiled

opacity is exactly threshold profiled opacity with K = 0. �
Theorem 14: Deciding active profiled opacity for the Ham-

ming and Levenshtein distance is EXPTIME-complete.
Proof:[sketch] Let us first consider the Hamming distance.
One can build an arena for a pair of agents ui, uj as for
the proof of theorem 6. This arena is made of nodes of the
form (b, C, s, spjk,ES, d) that contain: a bit b indicating if it
is uj turn to play and choose the next move, C the current
configuration of S , s the current state of Si, the estimation of
ES of possible pairs (C, s) of current configuration and current
state of the secret by player uj , and spjk a set of states of the
automaton PKj,ham that recognizes words that are at Hamming
distance at most K from Pj . In addition to this information,
a node contains the distance d of currently played sequence
w.r.t. profile Pj . This distance can be easily computed: if all
states of PKj,ham memorized in spjk are pairs of state and
distance, i.e., spkj = {(q1, i1), (q2, i2), . . . , (qk, ik)} then d =
min{i1, . . . , ik}. User uj (the attacker) has partial knowledge
of the current state of the system (i.e. a configuration of S and
of the state of Si), perfect knowledge of d. User j wins if it
can reach a node in which his estimation of the current state
of secret Si is contained in FSI (a non-ambiguous and secret
node), without exceeding threshold K. The rest of the system
wins if it can prevent player uj to reach a non-ambiguous and
secret node of the arena. We distinguish a particular node ⊥
reached as soon as the distance w.r.t. profile Pj is greater than
K. We consider this node as ambiguous, and every action from
it gets back to ⊥. Hence, after reaching ⊥, player uj has no
chance to learn Si anymore. The moves from a node to another
are the same as in the proof for theorem 6, with additional
moves from any node of the form n = (1, q, s, spjk,ES, d)
to ⊥ using action a is the cost of using a from n exceeds K.

We add an equivalence relation ∼, such that n =
(b, q, s, spjk,ES, d) ∼ n = (b′, q′, s′, spjk′, ES′, d′) iff
b = b′, spjk = spjk′, d = d′, and ES = ES′. Obviously,
uj has a strategy to violate ui’s secret without exceeding
distance K w.r.t. its profile Pj iff there is a strategy to reach
Win = {(b, q, s, spjk,ES, d) | ES ⊆ SiF } for player uj with
partial information that does not differentiate states in the
equivalence classes of ∼.

This is a partial information reachability game over an
arena of size in O(2.|Conf |.|Si|.2|Conf |.|Si|.K.|Pj |), that is
exponential in the size of S and of the secret Si and profile Pj .
This setting is a partial information reachability game over an
arena of exponential size. As in the boolean setting, the nodes
of the arena already contain a representation of the beliefs
that are usually computed to solve such games, and hence
transforming this partial information reachability game into a
perfect information game does not yield an exponential blowup.
Hence, solving this reachability game is in EXPTIME.

The hardness part is easy: the emptiness problem for
alternating automaton used for the proof of theorem 6 can
be recast in a profiled and quantified setting by setting each
profile Pi to an automaton that recognizes (ΣΓ

i)∗ (i.e., users
have the right to do anything they want, and always remain at
distance 0 from their profile). �

V. DISCOUNTING ANOMALIES

Threshold opacity is a first step to improve the standard
boolean setting. However, this form of opacity supposes that
anomaly detection mechanisms memorize all suspicious moves
of users and never revises their opinion that a move was
unusual. This approach can be too restrictive. In what follows,
we propose several solutions to discount anomalies. We first
start by counting the number of substitutions in a bounded
suffix with respect to the profile of an attacker. A suspicion
score is computed depending on the number of differences
within the suffix. This suspicion score increases if the number
of errors in the considered suffix is above a maximal threshold,
and it is decreased as soon as this number of differences falls
below a minimal threshold. As in former sections, this allows
for the definition of passive and active notions of opacity, that
are respectively PSPACE-complete and EXPTIME-complete.
We then consider the mean number of discrepancies wrt the
profile as a discounted Hamming distance.

A. A Regular discounted suspicion measure
Let u ∈ ΣK .Σ∗ and let v ∈ Σ∗. We denote by dK(u, v)

the distance between the last K letters of word u and
any suffix of v, i.e. dK(u, v) = min{d(u[|u|−K,|u|], v

′) |
v′ is a suffix of v}. Given a regular language R we define
dK(u,R) = min{dK(u, v) | v ∈ R}

Lemma 15: Let R be a regular language. For a fixed K ∈ N,
and for every k ∈ 0..K, one can compute an automaton that
recognizes words which suffixes of length K are at Hamming
distance k from a suffix of a word of R.
Proof: One can first recall that for the Hamming and Leven-
shtein distances, we have d(u, v) = d(u−1, v−1), where u−1 is
the mirror of u. Similarly, we have dK(u,R) = d(u−1

[1,K], R
−1).

