
Reducing the Cost of Aggregation in
Crowdsourcing

Rituraj Singh, Löıc Hélouët, and Zoltan Miklos

Univ. Rennes/INRIA/CNRS/IRISA
rituraj.singh@irisa.fr,loic.helouet@inria.fr, zotlan.miklos@irisa.fr

Abstract. Crowdsourcing is a way to solve problems that need hu-
man contribution. Crowdsourcing platforms distribute replicated tasks
to workers, pay them for their contribution, and aggregate answers to
produce a reliable conclusion. A fundamental problem is to infer a con-
sensual answer from the set of returned results. Another problem is to
obtain this answer at a reasonable cost: unlimited budget allows hiring
experts or large pools of workers for each task but a limited budget forces
to use resources at best. Last, crowdsourcing platforms have to detect
and ban malevolent users (also known as ”spammers”) to achieve good
accuracy of their answers.
This paper considers crowdsourcing of simple Boolean tasks. We first de-
fine a probabilistic inference technique, that considers difficulty of tasks
and expertise of workers when aggregating answers. We then propose
CrowdInc, a greedy algorithm that reduces the cost needed to reach a
consensual answer. CrowdInc distributes resources dynamically to tasks
according to their difficulty. The algorithm solves batches of simple tasks
in rounds that estimate workers expertize, tasks difficulty, and synthe-
sizes a plausible aggregated conclusion and a confidence score using
Expectation Maximization. The synthesized values are used to decide
whether more workers should be hired to increase confidence in synthe-
sized answers. We show on several benchmarks that CrowdInc achieves
good accuracy, reduces costs and we compare its performance to existing
solutions. We then use the estimation of CrowdInc to detect spammers
and study the impact of spammers on costs and accuracy.

1 Introduction

Crowdsourcing is a way to solve tasks that need human contribution. These tasks
include image annotation or classification, polling, etc. Employers publish tasks
on an Internet platform, and these tasks are realized by workers in exchange for
a small incentive [2]. Workers are very heterogeneous: they have different ori-
gins, domains of expertise, and expertise levels. Some of the workers might even
behave maliciously and try to receive payment without working (they simply re-
turn random answers), or return wrong answers on purpose. These workers are
often referred to as spammers. To deal with this heterogeneity, tasks are usually
replicated: each task is assigned to several workers. Redundancy is also essential
to collect workers opinion: in this setting, work units are the basic elements of a

2 R. Singh, L. Hélouët, and Z. Miklos

larger task that can be seen as a poll. One can safely consider that each worker
executes his assigned task independently, and hence returns his own belief about
the answer. As workers can disagree, the role of a platform is then to build a
consensual final answer out of the values returned.

A fundamental problem in crowdsourcing is then to infer a correct answer
from the set of returned results. Another challenge is to obtain a reliable answer
at a reasonable cost: unlimited budget allows hiring experts or large pools of
workers for each task but a limited budget forces to use resources at best. Last,
crowdsourcing platforms have to detect and ban malevolent users to achieve a
good accuracy and avoid paying for random guesses or wrong answers of spam-
mers.

A natural way to derive a final answer is Majority Voting (MV), i.e. choose
as conclusion the most represented answer. A limitation of MV is that all answers
have equal weight, regardless of expertise of workers. If a crowd is composed of
only few experts, and of a large majority of novices, MV favors answers from
novices. However, in some domains, an expert worker may give better answer
than a novice and his answer should be given more weight. One can easily replace
MV by a weighted vote. However, this raises the question of measuring workers
expertise, especially when workers competences are not known a priori.

Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) do not
have prior knowledge about the expertise of their workers. A way to obtain
initial measure of workers expertise is to use Golden Questions [11]. Several
tasks with known ground truth are used explicitly or hidden to evaluate workers
expertise. As already mentioned, a single answer for a particular task is often
not sufficient to obtain a reliable answer, and one has to rely on redundancy,
i.e. distribute the same task to several workers and aggregate results to build a
final answer. Standard static approaches on crowdsourcing platforms fix a prior
number of k workers per task. Each task is published on the platform and waits
for bids by k workers. There is no guideline to set the value for k, but two
standard situations where k is fixed are frequently met. The first case is when a
client has n tasks to complete with a total budget of B0 incentive units. Each
task can be realized by k = B0/n workers. The second case is when an initial
budget is not known, and the platform fixes an arbitrary redundancy level. In
this case, the number of workers allocated to each task is usually between 3 and
10 [7]. It is assumed that the distribution of work is uniform, i.e. that each task is
assigned the same number of workers. An obvious drawback of static allocation
of workers is that all tasks benefit from the same work power, regardless of their
difficulty. Even a simple question where the variance of answers is high calls for
sampling of larger size. So, one could expect each task t to be realized by kt
workers, where kt is a number that guarantee that the likelihood to change the
final answer with an answer returned by one additional worker is low. However,
without prior knowledge on task’s difficulty and on variance in answers, this
number kt cannot be fixed.

This paper proposes a new algorithm called CrowdInc to address the ques-
tions of answers aggregation, task allocation, and cost of crowdsourcing. For

Reducing the Cost of Aggregation in Crowdsourcing 3

simplicity, we consider Boolean filtering tasks, i.e. tasks with answers in {0, 1},
but the setting can be easily extended to tasks with any finite set of answers.
These tasks are frequent, for instance to decide whether a particular image be-
longs or not to a given category of pictures. We consider that each binary task
has a truth label, i.e. there exists a ground truth for each task. Each worker is
asked to answer 0 or 1 to such a task and returns a so-called observed label,
which may differ from the ground truth. The difficulty of a task is a real value
in [0, 1]. A task with difficulty 0 is a very easy task and a task with difficulty
1 a very complex one. The expertise of a worker is modeled in terms of recall
and specificity. Recall (also called true positive rate) measures the proportion
of correct observed labels given by a worker when the ground truth is 1. On
contrary, specificity (also called true negative rate) measures the proportion
of correct observed labels given by a worker when the ground truth is 0. We
propose a generating function to measure the probability of accuracy for each
of the truth label (0/1) based on the observed label, task difficulty, and worker
expertise. We rely on an Expectation Maximization (EM) based algorithm to
maximize the probability of accuracy of aggregated final answers for each task
and jointly estimate the difficulty of each task as well as expertise of the work-
ers. The algorithm provides a greater weight to expert workers. In addition, if a
worker with high recall makes a mistake in the observed label, then it increases
the difficulty of the task (correspondingly for specificity). Along with, if expert
workers fail to return a correct answer, then the task is considered difficult.
The EM algorithm converges with a very low error rate and at the end returns
the task difficulty, worker expertise and the final estimated label for each task
based on observed labels. Additionally, we propose a dynamic worker allocation
algorithm that handles at the same time aggregation of answers, and optimal
allocation of a budget to reach a consensus among workers. The algorithm works
in two phases. It starts with an initial Estimation phase. As we do not have any
prior information about the tasks difficulties and workers expertise, we allocate
one third of total budget to evaluate these parameters. Based on the answers
provided by the human workers for each task, we first derive the difficulty of
tasks, final aggregated answers, along with the worker expertise using an EM
algorithm. For each task, we estimate the likelihood that the aggregated answer
is the ground truth. We terminate tasks which are above the derived threshold
at that particular instance. The second phase is an Exploration phase. Based
on each of the estimated task difficulty, we start to allocate workers for each of
the remaining tasks. The process continues until all tasks are terminated or the
whole budget is consumed.

A second contribution of the paper is an experimental evaluation of the
CrowdInc algorithm. We show on several popular benchmarks that CrowdInc
achieves a good accuracy (that is as good or even better than existing ap-
proaches), for a reduced cost, and with a reasonable time overhead. This over-
head is mainly due to the use of Expectation Maximization, which is an iterative
process that converges towards a local optimum. An advantage in using EM is
that values of several variables such as workers recall and specificity is computed

4 R. Singh, L. Hélouët, and Z. Miklos

in addition to synthesis of final aggregated answers. In the last section, we de-
fine a simple behavioral model for spammers, and show that the estimation of
recall and specificity of workers can be used to detect spammers. We repeat our
experimental evaluation, show the effect of spammers on costs and accuracy of
answers synthesized by CrowdInc, and show that a simple policy imposing some
thresholds on recall and specificity allows to detect most of spammers.

Related work: Several papers have considered tools such as EM to aggre-
gate answers or allocate tasks. We only highlight a few works that are close to
our approach, and refer interested readers to [26] for a more complete survey of
the domain. This work compares 17 truth inference algorithms, evaluated on 5
real datasets. The study compares techniques, but also evaluates the effect of
qualification tests on aggregation mechanisms. One important conclusion of the
survey is that there is no ideal algorithm, and that the most appropriate inference
algorithm differs depending on the input data. Another interesting conclusion of
the survey is that qualification tests do not necessarily improve accuracy when
the performance of an algorithm is already good on a particular dataset.

Zencrowd [4] considers workers competences in terms of accuracy (ratio of
correct answers) and aggregates answers using EM. PM [12] considers an opti-
mization scheme based on Lagrange multipliers. Workers accuracy and ground
truth are the hidden variables that must be discovered in order to minimize the
deviations between workers answers and aggregated conclusions. D&S [3] uses
EM to synthesize answers that minimize error rates from a set of patient records.
It considers recall and specificity, but not difficulty of tasks. The approach of [10]
proposes an algorithm to assign tasks to workers, synthesize answers, and reduce
the cost of crowdsourcing. It assumes that all tasks have the same difficulty, and
that reliability of a worker is a consistent value in [0, 1] (hence considering ac-
curacy as a representation of competences). CrowdBudget [19] is an approach
that divides a budget B among K existing tasks to achieve a low error rate,
and then uses MV to aggregate answers. Workers answers follow an unknown
Bernoulli distribution. The objective is to affect the most appropriate number
of workers to each task in order to reduce the estimation error. Aggregation is
done using Bayesian classifiers combination (BCC). The approach in [20] extends
BCC with communities and is called CBCC. Each worker is supposed to belong
to a particular (unknown) community, and to share characteristics of this com-
munity (same recall and specificity). This assumption helps improving accuracy
of classification. Expectation maximization is used by [17] to improve super-
vised learning when the ground truth in unknown. This work considers recall
and specificity of workers and proposes a maximum-likelihood estimator that
jointly learns a classifier, discovers the best experts, and estimates ground truth.
Most of the works cited above consider expertise of workers but do not address
tasks difficulty. An exception is GLAD (Generative model of Labels, Abilities,
and Difficulties) [24] that proposes to estimate tasks difficulty as well as workers
accuracy to aggregate final answers. The authors recall that EM is an iterative
process that stops only after converging, but demonstrate that the EM approach
needs only a few minutes to tag a database with 1 million images. The authors

Reducing the Cost of Aggregation in Crowdsourcing 5

in [1] consider difficulty and error parameter of the worker. Notice that in most of
the works cited above, tasks difficulty is not considered and expertise is modeled
in terms of accuracy rather than recall and specificity. Generally the database
and Machine Learning communities focus on data aggregation techniques and
leave budget optimization apart. Raykar et al. [16] introduce sequential crowd-
sourced labelling: instead of asking for all the labels in one shot, one decides
at each step whether evaluation of a task shall be stopped, and which worker
should be hired. The model incorporates a Bayesian model for workers (workers
are only characterized by their accuracy), and cost. Then, sequential crowd-
sourced labelling amounts to exploring a (very large) Markov decision process
(states contain all pairs of task/label collected at a given instant) with a greedy
strategy.