Let AR = (Q, q0, δ, F) be the automaton recognizing language
R. We can build an automaton Ck that recognizes words of
length at least K, which suffixes of length K are at hamming
distance at most k of suffixes of length K of words in R.
We define Ck = (Qsufk , qsuf0,k , δ

suf
k , F sufk). This automaton can

be computed as follows : first build A−1
R , the automaton that

recognizes mirrors of suffixes of R. This can be easily done by
setting as initial states the final states of R, and then reversing
the transition relation. Then by adding a K-bounded counter to
states of A−1

R , and setting as accepting states states of the form
(q,K), we obtain an automaton B−1 that recognizes mirrors
of suffixes of R of length K. Then, for every k ∈ 0..K, we
can compute Bk, the automaton that recognizes mirrors of
words of length K that are at distance k from words in B−1,
by adding another counter to states that counts substitutions,
and which final states are of the form (q,K, k). Then we can
build (by sequential composition of automata for instance) the
automaton Ck that reads any word in Σ∗ and then recognizes
a word in (Bk)−1. �

We now define a cost model, that penalizes users that get too
far from their profile, and decreases this penalty when getting
back closer to a normal behavior. For a profile Pj and fixed
values α, β ≤ K we define a suspicion function Cj for words
in Σ∗ inductively:

a a a c bb a c b a a0

1

2

3

4

5

1

2

3

4

5
#errors Cj(w)

Fig. 2: Evolution of suspicion wrt profile of Figure 1 when
reading word w = a.a.a.c.b.b.a.c.b.a.a.

Cj(w) = 0 if |w| ≤ K

Cj(a.w.b) =

{
Cj(a.w) + 1 if dK(w.b, Pj) ≥ β
max(Cj(a.w)− 1, 0) if dK(w.b, Pj) ≤ α

As an example, let us take as profile Pj the automaton
A of Figure 1. Let us fix a suffix size of K = 5, an upper
bound β = 2 and a lower bound α = 1. Suppose that a word
w = a.a.a.c.b.b.a.c.b.a.a is read. When reading this word,
one observes successively seven suffixes w1, . . . w7 of size
5. Suffixes w1 and w7 are at distance 1 from a suffix of A,
other suffixes at distance 2. Graphics if figure 2 shows the
distance dK(w[i.i+5],Pj) at each letter of w (plain line), and
the evolution of the suspicion function (dashed line).

One can easily define a notion of passive opacity with
respect to a suspicion threshold T . Again, verifying this
property supposes finding a witness run of the system that
leaks information without exceeding suspicion threshold, which
can be done in PSPACE (assuming that T is smaller than
2|Conf |). As for profiled opacity, we can define StratT the
set of strategies of an user that never exceed suspicion level T .
This immediately gives us the following definitions and results.

Definition 16: Let K ∈ N be a suffix size, α, β ≤ K and
T ∈ N be a suspicion threshold. S is opaque with suspicion
threshold T iff ∀i 6= j,∀w ∈ L(Si), Cj(w,Pj) < T implies
π−1

ΣjO
(πΣjO

(w)) ∩ L(S) * L(Si) .
Theorem 17: Opacity with suspicion threshold for the

Hamming distance is PSPACE-complete.
Definition 18: Let K ∈ N be a suffix size, α, β ≤ K and

T ∈ N. S is actively opaque with suspicion threshold T iff
∀i 6= j there exists no strategy µj ∈ StartT such that it is
unavoidable for uj to reach a correct state estimation X ⊆ F iS
in all runs of Runs(A, µj).

Theorem 19: Active opacity with suspicion threshold for the
Hamming distance is EXPTIME-complete.
Proof: We build an arena that contains nodes of the form
n = (b, C,ES,EC0, . . . ECk, sus). C is the actual current
configuration of SΓ, ES is the set of pairs (C, s) of configu-
ration and secret sates in which SΓ could be according to the
actions observed by uj and according to the belief refinements
actions performed by uj . Sets EC1 . . . ECk remembers sets
of states of cost automata C0, . . . CK . Each ECi memorizes
the states in which Ci could be after reading the current word.
If ECi contains a final state, then the K last letters of the
sequence of actions executed so far contain exactly i differences.
Note that only one of these sets can contain an accepting state.

Suspicion sus is a suspicion score between 0 and T . When
reading a new letter, denoting by p the number of discrepancies
of the K last letters wrt profiles, one can update the suspicion
score using the definition of Cj above, depending on whether
p ∈ [0, α], p ∈ [α, β] or p ∈ [β,K].

The winning condition in this game is the set
Win = {(b, C,ES,EC0, . . . ECk, sus) | ES ⊆
Conf × FSi }. We partition the set of nodes into
V0 = {(b, C,ES,EC0, . . . ECk, sus) | b = 0} and
V1 = {(b, C,ES,EC0, . . . ECk, sus) | b = 1}.
We define moves from (b, C,ES,EC0, . . . ECk, sus) to
(1 − b, C,ES,EC0, . . . ECk, sus) symbolizing the fact
that it is user uj’s turn to perform an action. There
is a move from n = (b, C,ES,EC0, . . . ECk, sus) to
n′ = (b′, C ′, ES,EC ′0, . . . EC

′
k, sus

′) if there is a tran-
sition (C, a,C ′) in SΓ performed by an user ui 6=
uj , and a is not observable by uj . There is a move
from n = (b, C,ES,EC0, . . . ECk, sus) to n′ =
(b′, C ′, ES′, EC0, . . . ECk, sus) if there is a transition
(C, a,C ′) in SΓ performed by an user ui 6= uj and a is
observable by uj . We have ES′ = ∆Σjo

(ES,SΓ, a). Suspicion
and discrepancies observation (sets ECi) remain unchanged
as this move does not represent an action played by uj .