It is usually admitted [26] that recall and specificity give a finer picture
of worker’s competence than accuracy. Our work aggregates workers answers
using expectation maximization with three parameters : task difficulty, recall
and specificity of workers. The CrowdInc algorithm uses this EM aggregation to
estimate error and difficulty of tasks. This error allows to compute dynamically
a threshold to stop tasks which aggregated answers have reached a reasonable
reliability and to allocate more workers to the most difficult tasks, hence saving
costs. As the difficulty of tasks is initially unknown, we assign the same rewards
to every task realization, and accordingly define the cost of dataset tagging as
the number of tagging micro-tasks realized.

Spammer detection has been addressed in several works. We mention below
some of works that are related to the spammer detection scheme proposed in
this paper, without claiming exhaustiveness. [18] explains that without a priori
knowledge on accuracy of workers, one runs the risk of hiring spammers, and even
a majority of malevolent workers. The authors define spammers as workers that
assign labels randomly without looking at tasks, and propose a Bayesian algo-
rithm called SpEM. SpEM computes a spammer score, iteratively eliminates the
spammers and estimates the consensus labels based only on answers of faithful
workers. Experiments on simulated and real data show that the proposed ap-
proach is better than former approaches in terms of accuracy and number of
workers hired. The setting proposed hereafter is simpler: it uses thresholds on
recall and specificity to characterize spammers, and does not eliminate spam-
mers during the dataset tagging process. Xu et al. [25] analyze users behaviors
during crowdsourcing campaigns. They search for different types of suspicious
behaviors to identify spammer accounts. They were able to reveal a complete
ecosystem of colluding spammers with this approach. In our work, we consider
spammer types that resemble these suspicious spammer behaviors, but we do not
consider collusions of workers. Two types of spammers are considered in [9]: bad
faith workers and workers with poor competence. While the former are malevo-
lent workers, [9] advocates that the latter are not, and propose to use Machine
Learning to detect real spammers based on side information such as the time
spent to answer, the number of tasks performed... The proposed classifier showed
good detection scores. In this work, we consider more types of spammers. The

6 R. Singh, L. Hélouët, and Z. Miklos

bad faith workers are called Type 1 spammers, and the second type of spammers
of [9] are simply faithful workers with poor accuracy in our setting.

[22] considers a particular type of attack called sybil attack where an intruder
coordinates corrupted workers to influence agregation answers and earn money.
It proposes a technique to evaluate workers reliability using golden tasks, a prob-
abilistic task assignment for golden tasks to hide qualification tests from Sybil
attacker, and an online golden task creation from answers of trusted workers to
avoid shortage of qualification tests. The framework considered is a static allo-
cation of workers to tasks. EM is used to jointly estimate aggregated labels and
workers accuracy. The proposed framework computes a reliability score and a
sybil score for workers, that measures if a worker contributed to false answers to
golden questions. It assign tasks based on reliability and Sybil score and lowers
the weight of workers suspected to be corrupted in aggregation. The spammer
detection proposed in this paper assumes independent spammers, and does not
use golden questions to qualify workers. Hence, spammers that can only be de-
tected through their unusual accuracy scores.

In [13] an attacker hires a set of malicious workers and can manipulate their
label to influence the final labels synthesized, while remaining undetected. The
setting proposed is a Dawid-Skene model [3], where the probability to return
a particular answer m′ when the ground truth is m is given by a confusion
matrix. The goal of an attacker is to manipulate labels in an optimal way, for
instance by getting high values on the malicious workers’ ability parameters to
favor their answer. This objective is formalized as a cost function to maximize.
The function considers both the success of the attack on final answers and the
reliability scores of malicious workers. The optimal value for this function and the
associated answering strategy are found with an iterative algorithm. A limitation
of the approach is that attackers know the answers returned by normal workers,
which is not the case in general. In our setting, we assume that a part of the
workers is malicious, but they do not know other workers label, which does not
allow fine-tuning of an attack on labels. We hence focus on attackers profiles
with simple deterministic behaviors that depend only on ground truth.

The crowdsourcing framework of [8] allows workers to reject a task if they
do not feel competent for it, and implements a payment scheme that encour-
ages rejection to favor accurate answers. The framework can contain spammers
that answer with random guesses or simply reject every task. Aggregation is a
weighted majority voting, and perception of probable reward by rational work-
ers is modeled with prospect theory, using cost functions. Spammers and honest
workers exhibit different and distinguishable behaviors. The objective is to find
the appropriate weight for every worker in the crowd to obtain accurate ag-
gregated answers and rule out spammers. To encourage honest workers to skip
questions, the policy is to pay the minimal reward to workers with poor answers
to golden questions. Now, honest workers have a distorted vision of their proba-
bility to return a correct answer. In the proposed setting aggregation is majority
voting, and the difficulty of tasks is assumed identical for each task. In this
framework, the goal is then to assign thresholds for acceptable success rate to

Reducing the Cost of Aggregation in Crowdsourcing 7

encourage skipping tasks, but still allow for detection of spammers and maxi-
mization of accuracy of the system. In our setting, we do not consider the possi-
bility to skip questions (i.e. all workers return an answer). We use an aggregation
mechanism that accounts for returned answers but estimates tasks difficulty to
avoid penalizing honest workers that return wrong answers to difficult questions.

The rest of the paper is organized as follows. In Section 2, we introduce our
notations, the factors that influence results during aggregation of answers, and
the EM algorithm. In Section 3, we present a model for workers and our EM-
based aggregation technique. We detail the CrowdInc algorithm to optimize the
cost of crowdsourcing in Section 4. We then give results of experiments with our
aggregation technique and with CrowdInc in Section 5. Section 6 addresses the
problem of spammer detection. It shows the results of an experiment to study
the impact of spammers and proposes a simple spam detection technique based
on comparison of workers recall and specificity with fixed thresholds. Finally we
conclude and give future research directions in Section 7.

2 Preliminaries

In the rest of the paper, we will work with variables and probabilities. A random
variable is a variable whose value depends on random phenomenon. For a given
variable x, we denote by Dom(x) its domain (Boolean, integer, real, string,...).
For a particular value v ∈ Dom(x) we denote by x = v the event ”x has value
v”. A probability measure Pr() is a function from a domain to interval [0, 1].
We denote by Pr(x = v) the probability that event x = v occurs. In the rest of
the paper, we mainly consider Boolean events, i.e. variables with domain {0, 1}.
A probability of the form Pr(x = v) only considers occurrence of a single event.
When considering several events, we define the joint probability Pr(x = v, y = v′)
the probability that the two events occur simultaneously. The notation extends
to an arbitrary number of variables. If x and y are independent variables, then
Pr(x = v, y = v′) = Pr(x = v) · Pr(y = v′). Last, we will use conditional
probabilities of the form Pr(x = v | y = v′), that defines the probability for an
event x = v when it is known that y = v′. We recall that, when P (y = v′) > 0

Pr(x = v | y = v′) = Pr(x=v,y=v′)
Pr(y=v′) .

2.1 Factors influencing efficiency of crowdsourcing

During task labeling, several factors can influence the efficiency of crowdsourcing,
and the accuracy of aggregated answers. The first one is Task difficulty. Tasks
submitted to a crowdsourcing platform by a client are simple questions, but may
nevertheless require some expertise. Even within a single application type, the
difficulty for the realization of a particular task may vary from one experiment
to another: tagging an image can be pretty simple if the worker only has to
decide whether the picture contains an animal or an object, or conversely be
very difficult if the Boolean question asks whether a particular insect picture
shows an hymenopteran (an order of insects). Similarly, Expertise of workers
plays a major role in accuracy of aggregated answers. In general, an expert
worker performs better on a specialized task than a randomly chosen worker

8 R. Singh, L. Hélouët, and Z. Miklos

without particular competence in the domain. For example, an entomologist can
annotate an insect image more precisely than any random worker.

The technique used for Amalgamation also plays a major role. Given a set
of answers returned for a task t, one can aggregate the results using majority
voting (MV), or more interesting, as a weighted average answer where individual
answers are weighted by workers expertise. However, it is difficult to get a prior
measure of workers expertise and of the difficulty of tasks. Many crowdsourcing
platforms use MV and ignore difficulty of tasks and expertise of workers to
aggregate answers or assign tasks to workers. We show in Section 5 that MV has
a low accuracy. In our approach, expertise and difficulty are hidden parameters
evaluated from the sets of answers returned. This allows considering new workers
with a priori unknown expertise. One can also start with an a priori measure
of tasks difficulty and of workers expertise. Workers expertise can be known
from former interactions. It is more difficult to have an initial knowledge of
tasks difficulties, but one can start with an a priori estimation. However, these
measures need to be re-evaluated on the fly when new answers are provided
by the crowd. Starting with a priori measures does not change the algorithms
proposed hereafter, but may affect the final aggregated results.

In Section 3, we propose a technique to estimate the expertise of workers and
the difficulty of tasks on the fly. Intuitively, one wants to consider that a task is
difficult if even experts fail to provide a correct answer for this task, and consider
it as easy if even workers with low competence level answer correctly. Similarly,
a worker is competent if he answers correctly to difficult tasks. Notice however
that to measure difficulty of tasks and expertise of workers, one needs to have
the final answer for each task. Conversely, to precisely estimate the final answer
one needs to have the worker expertise and task difficulty. This is a chicken and
egg situation, but we show in Section 3 how to get plausible values for both
using EM.

The next issue to consider is the cost of crowdsourcing. Workers receive in-
centives for their work, but usually clients have limited budgets. Some task may
require a lot of answers to reach a consensus, while some may require only a few
answers. Therefore, a challenge is to spend efficiently the budget to get the most
accurate answers. In Section 4, we discuss some of the key factors in budget al-
location. Many crowdsourcing platforms do not considers difficulty, and allocate
the same number of workers to each task. The allocation of many workers to
simple tasks is usually not justified and is a waste of budget that would be use-
ful for difficult tasks. Now, tasks difficulty is not a priori known. This advocates
for on the fly worker allocation once the difficulty of a task can be estimated.
Last, one can stop collecting answers for a task when there is an evidence that
enough answers have been collected to reach a consensus on a final answer. An
immediate solution is to measure the confidence of final aggregated answer and
take as Stopping Criterion for a task the fact that this confidence exceeds
a chosen threshold. However, this criterion does not works well in practice as
clients usually want high thresholds for all their tasks. This may lead to consum-
ing all available budget without reaching an optimal accuracy. Ideally, we would

Reducing the Cost of Aggregation in Crowdsourcing 9

like to have a stopping criterion that balances confidence in the final answers
and budget, and optimizes the overall accuracy of answers for all the tasks.