There is a move from n = (b, C,ES,EC0, . . . ECk, sus)
to n′ = (1 − b, C ′, ES′, EC ′0, . . . EC

′
k, sus) if b = 1

and there is a transition (q, a, q′) in SΓ performed by
user uj from the current configuration. Set ES is updated
as before ES′ = ∆Σjo

(ES,SΓ, a) and sets ECi are up-
dated according to transition relation δsufi of automaton
Ci, i.e. EC ′i = δsufi (Ei, a). Similarly, sus′ is the new
suspicion value obtained after reading a. Last, there is a
move from n = (b, C,ES,EC0, . . . ECk, sus) to n′ =
(b, C,ES′, EC ′0, . . . EC

′
k, sus), if there is a sequence of moves

(C, a,C(aγ)).(C(aγ), aγ(q), C) in SΓ, ES′ = ES/aγ(q)
, and

ECi’s and sus′ are computed as in the former case.
As for the proofs of theorems 6 and 14, opacity can be

brought back to a reachability game of partial information, and
no exponential blowup occurs to solve it. For the hardness,
there is a reduction from active profiled opacity. Indeed, active
profiled opacity can be expressed as a suspicion threshold
opacity, by setting α = β = K = 0, to disallow attackers to
leave their profile. �

B. Discounted Opacity : an open problem

A frequent interpretation of discounting is that weights or
penalties attached to a decision should decrease progressively
over time, or according to the length of runs. This is captured
by averaging contribution of individual moves.

Definition 20: The discounted Hamming distance between a
word u and a language R is the value d̂(u,R) = ham(u,R)

|u|
This distance measures the average number of substitutions

in a word u with respect to the closest word in R. The next
quantitative definition considers a system as opaque if an
active attacker can not obtain a secret while maintaining a
mean number of differences w.r.t. its expected behavior below
a certain threshold. Let λ ∈ Q be a rational value. We denote

by Ŝtrat
λ
(R) the set of strategies that does not allow an

action a after a run ρ labeled by a sequence of actions w if
d̂(w.a,R) > λ.

Definition 21 (Discounted active Opacity): A system S is
opaque wrt profiles P1, . . .Pn with discounted tolerance λ iff
∀i 6= j,@µj ∈ Ŝtrat

λ
(Pj), strategy of agent uj such that it is

unavoidable for uj to reach a correct state estimation X ⊆ F iS
in all runs of Runs(S, µj).

A system is opaque in a discounted active setting iff one can
find a strategy for uj to reach a state estimation that reveals
the secret Si while maintaining a discounted distance wrt Pj
smaller than λ. At first sight, this setting resembles discounted
games with partial information, already considered in [12]. It
was shown that finding optimal strategies for such mean payoff
games is in NP ∩ co − NP . The general setting for mean
payoff games is that average costs are values of nodes in an
arena, i.e. the minimal average reward along infinite runs that
one can achieve with a strategy starting from that node. As a
consequence, values of nodes are mainly values on connected
components of an arena, and costs of moves leading from
a component to another have no impact. In out setting, the
game is not a value minimization over infinite run, but rather
a co-reachability game, in which at any moment in a run, one
shall not exceed a mean number of unexpected moves.

For a fixed pair of users ui, uj , we can design an arena
with nodes of the usual form n = (b, C,ES, l, su) in which
b indicates whether it is uj’s turn to play, C is the current
configuration of the system, ES the estimation of the current
configuration and of the current state of secret Si reached, l
is the number of moves played so far, and su the number of
moves that differ from what was expected in Pj . As before,
the winning states for uj are the states where all couples in
state estimation refer to an accepting state of Si. In this arena,
player uj looses if it can never reach a winning node, or if it
plays an illegal move from a node n = (b, C,ES, l, su) such
that su+1

l+1 > λ. One can immediately notice that defined this
way, our arena is not finite anymore.

Consider the arena used in theorem 6, i.e. composed of
nodes of the form n = (b, C,ES) that only build estimations
of the attacker. Obviously, when ignoring mean number of
discrepancies, one can decide whether the winning set of
nodes is reachable from the initial node under some strategy in
polynomial time (wrt the size of the arena). The decision
algorithm builds an attractor for the winning set (see for
instance [8] for details), but can also be used to find short paths
under an adequate strategy to reach Win (without considering
mean number of discrepancies). If one of these paths keeps the
mean number of discrepancies lower or equal to λ at each step,
then obviously, this is a witness for non-opacity. However, if no
such path exists, there might still be a way to play longer runs
that decrease the mean number of discrepancies before moving
to a position that requires less steps to reach the winning set.