2.2 Expectation Maximization

Expectation Maximization [5] is an iterative technique to obtain maximum like-
lihood estimation of parameter of a statistical model when some parameters are
unobserved and latent, i.e. they are not directly observed but rather inferred from
observed variables. In some sense, the EM algorithm is a way to find the best
fit between data samples and parameters. It has many applications in Machine
Learning, data mining and Bayesian statistics.

LetM be a model which generates a set X of observed data, a set of missing
latent data Y, and a vector of unknown parameters θ, along with a likelihood
function L(θ | X ,Y) = p(X ,Y | θ). In this paper, observed data X represents
the answers provided by the crowd, Y depicts the final answers which need to be
estimated and are hidden, and parameters in θ are the difficulty of tasks and the
expertise of workers. The maximum likelihood estimate (MLE) of the unknown
parameters is determined by maximizing the marginal likelihood of the observed
data. We have L(θ | X) = p(X | θ) =

∫
p(X ,Y | θ)dY. The EM algorithm

computes iteratively MLE, and proceeds in two steps. At the kth iteration of the
algorithm, we let θk denote the estimate of parameters θ. At the first iteration
of the algorithm, θ0 is randomly chosen.

E-Step: In the E step, the missing data are estimated given observed data
and current estimate of parameters. The E-step computes the expected value of
L(θ | X ,Y) given the observed data X and the current parameter θk. We define

Q(θ | θk) = EY|X ,θk [L(θ | X ,Y)] (1)

In the crowdsourcing context, we use the E-Step to compute the probability
of occurrence of Y that is the final answer for each task, given the observed data
X and parameters θk obtained at kth iteration.

M-Step: The M-step finds parameters θ that maximize the expectation com-
puted in Equation. 1.

θk+1 = arg max
θ

Q(θ | θk) (2)

Here, with respect to estimated probability for final answers in Y from the last
E-Step, we maximize the joint log likelihood of the observed data X (answer
provided by the crowd), hidden data Y (final answers), to estimate the new
value of θk+1 i.e. the difficulty of tasks and the expertise of workers. The E and
M steps are repeated until the value of θk converges. A more general version of
the algorithm is presented in Algorithm 1.

3 The Aggregation model

We address the problem of evaluation of binary properties of samples in a
dataset by aggregation of answers returned by participants in a crowdsourcing
system. This type of application is frequently met: one can consider for instance
a database of n images, for which workers have to decide whether each image
is clear or blur, whether a cat appears on the image, etc. The evaluated prop-
erty is binary, i.e. workers answers can be represented as a label in {0, 1}. From
now, we will consider that tasks are elementary work units which objective is to
associate a binary label to a particular input object. For each task, an actual

10 R. Singh, L. Hélouët, and Z. Miklos

Algorithm 1: General EM Algorithm

Data: Observed Data X
Result: Parameter values θ, Hidden data Y

1 Initialize parameters in θ0 to some random values.

2 while ||θk − θk−1|| > ε do

3 Compute the expected possible value of Y, given θk and observed data X
4 Use Y to compute the values of θ that maximize Q(θ | θk).

5 end

6 return parameter θk, Hidden data Y

ground truth exists, but it is not known by the system. We assume a set of k
independent workers, whose role is to realize a task, i.e. return an observed label
in {0, 1} according to their perception of a particular sample. We consider a set
of tasks T = {t1, . . . tn} for which a label must be evaluated. For a task tj ∈ T
the observed label given by worker 1 ≤ i ≤ k is denoted by lij . We let yj denote
the final label of a task tj obtained by aggregating the answers of all workers.
Lj =

⋃
i∈1..k

lij denotes the set of all labels returned by workers for task tj , L

denotes the set of all observed labels, L =
⋃

j∈1..n
Lj . The goal is to estimate the

ground truth by synthesizing a set of final labels Y = {yj , 1 ≤ j ≤ n} from the
set of observed labels L = {Lj} for all tasks.

Despite the apparent simplicity of the problem, crowdsourcing binary tag-
ging tasks hides several difficulties, originating from unknown parameters. These
parameters are the difficulty of each task, and the expertise of each worker. The
difficulty of task tj is modeled by a parameter dj ∈ (0, 1). Here value 0 means
that the task is very easy, and can be performed successfully by any worker. On
the other hand, dj = 1 means that task tj is very difficult. A standard way to
measure expertise is to define workers accuracy as a pair ξi = {αi, βi}, where
αi is called the recall of worker i and βi the specificity of worker i. The recall
is the probability that worker i annotates an image j with label 1 when the
ground truth is 1, i.e. αi = Pr(lij = 1|yj = 1). The specificity of worker i
is the probability that worker i annotates an image j with 0 when the ground
truth is 0, i.e. βi = Pr(lij = 0|yj = 0).

In literature,[26] the expertise of workers is often quantified in terms of ac-
curacy, i.e. Pr(lij = yj). However, if the data samples are unbalanced, i.e. the
number of samples with actual ground truth 1 (respectively 0) is much larger
than the number of samples with ground truth 0 (respectively 1), defining com-
petences in terms of accuracy leads to bias. Indeed, a worker who is good in
classifying images with ground truth 1 can obtain bad scores when classifying
image with ground truth 0, and yet get a good accuracy (this can be the case
of a worker that always answers 1 when choosing a label for a task). Recall and
Specificity overcomes the problem of bias and separates the worker expertise,
considering their ability to answer correctly when the ground truth is 0 and

Reducing the Cost of Aggregation in Crowdsourcing 11

Fig. 1: Generative function for the probability to get lij = 1, given yj = 1, for
growing values of task difficulty. The curves represent different recall values for
the considered workers.

when it is 1, and hence give a more precise representation of workers compe-
tences.

Recall and specificity allow us to build a probabilistic model (a generative
model) for workers answers. We assume that workers have constant behaviors
and are faithful, i.e. do not return wrong answers intentionally. We also assume
that workers do not collaborate (their answers are independent variables). Under
these assumptions, knowing the recall αi and specificity βi of a worker i, we build
a model that generates the probability that he returns an observed label lij for
a task j with difficulty dj :

Pr(lij = yj |dj , αi, yj = 1) =
1 + (1− dj)(1−αi)

2
(3)

Pr(lij = yj |dj , βi, yj = 0) =
1 + (1− dj)(1−βi)

2
(4)

In the rest of the paper, we use pools of synthetic users with different recalls
and specificities following equations 3 and 4. Though experiments with synthetic
workers does not replace real field experiments on real platforms, this allowed
us to test many variants of the dynamic worker allocation scheme proposed
hereafter. The functions of equations 3 and 4 obviously share characteristics
of faithful workers: the probability of a correct Boolean answer decreases with
the difficulty of tasks and with recall (resp. with specificity), and remains 1/2
even for completely incompetent workers, who cannot do better than a random
guess. Figure 1 shows the probability of associating label 1 to a task for which
the ground truth is 1 when the difficulty of the tagging task varies, and for
different values of recall. The range of task difficulty is [0, 1]. The vertical axis
is the probability of getting lij = 1. One can notice that this probability takes
values between 0.5 and 1. Indeed, if a task is too difficult, then returning a
value is close to making a random guess of a binary value. Unsurprisingly, as the
difficulty of a task increases, the probability of correctly labeling it decreases.

12 R. Singh, L. Hélouët, and Z. Miklos

This generative function applies for every worker, but with individual values
for recalls and specificities. For a fixed difficulty of task, workers with higher
recalls have a higher probability to correctly label a task. Also, note that when
the difficulty of a task approaches 1, the probability of answering with label
lij = 1 decreases for every value of αj . However, for workers with high recall, the
probability of a correct annotation is always greater than with a smaller recall.
Hence, the probability of correct answer depends both on the difficulty of task
and on expertise of the worker realizing the task.

3.1 Aggregating Answers

For a given task j, with unknown difficulty dj , the answers returned by k workers
(observed data) is a set Lj = {l1j , . . . , lkj}, where lij is the answer of worker i to
task j. In addition, workers expertise are vectors of parameters α = {α1, . . . αk}
and β = {β1, . . . βk} and are also unknown. The goal is to infer the final label yj ,
and to derive the most probable values for dj , αi, βi, given the observed answers
of workers. We use a standard EM approach to infer the most probable actual
answer Y = {y1, . . . yn} along with the hidden parameters Θ = {dj , αi, βi}. Let
us consider the E and M phases of the algorithm.

E Step: We assume that all answers in L =
⋃

1≤j≤k
Lj are independently

given by the workers as there is no collaboration between them. So, in every
Lj = {l1j , . . . , lkj}, lij ’s are independently sampled variables. We compute the
posterior probability of yj ∈ {0, 1} for a given task j given the difficulty of task
dj , worker expertise αi, βi, i ≤ k and the worker answers Lj = {lij | i ∈ 1..k}.
Using Bayes’ theorem, considering a particular value λ ∈ {0, 1} we have:

Pr[yj = λ|Lj , α, β, dj] =
Pr(Lj |yj=λ,α,β,dj)·Pr(yj=λ|α,β,dj)

Pr(Lj |α,β,dj) (5)

One can remark that yj and α, β, dj are independent variables. We assume
that both values of yj are equiprobable, i.e. Pr(yj = 0) = Pr(yj = 1) = 1

2 . We
hence get:

Pr[yj=λ|Lj , α, β, dj] =
Pr(Lj |yj=λ,α,β,dj)·Pr(yj=λ)

Pr(Lj |α,β,dj) =
Pr(Lj |yj=λ,α,β,dj)· 12

Pr(Lj |α,β,dj) (6)

Similarly, the probability to obtain a particular set of labels is given by:

Pr(Lj | α, β, dj) = 1
2 · Pr(Lj | yj=0, α, β, dj) + 1

2 · Pr(Lj | yj=1, α, β, dj) (7)

Overall we obtain:

Pr[yj=λ|Lj , α, β, dj] =
Pr(Lj |yj=λ,α,β,dj)

Pr(Lj |yj=0,α,β,dj)+Pr(Lj |yj=1α,β,dj) (8)

Let us consider one of these terms, and let us assume that every lij in Lj
takes a value λi. We have

Pr(Lj | yj=λ, α, β, dj) =

k∏
i=1

Pr(lij = λi | αi, βi, dj , yj=λ) (9)

If λi = 0 then Pr(lij = λi | αi, βi, dj , yj = 0) is the probability to classify

correctly a 0 as 0, as defined in Equation 4 denoted by δij =
1+(1−dj)(1−βi)

2 .