We can show an additional sufficient condition : Let ρ =
n0.n1 . . . nw be a path of the arena in theorem 6 (without
length nor mean number of discrepancies recall) from n0 to a

winning node nw. Let di denote the number of discrepancies
with respect to profile Pj at step i. Let ni be a node of ρ
such that di

i ≤ λ and di+1

i+1 > λ. We say that uj can enforce a
decreasing loop β = nj .nj+1 . . . nj at node nj if β is a cycle
that uj can enforce with an appropriate strategy, and if the
mean number of discrepancies is smaller in ρβ = n0 . . . nj .β
than in n0 . . . nj , and the mean cost of any prefix of β is
smaller that λ. A consequence is that the mean cost Mβ of
cycle β is smaller than λ. We then have a sufficient condition:

Proposition 22: Let ρ be a winning path in an arena built
to check active opacity for users ui, uj such that di

i > λ for
some i ≤ |ρ|. If there exists a node nb in ρ such that dk

k ≤ λ
for every k ≤ b and uj can enforce a decreasing loop at nb,
then uj has a strategy to learn Si without exceeding mean
number of discrepancies λ.
Proof: The winning path is of the form ρ =
n0.n1 . . . nb.nb+1 . . . nw. Let db be the number of
discrepancies in n0.n1 . . . nb and λb = db

b . Player
uj can choose any integer value B and enforce path
ρB = n0.n1 . . . nb.β

B . The mean number of discrepancies
in ρB is equal to db+B.dβ

i+B.|β| , i.e. as B increases, this number
tends towards Mβ . Similarly, if B is large enough, playing
any prefix of nb+1 . . . nw to reach the winning set does not
increase enough the mean number of discrepancies to exceed
λ. A lower bound for B such that λ is never exceeded in
n0 . . . nb.β

B .nb+1 . . . nw can be easily computed. Hence,
if one can find a path in a simple arena withouts mean
discrepancy counts, and a decreasing loop in this path, then uj
has a strategy to learn Si without exceeding threshold λ. �

VI. CONCLUSION

We have shown several ways to quantify opacity with passive
and active attackers. In all cases, checking passive opacity
can be brought back to a language inclusion question, and is
hence PSPACE-complete. In active settings, opacity violation
is brought back to existence of strategies in reachability games
over arenas which nodes represent beliefs of agents, and is
EXPTIME-complete.

Suspicion can be discounted or not. Non-discounted suspi-
cions simply counts the number of anomalies w.r.t. a profile,
and raises an alarm when a maximal number K of anomalies is
exceeded. We have shown that when anomalies are substitutions,
deletions and insertions of actions, words with less than K
anomalies w.r.t. the considered profile (words at Hamming
or Levenshtein distance ≤ K) are recognized by automata
of linear size. This allows to define active and passive
profiled opacity, with the same PSPACE/EXPTIME-complete
complexities. A crux in the proofs is that words at distance
lower than K of a profile are recognized by automata. A natural
extension of this work is to see how regular characterization
generalizes to other distances.

Discounting the number of anomalies is a key issue to avoid
constantly raising false alarms. t is reasonable to consider
that the contribution to suspicion raised by each anomaly
should decrease over time. The first solution proposed in this
paper computes a suspicion score depending on the number of

discrepancies found during the last actions of an agent. When
differences are only substitutions, one can use finite automata
to maintain online the number of differences. This allows to
enhance the arenas used in the active profiled setting without
changing the complexity class of the problem (checking regular
discounted suspicion remains EXPTIME-complete). Again, we
would like to see if other distances (eg the Levenstein distance)
and suspicion scores can be regular, which would allow for
the defiition of new opacity measures.

Discounted suspicion weights discrepancies between the
expected and actual behavior of an agent according to run
length. This suspicion measure can be seen as a quantitative
game, where the objective is to reach a state leaking information
without exceeding an average distance of λ ∈ Q. In our setting,
the mean payoff has to be compared to a threshold at every
step. This constraint can be recast as a reachability property
for timed automata with one stopwatch and linear diagonal
constraints on clock values. We do not know yet if this question
is decidable but we provide a sufficient condition for discounted
opacity violation.

In the models we proposed, discounting is performed
according to runs length. However, it seems natural to consider
discrepancies that have occurred during the last ∆ seconds,
rather than This requires in particular considering timed systems
and they timed runs. It is not sure that adding timing to our
setting preserves decidability, as opacity definitions rely a lot
on languages inclusion, which are usually undecidable for
timed automata [1]. If time is only used to measure durations
elapsed between actions of an attacker, then we might be able
to recast the quantitative opacity questions in a decidable timed
setting, using decidability results for timed automata with one
clock [9] or event-clock timed automata.

REFERENCES

[1] R. Alur and D.L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[2] E. Badouel, M.A. Bednarczyk, A.M. Borzyszkowski, B. Caillaud, and
P. Darondeau. Concurrent secrets. Discrete Event Dynamic Systems,
17(4):425–446, 2007.

[3] B. Bérard, J. Mullins, and M. Sassolas. Quantifying opacity. Mathemati-
cal Structures in Computer Science, 25(2):361–403, 2015.

[4] J. Bryans, M. Koutny, L. Mazaré, and P.Y.A. Ryan. Opacity generalised
to transition systems. In FAST 2005, volume 3866 of LNCS, pages 81–95,
2006.