Reducing the Cost of Aggregation in Crowdsourcing 13

Similarly, if λi = 1 then Pr(lij = λi | αi, βi, dj , yj = 1) is the probability
to classify correctly a 1 as 1, expressed in Equation 3 and denoted by γij =
1+(1−dj)(1−αi)

2 . Then the probability to classify yj = 1 as λi = 0 is (1 − γij)
and the probability to classify yj = 1 as λi = 0 is (1 − δij). We hence have
Pr(lij = λi | αi, βi, dj , yj = 0) = (1 − λi) · δij + λi · (1 − γij). Similarly, we can
write Pr(lij = λi | αi, βi, dj , yj=1) = λi · γij + (1− λi) · (1− δij). So Equation 8
rewrites as :

Pr[yj=λ|Lj , α, β, dj] =

∏k
i=1 Pr(lij = λi | yj = λ, αi, βi, dj)

Pr(Lj | yj = 0, α, β, dj) + Pr(Lj | yj = 1, α, β, dj)

=

∏k
i=1(1− λ).[(1− λi)δij + λi(1− γij)] + λ.[λi.γij + (1− λi)(1− δij)]

Pr(Lj | yj=0, α, β, dj) + Pr(Lj | yj=1, α, β, dj)

=

∏k
i=1(1− λ).[(1− λp)δij + λp(1− γij)] + λ.[λp.γij + (1− λp)(1− δij)]∏k

i=1(1− λi)δij + λi · (1− γij) +
∏k
i=1 λi.γij + (1− λi)(1− δij)

(10)

In the E step, as every αi, βi, dj is fixed, one can compute E[yj |Lj , αi, βi, dj]
and also choose as final value for yj the value λ ∈ {0, 1} such that
Pr[yj = λ|Lj , αi, βi, dj] > Pr[yj = (1 − λ)|Lj , αi, βi, dj]. We can also estimate
the likelihood for the values of variables P (L∪Y | θ) for parameters θ = {α, β, d},
as Pr(yj = λ, L | θ) = Pr(yj = λ, L).P r(Lj | yj = λ, θ) = Pr(yj = λ).P r(Lj |
yj = λ, θ)

M Step: With respect to the estimated posterior probabilities of Y com-
puted during the E phase of the algorithm, we compute the parameters θ that
maximize Q(θ, θt). Let θt be the value of parameters computed at step t of the
algorithm. We use the observed values of L, and the previous expectation for Y .
We maximize Q′(θ, θt) = E[logPr(L, Y | θ) | L, θt] (we refer interested readers
to [6]-Chap. 9 and [5] for explanations showing why this is equivalent to maximiz-
ing Q(θ, θt)). We can hence compute the next value as: θt+1 = arg max

θ
Q′(θ, θt).

Here in our context the values of θ are αi, βi, dj . We maximize Q′(θ, θt) using a
bounded optimization techniques, namely the truncated Newton algorithm [14]
provided by the standard SciPy1 implementation. We iterate E and M steps,
computing at each iteration t the posterior probability and the parameters θt

that maximize Q′(θ, θt). The algorithm converges, and stops when the improve-
ment (difference between two successive joint log-likelihood values) is below a
threshold, fixed in our case to 1e−7.

4 Cost Model

A drawback of many crowdsourcing approaches is that task distribution is static,
i.e. tasks are distributed to a fixed number of workers, without considering their
difficulty, nor checking if a consensus can be reached with fewer workers. Consider
again the simple Boolean tagging setting, but where every task realization is
paid, and with a fixed total budget B0 provided by the client. For simplicity, we
assume that all workers receive 1 unit of credit for each realized task. Hence, to

1 docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

14 R. Singh, L. Hélouët, and Z. Miklos

solve n Boolean tagging tasks, one can hire only B0/n workers per task. In this
section, we show a worker allocation algorithm that builds on collected answers
and estimated difficulty to distribute tasks to worker at runtime, and show its
efficiency with respect to other approaches.

Our algorithm works in rounds. At each round, only a subset Tavl ⊆ T of the
initial tasks remains to be evaluated. We remember labels produced by workers
at preceding rounds, and collect new labels produced by new workers hired for
this round to realize these tasks. We aggregate answers using the EM approach
described in Section 3. We denote by yqj as the final aggregated answer for task
j at round q, dqj is the current difficulty of task and αqi , β

q
i denotes the esti-

mated expertise of a worker i at round q. We let Dq = {dq1 . . . d
q
j} denote the

set of all difficulties estimated as round q. We fix a maximal step size τ ≥ 1,
that is the maximal number of workers that can be hired during a round for a
particular task. For every task tj ∈ Tavl with difficulty dqj at round q, we al-
locate aqj = d(dqj × τ)/max(Dq)e workers for the next round. Once all answers
for a task have been received, the EM aggregation can compute a final label
yqj ∈ {0, 1} and difficulty dqj for every task tj , and the expertise of all work-
ers αq1, . . . , α

q
k, β

q
1 , . . . , β

q
k. Now, it remains to decide whether the confidence in

answer yqj obtained at round q is sufficient (in which case, we do not allocate
workers to this task in the next rounds). Let kqj be the number of answers ob-
tained for task j at round q. The confidence ĉqj in a final label yqj is defined as
follows:

ĉqj(y
q
j = 1) = 1

kqj
·
∑kqj
i=1

{
lij × (

1+(1−dqj)
(1−αq

i
)

2) + (1− lij)× (1− 1+(1−dqj)
(1−αq

i
)

2)

}
(11)

ĉqj(y
q
j = 0) = 1

kqj
·
∑kqj
i=1

{
(1− lij)× (

1+(1−dqj)
(1−βq

i
)

2) + (lij)× (1− 1+(1−dqj)
(1−βq

i
)

2)

}
(12)

Intuitively, each worker adds its probability of doing an error, which depends
on the final label yqj estimated at round q and on his competences, i.e. on the
probability to choose lij = yqj . Let us now show when to stop the rounds of
our evaluation algorithm. We start with n tasks, and let Tavl denote the set of
remaining tasks at round q. We define rq ∈ [0, 1] as the ratio of task that are still

considered at round q compared to the initial number of task, i.e. rq = |Tavl|
n . We

start with an initial budget B0, and denote by Bqc the total budget consumed
at round q. We denote by Bq the fraction of budget consumed at that current

instance, Bq =
Bqc
B0

. We define the stopping threshold Thq ∈ [0.5, 1.0] as Thq =

1+(1−Bq)r
q

2 .
The intuition behind this function is simple: when the number of remain-

ing tasks decreases, one can afford a higher confidence threshold, because the
maximal budget needed to solve all tasks decreases too. Similarly, as the bud-
get decreases, one shall derive a final answer for tasks faster, possibly with a
poor confidence, as the remaining budget does not allow hiring many workers.
Figure 2-left shows the evolution of threshold when the ration of solved tasks
and the ration of consumed budget evolves. Figure 2-right shows the evolution
of threshold when the fraction of budget consumed increased, for several fixed

Reducing the Cost of Aggregation in Crowdsourcing 15

Fig. 2: Evolution of threshold for fixed fraction of consumed budget and fraction
of task remaining at the beginning of a round.

values for the ratio of solved tasks rq. Each curve in the Figure represents this
evolution for a fixed value of rq. Though function Thq was chosen arbitrarily, one
can notice that its value always lays between 0.5 and 1, decreases with available
budget, and increases when the number of remaining tasks diminishes. Observe
that when rq is close to 1, the threshold falls rapidly, as a large number of tasks
still has to be evaluated within the remaining budget. On the other hand, when
there are less unsolved tasks (e.g. when rq = 0.10), the threshold Thq decreases
slowly.

We can now define a crowdsourcing algorithm (CrowdInc) with a dynamic
worker allocation strategy to optimize cost and accuracy. This strategy allo-
cates workers depending on current confidence on final answers, and available
resources. CrowdInc is decomposed in two phases, Estimation and Convergence.

Estimation: As difficulty of tasks is not known a priori, the first challenge is
to estimate it. To get an initial measure of difficulties, each task needs to be
answered by a set of workers. Now, as each worker receives an incentive for a
task, this preliminary evaluation has a cost, and finding an optimal number of
workers for difficulty estimation is a fundamental issue. The initial budget gives
some flexibility in the choice of an appropriate number of workers for preliminary
evaluation of difficulty. Choosing a random number of workers per task does not
seem a wise choice. We choose to devote a fraction of the initial budget to
this estimation phase. We devote one third of the total budget (B0/3) to the
estimation phase. It leaves a sufficient budget (2·B0/3) for the convergence phase.
Experiments in the next section show that this seems a sensible choice. After
collection of answers for each task, we apply the EM based aggregation technique
of Section 3 to estimate the difficulty of each task as well as the expertise of each
worker. Considering this as an initial round q = 0, we let d0j denote the initially

estimated difficulty of each task j, α0
i , β

0
i denote the expertise of each worker and

y0j denote the aggregated answer for task tj after the estimation phase. Note that
if the difficulty of some tasks is available a priori and is provided by the client,
we may skip the estimation step. However, in general clients do not possess such

16 R. Singh, L. Hélouët, and Z. Miklos

Algorithm 2: CrowdInc

Data: A set of tasks T = {t1, . . . , tn}, a budget = B0

Result: Final Answer: Y = y1, . . . , yn, Difficulty: dj ,Expertise: αi, βi
1 Initialization : Set every dj , αi, βi to a random value in [0, 1].
2 Tavl = T ; q = 0; B = B − (B0/3); Bc = B0/3; r = (B0/3)/n
3 //Initial Estimation:

4 Allocate r workers to each task in Tavl and get their answers
5 Estimate dqj , α

q
i , β

q
i , ĉ

q
j , 1 ≤ j ≤ n, 1 ≤ i ≤ B0/3 using EM aggregation

6 Compute the stopping threshold Thq.
7 for j = 1, . . . , n do
8 if ĉqj > Thq then Tavl = T \ {j};
9 end

10 //Convergence:

11 while (B > 0) && (Tavl 6= ∅) do
12 q = q + 1; l = |Tavl|
13 Allocate aq

1, . . . ,a
q
l workers to tasks t1, . . . tl based on difficulty.

14 Get the corresponding answers by all the newly allocated workers.
15 Estimate dqj , α

q
i , β

q
i , ĉ

q
j using aggregation model.

16 B = B −
∑

i∈1..|Tavl|
aq
i

17 Compute the stopping threshold Thq

18 for j = 1, . . . , n do
19 if ĉqj > Thq then Tavl = Tavl \ {j};
20 end

21 end

information and this initial step is crucial in estimation of parameters. After this
initial estimation, one can already compute Th0 and decide to stop evaluation
of tasks with a sufficient confidence level.

Convergence: The difficulty of task dqj and the set of remaining tasks Tavl are
used at each iteration of the convergence phase. Now as the difficulty of each
task is estimated, we can use the estimated difficulty dqj to allocate the workers
dynamically. The number of workers allocated at round q > 0 follows a diffi-
culty aware worker allocation policy. At each round, we allocate aqj workers to
remaining task tj . This allocation policy guarantees that each remaining task
is allocated at least one worker, at most τ workers, and that the more difficult
tasks (i.e. tasks that have the more disagreement) are allocated more workers
than easier tasks.