[5] F. Cassez, J. Dubreil, and H. Marchand. Synthesis of opaque systems
with static and dynamic masks. Formal Methods in System Design,
40(1):88–115, 2012.

[6] K. Chatterjee and L. Doyen. The complexity of partial-observation parity
games. In LPAR’10, volume 6397 of LNCS, pages 1–14, 2010.

[7] J.A. Goguen and J. Meseguer. Security policies and security models.
In IEEE Computer Society Press, editor, Proc of IEEE Symposium on
Security and Privacy, pages 11–20, April 1982.

[8] E. Grädel and W. Thomas. Automata Logics, and Infinite Games : A
Guide to Current Research, volume 2500 of LNCS. 1998.

[9] J. Ouaknine and J. Worrell. On the language inclusion problem for timed
automata: Closing a decidability gap. In LICS 2004, pages 54–63, 2004.

[10] J.H. Reif. Universal games of incomplete information. In STOC, ACM
Press, 1979.

[11] A. Sabelfeld and A.C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[12] U. Zwick and M.S. Paterson. The complexity of mean payoff games. In
International Computing and Combinatorics Conference, volume 959 of
LNCS, pages 1–10, 1995.

APPENDIX

PROOF OF THEOREM 3

Proof: Let us first prove that U -opacity is in PSPACE. A system
is not opaque if one can find a pair of users ui, uj , and a run w
of S such that w ∈ L(Si) and π−1

Σjo
(πΣjo

(w)) ∩ L(S) ⊆ L(Si).
One can non-deterministically choose a pair of users ui, uj in
space logarithmic in n, and check that i 6= j in logarithmic
space. To decide whether a run of S belongs to Si, it is sufficient
to know the set of states reached by Si after recognizing w.
A word w belongs to L(Si) is the state qw reached by Si
after reading w belongs to FSi . Now, observe that an user uj
does not have access to w, but can only observe πΣjo

(w), and
may hence believe that the run actually played is any run with
identical observation, i.e. any run of π−1

Σjo
(πΣjo

(w)) ∩ L(S).
Let ρ be a run of S, one can build online the set of states

reachj(w) that are reached by a run which observation is
the same as πΣjo

(w). We have reachj(ε) = {q ∈ QSi |
∃w, qS0,i

w−→ q ∧ πΣjo
(w) = ε} and reachj(w.a) = {q ∈

QSi | ∃q′ ∈ reachj(w),∃w′, q′ w′

−→ q ∧ πΣjo
(w′) = a}.

Obviously, a word w witnesses a secret leakage from Si to uj
if reachj(w) ⊆ FSi . To play a run of S , it is hence sufficient
to remember a configuration of S and a subset of states of Si.
Let qρ denote the pair (q,X) reached after playing run ρ.

Now we can show that witness runs with at most K1 =
|Conf |.2|Si| letters observable by uj suffice. Let us assume
that there exists a witness ρ of size ≥ K1. Then, ρ can be
partitioned into ρ = ρ1.ρ2.ρ3 such that qρ1

= qρ1.ρ2
. Hence,

ρ1.ρ3 is also a run that witness a leakage of secret Si to uj ,
but of smaller size.

Hence one can find a witness of secret leakage by a non-
deterministic exploration of size at most |Conf |.2|Si|. To find
such run, one only needs to remember a configuration of S
(which can be done with log(|S|) bits, all states of reachj(ρ)
for the current run ρ followed in S, which can be done with
|Si| bits of information, and an integer of size at most K1,
which requires log |S|.|Si| bits. Finding a witness can hence be
done in NPSPACE, and by Savitch’s lemma it is in PSPACE.
As PSPACE is closed by complement, deciding opacity of a
system is in PSPACE.

Let us now consider the hardness part. We will reduce
the non-universality of any regular language to an opacity
problem. As universality is in PSPACE, non-universality is
also in PSPACE. The language of an automaton B defined
over an alphabet Σ is not universal iff L(B) 6= Σ∗, or
equivalently if Σ∗ * L(B). For any automaton B, one can
design a system SB with two users u1, u2 such that S1 = B,
L(S2) = a.Σ∗ for some letter a, A accepts all actions, i.e.
is such that L(A) = Σ∗, Σ2

o = Σ1
o = ∅. Clearly, for every

run of S, u1 observes ε, and hence leakage can not occur
from u2 to u1 (one cannot know whether a letter and in
particular a was played). So the considered system is opaque
iff ∀w ∈ L(S1) ∩ L(S), π−1

Σ2
o
(πΣ2

o
(w)) * L(S1). However, as

Σ2
o = ∅, for every w, π−1

Σ2
o
(πΣ2

o
(w)) = Σ∗. That is, the system

is opaque iff Σ∗ * L(B). �

PROOF OF THEOREM 6

Proof: An active attacker uj can claim that the system is
executing a run ρ that is secret for ui iff it can claim with
certainty that ρ is recognized by Si. This can be achieved by
maintaining an estimation of the system’s current configuration,
together with an estimation of Si’s possible states. We build
an arena with nodes N0 ∪ N1. Each node of the form n =
(b, C, s, ES) contains :
• a player’s name b (0 or 1). Intuitively, 0 nodes are nodes

where all agents but uj can play, and 1 nodes are nodes
where only agent uj plays.