Algorithm 2 gives a full description of CrowdInc. We also show the informa-
tion memorized at each step of the algorithm in Figure 3. Consider a set of n
tasks that have to be annotated with a Boolean tag in {0, 1}. CrowdInc starts
with the Estimation phase and allocates k workers for an initial evaluation round
(q = 0). After collection of answers, and then at each round q > 0, we first apply
EM based aggregation to estimate the difficulty dqj of each of task tj ∈ Tavl,

Reducing the Cost of Aggregation in Crowdsourcing 17

t1

t2

t3

.

.

tn

Bq = 0 Bq = 1.0Bq =
Bqc

B0/3

q = 0; k = Bq
n

w1 w2 . . wk

1

0

1

.

.

0

1

1

0

.

.

1

.

.

.

.

.

0

.

.

.

.

.

1

1

1

0

.

.

0

y01

y02

y03
.

.

y0n

d01

d02

d03
.

.

d0n

ĉ01

ĉ02

ĉq3
.

.

ĉ0n

α0
1

β0
1

α0
2

β0
2

α0
k

β0
k

ĉqj ≥
Thq

X

aq
j

wx ..

1

0

.

.

1

1

1 1

α0
k

β0
k

..

..

y12

y13
.

y1n

d12

d13
.

.

d1n

ĉ12

ĉ13
.

.

ĉ1n

...

...

...

...

...

Fig. 3: A possible state for Algorithm 2

the confidence ĉqj in final aggregated answer yqj , and the expertise αqi , β
q
i of the

workers. Then, we use the stopping threshold to decide whether we need more
answers for each task. If ĉqj is greater than Thq, the task tj is removed from Tavl.
This stopping criterion hence takes a decision based on the confidence in the
final answers for a task and on the remaining budget. Consider, in the example
of Figure 3 that the aggregated answer for task t1 has high confidence, and that
ĉq1 ≥ Thq. Then, t1 does not need further evaluation, and is removed from Tavl.
Once all tasks solved at round q have been removed, we allocate aqj workers to
each remaining task tj in Tavl following our difficulty aware policy. Note that,
each task gets a different number of workers based on task difficulty. The algo-
rithm stops when either the whole budget B0 is exhausted or there is no unsolved
task left. It then returns the set of all aggregated answers Y = {yqj | 1 ≤ j ≤ n}.

Let us stress an important point of the algorithm. The initial estimation phase
(lines 1 to 9) is a standard static allocation, but uses only a limited fraction of
the allowed budget. Dynamic allocation depending on confidence in aggregated
results only starts from line 10. This initialization phase guarantees that all
records are evaluated by at least r = (B0/3)/n workers, and hence that the
algorithm terminates with an answer for each record. Termination of the loop on
lines 11 to 21 is guaranteed because the available budget decreases at each round.
Consistently, when the whole budget is consumed, the threshold computed at
the end of a round is 1/2. As every aggregated answer achieves a confidence score
higher that random guesses, threshold also helps termination. The algorithm is
hence guaranteed to terminate in O((B0/3)/n + (2.B0/3)) rounds. Hence, each
record receives between r and 2 ·B0/3+r answers, depending on the difficulty of
tagging this record, but also on the frequency of difficult tasks. Experiments were
carried out with different values for the initial number r of workers allocated to
a task, but gave less interesting results in terms of cost or in terms of accuracy.
Setting r = (B0/3)/n appears as a good tradeoff, but additional experiments
should be carried out to study optimal values for r. However, as very often in
crowdsourcing, the optimal value for r might depend on the input dataset, and
on the characteristics of workers which are not known a priori.

18 R. Singh, L. Hélouët, and Z. Miklos

5 Experiments

We evaluate the algorithm on three public available datasets, namely the Product
Identification [21], Duck Identification [23] and Sentiment Analysis [15] bench-
marks. We briefly detail each dataset and the corresponding tagging tasks. All
tags appearing in the benchmarks were collected via Amazon Mechanical Turk.
In the Product Identification use case, workers were asked to decide whether
a product-name and a description refer to the same product. The answer re-
turned is True or False. There are 8315 samples and each of them was evaluated
by 3 workers. The total number of unique workers is 176 and the total number
of answers available is 24945. In the Duck Identification use case, workers had
to decide if sample images contain a duck. The total number of tasks is 108 and
each task was allocated to 39 workers. The total number of unique workers is
39 and the total number of answers is 4212. In the Sentiment Analysis use
case, workers had to annotate movie reviews as Positive or Negative opinions.
The total number of tasks was 500. Each task was given to 20 unique workers
and a total number of 143 workers were involved, resulting in a total number of
10000 answers. All these information are synthesized in Table 1.

Dataset Number of Tasks
Number of tasks

with ground truth

Total Number
of answers
provided

by the crowd

Average number
of answers

for each task

Number of unique
crowd workers

Product
Identification

8315 8315 24945 3 176

Duck
Identification

108 108 4212 39 39

Sentiment
Analysis

500 500 10000 20 143

Table 1: Datasets description.

Evaluation of aggregation: We first compared our aggregation technique to
several methods: MV, D&S [3], GLAD [24], PMCRH [12], LFC [17], and Zen-
Crowd [4]. We ran the experiment 30 times with different initial values for tasks
difficulty and workers expertise. The standard deviation over all the iteration
was less than 0.05%. Hence our aggregation is insensitive to initial prior values.
We now compare Recall, Specificity and Balanced Accuracy of all methods. The
results are shown in Table 2. The recall and specificity measures presented in
the table characterize the success rate of algorithms on tasks with ground truth
1 and 0 respectively. Balanced Accuracy is the average of recall and specificity
(we choose this average to get unbiased estimates on unbalanced dataset). We
can observe in Table 2 that our method outperforms other techniques in Duck
Identification, Product Identification, and is comparable for Sentiment Analysis.
Evaluation of CrowdInc: The goal of the next experiment was to verify that
the cost model proposed in CrowdInc achieves at least the same accuracy but
with a smaller budget. We have used Duck identification and Sentiment Analysis

Reducing the Cost of Aggregation in Crowdsourcing 19

Methods Recall Specificity
Balanced
Accuracy

MV 0.56 0.91 0.73

D&S [3] 0.81 0.93 0.87

GLAD [24] 0.47 0.98 0.73

PMCRH [12] 0.58 0.95 0.76

LFC [17] 0.87 0.91 0.89

ZenCrowd [4] 0.39 0.98 0.68

EM + recall,
specificity

& difficulty
0.89 0.91 0.90

(a) Duck Identification

Methods Recall Specificity
Balanced
Accuracy

MV 0.61 0.93 0.77

D&S [3] 0.65 0.97 0.81

GLAD [24] 0.48 0.98 0.73

PMCRH [12] 0.61 0.93 0.77

LFC [17] 0.64 0.97 0.81

ZenCrowd [4] 0.51 0.98 0.75

EM + recall,
specificity

& difficulty
0.77 0.90 0.83

(b) Product Identification

Methods Recall Specificity
Balanced
Accuracy

MV 0.93 0.94 0.4

D&S [3] 0.94 0.94 0.94

GLAD [24] 0.94 0.94 0.94

PMCRH [12] 0.93 0.95 0.94

LFC [17] 0.94 0.94 0.94

ZenCrowd [4] 0.94 0.94 0.94

EM + recall,
specificity

& difficulty
0.94 0.95 0.94

(c) Sentiment Analysis

Table 2: Comparison of EM + aggregation (with Recall, specificity & task diffi-
culty) with MV, D&S, GLAD, PMCRH, LFC, ZenCrowd.

for this test. We did not consider the Product Identification benchmark: indeed,
as shown in Table 1, the Product Identification associates only 3 answers to each
task. This does not allow for a significant experiment with CrowdInc. We com-
pared the performance (cost and accuracy) of CrowdInc to other approaches.
The results are given in Figure 4. Static(MV) denotes the traditional static al-
location used in crowdsourcing platforms with majority voting as aggregation
technique and Static(EM) denotes a static allocation combined with a more ad-
vanced EM based aggregation technique. Both algorithms allocate all the workers
(and hence use all their budget) at the beginning of the crowdsourcing process.
Considering these two algorithms allows to highlight the impact of EM and of
dynamic allocation on cost and accuracy.

The following observation can be made from Figure 4. First, CrowdInc achieves
better accuracy than a static(MV) approach. This is not a real surprise, as MV
already showed bad accuracy in Table 2. Then, CrowdInc achieves almost the
same accuracy as a Static(EM) based approach in Duck identification, and the
same accuracy in Sentiment Analysis. Last, CrowdInc uses a smaller budget than
static approaches in all cases.

Table 3 shows the time (in seconds) needed by each algorithm to aggregate
answers. Static(MV) is the fastest solution: it is not surprising, as the complexity
is linear in the number of answers. We recall however that MV has the worst
accuracy of all tested aggregation techniques. We have tested aggregation with
EM when the number of workers is fixed a priori and is the same for all tasks
(Static(EM)). CrowdInc uses EM, but on a dynamic sets of workers and tasks,
stopping easiest tasks first. This results in a longer calculus, as EM is used sev-
eral times on sets of answers of growing sizes. The accuracy of static(EM) and

20 R. Singh, L. Hélouët, and Z. Miklos

Fig. 4: Comparison of cost vs. Accuracy.

CrowdInc are almost the same. Aggregation with CrowdInc takes approximately
11% longer than static(EM) but for a smaller budget, as shown in the Figure 4.
To summarize the CrowdInc aggregation needs more time and a smaller bud-
get to aggregate answers with a comparable accuracy. In general, clients using
crowdsourcing services can wait several days to see their task completed. Hence,
when time is not a major concern. CrowdInc is hence a sensible solution to
reduce the cost of crowdsourcing.

Dataset/Methods CrowdInc Static(EM) Static(MV)

Duck Identification 843.26 106.81 0.073

Sentiment Analysis 1323.35 137.79 0.102

Table 3: Running time(in seconds) of CrowdInc, static MV and Static EM.

6 Spammer detection

In the preceding sections, we have considered faithful workers, i.e., workers that
do their best to return an answer that is, up to their knowledge, the right answer.
Some workers may have low competences, but our experimentation showed that
despite errors, Crowdink achieves good accuracy. The reason is that workers
are usually competent, and that a limited number of errors per question can be
compensated by correct answers. Indeed, in a context where workers are faithful,
the largest probability for an individual wrong answer is 0.5, as for incompetent
workers, answers are almost a random guess. Now, the probability for k wrong
answers for a task, and the probability of k consecutive wrong answers by the
same worker are very small (0.5k). Hence, the high probability that individual
errors are corrected by other answers allows to achieve good recall and speci-
ficity. This setting is completely changed if a worker returns wrong answer with

Reducing the Cost of Aggregation in Crowdsourcing 21

a higher probability, either because he is only interested in incentives, and does
not really perform the task he was hired for, but rather returns fast thought-
less answers, or because he is trying to influence the results or accuracy of the
crowdsourcing platform. In the rest of this section we consider these two types
of spammers, and study the impact of growing proportions of these malevolent
workers on the overall accuracy of our algorithm. One can expect crowdsour-
cing to be robust to a single spammer, but a major danger for a platform is to
hire too many spammers. An important parameter to know is hence the max-
imal percentage of spammers that a platform can accept. A second important
parameter is how malevolent workers affect costs of our aggregation algorithm.
As shown in Section 5, our algorithm allows to save costs when confidence in
aggregated answers is sufficient. Now, as malevolence affects answers, it can also
reduce confidence in aggregated answers, and subsequently increase the budget
spent to reach a consensus. In the rest of this section, we propose a model for
several types of spammers, and present the results of experiments showing the
maximal percentage of spammers that CrowdInc can accept, and the impact of
these spammers on costs.

6.1 Spammers models

We distinguish several types of spammers, with different motivations and hence
different behaviors. For some of them, the objective is to earn fast money by
performing a maximal number of tasks within the shortest possible time. For
others, the objective is to perturb the system, and reduce its overall efficiency
and quality. Last, some spammers want to influence the results returned by the
crowdsourcing platform. We distinguish these three types of spammer, and for
each type define a particular generating function (i.e., a probability law) for
returned answers. Our spammer are represented as follows:

– Type 1 spammers: The objective of these spammers is to earn money
easily through obfuscated use of crowdsourcing platforms. They do not want
to spend time thinking on problems posted on the crowdsourcing platform.
They favor easy tasks with a small and finite number of answers and answer
as fast as possible to gain the incentives given for task completion. These
greedy spammers can be seen as returning a random answer. To fight this
type of spam, platforms separate rewards in two parts: the first one for
accepting to realize a task, and the second for a correct answer (or at least
an answer that conforms with the aggregated result obtained from the set
of answers of all workers contributing to the task). Another way to avoid
greedy spammers is to select workers only after unpaid qualification tests
before allowing them to contribute to paid tasks. Greedy spammers are often
reluctant to pass these tests that result in a loss of time, and systematically
disqualify them if they answer randomly. The answering profile of a greedy
spammer is a profile where the probability to answer x when the ground
truth is x is a constant 0.5, regardless of the difficulty of the task. Using

22 R. Singh, L. Hélouët, and Z. Miklos

the same parameters as for standard workers proposed in Section 3, the
generative functions for Type 1 spammers are:

Pr(lij = yj |dj , αi, yj = 1) = 0.5 and Pr(lij = yj |dj , βi, yj = 0) = 0.5 (13)

– Type 2 spammers: the objective of spammers of this type is to impact
efficiency of crowdsourcing platforms. If this type of spammer become ma-
joritary in pool of worker, then the accuracy of the platform can be severely
compromised. Though we are not aware of denial of service attacks of this
form, assuming existence of this type of spammers and considering various
proportions of Type 2 spammers is a way to study the maximal impact that
spammers can have on a system. The generative functions for Type 2 spam-
mers are:

Pr(lij = 0|dj , αi, yj = 1) = 1 and Pr(lij = 1|dj , βi, yj = 0) = 1 (14)

Note that the probabilities of incorrect answers from Type 2 spammers do
not depend on their recall or specificity. We hence use this type of spammer
as a worst case measure of spammers impact, as answering incorrectly a
question supposes the ability to know the correct answer. In some sense, this
is a high (but evil) competence level that should be very rare.

– Type 3 spammers: the objective of spammers of this type is to force the
results returned by a crowdsourcing platform. In [22], attacks of these spam-
mers are called sybil attacks. Regardless of the ground truth, these spammers
return the same answer. This type of attack is not a purely theoretical view:
It was demonstrated that robots had rigged the results of a famous talent
show 2 in 2019. The behavior of a Type 3 spammer is to return systemat-
ically the answer he wants to see in the aggregated result. For instance, if
worker i is a spammer willing to favor answer 1 to question j, his behavior
will be defined by the following generative functions.

Pr(lij = 1|dj , αi, yj = 1) = 1 and Pr(lij = 1|dj , βi, yj = 0) = 1 (15)

Of course, one can write symmetric generative functions when the preferred
answer of spammer i is 0. Depending on the chosen answer, a spammer will
have a good recall and poor specificity, or the converse. We will call Type 3.1
spammers the malevolent workers that want to force the system to return
final answer 0, and Type 3.2 spammers the malevolent workers that want to
force the system to return final answer 1.

We illustrate the generative function for different types of spammers of Fig-
ure 5. We compare the probability of a correct answer when ground truth is 1
(diagram on the left) for an average user which recall is α = 0.75. For a genuine

2 https://en.wikipedia.org/wiki/The_Voice_Kids_(Russian_season_6)

Reducing the Cost of Aggregation in Crowdsourcing 23

worker of this kind, the probability for a correct answer is represented with a
mixed line, and decreases to 0.5 while difficulty increases. On the other hand,
the probability of a correct answer for Type 1 spammers is always 0.5. One
can see on the figure that the difference between Type 1 spammer and genuine
user decreases while difficulty increases. Type 2 spammers (intentional wrong
answer, represented by yellow line) and Type 3.1 spammers (constant answer 0
represented by a black dotted line) both have a probability 0 to give the correct
answer. The diagram on the right represents similar curves when the ground
truth is 0 and the specificity of a genuine user is β = 0.75.

Fig. 5: Generating functions depicting the probability of correct answers for hon-
est workers (with recall α = 0.75 and specificity β = 0.75) and Type 1, Type 2,
and Type 3 spammers.

One can notice that the probabilities of correct answers are very different for
genuine workers and for spammers. However, detection of a spammer is not as
straightforward as Figure 5 suggests, as ground truth is not known, and correct
answers, recalls and specificities are estimated from observed answers.

Though the objective of this section is to study the impact of spammers on
efficiency of CrowdInc, one can easily build on the experiments showed later in
this section to imagine a simple detection algorithm. Fixing a lower bound thl,iR
and an upper bound thu,iR for recall (resp. thl,iS and an upper bound thu,iS for
specificity) for each spammer type i, and claim that a worker wj is a spammer

of type i if thl,iR ≤ αj ≤ thu,iR and thl,iS ≤ βj ≤ thu,iS . Though this algorithm is
simplistic, it achieved good detection scores in the experiment showed below.

24 R. Singh, L. Hélouët, and Z. Miklos

6.2 Experimentation of CrowdInc with spammers

The objective of the experiment was to measure the effect of spammers on the
performance of our aggregation algorithm, study the impact of spammers on the
cost and accuracy and give ways to detect spammers in a pool of workers.

Datasets. We consider the datasets used in Section 5, namely Duck Identifi-
cation and Sentiment Analysis, and analyze the effect of spammers on Crowd-
Inc’s performance. We do not consider the Product Identification dataset as it
associates only three unique workers per task. This does not allow conclusive ex-
periments, as replacing a worker by a spammer immediately leads to a situation
with 33% of spammers.

The experimentation was organized as follows: we randomly generated spam-
mers with their own characteristics (type), and replaced genuine workers with
spammers. This allowed us to compare the results achieved with an original
dataset with a biased result of identical size. For Type 1 spammers, we followed
an uniform distribution to generate spammers answers for each tasks. For Type
2 spammers, we replaced the former Boolean answer with the negation of the
ground truth. For Type 3.1 spammers, we set the answer to tasks to 0 for each
spammer and conversely for Type 3.2 spammers, we set the answer to tasks to
1 for each spammer.

We have considered two types of spammer sets in our experiment: sets com-
posed of spammers of a S type and sets composed of spammers of Mixed types.
We have then analyzed the impact of spam with growing percentage of cor-
rupted workers of a single type, and with growing percentage of spammers of
mixed types. The mixed type spammer sets included all types of spammer and
for simplicity, we kept an equal proportion of each type. We have performed
experiments for each set of spammers, replacing a growing proportion of genuine
workers by corrupted workers. We let the proportion of spammers range from
10% to 60% to study the effect of spam on the performance of aggregation. Our
experiment did not exceed 60% of spammers, becasue the performance of Crowd-
inc was already too low with this proportion of spam. Overall, the two datasets
and the various composition of genuine workers and spammers sets results in 57
experimentation environments, shown in Table 4. Recall that answers of genuine
workers are random values following a probability law, and are sampled accord-
ing to a profile that depends on workers recall and specificity. This means that
the influence of spammers depend on correctness of the answers they returned.
We hence ran each experiment 30 times to avoid bias.

6.3 Spammer detection with thresholds

One way to detect spammer is to show that they have a poor expertize, than can
only be justified by a malevolent behavior. As explained before (see in particular
Figure 5), each spammer type has characteristics that can be observed from
the values of recall and specificity. We can hence set thresholds for recall and
specificity, and decide by comparing the actual expertize of a worker whether

Reducing the Cost of Aggregation in Crowdsourcing 25

Dataset
Name

Duck Identification Sentiment Identification

Genuine
Workers

39 20

Spammer
Type

Individual
(Type 1, Type 2,

Type 3.1, Type 3.2)

Mixed
(Equal number of all
type of spammers)

Individual
(Type 1, Type 2,

Type 3.1, Type 3.2)

Mixed
(Equal number of all
type of spammers)

Spam Workers
(% compared to

genuine
workers (approx))

4
(10)

8
(20)

12
(30)

16
(40)

20
(50)

24
(60)

4
(10)

8
(20)

12
(30)

16
(40)

20
(50)

24
(60)

2
(10)

4
(20)

6
(30)

8
(40)

10
(50)

12
(60)

4
(20)

8
(40)

12
(60)

Table 4: Spam dataset parameters.
he is a spammer or not, and even determine the type of spammer that was
discovered this way. Now, the difficulty is to set the appropriate values for these
thresholds.

We perform a grid search on the values of recall and specificity to find thresh-
olds allowing identification of spammers. We use the Duck identification dataset
with 10% of spammer and consider each type of spammer independently. We
show the results in Figure 6. Both recall and specificity range from 0.0 to 1.0.
For each plot, the recall value ranges from 0.0 to 1.0 and is represented on the
horizontal axis. Likewise, specificity is represented on the y-axis and ranges from
0 to 1. We choose a step size of 0.1 for recall and specificity. Each cell hence rep-
resent an interval of values for recall and specificity. The obtained grid is hence
a 10× 10 grid. Now for each cell, we compute a detection score.

Let ns be the total number of spammers, ng be the number of genuine work-
ers, nds the number of spammers detected as spammers and ndg the number of
genuine workers classified as genuine by some spammer detection technique.
Then the detection score is

1

2
·

(
ndg
ng

+
nds
ns

)

The maximal detection scores reached for the most accurate thresholds are
rather high (above 90%), but do not achieve a 100% correct classification of
workers. The graphics of Figure 6 shows the achieved detection score with a
color. For Type 1 spammers, we achieve the best detection score when the recall
and specificity values ranges between 0.45 and 0.60. As Type 1 spammers make
a random guess to return their answers, their recall and specificity lie between
0.45 and 0.60. This is below the values achieved by the complete pool of genuine
honest workers (0.89 and 0.90) in the experiment of Section 5. The Type 2
spammer always gives wrong answers. This results in a low value of recall and
specificity. We can observe that the detection score to correctly detect Type 2
spammers is high with a threshold for recall and specificity set to 0.2 (or less).
The Type 3.1 spammers always return answer 0. In this case, the specificity
value is very high, however, the recall value is very low. We can observe that,
with a very high specificity threshold > 0.9 and a small recall threshold < 0.2,
we get the highest detection score for Type 3.1 spammers. Conversely, the Type
3.2 spammers always answer 1 that leads to very high recall and low specificity.
The score to detect Type 3.2 spammers is highest when we have a threshold for
recall set to > 0.9 and a threshold for specificity < 0.2.