• the current configuration C of S
• the current state s of Si
• an estimation ES of the system’s configuration and

secret’s current state by uj , ESj = {(C1, s1), ...(Ck, sk)}
We write C σ

=⇒ C ′ iff there exists a sequence of transitions
of S which observation by uj is σ, and s σ

=⇒
S

i s
′ if there is

such a sequence from s to s′ in Si. Then we define moves
among nodes as a relation δG ⊆ N0 ∪N1 ×N0 ∪N1.
• (n, n′) ∈ δG if n and n′ differ only w.r.t. their player’s

name
• (n, n′) ∈ δG if n = (0, C, s, ES) , n′ = (1, C ′, s′, ES′)

and there exists σ ∈ (Σ \ Σj) ∩ Σjo such that C σ
=⇒ C ′,

s
σ

=⇒
S

i s
′ and ES′ is th set of pairs (Cm, sm) such that

there exits a pair (Cp, sp) in ES, and a sequence ρ of
transitions from Cp to Cm, labeled by a word w such that
Πj(w) = σ, and one can move in Si from sp to sm by
reading w. Note that this set of sequences needs not be
finite, but one can find in O(|Conf |) the set of possible
pairs that are accessible while reading σ.

• (n, n′) ∈ δG if n = (1, C, s, ES), n′ = (1, C ′, s′, ES′)
and there exists σ ∈ Σj , a transition C

σ−→ C ′ in S, a
transition (s, σ, s′) ∈−→S

i and ES′ is the set of pairs of
the form (C ′m, s

′
m) such that there exists (Cm, sm) ∈ ES

(Cm, σ, C
′
m) ∈−→ and (sm, σ, s

′
m) −→S

i .
• (n, n′) ∈ δG n = (1, C, s, ES), n′ = (1, C, s, ES′) if

there exists γ ∈ ΣΓ
j such that ES′ is the refinement of

ES by aγ(state(C)). We assume that checking the status
of a proposition does not affect the secrets of other users.

We says that a node n = (b, C, s, ES) is not secret if
s 6∈ FSi , and say that n is secret otherwise. We say that a node
is ambiguous if there exists (Cp, sp) and (Cm, sm) in ES such
that sp is secret and smis not. If the restriction of ES to it
second components is contained in FSi , we says that n leaks
secret Si.

We equip the arena with an equivalence relation ∼⊆
N0 × N0 ∪ N1 × N1, such that n = (b, C, s, ES) ∼ n′ =
(b′, C ′, s′, ES′) iff b = b′ = 1 and ES = ES′. Intuitively,
n ≡ n′ if and only if they are nodes of agent uj , and uj
cannot distinguish n from n′ using the knowledge it has on
executions leading to n and to n′.

Clearly, secret Si is not opaque to agent uj in S iff there
exists a strategy to make a leaking node accessible. This can
be encoded as a partial information reachability game G =

(N0]N1, δ
G,≡,Win), where Win is the set of all leaking

nodes. In these games, the strategy must be the same for every
node in the same class of ≡ (i.e. where uj has the same state
estimation). Usually, partial information games are solved at he
cost of an exponential blowup, but we can show that in our case,
complexity is better. First, let us compute the maximal size
of the arena. A node is of the form n = (b, C, s, ES), hence
the size of the arena |G| is in O(2.|Conf |.|§i|.2|Conf |.|Si|)
(and it can be built in time O(|Conf |.|G|). Partial information
reachability games are known to be EXPTIME-complete [10].
Note here that only one player is blind, but this does not change
the overall complexity, as recalled by [6]. However, solving
games of partial information consists in computing a ”belief”
arena GB that explicitly represent players beliefs (a partial
information on a state is transformed into a full knowledge of a
belief), and then solve the complete information game on arena
GB. This usually yields an exponential blowup. In our case, this
blowup is not needed, and the belief that would be computed
to solve a partial information game simply duplicates the state
estimation that already appears in the partial information arena.
Hence, deciding opacity with active observation strategies can
be done with |U |2 opacity tests (one for each pair of users) of
exponential complexity, in only in EXPTIME.

Let us now prove the hardness of opacity with active
attackers. We reduce the problem of emptiness of alternating
automata to an opacity question. An alternating automaton
is a tuple Aalt = (Q,Σ, δ, s0, F) where Q contains two
distinct subsets of states Q∀, Q∃. Q∀ is a set of universal
states, Q∃ is a set of existential states, Σ is an alphabet,
δ ⊆ (Q∀∪Q∃)×Σ×(Q∀∪Q∃) is a transition relation, s is the
initial state and F is a set of accepting states. A run of Aalt
over a word w ∈ Σ∗ is an acyclic graph GAalt,w = (N,−→)
where nodes in N are elements of Q× {1 . . . |w|}. Edges in
the graph connect nodes from a level i to a level i+1. The root
of the graph is (s, 1). Every node of the from (q, i) such that
q ∈ Q∃ has a single successor (q′, i+1) such that q′ ∈ δ(q, wi)
where wi is the ith letter of w. For every node of the from
(q, i) such that q ∈ Q∀, and for every q′ such that q′ ∈ δ(q, wi),
((q, i), (q′, i+ 1)) is an edge. A run is complete is all its node
with index in 1..|w| − 1 have a successor. It is accepting if all
path of the graph end in a node in F × {|w|}. Notice that due
to non-deterministic choice of a successor for existential states,
there can be several runs of Aalt for a word w. The emptiness
problem asks whether there exists a word w ∈ Σ∗ that has an
accepting run. We will consider, without loss of generality that
alternating automata are complete, i.e. all letters are accepted
from any state. If there is no transition of the form (q, a, q′)
from a sate q, one can nevertheless create a transition to an
non-accepting absorbing state while preserving the language
recognized by the alternating automaton.