26 R. Singh, L. Hélouët, and Z. Miklos

Fig. 6: Threshold search to detect spammers for four spammers type: Type 1,
Type 2, Type 3.1 and 3.2.

Overall, the experiments conducted allowed to find appropriate thresholds for
detection of all spammers. The optimal synthesized values of thresholds allowing
to detect spammers of each category are represented in Table 5.

Recall Value
Threshold

Specificity Value
Threshold

Spammer Type Description

Low (0.45 ≤ α ≤ 0.60) Low (0.45 ≤ β ≤ 0.60) Type 1 Random answers

Very low (α ≤ 0.2) Very low (β ≤ 0.2) Type 2 Wrong answers

Very low (α ≤ 0.2) High (0.9 ≤ β) Type 3.1 Always answer 0

High (0.9 ≤ α) Very low (β ≤ 0.2) Type 3.2 Always answers 1

Table 5: Thresholds to detect spammers of Type 1, Type 2, Type 3.1 and 3.2.

6.4 Effect of spammers on accuracy

We now analyze the effect of spammers on accuracy of aggregation. We consider
spammer sets composed of spammers of a single type and spammer sets with
mixed types. In each experiment, we increase the percentage of spammers from
10% to 60% and use the CrowdInc algorithm proposed in Section 4 to aggregate
the answers. We do not consider cases with more than 60% of spammers because
accuracy is already very low with this percentage of malevolent workers. Let
us recall that the achieved recall, specificity and global accuracy achieved by
CrowdInc are respectively 0.89, 0.91 and 0.9 for Duck Identification, and 0.94,
0.95 and 0.94 for Sentiment Analysis. We observe the following outcomes.

Unsurprisingly, introducing spammers degrades the overall accuracy of aggre-
gation. This was expected as the spammers, unlike genuine workers whose answer

Reducing the Cost of Aggregation in Crowdsourcing 27

are based on their belief, try to trick the system. Additionally, as the number
of spammer increases accuracy of aggregation decreases. This result follows in-
tuition: as more spammers try to trick the system, confidence in aggregated
answers decreases. This tendency was visible in all simulation environments.
The accuracies, recalls and specificities achieved with 10% spammers are shown
in Figures 7, 8, 9, 10, 11, 12, 13, and 14.

Let us discuss more precisely the obtained results for each spammer type.
For Type 1 spammers, accuracy falls steadily as shown in Figure 7 and 10. The
Type 1 spammers give random answers, and in this case still have a sufficient
probability to return a correct answer. Such a type of spammer affects the overall
accuracy of the system very gradually, as their disagreement is easily corrected
by genuine workers. All graphics (Figures 7,8,9,10,11,12) show that one can still
achieve an acceptable accuracy, recall and specificity with up to 60% of workers
returning random answers.

On the other hand, for Type 2 spammers, accuracy decreases very quickly.
Observe the results in Figure 7. With only 20% of Type 2 spammers, accuracy is
already very low, and with 30% of spammers, the performance of the system is
close to 0. The reason is that Type 2 spammers always return a wrong answer,
and hence influence the final result. The recall and specificity for Duck Identi-
fication Figure 8 and 9 show the same trend: a proportion of 30% of spammers
make the system unusable. For Sentiment Analysis (Figures 10,11,12), the limit
lays a little further, allowing up to 40% of corrupted workers.

For Type 3.1 and Type 3.2 accuracy falls gradually as shown in Figure 7, 10.
Note that, such spammers affect negatively the balanced results when most of the
tasks have ground truth as 0 and on the contrary affect it positively the ground
truth is 1 for a majority of workers. Indeed, specificity of aggregated answers
with Type 3.1 spammers approaches 1 (refer Figure 8, 11) and the recall falls
to 0 (refer Figure 9, 12) when the number of spammers increases. This behavior
is expected as Type 3.1 spammers always return answer 1 (and hence achieve
100% correct answers on images with ducks). Symmetric results are obtained
with Type 3.2 spammers as depicted in Figures 8 and 9.

28 R. Singh, L. Hélouët, and Z. Miklos

Fig. 7: Effect of individual type spammers: Type 1, Type 2, Type 3.1 and Type
3.2 on balanced accuracy for Duck Identification dataset.

Fig. 8: Effect of individual type spammers: Type 1, Type 2, Type 3.1 and Type
3.2 on specificity for Duck Identification dataset.

Reducing the Cost of Aggregation in Crowdsourcing 29

Fig. 9: Effect of individual type spammers: Type 1, Type 2, Type 3.1 and Type
3.2 on recall for Duck Identification dataset.

Fig. 10: Effect of individual type spammers: Type 1, Type 2, Type 3.1 and Type
3.2 on balanced accuracy for Sentiment Analysis dataset.

30 R. Singh, L. Hélouët, and Z. Miklos

Fig. 11: Effect of individual type spammers: Type 1, Type 2, Type 3.1 and Type
3.2 on specificity for Sentiment Analysis dataset.

Fig. 12: Effect of individual type spammers: Type 1, Type 2, Type 3.1 and Type
3.2 on recall for Sentiment Analysis dataset.

Reducing the Cost of Aggregation in Crowdsourcing 31

Let us now consider mixed set of spammers. We introduced an equal share of
spammers of each type and incrementally increased the percentage of spammers
among workers. We find that in this case, recall, specificity and the balanced
accuracy falls gradually as shown in Figures 13 and 14. An intuitive explanation
is that introducing an equal percentage of spammers of each type among workers
amounts to increasing the number of random answers: the behaviors of Type 3.1
and 3.2 spammers cancel each other and the impact of Type 2 spammers is hence
less significant, resulting in an behavior close to that of a set of workers with a
smaller number of (Type 1) spammers.

Fig. 13: Effect of Mixed spammers: equally distributed Type 1, Type 2, Type 3.1
and Type 3.2 for Duck Identification dataset.

6.5 Effect of spammers on costs

The objective of our last experimentation is to study how spammers affect ac-
curacy but also the costs of our CrowdInc algorithm. As for the previous ex-
periments, we again consider the Duck Identification and Sentiment Analysis
datasets. We set up two types of experimentation. In the first case, we insert
individual spammers of each type and increment the percentage of spammers
from 10% to 60%. On the other hand, we insert a mixed set of spammers with
an equal proportion of spammers of all type. Here, we also insert spammers
incrementally from 10% to 60%. We compare the performance of CrowdInc to
varying degree of spammers in both cases.

We first show compared costs and accuracies for sets of spammers of a single
type, for growing ratios of malevolent workers. We show the achieved results for
Duck Identification in Figure 15 and Sentiment Analysis in Figure 16. In each

32 R. Singh, L. Hélouët, and Z. Miklos

Fig. 14: Effect of Mixed spammers: equally distributed Type 1, Type 2, Type 3.1
and Type 3.2 for Sentiment Analysis dataset.

Fig. 15: Comparison of cost vs. accuracy (Individual Spammers): Type 1, Type
2, Type 3.1 and Type 3.2 with varying percentage of spammers for Duck Iden-
tification dataset.

Reducing the Cost of Aggregation in Crowdsourcing 33

Fig. 16: Comparison of cost vs. accuracy (Individual Spammers): Type 1, Type
2, Type 3.1 and Type 3.2 with varying percentage of spammers for Sentiment
Analysis dataset.

Figure, the top left bar plot represents the cost, the top right bar plot represents
the accuracy, the bottom left bar plot represents the specificity and the bottom
right bar plot represents the recall, for each spammer type and for varying per-
centages of spammers. Let us first consider Duck Identification (Figure 15). For
Type 1 spammers, the cost of aggregation increases with the percentage of spam-
mers, while accuracy, specificity and recall remain quite stable. The explanation
is that, when spammers give random answers they may be correct or wrong.
Such random answering by workers increases the number of steps needed to con-
verge to a final consensual answer, but one error compensates the other, and
the final results are not affected. The Type 2 spammers provide always incor-
rect answers. We observe that in Duck Identification, the cost decreases as well
as accuracy, recall and specificity (which are almost 0 and not visible on plots
for a percentage of spammer ≥ 40%). Note that compared to Type 1 spammer,
performance decreases faster. For Type 3.1 spammers, we observe that cost as
well as accuracy decreases when the number of spammers increases. Specificity
increases and approaches 1 with a high number of spammers. In contrast, the re-
call values fall very sharply and reach 0. The intuitive reason is the following: for
tasks with ground truth is, the spammers return 1. Hence, specificity approaches
to 1 when the percentage of Type 3.1 spammers increases. For the tasks with
ground truth 0, spammers return a wrong answer, so recall decreases rapidly.
The situation for Type 3.2 spammers is symmetric. It is also interesting to note
that the accuracy in the case of Type 3.1 and Type 3.2 spammers depends upon
the proportion of ground truth with 0 or 1. If the dataset consists of a greater

34 R. Singh, L. Hélouët, and Z. Miklos

proportion of tasks with ground truth 0, we get greater accuracy when we have
Type 3.1 spammers. In contrast with a higher proportion of tasks with ground
truth as 1, we get greater accuracy with Type 3.2 spammers than with Type
3.1 spammers. Though it might be intriguing that cost decreases with Type 2,
Type 3.1 and Type 3.2 spammers, there is an intuitive explanation: as spam-
mers all provide the same biased answer, they allow to reach a (possibly wrong)
consensus within a smaller number of rounds. For Sentiment Analysis, the costs
remain almost stable, while accuracy decreases. In fact, even when the number
of spammers increases, the impact on cost and accuracy also depends upon how
the genuine workers are answering. If there is a lot of agreement among the
answers provided by the genuine workers, the impact of spammers on cost and
accuracy is limited. In the case of Sentiment Analysis, there is a lot of agreement
among workers answers. As a result, the effect of spammers answers is lighter
than for the Duck Identification dataset.

Let us now analyze results for a mixed set of spammers with an equal pro-
portion of each spammer type. We find that when the percentage of spammers
increases, the cost of CrowdInc increases and the performance metrics (accuracy,
specificity and recall) decrease. The results are shown in Figure 17 and 18. As
explained earlier, mixed composition of spammer sets shows identical perfor-
mance as spammers sets with only Type 1 spammers. Here also, changes in cost
and accuracy depend on answers of genuine workers. As a result, we can observe
that the effect of spammers is less important on the Sentiment Analysis dataset
than on the Duck Identification dataset. This observation extends to costs.

Fig. 17: Comparison of cost vs. accuracy (Mixed Spammers): equally distributed
Type 1, Type 2, Type 3.1 and Type 3.2 with varying percentage of spammers
for Duck Identification dataset.

Reducing the Cost of Aggregation in Crowdsourcing 35

Fig. 18: Comparison of cost vs. accuracy (Mixed Spammers): equally distributed
Type 1, Type 2, Type 3.1 and Type 3.2 with varying percentage of spammers
for Sentiment Analysis dataset.

Overall, the experimentation showed a very marginal increase is the cost of
CrowdInc (and hence also on the number of rounds) for a percentage of spammers
below 20%. Accuracy of answers is still good with 20% of spammers of all types.
This means that Crowding stops with a confidence in forged data that is still
high. Accuracy starts to fall dramatically (and costs starts to increase) for Duck
Identification with 30% of spammers, while results are still acceptable with 40%
of spammers with Sentiment Analysis. This shows that spammer impact, just
like performance of aggregation mechanisms, is data-dependent. Though it is
difficult to find general rules explaining this difference, one can notice that the
number of answers in Sentiment Analysis is larger. An hypothesis is that it makes
this dataset more robust to changes introduced by malevolent workers. Following
the remarks in [26], who concluded that there is not aggregation technique that
can be considered as the ultimate one, we believe that spammer sensitivity is
a parameter that may vary with size and difficulty of data. This is not only
a characteristics of data, but also of workers culture and beliefs: [23] showed
on the Duck Identification dataset that workers had difficulties to differentiate
ducks and grebes, due to a cultural habit associating ducks with a short neck.
Yet, a general tendency showed by our experiment is that Type 1 spammers
(returning random answers) have little effect on accuracy of the results. This
is good news, as it means that influencing the results of a crowdsourced vote
requires coordination among workers (at least to agree on the answer that has
to be forced).

36 R. Singh, L. Hélouët, and Z. Miklos

7 Conclusion and discussions

In this paper, we introduced an aggregation technique for crowdsourcing plat-
forms. Aggregation is based on expectation maximization and jointly estimates
the answers, the difficulty of tasks, and the expertise of workers. Using difficulty
and expertise as latent variables improves the accuracy of aggregation in terms of
recall and specificity. We also proposed CrowdInc an incremental labeling tech-
nique that optimizes the cost of answers collection. The algorithm implements a
worker allocation policy that takes decisions from a dynamic threshold computed
at each round, which helps achieving a trade off between cost and accuracy. We
showed in experiments that our aggregation technique outperforms the existing
state-of-the-art techniques. We also showed that our incremental crowdsourcing
approach achieves the same accuracy as EM with static allocation of workers,
better accuracy than majority voting, and in both cases at lower costs.

In a second part of the paper, we have studied the impact of malevolent
workers on performance of CrowdInc. In the considered cases, our algorithm can
accept 10 to 20 % of spammers without affecting too much its accuracy and cost.
As answering profiles of spammers are rather different from standard behaviors,
one can rely on recall and specificity estimation to detect spammers when the
percentage of corrupted workers is not too high.

The ideas proposed in this paper can lead to several improvements that
will be considered in future work. In the paper, we addressed binary tasks for
simplicity, but the approach can be easily extended to tasks with a finite number
m of answers. For each worker i, and for a given difficulty, one can specify the
joint probability of ground truth yj = v and of an answer Lij = v′ ∈ {1, . . . ,m}
for v, v′ ∈ {1, . . . ,m}. The role of the EM algorithm remains to estimate the
ground truth and parameters such as task difficulty and workers expertise. The
difficulty of each task tj remains a parameter dj . Expertise is the ability to
classify a task as m when its ground truth is m. An EM algorithm just has
to consider probabilities of the form Pr(Lij = v′|yj = v, αi, βi, dj) to derive
hidden parameters and final labels for each task. Another easy improvement
is to consider incentives that depend on workers accuracy. This can be done
with a slight adaptation of costs in the CrowdInc algorithm. Another possible
improvement is to try to hire experts when the synthesized difficulty of a task
is high, to avoid hiring numerous workers or increase the number of rounds.

Last, we think that the complexity of CrowdInc can be improved. The com-
plexity of each E-step of the aggregation is linear in the number of answers. The
M-step maximizes the log likelihood with an iterative process (truncated Newton
algorithm). However, the E and M steps have to be repeated many times. The
cost of this iteration is visible in Table 3, where one clearly see the difference
of running time between a linear approach such as Majority Voting (third col-
umn), a single round of EM (second column), and CrowdInc. Using CrowdInc to
reduce costs results in an increased duration to compute final answers. Indeed,
the calculus performed at round i to compute hidden variables for a task t is
lost at step i + 1 if t is not stopped. An interesting idea is to consider how a
part of computations can be reused from a round to the next one to speed up

Reducing the Cost of Aggregation in Crowdsourcing 37

convergence. However, building an incremental version of EM is far from being
trivial. Indeed, EM converges towards optima, that can sometimes be local. It is
kwown that the choice of initial values for hidden parameters need not influence
the final result. One can, for instance, reuse the recall and specificity computed
for workers in a round, and expect this quality to remains stable in subsequent
rounds, and hence speed up convergence of EM. However, this particular ini-
tialization of round does guarantee improvement of CrowdInc in all cases, and
experimental validation is needed to show that, on the average, remembering
parameters speeds up convergence.

Acknowledgements: We would like to thank anonymous reviewers for their
careful reading and for useful comments on a preliminary version of this work.

References

1. P. Dai, C. H. Lin, and D. S. Weld. POMDP-based control of workflows for crowd-
sourcing. Artificial Intelligence, 202:52–85, 2013.

2. F. Daniel, P. Kucherbaev, C. Cappiello, B. Benatallah, and M. Allahbakhsh. Qual-
ity control in crowdsourcing: A survey of quality attributes, assessment techniques,
and assurance actions. ACM Computing Surveys, 51(1):7, 2018.

3. A.Ph. Dawid and A.M. Skene. Maximum likelihood estimation of observer error-
rates using the EM algorithm. J. of the Royal Statistical Society: Series C (Applied
Statistics), 28(1):20–28, 1979.

4. G. Demartini, D.E. Difallah, and Ph. Cudré-Mauroux. Zencrowd: leveraging prob-
abilistic reasoning and crowdsourcing techniques for large-scale entity linking. In
Proceedings of the 21st World Wide Web Conference (WWW’12), pages 469–478.
ACM, 2012.

5. A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society: Series
B (Methodological), 39(1):1–22, 1977.

6. P.A. Flach. Machine Learning - The Art and Science of Algorithms that Make
Sense of Data. Cambridge University Press, 2012.

7. H. Garcia-Molina, M. Joglekar, A. Marcus, A. Parameswaran, and V. Verroios.
Challenges in data crowdsourcing. Transactions on Knowledge and Data Engi-
neering, 28(4):901–911, 2016.

8. Baocheng Geng, Qunwei Li, and Pramod K. Varshney. Prospect theory based
crowdsourcing for classification in the presence of spammers. IEEE Trans. Signal
Process., 68:4083–4093, 2020.

9. H. Halpin and R. Blanco. Machine-learning for spammer detection in
crowd-sourcing. In Proceedings of the 4th Human Computation Workshop,
HCOMP@AAAI 2012, volume WS-12-08 of AAAI Workshops. AAAI Press, 2012.

10. D.R. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing
systems. In Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems (NIPS’11), pages 1953–
1961, 2011.

11. J. Le, A. Edmonds, V. Hester, and L. Biewald. Ensuring quality in crowdsourced
search relevance evaluation: The effects of training question distribution. In SIGIR
2010 workshop on crowdsourcing for search evaluation, volume 2126, pages 22–32,
2010.

38 R. Singh, L. Hélouët, and Z. Miklos

12. Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts in heteroge-
neous data by truth discovery and source reliability estimation. In Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data, pages
1187–1198. ACM, 2014.

13. C. Miao, Q. Li, L. Su, M. Huai, W. Jiang, and J. Gao. Attack under disguise: An
intelligent data poisoning attack mechanism in crowdsourcing. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web, WWW 2018, pages
13–22. ACM, 2018.

14. S. G. Nash. Newton-type minimization via the lanczos method. SIAM Journal on
Numerical Analysis, 21(4):770–788, 1984.

15. B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of ACL’04, the 42nd annual
meeting on Association for Computational Linguistics, pages 271–278. Association
for Computational Linguistics, 2004.

16. V. Raykar and P. Agrawal. Sequential crowdsourced labeling as an epsilon-greedy
exploration in a markov decision process. In Proceedings of the Seventeenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings
of Machine Learning Research, pages 832–840. PMLR, 2014.

17. V. C. Raykar, S. Yu, L.H. Zhao, G.H. Valadez, C. Florin, L. Bogoni, and L. Moy.
Learning from crowds. J. of Machine Learning Research, 11(Apr):1297–1322, 2010.

18. Vikas C. Raykar and Shipeng Yu. Eliminating spammers and ranking annotators
for crowdsourced labeling tasks. J. Mach. Learn. Res., 13(1):491–518, February
2012.

19. L. Tran-Thanh, M. Venanzi, A. Rogers, and N.R. Jennings. Efficient budget allo-
cation with accuracy guarantees for crowdsourcing classification tasks. In Proceed-
ings of the 12th International conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’13, pages 901–908. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

20. M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi. Community-based
bayesian aggregation models for crowdsourcing. In 23rd International World Wide
Web Conference, WWW ’14, pages 155–164. ACM, 2014.

21. J. Wang, T. Kraska, M.J. Franklin, and J. Feng. Crowder: Crowdsourcing entity
resolution. Proceedings of the VLDB Endowment, 5(11):1483–1494, 2012.

22. Y. Wang, K. Wang, and C. Miao. Truth discovery against strategic sybil attack in
crowdsourcing. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 95–104. ACM, 2020.

23. P. Welinder, S. Branson, P. Perona, and S.J. Belongie. The multidimensional
wisdom of crowds. In Proceedings of NIPS’10, Advances in Neural Information
Processing Systems 23: 24th Annual Conference on Neural Information Processing
Systems 2010, pages 2424–2432. Curran Associates, Inc., 2010.

24. J. Whitehill, T. Wu, J. Bergsma, J.R. Movellan, and P.L. Ruvolo. Whose vote
should count more: Optimal integration of labels from labelers of unknown ex-
pertise. In Proceedings of NIPS’09, Advances in Neural Information Processing
Systems 22: 23rd Annual Conference on Neural Information Processing Systems,
pages 2035–2043. Curran Associates, Inc., 2009.

25. A. Xu, X. Feng, and Y. Tian. Revealing, characterizing, and detecting crowdsour-
cing spammers: A case study in community q&a. In Proceedings of INFOCOM
2015, Conference on Computer Communications, pages 2533–2541. IEEE, 2015.

26. Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in crowdsourcing:
Is the problem solved? Proceedings of the VLDB Endowment, 10(5):541–552, 2017.