Let us now show that the emptiness problem for alternating
automata can be recast in an active opacity question. We will
design three automata A,A1,A2. The automata A1 and A2

are agents. Agent 1 performs actions from universal sates and
agent 2 chooses the next letter to recognize and performs
actions from existential states. The automaton A serves as a

communication medium between agents, indicates to A2 the
next letter to recognize, and synchronizes agents 1 and 2 when
switching the current state of the alternating automaton from
an existential state to an universal state or conversely.

We define A = (Qs,−→s,Σs) with Σs = {(end, 2 �
A); (end,A�1)} ∪ Σ × {2�A,A�1} × (Q∃ ∪ U) × {1�
A,A�2, 2�A,A�2}. To help readers, the general shape of
automaton A is given in Figure 3.

States of A are of the form U , (U, σ), W , dU , dqi, wqi
for every state in Q, and Eqi for every existential state
qi ∈ Q∃. The initial state of A is state U if s0 is an universal
state, or s0 if s0 is existential. State U has |Σ| outgoing
transitions of the form (U,< σ, 2�A >, (U, σ), indicating that
the next letter to recognize is σ. It also has a transition
of the form (U,< end, 2�A >, end1) indicating that A2 has
decided to test whether A1 is in a secret state (i.e. simulates
an accepting state of Aalt). There is a single transition
(end1, < end,A�2 >, end2) from state end1, and a single
transition (end2, < Ackend,A�1 >, end3) indicating to A2

that A1 has acknowledged end of word recognition.
There is a transition ((U, σ), < σ,A→ 1 >, (W,σ)) for any

state (U, σ), indicating to A1 that the next letter to recognize
from its current universal state is σ. In state W , A is waiting
for an universal move from A1. Then from W , A can receive
the information that A1 has moved to an universal state, which
is symbolized by a pair of transitions (W,< σ,U, 1�A >, dU))
and (dU,< again,A�2 >,U).

There is a transition (W,< σ, qi, 1→ A >, dqi) for ev-
ery existential state qi ∈ Q∃, followed by a transition
(dqi, < σ, qi, A�2 >,Eqi), indicating to A2 that the system
has moved to recognition of a letter from an existential state
qi.

There is a transition (Eqi, < σ, 2�A >, (Eqi, σ)) from
every state Eqi with qi ∈ Q∃ and every σ ∈ Σ
to indicate that the next letter to recognize is σ. Then,
there is a transition ((Eqi, σ), < σ, qj , 2�A >, (Wqj , σ))
for every existential move (qi, σ, qj) ∈ δ. From ev-
ery state (Wqj , σ), there is a transition of the form
((Wqj , σ), < σ, qj , A→ 1 >, (dqj , σ)) to inform A1 of A2’s
move. Then, from (Dqj , σ) if qj ∈ Q∃, there is a transition
of the form ((Dqj , σ), < again,A�1 >,Eqj) and if qj ∈ Q∀,
a transition of the form ((dqj , σ), < again,A�1 >,U), in-
dicating to A1 that the simulation of the current transition
recognizing a letter is complete, and from which state the rest
of the simulation will resume.

Let us now detail the construction of A2. A description of
all its transition is given in Figure 4. This automaton has one
universal state U , a state W , states of the form (U, σ), a pair
of states Eqi and Wqi and a state (Eqi, σ) for every σ ∈ Σ
and every qi ∈ Q∃. Last, A1 has two states End1 and End2.

There is a transition (U,< σ, 2�A >, (U, σ)) from U for
every σ ∈ Σ, symbolizing the choice of letter σ as the next letter
to recognize when the system simulates an universal state. Note
that A2 needs not know which universal state is currently simu-
lated. Then, there is also a transition ((U, σ), again, U) return-
ing to U symbolizing the end of a transition of the alternating

U

End1

End2

End3

end, 2�A

end,A�1

AckEnd

U, σσ, 2�A

W

dU

again

σ,A�1

σ, u, 1�A

dq′j

wq′j

again

σ,A�1, q′j

dqi dq′i

σ, 1�A, qi σ, 1�A, q′i

Eqi Eqi , σ

σ,A�2, qi

σ, 2�A

Wqj , σ

σ, qj , 2�A
(q′j ∈ Q∃)

σ, q′j , 2�A
(q′j ∈ Q∀)

dqj

σ, qj , A�1

Eqj

End, 2�A

End, 2�A

again

Fig. 3: Automaton A in the proof of theorem 6.

automata that returns to an universal state (hence owned by A2).
From every state (U, σ) there is a transition ((U, σ), again, U)
and a transition ((U, σ), < σ, qi, A→ 2 >,Eqi) for every
existential state qi that has an universal predecessor q with
(q, σ, qi) ∈ δ. From a state Eqi and for every σ ∈ Σ, there is a
transition (Eqi, < σ, 2�A >, (Eqi, σ)) symbolizing the choice
to recognize σ as the next letter. Then, from every state (Eqi, σ)
for every transition of the form (qi, σ, qj) ∈ δ where qj is exis-
tential, there is a transition ((Eqi, σ), < σ, qj , 2→ A >,Wqj).
For every transition of the form (qi, σ, qj) ∈ δ where qj is
universal, there is a transition ((Eqi, σ), < σ, qj , 2→ A >,W).
Last, transitions ((Wqj , σ), again,Eqj) and (W,again, U)
complete simulation of recognition of the current letter.

Last, A2 has a transition (U,< end, 2�A >,End1), a tran-
sition (Eqi, < end, 2�A >,End1) for every existential state
qi ∈ Q∃ and a transition (end1, ackend,End2), symbolizing
the decision to end recognition of a word.

Let us detail the construction of A1. The general shape of
this automaton is described in Figure 5. This automaton has
two states of the form Uqi, (Uqi, σ) per universal state and
for each σ ∈ Σ. Similarly A1 has a state Eqi, (Eqi, σ) per
existential state and for each σ ∈ Σ. From state Uqi there is a
transition (Uqi, < σ,A→ 1 >, (Uqi, σ)) to acknowledge the
decision to recognize σ.

From state (Uqi, σ) there exists two types of transitions.
For every universal state qj such that (qi, σ, qj) ∈ δ,

U

End1

End2

End, 2�A

AckEnd

U, σσ, 2�A

again

W

again

Eqi Eqi, σσ, 2�Aσ, 2�A

σ, q′j , 2�A
(q′j ∈ Q∀)

Eqj

End, 2�A

End, 2�A

Wqj

again

σ, qj , 2�A
(qj ∈ Q∃)

Fig. 4: Automaton A2 in the proof of theorem 6, simulating
existential moves .

there is a transition ((Uqi, σ), < σ, U, 1�A >,Uqj), symbol-
izing a move to universal state qj . For every existential
state qj such that (qi, σ, qj) ∈ δ, there is a transition
((Uqi, σ), < σ, qj , 1�A >,Eqj).

Similarly, from a state Eqi, there exists a transition
(Eqi, < σ,A�1 >, (Eqi, σ)) indicating to A1 the letter cho-
sen by A2. From state (Eqi, σ), there is a transition
((Eqi, σ), < σ, qj , A→ 1 >,Eqj) for every existential state
qj such that (qi, σ, qj) ∈ δ. There is also a transition
((Eqi, σ), < σ, U, 1�A >,Uqj) for every universal state qj
such that (qi, σ, qj) ∈ δ. Notice that the universal state reached
is not detailed when A1 sends the confirmation of a move to
A.

The remaining transitions are transitions of the form
(Eqi, < End,A�1 >,S) and (Uqi, < End,A�1 >,Sec)
for every accepting state qi ∈ F . We also create
transitions of the form

(
Eqi, < End,A�1 >,Sec

)
and(

Uqi, < End,A�1 >,Sec
)

for states that are not accepting.
Reaching Sec indicates the failure to recognize a word chosen
by A1 along a path in which universal moves were played by
A1 and existential moves by A2.

We define a agent u′1s secret S1 as the automaton that
recognizes all words that allow A1 to reach sate Sec.

Now, we can prove that if a word w is accepted by Aalt then
the strategy in which A2 chooses letter wi at its ith passage
through a letter choice state (U or Eqi), existential transitions
appearing in the accepting run of Aalt, and then transition
< end, 2�A > at the i + 1th choice, is a strategy to force

Uqi Uqi, σ

Uqj Eq′j

σ, 1�A

σ,U, 1�Aσ, q′j , 1�A

Eqi Eqj
σ,A�1, qj
(qj ∈ Q∃)

Eqi Uqj
σ,A�1, qj
(qj ∈ Q∀)

Eqi Sec
End,A�1
(qi ∈ F)

Eqi Sec
End,A�1
(qi 6∈ F)

Uqi Sec
End,A�1
(qi ∈ F)

Uqi Sec
End,A�1
(qi 6∈ F)

Fig. 5: Automaton A1 in the proof of theorem 6, simulating
Universal moves .

A1 to reach the secret state. Conversely, one can associate to
every run of A,A1,A2, a word w that is read, and a path in
some run that is used to recognize w. If A2 has a strategy to
force A1 secret leakage, then all path following this strategy
lead to a winning configuration. As a consequence, there is
a choice of existential moves such that all states simulated
along a run of the alternating automaton with these existential
moves end in accepting state. Hence, L(Aalt) is empty iff the
system composed of A,A1,A2 is opaque. Now, the system
built to simulate Aalt is of polynomial size in |Aalt|, so there
is a polynomial size reduction from the emptiness problem for
alternating automata to the active opacity question, and active
opacity is EXPTIME-complete. �

