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ABSTRACT

Crowdsourcing is a major paradigm to accomplish work that
requires human skills, by paying a small sum of money and
alluring workers whole across the globe. However, the tar-
geted tasks at crowdsourcing platforms are relatively simple
and independent work units. This work proposes a data cen-
tric workflow model for the design of complex crowdsourcing
tasks. The model is called complex workflows and allows
orchestration of simple tasks and concurrency. It handles
data and crowdworkers and provides high-level constructs
to decompose complex tasks into orchestrations of simpler
subtasks. We first define the syntax and semantics of the
model, and then consider its formal properties, starting with
termination questions. We show that existential termination
(existence of at least one terminating run) is undecidable.
On the other hand, universal termination (whether all runs
of a complex workflow terminate) is decidable. We then ad-
dress correctness problems. We use FO formulas to specify
dependencies imposed by a client between inputs and outputs
of a workflow. If dependencies are specified with the sepa-
rated fragment of FO, then universal correctness (whether
all terminating runs satisfy dependencies) is decidable, and
existential correctness (whether some terminating runs satisfy
dependencies) is decidable under some semantic restrictions.
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1 INTRODUCTION

Crowdsourcing is a powerful tool to leverage intelligence of
crowd to realize tasks where human skills still outperform
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machines [11]. It has been successful in contributive science
initiatives, such as CRUK’s Trailblazer1, Galaxy Zoo2, etc.
Most often, a crowdsourcing project consists in deploying
huge amount of work into tasks that can be handled by hu-
mans in a reasonable amount of time. Generally, tasks have
the form of micro-tasks, which usually take a few minutes to
an hour to complete. It can be labeling of images, writing
scientific blogs, etc. The requester publishes the task on the
platform with a small incentive (a few cents, reputation gain,
goodies, etc.), and waits for the voluntary participation or
bidding from the crowd. The micro-tasks proposed on crowd-
sourcing platforms are hence relatively simple, independent,
cheap and repetitive. The next stage of crowdsourcing is to de-
sign more involved processes still relying on the vast wisdom
of the crowd. Crowdsourcing markets such as Amazon Me-
chanical Turk3 (AMT), Foule Factory4, CrowdFlower5, etc.
already propose interfaces to access crowds, but the formal
design and specification of crowd based complex processes
is still in its infancy. Many projects cannot be described as
collections of repetitive independent micro-tasks: they require
specific skills and collaboration among participants. They
shall hence be considered as complex tasks involving a work-
flow within a collaborative environment. The typical shape
of such complex tasks is an orchestration of high-level phases
(tag a database, then find relevant records, and finally write
a synthesis). Each of these phases requires specific skills, can
be seen at its level as a new objective on its own, and can be
decomposed into finer choreographies, up to the level of assem-
bly of micro-tasks. Within this setting, the challenges are the
following: first, there is a discrepancy between the ”project
level”, where clients of a crowd platform may have a good
understanding of how to decompose their high-level projects
into phases, and the micro-task level, where the power of
existing crowdsourcing solutions can be used without know-
ing the high-level objectives of the projects. Transforming
high-level phases into orchestrations of micro-tasks is also a
difficult process. A second challenge is to exploit contributors
skills and data collected along the orchestration, to improve
the expressive power and accuracy of complex tasks. One pos-
sibility to implement high-level phases proposed by a client
is to refine specifications to obtain a static orchestration of
easy micro-tasks before execution of this low-level workflow.
However, this solution lacks reactivity, and may miss some
interesting skills of stakeholders who cannot realize directly

1https://www.cancerresearchuk.org
2http://zoo1.galaxyzoo.org
3www.mutrk.com
4https://www.foulefactory.com
5https://www.crowdflower.com
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a particular task, but know how to obtain the result, or can
bring data to enhance the information owned by the system.
One can imagine for instance that collected data is used in
real time to choose an orchestration and even the way tasks
are decomposed. This calls for the integration of higher-order
schemes in the realization of complex tasks. Last, clients may
want guarantees on duration of their projects and on the re-
turned results. It is hence interesting to consider termination
and output correctness questions for complex tasks.

In this paper, we focus on orchestration of complex tasks in
crowdsourcing environment, with higher order constructs al-
lowing online decomposition of the tasks by crowdworkers. A
complex task is defined as a workflow. At the very beginning,
a coarse description is provided by the process requester, pos-
sibly with input data and with requirements on the expected
output. Tasks in a workflow receive input data, and output
data once realized. At each step, crowdworkers can decide
to realize a task with the provided inputs, or decompose
the task and its inputs into orchestrations of smaller work
units. We first propose a model for complex tasks, allowing
for the definition of data-centric workflows with higher-order
schemes to refine tasks at runtime, and for the definition of
constraints on inputs and outputs of the workflow. We then
consider the question of termination: given a workflow, input
data, a set of crowdworkers, allowed to transform input data
or decompose tasks, is the workflow executable (or always
executed) up to its end? We show that due to higher-order,
complex workflows are Turing complete, and hence existence
of a terminating run is not decidable. However, termination of
all runs is decidable, and upon some sensible restrictions that
forbid decomposition of the same type of task an arbitrary
number of times, existential termination becomes decidable.
As a third contribution, we consider proper termination, i.e.,
whether a complex workflow terminates and returns data
that comply with client’s requirements.
Related Work : Realization of complex tasks on crowdsourc-
ing platforms is still a recent topic, but some works propose
solutions for data acquisition and management or deployment
of workload, mainly at the level of micro-tasks [7, 13]. Crowd-
forge uses Map-Reduce techniques along with a graphical
interface to solve complex tasks [9]. Turkit [14] is a crash
and rerun programming model. It built on an imperative lan-
guage, that allows for repeated calls to services provided by a
crowdsourcing platform. A drawback of this approach is that
clients may not have the programming skills needed to design
complex orchestrations of platform services. Turkomatic [12]
is a tool that recruits crowd workers to help clients planning
and solving complex jobs. It implements a Price, Divide and
Solve (PDS) loop, that asks crowdworkers to divide a task
into orchestrations of subtasks, and repeats this operation up
to the level of micro-tasks. A PDS scheme is also used by [20]
in a model based on hierarchical state machines. States repre-
sent complex tasks that can be divided into orchestrations of
sub-tasks. Both approaches require monitoring of workflows
by the client, which is cumbersome and does not match with
the goal of providing a high-level service. These PDS oriented
solutions have been validated empirically on case studies, but

formal analysis of tasks realization is not the main concern
of these works.

Several formal models and associated verification tech-
niques have been proposed in the past for data-centric systems
or orchestration of tasks. Workflow nets [19] is a variant of
Petri nets dedicated to business processes. They allow parallel
or sequential execution of tasks, fork and join operations to
create or merge a finite number of parallel threads. Tasks are
represented by transitions. Workflow nets mainly deal with
the control part of business processes, and data is not central
for this model. Data-centric models and their correctness have
also been considered. Guarded Active XML [1] (GAXML for
short) is a specification paradigm where services are intro-
duced in structured data. The model is defined as structured
data that embed references to service calls. Services can mod-
ify data when their guard is satisfied, and replace a part
of the data by some computed value that may also contain
references to service calls. Though GAXML does not really
address crowdsourcing nor tasks refinement, if services are
seen as tasks, the replacement mechanism performed during
calls can be seen as a form of task refinement. This model
is very expressive, but restrictions on recursion allows for
verification of Tree LTL (a variant of LTL where propositions
are replaced by statements on the structured data). More
recently, [2] has proposed a model for collaborative workflows
where peers have a local view of a global instance, and col-
laborate via local updates. With some restrictions, PLTL-FO
(LTLT-FO with past operators) is decidable. Business arti-
facts were originally developed by IBM [17], and verification
mechanisms for LTL-FO were proposed in [4, 10] for sub-
classes of artifacts with data dependencies and arithmetic.
LTL-FO formulas are of the form ∀x1, . . . , xk, φ where φ is an
LTL formula including FO statements. Variables are always
universally quantified. [6] consider verification of LTL-FO for
systems composed of peers that communicate asynchronously
over possibly lossy channels and can modify (append/remove
records from local databases). Unsurprisingly, queues makes
LTL-FO undecidable, but bounding the queues allows for
verification. The way data is handled in business artifacts is
close to our model, and as for complex workflows, allows for
data inputs during the lifetime of an artifact. However, arti-
facts mainly consider static orchestrations of guarded tasks,
described as legal relations on datasets before and after execu-
tion of a task, and does not consider higher-order constructs
such as runtime task refinement. Further, LTL-FO verifica-
tion focuses mainly on dynamics of systems (termination,
reachability) but does not address correctness.

This paper is organized as follows: Section 2 introduces our
model. Section 3 defines its operational semantics, and sec-
tion 4 addresses the termination question. Section 5 considers
proper termination of complex workflows, before conclusion.
Due to lack of space, some proofs are only sketched, and are
provided in appendix.

2 COMPLEX WORKFLOWS

In this section, we formalize the notion of complex workflow,
and give its semantics through operational rules. This model
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is inspired by artifacts systems [4], but uses higher-order
constructs (task decomposition), and deals with human re-
sources within the system (the so-called crowdworkers). The
context of use of the complex workflow is the following : we
assume a client willing to use the power of crowdsourcing
to realize a complex task that needs human contribution to
collect, annotate, or organize data.

We furthermore assume that this client can reward contri-
bution of human stakeholders up to a certain budget, that
he can input data to the system, and that he may have a
priori knowledge on the relation between the contents of his
input and the plausible outputs returned after completion of
his complex task. In its simplest form, this type of applica-
tion can be an elementary tagging task for a huge database.
This type of application was met in citizen science initiatives
such as Galaxy zoo6, but several types of applications such
as opinion polls, citizen participation, etc. can be seen as
complex crowdsourcing tasks.

We start with an example. A client (for instance a news-
paper) wants to rank the most popular actors of the mo-
ment, in the categories comedy, drama and action movies.
He decomposes this ranking into three phases: first a col-
lection of the most popular actors, then a selection of the
50 most cited names, followed by a classification of these
actors in comedy/drama/action category. The ranking ends
with a vote for each category, that asks contributors to
associate a score to each name. The client does not in-
put data to the system, but has some requirements on the
ouptut: the output is an instance of a relational schema
R = (name, cites, category, score), where name is a key,
cites is an integer that gives the number of cites of an actor,
category ranges over {drama, comedy, action} and score is
a rational number between 0 and 10. Further, for an output
to be consistent, every actor appearing in the final database
should have a score and a number of cites greater than 0.
Form this example, one can notice that there are several ways
to collect actors names, several ways to associate a category
tag, to vote, etc. but that the clients needs are defined in
terms of high-level tasks, without information on how the
crowd will be used to fulfill the demand.

2.1 Workflow Entities

A complex workflow is defined as an orchestration of tasks,
specified by a client to process input data and return an output
dataset. Tasks that can be accomplished by either humans,
i.e. workers if they require human skills or be automated tasks
that can be executed by machines. Additionally, worker’s
task can be an elementary or a complex task.

We assume a fixed and finite pool U of workers, and an a
priori finite list of competences comp. Each worker u ∈ U can
complete or refine some tasks according to its skills sk(u) ⊆
comp. During the execution of a complex workflow, we will
consider that each worker is engaged in the execution of at
most one task. A task t is a work unit designed to transform
input data into output data. It can be a high-level description

6http://zoo1.galaxyzoo.org/

submitted by a client of the crowdsourcing platform, a very
basic atomic task that can be easily accomplished by a single
worker (tagging images, for instance), a task that can be
fully automated, or a complex task that still requires a small
orchestration of subtasks to reach its objective. We define a
set of tasks T = Tac ⊎ Tcx ⊎ Taut where Tac is a set of atomic
tasks that can be completed in one step by a worker, Tcx

is a set of complex task which need to be decomposed into
an orchestration of smaller subtasks to produce an output,
and Taut is a set of automated tasks that are performed by
a machine (for instance some database operation (selection,
union, projection, etc.) executed as an SQL query). Tasks
in Taut do not require contribution of a worker to produce
output data from input data, and tasks in Tac and Taut

cannot be refined. We impose constraints on skills required
to execute a task with a map Tcs : T → 2comp, depicting
the fact that a worker u is allowed to execute or refine task
t if Tcs(t) ∩ sk(u) ̸= ∅. For decomposition of a task t ∈ Tcx,
each worker u with appropriate skills knows how to refine
t, and possesses several orchestrations depicting possible
refinements of t, i.e. a set of finite workflows Profile(t, u).
Let us illustrate refinement with an example. Assume a task
t ∈ Tcx which role is to tag a (huge) dataset Din. Then,
Profile(t, u) contains a workflow that first decomposes Din

into K small tables, then inputs these tables to K tagging
tasks in Tac that can be performed by humans, and finally
aggregates the K obtained results. Similarly, a refinement in
Profile(t, u) can simply replace t by a single atomic tagging
task t′ ∈ Tac, meaning that u wants the task to be performed
by a single worker.

In addition to the notion presented above, crowdsourcing
platforms often consider incentives, i.e. the benefit provided
to the worker for performing a particular task. Incentive
mechanism can be intrinsic (Self motivation, Gamification,
Share Purpose, Social cause, etc.) as well as extrinsic (Tailor
rewards, Bonus, Promote Workers, etc.) [5]. In this paper,
we leave this notion of incentives apart, and consider that
all users are equally eager to perform all tasks that are
compatible with their competences. One shall however keep
in mind that setting incentives appropriately is a key issue to
complete successfully a workflow: associating high rewards
to important or blocking tasks is a way to maximize the
probability that these tasks will be realized by a worker.

2.2 Workflows

Definition 2.1 (Workflow). A workflow is a labeled acyclic
graphW = (N,−→, λ) whereN is a set of nodes, representing
occurrences of tasks, −→⊆ N ×N is a precedence relation,
and λ : N → T associates a task name to each node of W . A
node of W is a source iff it has no predecessor, and a sink iff
it has no successor. We require that a workflow has at most
one sink node, denoted nf .

In the rest of the paper, we will consider that U and T
are fixed, and we will denote by W the set of all possible
workflows. Intuitively, if (n1, n2) ∈−→, then a task of type
λ(n1) represented by n1 must be completed before a task
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of type λ(n2) represented by n2, and that data computed
by n1 is used as input for n2. We denote min(W ) the set of
sources of W , by succ(n) the set of successors of a node n,
and by pred(n) its predecessors. The size of W is the number
of nodes in N and is denoted |W |. We assume that when
a task in a workflow has several predecessors, its role is to
aggregate data provided by preceding tasks, and when a task
has several successors, its role is to distribute excerpts from
its input dataset to its successors. With this convention, one
can model situations where a large database is to be split
into smaller datasets of reasonable sizes and sent to tagging
tasks that needs to be completed by workers. We denote by
W \ {n} the restriction of W to N \ {n}, that is, a workflow
from which we remove node n and all edges which origins or
goals are node n. We assume some well-formedness properties
of workflows:

• Every workflow has a single sink node nf . Informally,
we can think of nf as the task that returns the dataset
computed during the execution of the workflow.

• There exists a path from every node n of W to the
sink nf . This property prevents launching tasks which
results are never used to build an answer to a client.

• for every workflow W = (N,−→, λ) ∈ Profile(t, u),
the labeling λ is injective. This results in no loss of gen-
erality, as one can create copies of a task for each node
in W , but simplifies proofs and notations afterwards.
Further, W has a unique source node src(W ).

Definition 2.2 (Refinement). Let W = (N,−→, λ) be a
workflow, W ′ = (N ′,−→′, λ′) be a workflow with a unique
source node n′

src = scr(W ′) and a unique sink node n′
f and

such that N∩N ′ = ∅. The replacement of n∈N by W ′ in
W is the workflow W[n/W ′] = (N[n/W ′],−→[n/W ′], λ[n/W ′]),
where:

• N[n/W ′] = (N \ {n}) ∪N ′

• →[n/W ′]=→′ ∪{(n1, n2) ∈→| n1 ̸= n ∧ n2 ̸= n} ∪
{(n1, n

′
src) |(n1, n) ∈→} ∪ {(n′

f , n2) |(n, n2) ∈→}
• λ[n/W ′](n) = λ(n) if n ∈ N,λ′(n) otherwise

To illustrate the notion of refinement, consider the example
of Figure 1. A worklfow Wt2 is used to refine task t2 in the
workflow appearing in box C1.

2.3 Data

The data used in complex workflow refer to data provided as
input to the system by a client, to the data conveyed among
successive tasks, and to data returned after completion of a
workflow, that is returned to the client. Data is organized
in tables or datasets, that follow some relational schemas.
We assume finite set of domains dom = dom1, . . . , doms, a
finite set of attribute names att and a finite set of relation
names relnames. Each attribute a ∈ att is associated with
a domain dom(a) ∈ dom. A relational schema (or table)
is a pair rs = (rn,A), where rn is a relation name and A
denotes a finite set of attributes. Intuitively, attributes are
column names in a table. The arity of rs is the size of its
attributes set. An record of a relational schema rs = (rn,A)

is tuple rn(v1, . . . v|A|) where vi ∈ dom(ai) (it is a row of the
table), and a dataset with relational schema rs is a multiset
of records of rs. A database schema DB is a non-empty finite
set of tables, and an instance over a database DB maps each
table in DB to a dataset.

Execution of a task t = λ(n) in a workflow builds on input
data to produce output data. The data input to node n with
k predecessors is a list of datasets Din = Din

1 , . . . D
in
k . For

simplicity, we consider that predecessors (resp. successors of
a node) are ordered, and that dataset Din

i input to a node is
the data produced by predecessor ni. Similarly, for a node
with q successors, the output produced by a task will be
Dout = Dout

1 . . . Dout
q . As for inputs, we will consider that

dataset Dout
i is the data sent to the ith successor of node

n. The way output data is produced by task t = λ(n) and
propagated to successor nodes depends on the nature of the
task. If t is an automated task, the outputs are defined as
a deterministic function of inputs, i.e., Dout = ft(Din) for
some deterministic function ft. We will allow automated
tasks executions only for nodes which inputs are not empty.
In the rest of the paper, we will consider that automated
tasks perform simple SQL operation : projections on a subset
of attributes, selection of records that satisfy some predicate,
record insertion or deletion.

To simplify workflows refinements, we will consider particu-
lar split nodes, i.e. have a single predecessor, a fixed number k
of successors, and are attached a task t ∈ Taut that transforms
a non-empty input Din into a list Dout = Dout

1 . . . Dout
k .

Note that Dout needs not be a partition of Din not to define
distinct output datasets. To refer to the way each Dout

i is

computed, we will denote by spl
(i)
t , the function that asso-

ciates to Din the ith output produced by the splitting task

(i.e. spl
(i)
t (Din) = Dout

i ). Consistently with the non-empty
inputs requirement the input dataset to split cannot be empty
to execute such splitting task. Similarly, we will consider join
nodes, which role is to automatically aggregate multiple in-
puts from Din. Such aggregation nodes can simply perform
union of datasets with the same relational schema, or a more
complex join. Consider a node n with several predecessors
n1, . . . nk, and a single successor s. Let Din = D1.D2 . . . Dk,
where all Di’s have the same relational schema. Then we can
define a join node by setting ft(Din) =

⋃
i∈1..|Din|

Di. Consis-

tently with the non-empty inputs requirement, none of the
the input datasets is empty when a join is performed.

For an atomic task t ∈ Tac attached to a node n of a
workflow and executed by a particular user u, data Din

comes from preceding nodes, but the output depends on
the user. Hence, execution of task t by user u produces
an output Dout chosen non-deterministically from a set of
possible outputs Ft,u(Din). For the rest of the paper, we will
assume that the legal contents of Ft,u(Din) is defined as a
first order formula φt,in,out that holds for datasets Din =
Din

1 . . . Din
k and Dout = Dout

1 . . . Dout
k if Dout ∈ Ft,u(Din)

This way to depict legal productions of an user u to make
non-deterministic choices, to insert new records in a dataset...
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Definition 2.3. A Complex Workflow is a tuple CW =
(W0, T , Tcs,U , sk,P) where T is a set of tasks, U a finite
set of workers, P : T × U → 2W associates to pairs (t, u)
of complex tasks and workers a set Profiles(t, u) = P(t, u)
of possible workflows that u can use to refine t, sk defines
workers competences, and Tcs gives the competences needed
to refine a task. W0 is an initial workflow, that contains a
single source node ni and a single sink node nf .

3 OPERATIONAL SEMANTICS

The execution of a complex workflow consists in realizing
all its tasks, following the order given by the dependency
relation −→ in the orchestration. At each step of an exe-
cution, the remaining part of the workflow to execute, the
assignments of tasks to workers and the data input to tasks
are memorized in a configuration. Execution steps consist in
updating configurations according to operational rules. They
assign a task to a competent worker, execute an atomic or
automated task (i.e. produce output data from input data),
or refine a complex task. Executions end when the remaining
workflow to execute contains only the final node nf .

An assignment for a workflow W = (N,−→, λ) is a partial
map Ass : N → U such that for every node n ∈ Dom(Ass),
Tcs(λ(n))∩ sk(Ass(n)) ̸= ∅ (worker Ass(n) has competences
to complete task λ(n)). We furthermore require map Ass to
be injective, i.e. a worker is involved in at most one task. We
say that u ∈ U is free if u ̸∈ Ass(N). If Ass(n) is not defined,
and u is a free worker, Ass∪{(n, u)} is the map that assigns
node n to worker u, and remains unchanged for every other
node. Similarly, Ass\{n} is the restriction of Ass to N \ {n}.

A data assignment for W is a function Dass : N → (DB⊎
{∅})∗, that assigns a sequence of input datasets to nodes
in W . For a node with k predecessors n1, . . . nk, we have
Dass(n) = D1 . . . Dk. A dataset Di can be empty if ni has
not been executed yet, and hence has produced no data. We
denote byDass(n)[i/X] the sequence obtained by replacement
of Di by X in Dass(n).

Definition 3.1 (Configuration). A configuration of a com-
plex workflow is a triple C = (W,Ass,Dass) where W is a
workflow depicting remaining tasks that have to be completed,
Ass is an assignment, and Dass is a data assignment.

A complex workflow execution starts from the initial con-
figuration C0 = (W0, Ass0,Dass0), where Ass0 is the empty
map, Dass0 associates datasetDin provided by client to ninit

and sequences of empty datasets to all other nodes of W0. A
final configuration is a configuration Cf = (Wf , Assf ,Dassf )
such that Wf contains only node nf , Assf is the empty map,
and Dassf (nf ) represents the dataset that has to be returned
to the client, and that has been assembled during the execu-
tion of all nodes preceding nf . The intuitive understanding
of this type of configuration is that nf needs not be executed,
and simply terminates the workflow by returning data. Note
that due to data assignment, there can be more than one
final configuration, and we denote by Cf the set of all final
configurations.

We define the operational semantics of a complex workflow
with the following 4 rules. Rule 1 defines the task assignment
to free workers, Rule 2 defines the execution of an atomic task
by a worker, Rule 3 defines the execution of an automated
task, and Rule 4 formalizes refinement.

Rule 1 (Worker Assignment): A worker u ∈ U is assigned
a task t = λ(n) if t ̸∈ Taut. The rule applies if u is free and
has the skills required by t, and if node n is not already
assigned to a worker. Note that a task can be assigned to an
user even if it does not have input data yet, and is not yet
executable.

n ̸∈ Dom(Ass) ∧ u ̸∈ coDom(Ass)∧
sk(uj) ∩ Tcs(λ(n)) ̸= ∅ ∧ λ(b) ̸∈ Taut

(W,Ass,Dass) → (W,Ass ∪ {(n, u)},Dass)
(1)

Rule 2 (Atomic Task Completion): An atomic task
t = λ(n) can be executed if node n is minimal in the workflow,
it is assigned to a worker u = Ass(n) and its input data
Dass(n) does not contain an empty dataset. Upon completion
of task t, worker u publishes the produced data Dout to the
succeeding nodes of n in the workflow and becomes free.

n ∈ min(W ) ∧ λ(n) ∈ Tac ∧Ass(n) = u
∧Dass(n) ̸∈ DB∗.∅.DB∗

∧ ∃Dout = Dout
1 . . . Dout

k ∈ Fλ(n),u(Dass(n)),
Dass′ = Dass \ {(n,Dass(n))}∪

{(nk,Dass(nk)[j/Dout
k

]) | nk ∈ succ(n)

∧n is the jth predecessor of nk}

(W,Ass,Dass)
λ(n)−−−→ (W \n,Ass\{(n, u)},Dass′)

(2)

Rule 3 (Automatic Task Completion): An automatic
task t = λ(n) can be executed if node n is minimal in the work-
flow and its input data does not contain an empty dataset.
The difference with atomic tasks completion is that n is
not assigned an user, and that the produced outputs are a
deterministic function of task inputs.

n∈min(W ) ∧ λ(n)∈ Taut ∧Dass(n) ̸∈ DB∗.∅.DB∗

∧Dout = fλ(n),u(Dass(n)) = Dout
1 . . . Dout

k ,
Dass′ = Dass \ {(n,Dass(n))}∪

{(nk,Dass(nk)[j/Dout
k

]) | nk ∈ succ(n)

∧n is the jth predecessor of nk}

(W,Ass,Dass)
λ(n)−−−→ (W \n,Ass,Dass′)

(3)

Rule 4 (Complex Task refinement): The refinement of
a node n with t = λ(n) ∈ Tcx by worker u = Ass(n) replaces
node n by a workflow Ws = (Ns,−→s, λs) ∈ Profile(t, u).
Data originally accepted as input by n are now accepted as
input by the source node of Ws. All newly inserted nodes
have empty input datasets.

t = λ(n) ∈ Tcx ∧Ws ∈ Profile(t, Ass(n))
∧Dass′(min(Ws)) = Dass(n)

∧∀x ∈ Ns \min(Ws),Dass′(x) = ∅|Pred(x)|

∧Ass′ = Ass\{(n,Ass(n))}

(W,Ass,Dass)
ref(n)−−−−→ (W[n/Ws], Ass′,Dass′)

(4)
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In our framework, a worker can refine a task if she thinks
the task is too complex to be handled by a single person.
However, the definition of a complex task is very subjective
and varies from one worker to another. Note also that refine-
ment is not mandatory: a worker can replace a node n with
another node labeled by task t ∈ Tcx by a node labeled by
an equivalent task t′ ∈ Tac ∪ Taut.

Figure 1 gives an example of rules application. Workflow
nodes are represented by circles, tagged with a task name rep-
resenting map λ. The dependencies are represented by plain
arrows between nodes. User assignments are represented by
dashed arrows from an user name ui to its assigned task. Data
assignment are represented by double arrows from a dataset
to a node. The top-left part of the figure is a configuration
C0 = (W0, Ass0,Dass0) composed of an initial workflow W0,
an empty map Ass0 and a map Dass0 that associates dataset
Din to node ni. The top-right part of the figure represents the
configuration C1 = (W1, Ass1,Dass1) obtained by assigning
user u1 for execution of task t2 attached to node n2 (Rule 1).
The bottom part of the Figure represents the configuration
C2 obtained from C1 when user u1 decides to refine task
t2 according to the profile Wt2,1 ∈ Profile(t2, u1) (Rule 4).
Workflow Wt2,1 is the part of the Figure contained in the
Grey square.

We will say that there exists a move from a configuration
C to a configuration C′, or equivalently that C′ is a successor
of configuration C and write C  C′ whenever there exists
a rule that transforms C into C′.

Definition 3.2 (Run). A run ρ = C0.C1 . . . Ck of complex
workflowW with users U is a finite sequence of configurations
such that C0 is an initial configuration, and for every i ∈
1 . . . k, there exists a move from Ci−1 to Ci. A run is maximal
if Ck has no successor. A maximal run is terminated iff Ck is
a final configuration, and it is deadlocked otherwise.

In the rest of the paper, we denote by Runs(CW,Din)
the set of maximal runs originating from initial configuration
C0 = (W0, Ass0,Dass0) (where Dass0 associates dataset
Din to node ni). We denote by Reach(CW,Din) the set of
configurations that can be reached from C0. Along a run,
the datasets in use can grow, and the size of the workflow
can also increase, due to decomposition of tasks. Hence,
Reach(CW,Din) and Runs(CW,Din) need not be finite.
Even when Reach(CW,Din) is finite, a complex workflow
may exhibit infinite cyclic behaviors.

Moves in executions of complex workflows consists in work-
flow rewriting, computation of datasets, and appropriate
transfer of datasets from one task to another. Complex tasks
and their refinement can encode recursive unbounded recur-
sive schemes. For instance, consider a simple linear workflow
composed of three nodes : ni, nf , n1 where n1 is attached
task λ(n1) = t1, and such that −→= {(ni, n1), (n1, nf )}. Let
us assume that our system has a single user, and that this
user has a decomposition profile (t1,Wt1) where Wt1 is a
workflow with three nodes w1, w2, wf , such that λ(w1) = t2
and λ(w2) = t1 and where −→= {(w2, w1), (w1, wf )}. Then,
after application of rule R1 (assigning user 1 to the node that

carries task t1 and R4 (replacing t1 by Wt1 , one obtains a
larger workflow that still contains an occurrence of task t1.
One can repeat these steps an arbitrary number of times,
leading to configurations which workflow parts are growing
sequences of nodes labeled by sequences of task occurrences of
the form λ(ni).t

k
2 .t1.λ(wf )

k.λ(nf ). In this recursive scheme,
the workfow part of configurations obviously grows, but one
can easily find unbounded recursive schemes with unbound-
edly growing of data (for instance if λ(wf ) adds a record to
some dataset). Hence, without restriction, complex workflows
define transitions systems of arbitrary size, with growing data
or workflow components, and with cycles.

4 TERMINATION

Complex workflows use the knowledge and skills of crowd
users to complete a task starting from input data provided
by a client. Now, a workflow may never reach a final configu-
ration. This can be due to particular data input by workers
that cannot be processed properly by the workflow, to in-
finite recursive schemes appearing during the execution, to
deadlocked situations due to missing worker competences...
It is hence important to detect whether some/all runs of a
system eventually reach a final configuration in Cf .

Definition 4.1 (Deadlock, Termination). Let CW be a
complex workflow, Din be an initial dataset, Din be a set of
datasets. CW terminates existentially on input Din iff there
exists a run inRuns(CW,Din) that is terminated. CW termi-
nates universally on input Din iff all runs in Runs(CW,Din)
are terminated. Similarly, CW terminates (universally or
existentially) on input set Din iff CW terminates on every
input Din ∈ Din.

We describe sets of inputs Din symbolically with a decid-
able fragment of FO (e.g. the separated fragment introduced
later in this section). Given a complex workflow CW the
existential termination problem consists in checking whether
some run of CW terminates for an input Din (or all inputs
in set Din). The universal termination problem consists in
checking whether all runs of CW terminate for an input Din

(or all inputs in set Din). Solving these problems is a way to
ensure that an answer to a client (an output dataset Dout)
can be returned, or will always be returned. Existential and
universal termination are of different natures. The former is
undecidable while the latter is decidable.

Theorem 4.2. Existential termination of complex work-
flows is an undecidable problem.

sketch. Complex workflows can simulate any two coun-
ters machine. The encoding proceeds as follows: each instruc-
tion i of the counter machine is encoded as a specific task ti,
that can be refined by only one user ui. The workflow Wi

chosen for refinement by ui is then executed until it contains
a single node representing the next instruction. Counters
are encoded as the number of occurrences of specific tags
c1, c2 in a field of a dataset. When simulating a zero test and
decrement instruction i, user ui has to guess whether the
value of a counter is zero or not (this is encoded as a choice
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Figure 1: Complex workflow execution. C0 represents the initial configuration with data Din allocated to node
ni. C1 is the successor of C0: user u1 is allocated to node n2, and t2 = λ(n2) is a complex task. C3 depicts the
configuration after refinement of node n2 by a new workflow Wt2 (shown in the Grey rectangle).

of a particular workflow to refine ti). If the user does the
wrong guess, the execution deadlocks. Otherwise, the execu-
tion always proceeds to the next instruction. More details on
this encoding are provided in Appendix A.1.

The question of termination for a set of initial datasets
is also undecidable (it suffices to write Din = {Din} to get
back to the former termination question). �

Universal termination is somehow an easier problem. We
show in this section that it is indeed decidable. We proceed
in several steps. We first define a symbolic execution tree
representing possible sequences of moves starting from the
initial configuration. This tree is a transition system that
abstracts away the data part. Each path of the tree defines a
signature for a set of runs with the same sequence of moves
but different data assignments. It is a priori an unbounded
structure, but we show that a complex workflow does not
terminate universally if it allows unbounded recursion. If a
complex workflow does not allow unbounded recursion, then
its execution tree is finite, and if this execution tree contains a
deadlocked path, then one has a witness for non-termination.
A deadlocked path can be either path ending with remaining
tasks, but that cannot be extended, or path that ends in a
configuration from which a task split is needed, but where
emptiness of a dataset can occur and prevent the split. We
show that existence of such a run can be effectively decided
from paths of the execution tree, and by computing the
conditions needed to reach a configuration with empty input
to a split node. More precisely, given a first order formula φ

depicting the contents of datasets, given a signature σ in the
execution tree, one can check the existence of an actual run ρ
with signature σ that ends in a configuration that satisfies φ.
The crux in the proof is the possibility to compute a sequence
of weakest preconditions that have to be satisfied at each step
of ρ to guarantee existence of an actual run. We show first
that these preconditions can be effectively computed, and
then that the fragment of FO that have to be used to verify
termination belongs to the decidable separated fragment of
FO, for which satisfiability is decidable.

Each configuration Ci = (Wi, Assi,Dassi) in a run ρ
contains a workflow Wi with a finite number of nodes, assign-
ments of workers to tasks, and data assignments. An execu-
tion ρ = C0 . . . Ck of a complex workflow terminates iff the
reached configuration is of the form Ck = (Wf , Assf ,Dassf )
where Wf contains only the final node of a workflow. Check-
ing termination hence amounts to checking whether one can
reach such a configuration.

A move from Ci to Ci+1 leaves the number of nodes un-
changed (application of user assignment rule R1), decreases
the number of nodes ( execution of an atomic task (R2), or
of an automated task (R3)), or refines a node in Wi. Only
in this latter case, the number of nodes may increase. How-
ever, application of decomposition rule R4 to a node n with
λ(n) = ti can occur at mostKD(i) times due to the restricted
decomposition rule. Note also that without application of
rule R4 that creates new nodes, the number of applications
of each rule R1,R2,R3 is bounded by the size of the workflow.
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The set of possible transformations of Wi and Assi occurring
from Ci is bounded, and one can design a tree of finite degree
depicting possible applications of semantics rules.

Definition 4.3 (Symbolic Execution Tree). The Symbolic
execution tree (SET for short) of a complex workflow CW =
(W0, T , Tcs,U , sk,P) is a pair B = (V,E), where E ⊆ V × V
is a set of edges, V is a set of vertices of the form Vi =
(Wi, Assi,DassS), where Wi = (Ni,−→i, λi) and Assi :
Ni → U are the usual workflow and user assignment relations,
and DassS associates a sequence of relational schemas to
minimal nodes of Wi.

For every node n that is minimal in Wi, the meaning
of DassS(n) = rs1, . . . rsk is that task attached to node n
takes as inputs datasets D1 . . . Dk where each Di conforms
to relational schema rsi. Notice that it is sufficient to know
λ(n) to obtain DassS(n). Edges are built as follows: Let
Vi = (Wi, Assi,DassS) and Vj = (Wj , Assj ,DassS). Then
(Vi, Vj) ∈ E if one of the following situations holds:

• there exists u ∈ U and n ∈ Wi, Ass
−1
i (u) = ∅, Wj =

Wi, DassS = DassS and Assj = Assi ⊎ {(n, u)}
• there exists n ∈ min(Wi) with successors n1, . . . nk,
Wj =Wi \ {n} DassS assigns to each successor nj the
relational schema corresponding to Fj(Dn)

• there exists n ∈ min(Wi) λ(n) is a complex task, and
Ass(n) = u, Wj is the workflow obtained by replace-
ment of n in Wi by a workflow in P(λ(n), u). DassS

assigns to each successor nj the relational schema cor-
responding to Fj(Dn)

One can consider paths in B as ”symbolic executions”, i.e.
executions where the contents of data is not made explicit.
Given a run ρ = C0Ċ1 . . . CK , with Ci = (Wi, Assi,Dassi)
we define the signature of ρ as the sequence of triples of
the form (W0, Ass0,DassS), where DassS is the map that
assigns to minimal nodes in Wj the relational schema of their
input datasets. Clearly, B collects all signatures of all runs
of a complex workflow. However, it is not necessarily finite.

Definition 4.4 (Deadlocks, Potential deadlocks). Let B =
(V,E) be a SET. A vertex of B is final if its workflow part
consists of a single node nf . It is a deadlock if it has no
successor. It is a potential deadlock iff a split action can occur
from this node.

We use the term potential deadlock because distribution
of data can be performed only when the input of a node that
does this split is not empty. Let Vi = (Wi, Assi,Dassi) be
a potential deadlock node. Let S = {n1, . . . , nk} ⊆ min(Wi)
be the set of minimal nodes that represent data splitting, i.e.
that are assigned an user and have several successors in Wi.
Let Π = V0 . . . Vi be the path from the root of the tree to a
potential deadlock node Vi. Even if vertex Vi has a successor
Vk, obtained by executing a data distribution (i.e. executing
a split task attached to some node nj ∈ S), it can be the case
that Dassi assigns an empty input to nj in an actual run
of CW with signature Π. Hence, some of the splits depicted
in B may not be realizable. If executing task λ(nj) the only

possible action from Vi and if a run with signature Π ends in a
configuration where Dassi(nj) is of the form D1. . . . ∅ . . . Dq

then the run is deadlocked. However, if all runs with signature
Π end with data assignments that affect non-empty sequences
of datasets to all nodes of S, then Vi will never cause a real
deadlock. Note also that when Vi is a potential deadlock,
there exists necessarily a path Vi.Vi+1 . . . Vi+h in B where
the only actions allowed from Vi+h are executions of splitting
tasks. To detect that a potential deadlock can lead to a
real deadlock, one has to answer the following question : is
there an execution ρ = C0 . . . Ci such that the execution of ρ
has signature Π and such that Dassi(nj) contains an empty
dataset for some split node nj ∈ min(Wi) ?

Proposition 1. A complex workflow terminates univer-
sally iff the following conditions hold:

i) Its symbolic execution tree is finite (there is no un-
bounded recursion)

ii) there exists no path V0 . . . Vi in the symbolic execution
tree such that Vi is a deadlock

iii) there exists no run with signature V0 . . . Vi where Vi

is a potential deadlock, with Dk = ∅ for some Dk ∈
Dass(nj) and for some minimal split node nj of Wi.

Condition i) can be easily checked, by checking existence
of reachable cycles in a graph that has tasks as vertices, and
connects two tasks t, t′ if t can be replaced by a workflow
that contains t′ (see Appendix A.3 for details). As soon as
the symbolic execution tree is finite, checking condition ii)
is a simple exploration: all leaves shall be vertices depicting
families of final configurations.

Let us now show how to check the last condition iii). Let
Vi be a vertex of B and let nj be a node that is attached a
split task in Wi. We want to check if there exists an actual
run Π = C0 . . . Ci with signature V0 . . . Vi such that one of
the input datasets Dk in sequence Dassi(nj) is empty. Let
rsj = (rnk, Ak) be the relational schema of Dk, with Aj =
{a1, . . . , a|Aj |}. Then, emptiness of Dk can be encoded as an

FO formula of the form ψi ::=@x1, . . . x|Aj |, rnk(x1, . . . x|Aj |)
∈ Dk. For ψi to hold in configuration Ci, inputs of minimal
nodes in Wi−1 may have to satisfy some constraint ψi−1.
Depending on the nature of the move from Vi−1 to Vi, the
preconditions on inputs at step i − 1 differ. Let mi denote
the nature of move from Vi−1 to Vi. We denote by wp[mi]ψi

the weakest precondition needed on inputs of minimal nodes
in Vi−1 (and hence also in Ci−1) such that ψi holds on Vi

(and hence also in Ci). We can show (Proposition 2) that all
needed constraints can be encoded as first order formulas,
and that all preconditions, regardless of the type of move,
can be effectively computed.

Now, to check that a path of B with signature V0 . . . Vi

violates condition iii), we need to compute inductively all
preconditions needed to reach a configuration where this
split operation fails. We start from the assumption that some
input Dk is empty when trying to execute the split in Ci,
and compute backwards the conditions ψj = wp[mj+1]ψj+1

needed at each step j ∈ i − 1 . . . 1 to eventually reach a
situation where Dk = ∅ at step i. If any condition computed
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this way (say at step j < i) is unsatisfiable, then there is no
actual run with signature V0 . . . Vi such that Dk is an empty
dataset. If one can reach node V0 with a condition that is
satisfiable, and satisfied by Din, then such a run exists. The
main technical points to obtain decidability are : 1) show
that one can effectively compute preconditions, and 2) that
for all computed preconditions, satisfiability is decidable.

A First Order formula (in prenex normal form) over a set of
variables X is a formula of the form φ ::= P (X).ψ(X) where
P (X) is an alternation of quantifiers and variable names in
X, i.e. sentences of the form ∀x1∃x2, ... called the prefix of
φ and ψ(X) is a quantifier free formula made of boolean
combinations of atoms of the form R(x1, . . . xk), xi = xj
called the matrix of φ. R(x1, . . . xk) is a relational statement
or a predicate. Each variable in X has its own domain. A
variable assignment is a function µ that associates a value
from their domain to variables in X. A formula of the from
∃x, φ(x) is true if and only if there is a way to choose a
value for x such that φ(x) is satisfied. A formula of the form
∀x, φ(x) is true if and only if, for every possible choice of a
value for x, φ(x) is satisfied.

Letting X1 = {x1, . . . xk} ⊆ X we will often write ∀
→
X1 in-

stead of ∀x1.∀x2 . . .∀xk. Similarly, we will write ∃
→
X1 instead

of ∃x1.∃x2 . . .∃xk. Given an FO formula in prenex normal

form, we will use w.l.o.g. formulas of the form ∀
→
X1∃

→
X2 . . . ψ(X)

or ∃
→
X1∀

→
X2 . . . ψ(X), where ψ(X) is quantifier free matrix,

and for every i ̸= j, Xi ∩Xj = ∅. Every set of variables Xi

is called a block. It is well known that satisfiability of first
order logic is undecidable in general, but it is decidable for
several fragments. In this work, we consider the Separated
Fragment (SF ) of FO, for which satisfiability of a formula is
decidable [18]. The SF fragment is reasonably powerful and
subsumes the Monadic Fragment [15] (where predicates can
only be unary) and the Bernays-Schonfinkel-Ramsey (BSR)

fragment of FO [3] (formulas of the form ∃
→
X1.∀

→
X2.ψ(X)

where ψ(X) is quantifier-free).
Let A be an atom of a formula, and V ars(A) be the

set of variables appearing in A. We say that two sets of
variables Y,Z ⊆ X are separated in a quantifier free formula
φ(X) iff for every atom A of φ(X), V ars(A) ∩ Y = ∅ or
V ars(A)∩Z = ∅. Separated formulas are formulas of the form

∃
→
Z, ∀

→
X1∃

→
Y 2 . . .∀

→
Xn∃

→
Y nψ(X), and the sets X1 ∪ · · · ∪ Xn

and Y1 ∪ · · · ∪Yn are separated. Every separated formula can
be rewritten into an equivalent formula in the BSR fragment,

i.e. of the form ∃
→
U.∀

→
V ψ′(U ∪ V ) (which yields decidability

of satisfiability for SF formulas).
A well known decidable fragment is (FO2), that uses only

two variables [16]. However, as this fragment forbids in partic-
ular atoms of arity greater than 2, which is a severe limitation
when addressing properties of datasets. An interesting exten-
sion of FO2 called FO2BD allows atoms of arbitrary arity,
but only formulas over sets of variables where at most two
variables have unbounded domain. It was demonstrated that
FO2BD formulas are closed under computation of weakest

preconditions for a set of simple SQL operations [8]. All the
results demonstrated in our paper would hold in a FO2BD
setting. However, the setting that we propose has to handle
datasets where fields are imprecise user inputs, that are better
captured with unbounded domains. We will show hereafter
that the separated fragment of FO suffices to encode empti-
ness of a dataset, and that all preconditions on contents of
datasets built along an execution leading to a deadlock can
also be encoded in SF. This will be of particular importance
to prove decidability of termination.

Proposition 2. Let ψi be an FO formula. Then, for
any move mi from Ci−1 to Ci and any formula ψi, ψi−1 =
wp[mi]ψi is an effectively computable FO Formula. Further,
if ψi is in separated form, then ψi−1 is also in separated form.

Proof. For every FO Property ψi, and every type of move
acti we write a technical lemma that build formula φi−1 =
wp[acti]ψi that is the weakest precondition on input datasets
for minimal nodes in Wi−1 allowing property ψi to hold on
datasets D1, . . . DK used as inputs of minimal nodes of Wi.
FO is closed under computation of weakest precondition,
and weakest preconditions of separated formulas are also
separated. We refer interested readers to Appendix A.5 for
these technical lemmas. �

Proposition 3. Let CW be a complex workflow. Given
a signature V0 . . . Vi in the execution tree of CW , and a
separated FO formula φ one can decide:

• if there exists a run ρ with input dataset Din and
signature V0 . . . Vi such that φ holds at ith step of ρ.

• if there exists a run ρ of CW with input dataset Din ∈
Din with signature V0 . . . Vi such that φ holds at ith

step of ρ when Din is defined in separated FO.

Proof. This is a straightforward consequence of Prop. 2.

For a given path V0
act1−→ V1 . . .

actk−→ Vk in the tree B of a com-
plex workflow and a formula φk , there exists a sequence of

moves C0
act1−→ C1 . . .

actk−→ Ck where Ck |= φk iff the sequence

C0
act1−→ C1 . . .

actk−1−→ Ck−1 end in a configuration Ck−1 such
that Ck−1 |= wp[actk]φk (by definition of weakest precondi-
tion). If wp[actk]φk is not satisfiable, then the move from
Ck−1 to Ck cannot produce datasets fulfilling φk. One can
decide whether wp[actk]φk is satisfiable, as φk is in separated
form, and by Prop. 2, wp[actk]φk is also separated.

Now, one can build inductively all weakest preconditions
WPk−1,WPk−2,WP0 that have to be satisfied respectively
by configurations Ck−1, . . . , C0. If any of these precondi-
tions is unsatisfiable, then there exists no run with signature
V0 . . . Vk leading to a configuration that satisfies φk. Assume
thatWPk−1,WPk−2, . . .WP0 are satisfiable. Then it remains
to check that Din |= WP0 to guarantee existence of a run
with signature V0 . . . Vk that starts with input data Din and
leads to a configuration that satisfies φk. Similarly, if Din

is given as separated FO formula φin then proving that a
some Din ∈ Din allows a run with signature V0 . . . Vk lead-
ing to a configuration that satisfies φk amounts to checking
satisfiability of φin ∧WP0. �



PODS’19, July 2019, Amsterdam, The Netherlands Hélouët, Löıc, Singh, Rituraj, and Miklos, Zoltan

Now, emptiness of a dataset Dk with relational schema
rsk = (rnk, Ak) can be encoded with the separated formula

φ∅
Dk

::= @x1, . . . x|Ak|, rnk(x1, . . . x|Ak|) ∈ Dk. This means

that condition iii) in Proposition 1 can be effectively checked.

Theorem 4.5. Universal termination of complex work-
flows is decidable (for single and sets of inputs).

sketch. Complex workflows terminate iff they have bounded
recursive schemes, and if they do not deadlock. The first con-
dition can be checked by considering how tasks are rewritten
(see appendix for details). If CW allows no unbounded recur-
sive scheme, its symbolic execution tree is finite. Then, we
can detect deadlocks and potential deadlocks in this tree. If
a deadlock exists, then the complex workflow does not termi-
nate universally. Potential deadlocks occur only if a vertex
Vi = (Wi, Assi,DassSi ) in the tree is such that Wi contains
an executable split node nj . Now, emptiness of some dataset
Dk ∈ DassSi with relational schema rsk = (rnk, Ak) can be

encoded with a disjunction of separated formulas ψ∅
k. Hence,

using Proposition 3, one can decide whether a run starting
with input data Din (or from some input data in Din) which
signature is the path leading to Vi such that Dk = ∅ for some
Dk used as input of a split node exists. �

The constructive proof of Proposition 3 immediately gives
an algorithm to check existence of a deadlock during an
execution of a workflow. First of all, assume that a path in
B exists from V0 to some vertex Vk where a dataset Dk has
to be split. As explained in the proof of Theorem 4.5, the
property that Dk = ∅ is expressible in the separated fragment
of FO, so one can check satisfiability of a sequence of weakest
preconditions up to WP0 for every potential deadlock vertex
in the tree. If none of the potential deadlocks allows to prove
existence of a run leading to a configuration where an empty
dataset has to be split, then in all execution, split actions
can occur safely and never deadlock a run. Then, as all other
operation have no precondition on the contents of datasets,
if a path V0 . . . Vdead to a deadlock vertex Vdead exists after
verifying that potential deadlocks are harmless, then a run
with signature V0 . . . Vdead exists (for any input dataset).
Algorithm 1 shows how to decide universal termination for a
particular input Din. This algorithm can be easily adapted
to address termination for a set of inputs Din.

Undecidability of existential termination has several con-
sequences: As complex workflows are Turing complete, au-
tomatic verification of properties such as reachability, cover-
ability, boundedness of datasets, or more involved properties
written in a dedicated logic such as LTL FO [4] (a logic that
address both properties of data and runs) are also undecid-
able. However, one can notice that in the counter machine
encoding in the proof of Theorem 4.2, instructions execution,
require refinements, recursive schemes and split nodes (in
particular to encode zero tests). So, infinite runs of a counter
machine can be encoded only if rule 4 can be applied an
infinite number of times. We hence slightly adapt the seman-
tics of Section 3, and in particular rule R4, and replace it by
a restrictive decomposition (RD) rule. Intuitively, the (RD)

Algorithm 1: Universal Termination Decision

Data: A complex workflow
CW = (W0, T , Tcs,U , sk,P)

Result: A verdict ∈ {TERM,NO − TERM}
1 If CW has unbounded recursion Return NO-TERM

2 Build the symbolic execution tree B = (V,E) of CW

3 Vsplit = {(W,Ass,DassS)∈V |W has splittable nodes}
4 for v ∈ Vsplit do

5 ρv = v0
a0−→ v1 . . .

ak−1−→ vk=v //path from v0 to v

6 for n ∈ split nodes of min(Wi) do
7 WP ::= wp[ak−1](

∨
Dk∈DassS(n)

Dk = ∅)

8 for i = k − 1..1 do
9 Check satisfiability of WP

10 if WP not satisfiable then
11 break; //unfeasible path

12 end

13 WP ::= wp[ai−1]WP

14 end

15 //WP= WP0

16 if WP satisfiable ∧Din |=WP then
17 return NO-TERM

18 end

19 end

20 end

21 //All Split nodes have non-empty input datasets

22 if ∃v ∈ V without successors and v is not final then
23 return NO-TERM

24 end

25 return TERM

rule refines a task as in rule R4, but forbids decomposing the
same task an unbounded number of times.
Rule 4’ (Restricted task refinement): Let T = {tint, t2,
..., tf} be a set of tasks of size n. Let KD = (k1, k2, ..., kn) ∈
Nn be a vector constraining the number of refinements of task
ti that can occur in a run ρ. In the context of crowdsourcing,
this seems a reasonable restriction. Restrictive decomposition
RD is an adaptation of rule R4 that fixes an upper bound
ki on the number of decomposition operations that can be
applied for each task ti in a run. We augment configurations
with a vector S ∈ Nn, such that S[i] memorizes the number
of decompositions of task ti that have occurred. Rules 1-3
leave counter values unchanged, and rule 4 becomes:

∃n ∈ min(W ),∃u = Ass(n), ti = λ(n) ∈ Tcx ∧ S[i] ≤ ki
∧∃Ws = (Ns,−→s, λs) ∈ Profile(ti, u)
∧Ass′ = Ass \ {(n,Ass(n))} ∧Dass′(min(Ws)) = Dass(n)

∧∀x ∈ Ns \min(Ws),Dass′(x) = ∅|Pred(x)|

∧W ′ =W[n/Ws]

∀j ∈ 1 . . . |T |, S′[j] = S[j] + 1 if j = i, S[j] otherwise

(W,Ass,Dass, S)
split(ti)−−−−−→ (W ′, Ass′,Dass, S′)

(5)
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Following the RD semantics, each task ti can be decom-
posed at most ki times. To simplify notations, we choose a uni-
form bound k ∈ N for all tasks, i.e. ∀i ∈ 1..n, ki = k. However,
all results established below extend to a non-uniform setting.
We next show decidability of existential termination under the
RD semantics. First, we give an upper bound on the length
of runs under RD semantics. Let k be a uniform bound on
the number of decompositions, CW = (W0, T , Tcs,U , sk,P)
be a complex workflow with a set of tasks of size n, and
C0 = (W,Ass0,Dass0) be its initial configuration.

Proposition 4. Let ρ = C0 . . . Ck be a run of a complex
workflow under RD semantics. The length of ρ is bounded by
L(n, k) = 3 · k · n2 + 3 · |W0|

Sketch. Configurations can only grow up to a size smaller
than C(n, k) = k.n2 + |W0| via rule R4, and rules R1-R3
can be applied only a finite number of times from each
configuration. �

Under RD semantics, a symbolic execution tree B is nec-
essarily finite and of bounded depth. A run terminates iff it
goes from the initial configuration to a final one. If such run
exists, then there exists a path in B from the initial vertex
to a final vertex with signature Π = V0 . . . Vn. Further, if
this path visits a potential deadlock and executes a splitting
task λ(n) for some split node nj , then every dataset used as
input of nj must be non-empty. To show that this path is
realizable, it suffices to show existence of a run with signa-
ture Π that ends in a configuration Cn satisfying property
φ ::= true. Proposition 3 shows how to compute backwards
the weakest preconditions demonstrating existence of such
run of CW . An immediate consequence is that existential ter-
mination of complex workflows is decidable under restricted
decomposition semantics.

Theorem 4.6. Existential termination for a single input
Din or for a set of inputs Din are decidable under restricted
decomposition semantics.

5 PROPER TERMINATION

Complex workflows provide a service to a client, that inputs
some data (a dataset Din) to a complex task, and expects
some answer, returned as a dataset Dout. We assume the
client sees the crowdsourcing platform as a black box, and
simply asks for the realization of a complex tasks that need
specific competences. However, the client may have require-
ments on the type of output returned for a particular input.
We express this constraint with a First Order formula ψin,out

relating inputs and outputs, and extend the notions of ex-
istential and universal termination to capture the fact that
a complex workflow implements client’s needs if some/all
runs terminate, and in addition fulfill requirements. This is
captured by the notion of proper termination.

Definition 5.1 (Proper termination). Let CW be a com-
plex workflow, Din be a set of input datasets, and ψin,out

be a constraint given by a client. A run in Runs(CW,Din)
terminates properly if it ends in a final configuration and

returns a dataset Dout such that Din, Dout |= ψin,out. CW
terminates properly existentially with inputs Din iff there
exists a run Runs(CW,Din) for some Din ∈ Din that ter-
minates properly. CW terminates properly universally with
inputs Din iff all runs in Runs(CW,Din) terminate properly
for every Din∈Din

Proper termination guarantees completion of a whole work-
flow CW , and construction of an output dataset Dout satis-
fying the constraints imposed by a client. In general, termi-
nation of a run does not guarantee its proper termination.
A terminated run may return a dataset Dout such that pair
Din, Dout does not comply with constraints ψin,out imposed
by the client. For instance, a run may terminate with an
empty dataset while the client asked for an output with at
least one answer. Similarly, a client may ask all records in the
input dataset to appear with an additional tag in the output.
If any input record is missing, the output will be considered
as incorrect. Proper termination can be immediately brought
back to a termination question, by setting ψin,out = true.
We hence have the following corollary.

Corollary 5.2. Existential proper termination of a com-
plex workflow is undecidable.

In this section, we show that proper termination can be
handled through symbolic manipulation of datasets, that give
constraints on the range of possible values of record fields,
and on the cardinality of datasets. We handle execution sym-
bolically, i.e. we associate a symbolic data description to
inputs of every node which task is executed, and propagate
the constraints on this data to the output(s) produced by
the execution of the task. AS for termination, weakest pre-
conditions can be built. However, universal termination is
decidable only with some restrictions on the fragment of FO
used to constrain relation between inputs and outputs.

Theorem 5.3. Let CW be a complex workflow, and ψin,out

be a constraint on inputs and outputs written in FO. Then:

• existential and universal proper termination of CW
are undecidable, even under RD semantics.

• if ψin,out is in the separated fragment of FO, then
- existential proper termination is decidable under RD
semantics
- universal proper termination is decidable.

Proof. Let us first prove the undecidability part: It is well
known that satisfiability of FO is undecidable in general. One
can take an example of formula ψunsat which satisfiability
is not decidable. One can also build a formula ψid that says
that the input and output of a workflow are the same. One
can design a workflow CWid with a single final node which
role is to return the input data, and set as client constraint
ψin,out = ψunsat ∧ ψid. This workflow has a single run, both
under standard and RD semantics. Then, CWid terminates
properly iff there exists a datasetDin such thatDin |= ψunsat,
i.e. if ψunsat is satisfiable. Universal and existential proper
termination are hence undecidable problems.



PODS’19, July 2019, Amsterdam, The Netherlands Hélouët, Löıc, Singh, Rituraj, and Miklos, Zoltan

For the decidable cases, one can apply the technique of
Theorem 4.6. One can build the symbolic execution tree,
check that all runs terminate. Then for every terminated
leaf n of the execution tree, one can compute a chain of
weakest preconditions WP0,WP1, . . .WPn that have to be
enforced to execute successfully CW and terminate in node
n. In particular, WPn ::= true. Then, one has to check
satisfiability of ψproper,n ::=

∧
WPi ∧ ψin,out. As all WPi’s

are in the separated fragment of FO, if ψin,out is separated,
then so is ψproper,n. Hence, existential proper termination is
decidable for complex workflows executed under restricted
decomposition if ψin,out is expressed in separated FO.

Last, for universal proper termination, arguments of The-
orem 4.5 apply: recursive schemes prevent termination, and
if recursion is bounded, one can check for every path of the
SET that no deadlock needs to occur, and that the weakest
preconditions combined with ψin,out are satisfiable. �

At first sight, restricting to the separated fragment of FO
can be seen as a limitation. However, the existential fragment
of FO is already a very useful logic, that can express non-
emptiness of outputs: property ∃x1, . . . , ∃xk, rn(x1, . . . xk) ∈
Dout expresses the fact that the output should contain at
least one record. Similarly, one can express properties to
impose that every input has been processed. For instance,
the property

ψvalid
in,out ::= ∀x1 . . . xk, rn(x1, . . . xk) ∈ Din

0.3cm =⇒ ∃y1 . . . yq, rn(x1, . . . xk, y1, . . . yq) ∈ Dout

Formula ψvalid
in,out asks that every input in Din is kept and

augmented by additional information. This formula can be
rewritten into another formula with a single alternation of
quantifiers of the form
∀x1 . . . xk, ∃y1 . . . yq,¬rn(x1, . . . xk) ∈ Din

∨ rn(x1 . . . xk, y1 . . . yq) ∈ Dout

This latter formula is in BSR form, which is a subset of the
separated fragment of FO.

6 CONCLUSION

We have proposed data centric workflows for crowdsourcing
applications. The model includes a higher-order operation,
that allows splitting of tasks and datasets to decompose a
workflow into orchestration of simple basic tasks. This gives
complex workflows a huge expressive power. On this model,
universal termination is decidable. If requirements on inputs
and outputs are expressed with separated FO, universal
proper termination is decidable too. Existential termination is
not decidable in general. With the reasonable assumption that
tasks cannot be decomposed an arbitrary number of times,
existential termination and existential proper termination
(with separated FO requirements) are decidable.

Several question remain open: satisfiability of separated
FO is non-elementary [18], but in the formulas defining weak-
est preconditions in termination problems, all variable blocks
are separated. We conjecture that preconditions close to BSR
formulas, which could yield NEXPTIME complexity for the
termination problem. Beyond complexity issues, complex

workflows raise other problems such as synthesis of appro-
priate pricing (find incentives that maximize the probability
of termination), or synthesis of schedulers to guarantee ter-
mination with appropriate user assignment. Other research
directions deals with the representation and management of
imprecision. So far, there is no measure of trust nor plausi-
bility on values input by workers during a complex workflow
execution. Equipping domains with such measures is a way
to provide control techniques targeting improvement of trust
in answers returned by a complex workflow, and tradeofs
between performance and accuracy of answers...
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A APPENDIX : PROOFS

A.1 Proof of Theorem 4.2

Theorem 4.2 Existential termination of complex workflows
is an undecidable problem.

The proof is done by reduction from the halting problem of
two counter machines to termination of complex workflows.

Proof. A 2-counter machine (2CM) is a tuple ⟨Q, c1, c2, I, q0, qf ⟩
where,

• Q is a finite set of states.
• q0 ∈ Q is the initial state, qf ∈ Q is the final state.
• c1, c2 are two counters holding non-negative integers.
• I = I1∪I2 is a set of instructions. Instructions in I1 are
of the form instq = inc(q, cl, q

′), depicting the fact that
the machine is in state q, increases the value of counter
cl by 1, and moves to a new state q′. Instructions in
I2 are of the form instq = dec(q, cl, q

′, q′′), depicting
the fact that the machine is in state q, if cl == 0,
the machine moves to new state q′ without making
any change in the value of counter cl, and otherwise,
decrements the counter cl and moves to state q′′. We
consider deterministic machines, i.e. there is at most
one instruction instq per state in I1∪I2. At any instant,
the machine is in a configuration C = (q, v1, v2) where
q is the current state, v1 the value of counter c1 and
v2 the value of counter c2.

From a given configuration C = (q, v1, v2), a machine can
only execute instruction instq, and hence the next config-
uration ∆(C) of the machine is also unique. A run of a
two counters machine is a sequence of configurations ρ =
C0.CI . . . Ck such that Ci = ∆(Ci−1. The reachability prob-
lem is defined as follows: given a 2-CM, an initial configuration
C0 = (q0, 0, 0), decide whether a run of the machine reaches
some configuration (qf , n1, n2), where qf is a particular final
state and n1, n2 are arbitrary values of the counter. It is well
known that this reachability problem is undecidable.

Let us now show how to encode a counter machine with
complex workflows.

• We Consider a dataset D with relational schema rs =
(R, {k, cname}) where k is a unique identifier, and
cname ∈ Cnt1, Cnt2,⊥. Clearly, we can encode the
value of counter cx with the cardinal of {(k, n) ∈ D |
n = Cntx}. We start from a configuration where the
dataset contains a single record R(0,⊥)

• for every instruction of the form inc(q, cx, q
′) we create

a task tq, and a workflowW inc
q , and a worker uq, who is

the only user allowed to execute these tasks. The only
operation that uq can do is refine tq with workflow
W inc

q . W inc
q has two nodes ninc

q and nq′ such that

(ninc
q , nq′) ∈−→, λ(ninc

q ) = tinc
q and λ(nq′) = tq′ . Task

tinc
q is an atomic task that adds one record of the form
(k′, Cntx) to the dataset. Hence, after executing tasks
tq and tinc

q , the number of occurrences of Cntx has
increased by one.

• for every instruction of the form dec(q, cx, q
′, q′′), we

create a complex task tq and a worker uq who can

choose to refine tq according to profiles Profile(tq, uq) =
{Wq,Z ,Wq,NZ}. The choice of one workflow or another
will simulate the decision to perform a zero test or a
non-zero test. Note that as the choice of a workflow
in a profile is non-deterministic, worker uq can choose
one or the other.

• Let us now detail the contents ofWq,NZ . This workflow
is composed of nodes ndiv

q , nCx
q , nCx̄∪⊥

q , n⊗
q , n

dec
q and

nq′ , respectively labeled by tasks tdivq , tCx
q , tCx̄∪⊥

q , t⊗q , t
dec
q

and tq′ . The dependence relation in Wq,NZ contains

pairs (ndiv
q , nCx

q ), (ndiv
q , nCx̄∪⊥

q ), (nCx
q , n⊗

q ), (nCx̄∪⊥
q , n⊗

q ),

(n⊗
q , n

dec
q ) and (ndec

q , nq′). The role of tdivq is to split

Dass(ndiv
q ) into to disjoint parts: the first one contains

records of the form R(k, Cx) and the second part all
other records. Tasks tCx

q and tCx̄∪⊥
q simply forward

their inputs, and task t⊗q computes the union of its
inputs. Note however that if one of the inputs is empty,
the task cannot be executed. Then, task tdecq deletes one
record of the form R(k, Cx). Hence, if Dq = Dass(nq)
is a dataset that contains at least one record of the from
R(k, Cx), the execution of all tasks in Wq,NZ leaves
the system in a configuration with a minimal node nq′

labeled by task tq′ , and with Dass(nq′) = Dq\R(k, Cx)
• Let us now detail the contents of Wq,Z . This workflow
is composed of nodes ndiv

q , nCx∪⊥
q , nid

q , n
btest
q , ndone

q , nq′

respectively labeled by tasks tdivq , tCx∪⊥
q , tidq , t

btest
q , tdone

q , t′q.

The flow relation if given by pairs (ndiv
q , nCx∪⊥

q ), (ndiv
q , nid

q )

(nCx∪⊥
q , nbtest

q )(nbtest
q , ndone

q ) and (nid
q , n

done
q ). The role

of task tdivq is to project its input dataset on records
with cname = Cx or cname = ⊥, and forwards the
obtained dataset to node nCx∪⊥

q . On the other hand,
it creates a copy of the input dataset and forwards it
to node nid

q . The role of task tCx∪⊥
q is to perform a

boolean query that returns {true} if the dataset con-
tains a record R(k, Cx) and {false} otherwise, and
forwards the result to node nbtest

q . Task tbtestq selects
records with value {false} (it hence returns an empty
dataset is the result of the boolean test was {true}).
Task tidq forwards its input to node ndone

q . Task tdone
q re-

ceived input datasets from nbtest
q and nid

q and forwards

the input from nid
q to node nq′′ . One can immediately

see that if the dataset input to ndiv
q contains an occur-

rence of Cx then one of the inputs to ndone
q is empty

and hence the workflow deadlocks. Conversely, if this
input contains no occurrence of Cx, then this workflows
reached a configuration with a single node nq′′ labeled
by task tq′′ , and with the same input dataset as nq.

One can see that for every run ρ = C0 . . . Ck of the two
counter machine, here Ck = (q, v1, v2) there exists a single
non-deadlocked run, and that this run terminates of config-
uration (W,ass,Dass) where W consists of a single node
nq labeled by task tq, and such that Dass(nq) contains v1
occurrences of records of the form R(k, C1) and v2 occur-
rences of records of the form R(k, C2). Hence, a two counter
machine terminates in a configuration (qf , v1, v2) iff the only
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non-deadlocked run of the complex workflow that encodes
the two counter machine reaches a final configuration.

ndiv
qtdivq

nCx
q tCx

qnCx̄∪⊥
q tCx̄∪⊥

q

n⊗
qt⊗q

ndec
qtdecq

nq′tq′

Wq,NZ
Wq,Z

ndiv
qtdivq

nCx∪⊥
q tCx∪⊥

q nid
q tidq

nbtest
q tbtestq

ndone
q tdone

q

nq′′ tq′′

Figure 2: Encoding of Non-zero test followed by
decrement (left), and Zero Test followed by state
change (right).

�

A.2 Proof of Proposition 1

Lemma A.1. Let B be a tree with a potential deadlock
Vi with successors vi,1, . . . vi,k corresponding respectively to
splitting of nodes n1, . . . nk in the workflow part of node Vi.
Then a run Π with signature V0 . . . Vi such that Dk = ∅ for
some Dk ∈ Dass(nj) does not terminate.

Proof. If a node nj in a configuration Ci is labeled by a
complex task and is already assigned a competent user, then
assignment of this node and input data will not change in
any successor during execution. So, if this node cannot split
and distribute data due to the fact that Dk = ∅, it will never
be able to split this data later in an execution that starts
with prefix that has signature Π. �

This lemma has useful consequences: for a potential dead-
lock, it is sufficient to detect that one input dataset Dnj for
a split node is empty to claim that there exists an execu-
tion with a signature that has V0 . . . Vi as prefix, and that
deadlocks.
Proposition 1: A complex workflow terminates universally
iff the following conditions hold:

i) Its symbolic execution tree is finite (there is no un-
bounded recursion)

ii) there exists no path V0 . . . Vi in the symbolic execution
tree such that Vi is a deadlock

iii) there exists no run with signature V0 . . . Vi where Vi

is a potential deadlock, with Dk = ∅ for some Dk ∈
Dass(nj) and for some minimal split node nj of Wi.

Proof. First, notice that all runs of a complex workflow
have their signature in the Symbolic execution tree, as appli-
cation of a rule never considers data contents, but only the
structure of a workflow. Hence, even when some execution
of a splitting task could be prevented by empty inputs, the
symbolic execution tree contains edges symbolizing the effects
of this splitting action on the workflow.

If all runs of a complex workflow CW terminate, then
CW has no infinite run and no deadlocked run. As a con-
sequence, its symbolic execution tree is finite, and contains
no deadlock nodes. As executions of CW never meets dead-
locks, one cannot find a run with signature V0 . . . Vi where
Vi = (Wi, Assi,DassSi ) and is such that Wi has a minimal
split node with an empty input dataset. Hence conditions
i), ii), iii) are met.

Let us now assume that CW does not terminate. It means
that this complex workflow either allows unbounded runs, or
reaches deadlocks. If CW has an unbounded run ρω, then
the workflow allows an unbounded recursive schemes, i.e.
situations where successive refinement of a node n labeled by
a task t leads to replace n by a subgraph that still contains a
node n′ with task t. Further, as ρω is an effective execution
of CW , every rule applied in the execution of this run also
applies during the construction of a symbolic execution tree,
and hence this tree contains an infinite path (which violates
condition i). If an execution of CW ends in a deadlocked
configuration, then it means that either no rule applies from
this configuration, or that the only next possible action is the
execution of a split node that cannot be performed due to an
empty input dataset. As nodes of the symbolic execution tree
only differ from real configurations with their data, the first
case means that the symbolic execution tree also contains a
deadlock node from which no semantic rule applies (hence
violating condition ii). For the second case, the deadlocked
run ends in a configuration Ci. It has a signature V0 . . . Vi,
and there exists a input dataset D = ∅ that prevents a
minimal node from being executed (hence violating condition
iii). �

A.3 Proof of Theorem 4.5

Theorem 4.5 : Universal termination of a complex workflow
is a decidable problem.

Proof. First we can show that complex workflows termi-
nate only if they have bounded recursive schemes, and do
not deadlock. Let us assume that a complex workflow has
unbounded recursive schemes, and that none of the task exe-
cutions or refinement is ever deadlocked. Then, there exists
a task t and an infinite run ρ = ρ1.ρ2 . . . such that every ρi
terminates with a refinement of task t. Under the assump-
tion that the system does not deadlock during this infinite
runs, such an infinite recursive scheme occurs only if t can
be rewritten through successive refinement steps into a work-
flow that contains a new occurrence of task t. This can be
checked from the list of tasks and profiles. We build a graph
RG = (T ,−→T , T0) where T0 is the set of tasks that appear
in W0, (t, t

′) ∈−→T iff there exists a worker u, a workflow
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Wt = (Nt,−→t, λt) in P(t, u) and a node n ∈ Nt such that
λ(n) = t′. An edge (t, t′) means that one can rewrite t into
a workflow that contains t′. If RG contains a cycle that is
accessible from T0, then the complex workflow contains a
recursive scheme. If an infinite runs containing an infinite
number of rewritings does not deadlock, then the workflow
does not terminate. If all runs that unfold such a recursive
scheme deadlock at some point, then the complex workflow
does not terminate either. It remains to consider the case
of complex workflows without unbounded recursive schemes.
The executions of such workflows are of bounded length, and
the complex workflow terminates (universally) iff all of them
terminate.

Complex workflows terminate only if they have bounded
recursive schemes, and if they do not deadlock. The former
can be checked by considering how tasks are rewritten. If
there is no unbounded recursive scheme allowed by CW ,
then its symbolic execution tree is finite. Then, we can detect
deadlocks and potential deadlocks in this tree. If a dead-
lock exists, then the complex workflow does not terminate
universally. Potential deadlocks occur only if a vertex Vi in
the tree allows a move that is a split of a dataset D. Now,
emptiness of a dataset D with signature rn = (rn,A) with
A = (a1, . . . ak) can be encoded with the separated formula of
the form @x1, . . . xk, rn(x1, . . . xk) ∈ D. Hence, using Propo-
sition 3, one can decide whether a run starting with input
data Din (or from some input data in Din which signature is
the path leading to Vi such that D = ∅ exists. This completes
the proof of Theorem 4.5. �

A.4 Proof of Proposition 4

Proposition 5. Let ρ = C0.C1 . . . Cq be a run under
RD semantics. Then, for every Ci = (Wi, Assi,Dassi), the
number of nodes in Wi is smaller than C(n, k) = k.n2+ |W0|.

Proof. Each decomposition of a task ti replaces a single
node n by a new workflow with at most di = max

u∈U
max{|Wj | |

Wj ∈ Profile(ti, u)} nodes. Recall that decomposition pro-
files are know, and that all nodes of workflows in profiles are
attached distinct task names. So, we have di < n. Every run
ρ starting from C0 is a sequence of rule applications. Rule 1
does not affect the size of workflows in configurations, and
rules 2 and 3 remove at most one node from the current
workflow when applied. For each task ti, a run ρ contains
at most k occurrence of rule 4 refining a task of type ti.
Application of rule 4 to task ti adds at most di nodes to the
current workflow, and removes the refined node. All other
rules decrease the number of nodes. One can notice that as
each task can be decomposed at most k times, rule 4 can be
applied at most k.n times in a run following the RD semantics,
even if this run is of length greater than k.n. Let S0 = |W0|,
S1 = S0 + n− 1, and Si+1 = Si + (n− 1). For a fixed n and
a fixed k, the maximal size of the workflow component Wi in
every configuration Ci of a run under RD semantics is smaller
than Sk.n = |W0|+ (k.n)(n− 1) = |W0|+ k · n2 − k · n. �

Proposition 4: Let ρ = C0 . . . Ck be a run of a complex
workflow under RD semantics. The length of ρ is bounded
by L(n, k) = 3 · k · n2 + 3 · |W0|

Proof. Recall that a configuration is a triple Ci = (Wi, Assi,Dassi),
withAss(n) = ui. Each configuration is a ”global state” of the
execution of a complex workflow.Wi represents the work that
needs to be done before completion, Ass the users assignment,
and Dass the data assignment. Recall that a configuration
with a single node is necessarily a final configuration with a
node nf which task is to return all computed values during
the execution of the complex workflow.

The only way to change user or data assignment part of
configurations is to execute the task attached to a node (i.e.,
apply rule R2 or R3) or refine a node (i.e. apply rule 4).
Starting from a configuration Ci, the maximal number of
user assignment that can be performed is |Wi|, and along the
whole run, as each node can be assigned an user at most once,
the maximal number of applications of rule R1 is C(n, k).

The length of a run ρ is |ρ| = |ρ|1 + |ρ|2 + |ρ|3 + |ρ|4 where
|ρ|i denotes the number of applications of rule Ri. Now,
|ρ|1 ≤ C(n, k). Similarly, |ρ|1 = |ρ|2 + |ρ|4. Last, rule R3 can
be applied only a number of times bounded by the maximum
number of created nodes, i.e, |ρ|3 ≤ C(n, k). So overall, |ρ| =
|ρ|1+(|ρ|2+ |ρ|4)+ |ρ|3 ≤ C(n, k)+C(n, k)+C(n, k). Hence,
the length of ρ is bounded by L(n, k) = 3 ·k ·n2+3 · |W0| �

A.5 Proof of Proposition 2

Proposition 2: Let ψi be an FO formula. Then, for any move
mi from Ci−1 to Ci and any formula ψi, ψi−1 = wp[mi]ψi is
an effectively computable FO Formula. Further, if ψi is in
separated form, then ψi−1 is also in separated form.

Proof. Each move mi in the execution tree represents a
configuration change, and transforms input datasetsD1, . . . Dn

into output datasets D′
1 . . . D

′
p. These transformations are

projections, selections, joins, field addition update or enlarge-
ment, or a one to one automated linear transformation of
records in a dataset. Slightly abusing the notation for FO
used so far, we will write D1, . . . Dk |= ψ to denote that a
set of datasets satisfies formula ψ. In the formula, given a
relation rn(v1, . . . vm) depicting a record in a dataset, we
will also make clear in the formula which dataset contains
the record, using a notation of the form rn(v1, . . . vm) ∈ Di.
Note that this can still be expressed is FO, as one can equiva-
lently working with a single global dataset DU and a unique
relational schema rsu containing all fields appearing inn a
dataset used in the workflow, and add a new field dnum
indicating, for each record r, to which dataset this record
belongs. With a global relational scheme, instead of writing
D1, . . . Dk |= ∃w1, . . . wp, rn(w1 . . . wp) ∈ D3 ∧ φ, one would
write DU |= ∃w1, . . . wp, nbrnu(w1 . . . wp, nb) ∧ (nb = 3) ∧ φ.

Given a transformation tr that transforms inputsD1, . . . , Dn

into outputs D′
1, . . . , D

′
k, and an FO property ψpost, the weak-

est precondition on D1, . . . Dn such that D′
1, . . . , D

′
k |= ψpost

after execution of tr is an FO property ψpre such that
D1, . . . Dn |= ψpre implies that D′

1, . . . , D
′
k |= ψpost. We will
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write ψprewp[tr]D
′
1, . . . , D

′
k |= ψpost to denote the fact that

ψpre is this weakest precondition, or simply ψprewp[tr]ψpost

when outputs are clear from the context. Now, moves from
one configuration to another are atomic actions that may
involve several successive transformations. Similarly, given a
move mv from a configuration C to a configuration C′, we
write ψprewp[mv]ψpost to denote that ψpre is the precondi-
tion on datasets in use in C required for ψpost to hold in
datasets in use in C′ after move mv. First, for each type of
basic transformation tr, we give the weakest precondition
of any FO formula ψpost. We then build preconditions for
atomic moves from them, to prove that all preconditions
needed to reach deadlocks can be expressed as FO properties.
For each transformation, we also show that separated FO
formulas also give separated weakest preconditions. For a
formula ψ, we denote by V ars(ψ) the variables x1 . . . xn used
in ψ. In the rest of the proof, we assume that all formulas
over variables x1, . . . , xn are in prenex normal form, and
more precisely are of the form ψ ::= Q(V ars(φ)), φ, where
Q(V ars(ψ)) is the prefix (a string of variables and quan-
tifiers ∀, ∃), φ is a boolean combination of quantifier free
FO statements called the matrix. It includes relational state-
ments of the form rn(x1, . . . xk) ∈ Dj to describe the fact
a record of the form rn(wi, . . . wi+p) belongs to dataset Dj ,
predicates indicating constraints on values of variables, such
as x1 ≤ x2, and equalities. Note that computing a weakest
precondition for a transformation that impacts the contents
of a dataset Di when Di |= ψ yields properties that should
be satisfied jointly by several datasets D1, . . . , Dq used to
forge the contents of Di, and that these properties cannot
be necessarily considered as independent preconditions of
the form D1 |= ψ1, . . . Dq |= ψq. As datasets contents and
properties are not independent, we will write global proper-
ties of datasets used by all minimal nodes in configurations
under the form D1, . . . Dk |= ψ. We denote by RS(ψ) the set
of relational statements used in ψ. We can now provide a
series of lemmas proving that for each type of action, weak-
est preconditions are effectively computable, and transform
separated FO formulas into separated FO formulas.

Lemma A.2 (Weakest precondition for Projection).
Let φ be a FO formula, and act be an atomic action that
projects the contents of some datasets. Then one can effec-
tively compute an FO formula ψ = wp[act]φ. Moreover, if φ
is a separated FO formula, then ψ is also separated.

Let us assume that D′
1, . . . , D

′
k |= ψpost and that D′

j

is a dataset with relational schema rsj = (rnj , Aj), ob-
tained by projection of some input dataset Di with rela-
tional schema rsi = (rni, Ai) on a subset of its fields. We
have Aj ⊆ Ai, and letting Ai = (a1, . . . ak), Aj is of the
form (ai1 , ai2 , . . . aiq ). Clearly, if a FO formula ψ addresses
values of attributes (ai1 , ai2 , . . . aiq ) of records in relational
schema rsj , if a record r = (v1, . . . , vq) satisfies ψ and is
obtained by projection of a record r′ = (v′1, . . . , v

′
k) with

relational schema rsi, then r′ also satisfies ψ. Similar rea-
soning holds when contains several instances of rsj . Let
RS(ψpost) contain KP instances of relational schema rsj .

Then, we can replace each instance of rnj(xi, . . . xi+q) by
an instance of rni(xi, . . . xi+q, yi+q+1, yi+k), where y

′
is are

new variables addressing values of fields in Ai \Aj . We de-
note by ψpost[rsj/rsi]

the formula ψpost where every instance

of rsj has been replaced this way. Similarly, letting Y =
{yi+q+1, . . . yi+k | i ∈ 1..KP}, we denote by Q′(V ars(ψ)∪Y )
the sentence Q(V ars(ψ)).QY where QY = q1.y1 . . . qnyn is a
sentence where yi’s are all variables of Y , qi’s their quanti-
fiers, and that associates existential quantifiers to variables
of Y appearing in statements of the form rni(. . . ) and uni-
versal quantifiers to variables of Y appearing in statements
of the form ¬rni(. . . ). The weakest precondition for projec-
tion is hence a precondition on D′

1, . . . Di, . . . , D
′
k, given as

wp[Proj]ψpost = Q′(V ars(ψ) ∪ Y ), ψpost[rsj/rsi]

Clearly, as variables are added to increase the number of
fields in relational statements, if ψpost is separated, wp[Proj]ψpost

is also separated.

Lemma A.3 (Weakest precondition for R2R trans-
formations). Let φ be a FO formula, and act be an atomic
action that transforms each record in a dataset into another
record. Then one can effectively compute an FO formula
ψ = wp[act]φ. Moreover, if φ is a separated FO formula,
then ψ is also separated.

Proof. Record to Record Transformation(R2R) con-
verts each record from an input dataset Di to a new record
corresponding to output dataset Dj by applying some lin-
ear transformation. Consider the dataset Dj with relational
schema rsj = (rnj , B). Let ψpost be an FO formula such that
D′

1, . . . Dj , . . . , D
′
k |= ψpost, and whereDj is obtained byR2R

transformation of an input dataset Di with relational schema
rsi(rni, A). Let A = (a1, . . . , ap) and B = (b1, . . . , bq). An
R2R transformation from rsi to rsj is a transformation,
that associates to each records r1 = (v1, . . . vp) with rela-
tional schema rsi, where vk is the value of attribute ak,
a record r2 = (w1, . . . wq) with relational schema rs2 such
that every wj is the value of attribute bj obtained as a
combination of values v1, . . . vp. If v1, . . . vp are numerical
values then each wj is a linear combination of the form
wj = kj,1v1 + kj,2v2 + kj,pvp + kj . where k, k1, . . . , kp are
constant values. This type of transformation allows to define
mean values, sums of values in fields, etc...

Let ψpost constrain values of variables W = w1, . . . wh.
Variables inW depict values of attributes b1, . . . , bq in records
ofDj (i.e. they appear in a subformula of the form rnj(w1, . . . wq).
Let Att(wi) denote the attribute of variable wi. We assume
that the variables used under the scope of two subformulas
of the form rn2(w1, . . . wq) and rn2(w

′
1, . . . w

′
q) are disjoint,

and that equality of values is achieved through side formu-
las of the form wi = w′

j . Note that even if transformation
f is a record to record transformation, formula ψpost can
address values of more that one record, i.e. be of the form
∃w1, . . . wq, wq+1 . . . w2.q, rnj(w1, . . . wq)∧rnj(wq+1, . . . w2.q)∧
. . . φ. However, every record rnj(w1, . . . wq) is obtained as
transformation of a record of the form rni(v1, . . . vp). Let
Krnj be the number of subformulas of the form
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rnj(wi, . . . wx+q) in ψpost. We denote by ψpost[B/R2R(A)]
the

formula ψpost where every instance of relational schema rsj
i.e., an instance of the form rni(wk.q+1, . . . vk.(q+1)) is re-
placed by an instance rni(vk.p+1, . . . vk.(p+1)) of schema rsi,
and every occurrence of a variable wi used in an instance
of rsj and appearing outside a relation is replaced by the
linear combination of values vj+1 . . . vj+p and constant kj
(where j = ⌊ i

p
⌋) allowing to obtain the value of variable wi.

Hence, the weakest precondition for R2R transformation is a
precondition on D′

1, . . . Di, . . . , D
′
k, given as

wp[R2R]ψpost = ψpost[B/R2R(A)]

One can notice that wp[R2R]ψpost simply replaces atoms
in a separated formula by other atoms, over new sets of
variables. However, this transformation replaces a univer-
sally (resp. existentially) quantified block of variables by a
new universally (resp. existentially) quantified block, which
preserves vacuity of intersection of existential and universal
variables. Hence, if ψpost is separated, then wp[R2R]ψpost is
also separated. �

Lemma A.4 (Weakest precondition for Selection
of records). Let φ be a FO formula, and act be an atomic
action that selects records that satisfy a predicate P from
datasets. Then one can effectively compute an FO formula
ψ = wp[act]φ. Moreover, if φ and P are separated FO for-
mulas, then ψ is also separated.

Proof. Let D′
1, . . . D

′
j , . . . D

′
k |= ψpost, and let D′

j be a
dataset with relational schema rs(rn,A) obtained by selec-
tion of records from an input dataset Di with relational
schema rs(rn,A). One can notice that selection keeps the
same relational schema, and in particular the same set of
attributes A = (a1, . . . ak). We will assume that selected
records are records that satisfy some predicate P (v1, . . . vk)
that constrain the values of a record (but do not address
properties of two or more records with relational schema rs).
That is, the record selected from Di by P are records that
satisfy ψsel = ∃v1, . . . vk, rn(v1, . . . vp) ∧ P (v1, . . . , vk).

Formula ψpost is a formula of the form Q(V ars(ψpost)), φ.
It contains Krn subformulas of the form rn(wi, . . . wi+k) or
¬rn(wi, . . . , wi+k) and, as for R2R transformation, we as-
sume without loss of generality that these subformulas are
over disjoint sets of variables. Let φrn,1, . . . φrn,Krn be the
subformulas of φ addressing tuples with relational schemas in
rs. For i ∈ 1..Krn, we let φ

P
rn,i denote the formula rn(wi, . . . wi+k)∧

P (wi, . . . wi+k) if φrn,i is in positive form and
¬(rn(wi, . . . wi+k) ∧ P (wi, . . . wi+k)) otherwise. Last, let us
denote by φ[{φrn,i}|{φP

rn,i}]
the formula where every {φrn,i} is

replaced by {φrn,i}P . The weakest precondition onD′
1, . . . Di, . . . , D

′
k

for a selection operation with predicate P is defined as

wp[Selection(ψsel)]ψpost =
Q(V ars(ψpost)), φ[{phirn,i}|{phiPrn,i}]

One can notice that this weakest precondition is a rather
syntactic transformation, that replaces atoms of the form
rn(x1, . . . xk) by rn(x1, . . . xk) ∧ P (x1, . . . xk). If x1, . . . , xk

are all existentially quantified variables (resp. all universally
quantified variables in ψpost, then they remain existentially
(resp universally quantified). Hence, if ψpost is separated,
then wp[Selection(ψsel)]ψpost is also separated.

�

Lemma A.5 (Weakest precondition for field addi-
tion). Let φ be a FO formula, and act be an atomic action
that adds new fields to a dataset. Then one can effectively
compute an FO formula ψ = wp[act]φ. Moreover, if φ is a
separated FO formulas, then ψ is also separated.

Proof. The Field Addition action adds an extra field
to an existing relational schema, and populates this field.
This transformation models entry of new information by
users for each record in a dataset (for instance a tagging
operation). Let D′

1, . . . D
′
j , . . . D

′
k |= ψpost, and let D′

j be the
modified dataset with relational schema rs(rn,A). We let Dj

be a dataset over relational schema rsj = (rnj , Aj), where
Aj = (a1, . . . , ap). As Dj is obtained by adding a field to
Di, we have Ai = (a1, . . . ap−1). We assume that constrains
on possible values of new fields are provided by a predicate
Padd(v1, . . . vp) that is true if, value vp is a legal value for
field ap if a1, . . . ap−1 take values v1, . . . vp (if the value of
field ap can be any value in its domain, this predicate is
simply true). Let Kfld be the number of subformulas of the
form rnj(...) or ¬rn(...) in ψpost (again these subformulas
are over disjoint variables). Formula ψpost is hence a formula
over variables W = V ars(φpost) that contain at least a set of
variables w1, . . . wp, wp+1 . . . wKfld.p appearing in relational
subformulas. ψpost is of the form Q(V ars(ψpost)), φ, where φ
is a boolean combination of relational statements and compar-
isons of field values. Here, we can transform φ over variables
W into another formula φ[rnj |rni], where every relation state-

ment of the form rnj(wk, . . . , wp+k) is replaced by a subfor-
mula rni(wk, . . . wp+k−1)∧Padd(wk, . . . wp+k) in positive sub-
formulas, and by a subformula of the form ¬(rni(wk, . . . wp+k−1)∧
Padd(wk, . . . wp+k−1) otherwise.

The weakest precondition for the addition of a field ap
hence becomes:

wp[FA(ap)]ψpost : Q(V ars(ψpost)), φ[rnj |rni]

Let us assume that ψpost is separated. Then, as for he
selection case, wp[FA(ap)]ψpost performs a syntactic replace-
ment of a separated atom rnj(wk, . . . , wp+k) by a conjunction
of separated atoms rni(wk, . . . wp+k−1) ∧ Padd(wk, . . . wp+k).
Hence wp[FA(ap)]ψpost is also separated. �

Lemma A.6 (Weakest precondition for field en-
largement). Let φ be a FO formula, and act be an atomic
action that selects records that adds imprecision to the con-
tents of a field in dataset. Then one can effectively compute
an FO formula ψ = wp[act]φ. Moreover, if φ and P are
separated FO formulas, then ψ is also separated.

Proof. Enlargement of field is used to model the fact
that users answers are sometimes subject to imprecision. The
effect of imprecision is to replace a value in some field of a
particular dataset with continuous domain by another value
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that is close to the original value, i.e. at some distance δ. Let
D′

j be an output dataset with relational schema rs(rn,A)
where A = (a1, . . . , ap), and obtained by making a particular
field aj in an input dataset Di with the same relational
schema imprecise. Enlargement of field function transforms
every input record r1 = (v1, . . . vj , . . . , vp) where each vi is
the value of ai to new record r2 = (v1, . . . v

′
j , . . . , wp) such

that vj ∈ [vj − δ, vj + δ] ∩ Dom(aj). One can notice that
enlargement preserves the relational schema of input dataset
Di.

Let ψpost be a FO property over a set of variables W
and let D′

1, . . . D
′
j . . . D

′
k |= ψpost. If Krn is the number of

subformulas of the form rn(x1, . . . xp) ∈ D′
j , then we can

define ψpost as a formula over V = W ∪ Y where W =
w1, . . . wp, wp+1 . . . wKrn.p is the set of variables used in these
relational statements and Y the other variables. ψpost is hence
of the form ψpost = Q(V ), φpost.

The weakest precondition required so thatD′
1, . . . D

′
j . . . D

′
k |=

ψpost is a condition on values of variables in W such that,
even after adding some imprecision to values of variables
in set Wimp = wj , wj+p, . . . w(Krn−1).p+j ψpost still holds.
The weakest precondition hence includes the amount of
imprecision on each variable in Wimp, and can be mod-
eled by adding variables X = {x1, . . . xKrn} with domain
[−δ,+δ] to existentially quantified variables. Note that adding
imprecision to an universally quantified variables v is not
needed, as the considered properties should hold for all
possible values of v in its domain. Considering an expres-
sion of the form expr ::= k1.w1 + k2.w2 . . . kpwp + k, the
expression expr[vj/v

′
j + xj ] is obtained by replacing exis-

tentially quantified variable vj by (v′j + xj) in expr. For a
subformula of the form φ = expr1 ◃▹ expr2, where expr1
contains a variable vj+n.p and expr2 contains a variable
vj+m.p, we denote by φimp = expr1[vj+n.p/vj+n.p+xj+n.p]

◃▹

expr2[vj+n.p/vj+n.p+xj+n.p]
the formula where each occurrence

of imprecise variable vj+n.p is replaced by vj+n.p+xj+n.p. For
a subformula of the from φ = rn(v1, . . . vj , . . . vk) where vj is
an existential variable corresponding to the enlarged field aj ,
φimp = rn(v1, . . . vj + xj , . . . vk). For formulas containing no
existentially quantified enlarged variables, φimp = φ. Last,
for formulas that are boolean combinations of subformulas
φ1, φ2, φ

imp is the formula obtained as a boolean combination
of φimp

1 and φimp
2 .

As we need to introduce imprecision through new variables,
we replace every statement of the form ∃wi, φ by a statement
of the form ∃w′

i, ∃xi, φ, and letting Q(V )||X denote the prefix
obtained by replacement of every substring ∃wi, by a string
∃wi, ∃xi in Q(V ) and expression using We can now define
the weakest precondition for ψpost that has to be satisfied by
D′

1, . . . Di, . . . D
′
k when enlarging field aj as

wp[Enlargementδ]ψpost = Q(V )||X,φimp
post

One can notice that if φpost is separated (resp. in BSR frag-
ment of FO), then wp[Enlargementδ]ψpost is also separated
(resp. in BSR fragment). �

Lemma A.7 (Weakest precondition for unions of
datasets). Let φ be a FO formula, and act be an atomic
action that merges datasets with common relational schema.
Then one can effectively compute an FO formula ψ = wp[act]φ.
Moreover, if φ and P are separated FO formulas, then ψ is
also separated.

Proof. Union operations merge datasets that have same
relational schema. It takes data from different input datasets
D1, . . . Dq with the same relational schema rs = (rn,A),
where A = (a1, . . . , ap) and produces an output dataset Da

with relational schema rs.
Let us assume that D′

1, . . . Da, . . . D
′
k |= ψpost. We want to

compute the weakest preconditions onD′
1, . . . , D1, . . . Dq, . . . D

′
k.

As usual, ψpost is an FO formula of the form Q(V ), φpost.
Now, every relation rn(wi, wi+p) ∈ Da mentioned in the
formula has to appear in a dataset Di, i ∈ 1..q, that can
be chosen when interpreting the formula. Similarly, if ψpost

contains a statement of the form ¬rn(wi, wi+p) ∈ Da, then
rn(wi, wi+p) should not appear in any dataset Di, i ∈ 1..q.
Formula ψpost holds for dataset Da iff one can build a map
aff : 1..KU → 1..q that associates to every occurrence
of relation rn a dataset from which a record instantiating
relation rn(wi, . . . wi+p) originates. Let Assign(KU, q) de-
note the set of all possible assignments for the KU relations
in ψpost. For a particular assignment aff ∈ Assign(KU, q)

we can write a formula φaff
post where the mth occurrence of

rn(wi, . . . , wi+p) ∈ Da is replaced by rn(wi, . . . , wi+p) ∈
Daff(m), and every occurrence of ¬rn(wi, . . . , wi+p) ∈ Da is
replaced by the conjunction

∧
¬rn(wi, . . . , wi+p) ∈ Di.

D′
1, . . . Da, . . . D

′
k |= ψpost iff one can find aff ∈ Assign(KU, k)

such that D′
1, . . . , D1, . . . Dq, . . . D

′
k |= φaff

post. Note that here,
choices of records in different Dj ’s are not independent (for
some contents of input datasets, affecting rn(w1, . . . wp) to
D1 can impose to search a matching record for rn(wp+1, w2.p)
in another dataset).

Hence the weakest precondition onD′
1, . . . , D1, . . . Dq, . . . D

′
k

such that ψpost hold onD′
1, . . . Da, . . . D

′
k after mergingD1, . . . Dq

is

wp[Union]ψpost = Q(V ),
∨

aff∈Assign(KU,k)

ψaff
post

As variables used in atoms of wp[Union]ψpost do not
change w.r.t the original formula, if ψpost is separated, then
all atoms in wp[Union]ψpost also separate universally and
existentially quantified variables. �

Lemma A.8 (Weakest precondition for joins). Let φ
be a FO formula, and act be an atomic action that performs a
join between two datasets over a common field. Then one can
effectively compute an FO formula ψ = wp[act]φ. Moreover, if
φ and P are separated FO formulas, then ψ is also separated.

Proof. Join operations merge datasets with different
relational schemas. For simplicity, we consider that joins
apply to a pair of input datasets D1, D2 with respective
relational schemas rs1 = (rn1, A1) and rs2 = (rn2, A2) to
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produce a output dataset D′
a with relational schema rsa =

(rna, B = A1 ∪ A2). We also assume that joins operate on
equality of a single common field ai. Without loss of generality,
letting A1 = (a1, ap1) and A2 = (a′1, . . . a

′
p2 , we consider that

jointure on a common field is represented by ap1 in rs1 and by
a′1 in rs2. That is, if a pair of records r1 = rn1(v1, . . . vp1) and
r2 = rn2(u1, . . . up2) have common value on their common
field, vn is the value of ai in r1 and um the value of ai in
r2 then Da will contain a record r = (v1, . . . vp, u2, . . . up2).
Hence, letting D′

a, D
′
3, . . . D

′
k be a set of datasets that satisfy

a formula ψpost, the weakest precondition that has to be
computed is a property of D1, D2, D

′
3, . . . D

′
k.

Formula ψpost is an FO formula over a set of variables
V = W ∪ X, where W are variables involved in relational
statements of the form in the form rna(wi, . . . wi + p) or
¬rna(w1, . . . wp). Hence ψpost is of the formQ(V ), φpost. Now,
every positive statement of the from rna(wi, wi+p1+p2−1)
mentioned in the formula originates from a pair of records
in D1, D2 with common value on ai. Hence, every state-
ment of the form rna(wi, . . . wi+p1+p2−1) holds for Da iff
the statements φEQ,i = ∃xi, rn1(wi, . . . wi+p1−1) ∈ D1 ∧
rn2(xi, wi+p1 . . . wi+p1+p2−1) ∈ D2∧wi+p1−1 = xi, where xi
is a new variable that does not already appear in V ars(ψpost

holds. Similarly, for relational statement in negative form
¬rna(wi, . . . wi+p1+p2−1) holds forDa iff the statement φ̄EQ,i =
∀xi,¬(rn1(wi, . . . wi+p1−1) ∈ D1∧rn2(xi, wi+p1 . . . wi+p1+p2−1) ∈
D2 ∧ wi+p1−1 = xi), where xi is a new variable that does
not already appear in V ars(ψpost holds. Let ψpost[Da|D1,D2]

be the formula obtained by replacing every statement of
the form rna(wi . . . ) by φEQ,i, and every statement of the
form ¬rna(wi . . . ) by φ̄EQ,i. As xi’s are fresh new variables,
we can easily convert this formula into a prenex formula
ψprenex

post[Da|D1,D2] of the form Q(V ).∃x1, xk∀xk+1, . . . xk+mφ,

where x1, . . . xk are fresh variables originating from positive
relational statements and xk+1, . . . xk+m originate from nega-
tive ones. Hence, the weakest precondition on D1, D2, D

′
3, . . .

for ψpost to hold after a join is:

wp[Join]ψpost = ψprenex
post[Da|D1,D2]

One can immediately notice that if ψpost is separated, then
wp[Join]ψpost is in separated form. As ψpost is separated, all
atoms either address properties of existentially quantified xi’s
or properties of universally quantified yi’s. Hence, replacing
a statement of the form rn(x1, . . . xk) on existential variables
with a statement of the from rn(x1, . . . xq)∧rn(xq+1 . . . xk)∧
x1 = xq+1 in which all atoms address existentially quantified
variables. For atoms with universally quantified variables, one
can notice that ψpost can be rewritten into an equivalent BSR

formula. Hence, a formula of the form ∃
→
Z, ∀x,w, yrn(x,w, y)

holds iff the precondition ∃
→
Z, ∀x,w, y, rn1(x,w) ∧ rn2(w, y),

which remains separated. �

Lemma A.9 (Weakest precondition for record in-
sertion). Let φ be a FO formula, and act be an atomic

action that inserts a new record is a dataset. Then one can ef-
fectively compute an FO formula ψ = wp[act]φ. Moreover, if
φ and P are separated FO formulas, then ψ is also separated.

Proof. Record insertion consists in adding a record
to an existing dataset. Let D′

j be a dataset with relational
schema rs = (rn,A) with A = (a1, . . . ap), and assume that
D′

j is obtained after adding a record to an input dataset
Di with the same relational schema. Let D′

1, . . . D
′
j . . . D

′
k |=

ψpost. When a set of records R selected from D′
i’s serves as a

witness for the truth of ψpost after an insertion, then at most
one of these records or the form r = rn(v1, . . . , vp) can be
the newly inserted tuple. That is, D′

1, . . . D
′
j . . . D

′
k |= ψpost

iff D′
1, . . . (Di ⊎ {r}) . . . D′

k |= ψpost. It means that either
D′

1, . . . Di . . . D
′
k |= ψpost or

D′
1, . . . Di . . . D

′
k ̸|= ψpost ∧ D′

1, . . . Di ⊎ {r} . . . D′
k |= ψpost

Let ψpost be of the form Q(V ), φ, with V =W ∪ Y , and W
be the variables appearing in relational clauses of the from
rn(wi, . . . wi+p). Let us assume that φ is a quantifier free
formula in disjunctive normal form. In other words, φ is of
the from φ =

∨
k=1..K

φk = atk,1(V ) ∧ · · · ∧ atk,mk(V ), where

each atk,k′(V ) is an atom involving a subset of variables
in V . If Q(V ), φk is separated, then one can compute an

equivalent formula in BSR form of the form ∃
−→
V 1, ∀

−→
V 2φ

′
k.

This formula is satisfied if one can find an assignment of
variables in V1 such that for every assignment of variables
in V2, φ

′
k evaluates to true when replacing variables by

their value. All existential variables are separated. For exis-
tential variables under the scope of a relational statement
rn(wi, . . . wi+p). Let AK be the number of relational state-
ments of the form rn(..) ∈ D′

j . One can hence choose, for each
statement rn(wi, . . . wi+p) whether variables wi, . . . wi+p are
assigned values freshly introduced by the newly created
record or not. In the first case, one can relax constraints
on wi, . . . wi+p in the precondition, i.e., remove all atoms of
the form rn(wi, . . . wi+p) or P(X) where X ⊆ {wi, . . . wi+p}
and eliminate the variables from arithmetic predicates: for a
predicate P (wi, . . . wi+p, x, y, z, ...) that imposes linear con-
straints on the values of variables, one can use elimination
techniques such as Fourier-Motzkin to compute a new predi-
cate P ′ on x, y, z.... We hence have 2AK possible assignments.
For every possible assignment AssX , we can define the set VX

of variables that can be eliminated, and we can compute the
formula φk\AssX that eliminates relational statements match-
ing the newly inserted record according to AssX from φk,
and computes new predicates. Hence, under the assumption
that AssX is a correct assignment, D′

1, . . . D
′
j . . . D

′
k |= φk iff

D′
1, . . . Di . . . D

′
k |= φk\AssX . For ψpost to hold after insertion,

there must be at least a correct assignment.
The precondition for ψpost that has to be satisfied by

D′
1, . . . Di . . . D

′
k hence becomes : wp[Additive]ψpost =

k=1..K
∨∨

1..2AK

∃V1 \ VX∀V2φk\AssX

One can notice that if ψpost is separated, the resulting
formula is still separated. �
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Lemma A.10 (Weakest precondition for record
deletion). Let φ be a FO formula, and act be an atomic
action that removes a record from a dataset. Then one can
effectively compute an FO formula ψ = wp[act]φ. Moreover,
if φ is a separated FO formulas, then ψ is also separated.

Proof. Record deletion removes a record from an exist-
ing dataset. Let Dj be a dataset with relational schema rs =
(rn,A) with A = (a1, . . . ap) such that D′

1, . . . D
′
j . . . D

′
k |=

ψpost and is obtained after deletion a record from an in-
put dataset Di with the same relational schema. Let r =
rn(v1, . . . vp) be the tuple removed from Di. We can rewrite
the statement Dj |= ψpost as Di \ {r} |= ψpost. Now, for
every possible instance of record r there are two possibilities:
either presence of r does not falsify ψpost, or r is a record
that falsifies ψpost if it appears in dataset Di.

In the first case, we have that Di |= ψ. In the second case,
we have that D′

j ⊎ {r} |= ¬ψ. Formula ¬ψ is a separated
formula obtained in the usual way by inverting existential
and universal quantifiers in the prefix of ψ and negation of
atoms in the matrix. As existence of record r is required
we have that r necessarily matches (at least) one of the
positive relational statements rn(wi, ..wi+p) in ¬ψ. As for
record additions, we can build a formula ¬ψX in BSR form
that should hold under the assumption that assignment X
assigns the field values of r to some relational statements of
¬ψ. More precisely, ¬ψX is the formula obtained by removing
relational statements assigned to r in the BSR form computed
from ̸ ψ. The weakest precondition for deletion that has
to be satisfied by D′

1, . . . Di . . . D
′
k becomes : wp[Del]ψ =

Q(V ), ψ ∧
∧

X∈Ass

Q(V \)¬ψX Notice that if ψ is in separated

from, then wp[Del]ψ is also in separated form. �

Lemma A.11 (Weakest precondition for datasets
decomposition). Let φ be a FO formula, and act be an
atomic action that decomposes a dataset into smaller datasets.
Then one can effectively compute an FO formula ψ = wp[act]φ.
Moreover, if φ and P are separated FO formulas, then ψ is
also separated.

Proof. The Decomposition of a task is a higher or-
der operation to split a task into several orchestrated sub-
tasks. In particular, this operation splits an input dataset
Di with relational schema rs = (rn,A) into a set of datasets
D′

1, . . . D
′
l. Each D′

j , j ∈ 1..l is obtained through applica-
tion of a function fj to the input dataset Di. The rela-
tional schemas rsj = (rnj , Aj) of Dj ’s need not be the same
as rs. Property ψ is of the form ψ = Q(V ), φ, and such
that φ contains positive relational statement of the form
rnj(w1..w|Aj |) ∈ D′

j , and negative relational statements of

the from ¬rnj(w1..w|Aj |) ∈ D′
j . As we have that D′

j is a

dataset obtained as a function fj(Di) we can rewrite ψ as
an equivalent formula ψ2 = Q(V ), φ2, where φ2 is obtained
by replacing every instance of rnj(wi..wi+|Aj |−1) ∈ D′

j by

rnj(wi..wi+|Aj |−1) ∈ fj(Di) in formula φ. Let us assume
that f1, . . . fl are simply selections of records according to
predicates P1, . . . Pl that form a partition of D. Let p = |A|.

Statement rn(wi, wi+p) ∈ fj(Di) holds iff there exists a
record r = (v1, . . . vp) in Di that is a solution for formula
Pj(wi, . . . wi+p). Equivalently, a positive statement of the
from rnj(wk, . . . wk+|Aj |−1) ∈ fj(Di) can be replaced by

rnj(vk, . . . vk+|Ai|−1) ∈ Di∧Pj(wk, . . . wk+|Aj |−1), and a neg-

ative statement of the form ¬rnj(vk, . . . vk+|Aj |−1) ∈ fj(Di)

can be replaced by ¬
(
rnj(vk, . . . vk+|Ai|−1) ∈ Di ∧ Pj(wk, . . . wk+|Aj |−1)

)
.

Letting φ3 be the formula φ2 where every relational statement
has been replaced this way, and letting Q′(V ) denote the
prefix in which every instance of wk, . . . wk+|Aj |−1 is replaced
by fresh variables vk, . . . vk+|Aj |−1, the weakest precondition

needed such that D′
1, . . . D1, . . . Dl . . . D

′
k |= ψ is hence

wp[Decomp]ψ = Q′(V ), φ3

If one function fj is not simply a selection but also com-
putes new attributes for records in Dj from values attached
to variables vk, . . . vk+|Ai|−1 then one can also replace
rnj(wk, . . . wk+|Aj |−1) by another FO formula following the
lines of R2R replacement. We leave details of the construction
to readers.

Let us illustrate it with a small example. Let D′
1, D

′
2 |=

∃x, y, z, t, rn1(x, y) ∈ D′
1 ∧ rn2(z, t) ∈ D′

2 ∧ y = z, with
rs1 = (rn1, {a1, a2} rs2 = (rn2, {a3, a4}, and Dom(a1) =
dom(a2) = dom(a3) = dom(a4) = R. Let us assume that D′

1

and D′
2 are obtained by decomposition of an input dataset Di

with relational schema rsi = (rni, {b1, b2}, through selection
with selection predicates P1 ::= b1 < 10 and P2 ::= b1 < b2.
Then, wp[Decomp]ψ is the formula

Di |= ∃v1, v2, z, t, rn1(v1, v2) ∈ Di ∧ v1 < 10
∧rn2(v3, v4) ∈ Di ∧ v3 < v4 ∧ v2 = v3

Data distribution performed by splits is mainly a gen-
eralization of selection. Indeed if ψpost is a separated for-
mula, then all atoms in wp[Decomp]ψ are separated, and
wp[Decomp]ψ a separated formula. �

Now that we have defined weakest preconditions for ba-
sic operation that manipulate data , we can formalize how
these conditions are associated to steps along a run of a
complex workflow. Let ρ = C0 . . . Cn be a run, that ends in
a configuration where a node nk with input data Dk can be
split. We will define inductively a sequence WP0 . . .WPn−1

of conditions to be met at each stage such that condition
Dn = ∅ is met at step n (hence leading to an unavoidable
deadlock). If a condition WPi = D′

1, . . . D
′
m |= ψ has to be

met when reaching a configuration Ci, then the condition
associated with WPi−1 is the weakest precondition such that
WPi holds. Depending on the nature of the move Ci−1 −→
Ci, WPi−1 is of the form D′

1, . . . D
′
q |= ψi−1, where ψi−1

is computed inductively as wp[op1](wp[op2](. . . wp[opk]ψi)),
and op1, . . . opk is the sequence of operations used to trans-
form datasets D1, Dq in Ci−1 into D′

1, . . . D
′
m in Ci. The

weakest precondition for move from Ci−1 to Ci is hence
D′

1, . . . D
′
m |= wp[op1](wp[op2](. . . wp[opk]ψi)).

For automatic actions executions, the operation used is a
combination of selection, projection, R2R transformations
and the weakest precondition follows the rules defined above.
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For splitting, the operation used is a decomposition of a partic-
ular dataset according to a set of functions f1, . . . fk, to obtain
new datasets and new data assignments. IfWPi is of the form
D1, . . . Dm and datasets Dn, . . . Dn+k are obtained by split-
ting a node and its input data D then WPi−1 is of the form
D1, Dk−1, D,Dn+k+1 |= wp[decomp]ψi. For user actions that
are input or deletions, one transforms a single datasetsDj and
WPi−1 is of the form D1, . . . D

′
j , . . . Dm |= ℘[add/remove]ψi.

Last, moves that simply perform user assignments do not
change the nature of conditions that have to be met by a set
of datasets. Let D1, Dm |= ψ be the condition that has to be
met at step k of a run ρ and let the move from Ck−1 be an
user assignment. Computing the weakest preconditions for
addition of records calls for the use of an elimination step.
Let ψ be an FO formula, with equality only. This formula
can encode properties of the form x + 1 < y as boolean
relations of the form Plus1− LessThan(x, y). More gener-
ally, an inequality of the form x + k < y can be encoded
as a boolean statement Plusk − Lessthan(x, y). Conversely,
one can syntactically transform every expression of the form
Plusk − Lessthan(x, y) into an inequality x+ k < y. Now,
when eliminating a variable y from a system of inequalities
with equations of the form x+ k < y and y+ k′ < z one may
obtain an inequality of the form x+ (k + k′) < z. That is, if
one converts again this inequality into a boolean assertion,
one needs to use one more binary predicate. Hence, at every
weakest precondition computation, the number of side arith-
metic predicates in use increases. This is not a problem in
our case however, as a finite number of new predicates is pro-
duced at each step, and the number of weakest precondition
to compute is also bounded.

Lemma A.12. Let ρ = C0 . . . Cn be a path of the execution
tree, where Cn is a configuration that allows for the split of a
particular dataset Dn. Let Wn ::= Dn = ∅, and W0, . . .Wn−1

be the weakest preconditions computed for each step of ρ.
Then, the number of side arithmetic predicates used to define
WP0, . . .WPn is bounded.

Proof. The elimination of variables while deriving the
weakest precondition is carried using Fourier-Motzkin elimina-
tion technique (see appendix B.2). During each step, running
an elimination step of one variable over m number of linear
inequalities results into at most m2/4 = θ(m2) linear inequal-
ities in worst case. If we remove k number of variables, the
algorithm must perform k step, hence the worst case the

algorithm takes is θ(m2k). FME may result into redundant
set of linear inequalities. The detection and elimination of
redundant variables is trivial and can be done using principle
of linear programming. The scope of removal of redundant
linear inequalities is beyond the scope of this paper. Now, in
context to our problem, the total number of weakest precon-
dition that needs to be calculated is n. Let mi be number
of linear inequalities and ki denote the number of variables
that need to be eliminated for the derivation of each wi in
ρ. Hence, in the worst case the total number of new linear

inequalities becomes
∑n

i=1m
2ki

i . Now these inequalities can

be expressed in terms of boolean assertion to get the predi-
cates. Henceforth, as the number of new linear inequalities is
bounded, we infer that the number of side predicate is also
bounded. �

Lemma A.13. Let ρ = C0 . . . Cn be a path of the execu-
tion tree, where Cn is a configuration that allows for the
split of a particular dataset DN . Let WPn ::= Dn = ∅, and
WP0, . . .WPn−1 be the weakest preconditions computed back-
wards for each step of ρ. Then, every WPj , j ∈ 1..n− 1 is a
weakest precondition of form WPj = D1, . . . Dmj |= ψj where
ψj is a separated FO formula.

Proof. The proof follows from the lemma 2. In a run ρ,
every move mi transform a set of input data to output data
using the transform function fi. Let vn be the split node in
the execution tree resembling the configure Cn. We compute
the weakest precondition on the backward path from the node
vn to the root node v0 as vn → vn−1 → v0. At each node vj of
the execution, there exist a function fj which transform the
input dataset D1, . . . Dmj to the corresponding set of output
dataset. As per lemma 2, for every move mi, we can compute
an effective weakest precondition wp[mi]ψposti . The weakest
precondition is a FO formula ψj that holds on input dataset
D1, . . . , Dmj such that after execution of the function fj , the
output dataset must satisfy the given post condition ψpostj .
Hence, for every move mj there exist a weakest precondition
WPj such that D1, . . . Dmj |= ψj . �

With all the above lemmas, we have shown that the weakest
precondition for an FO formula and actions that are projec-
tions, deletion or insertion of records, field addition, splits
of datasets, joins, atomic execution of tasks transforming
one record or all records, application of linear transformation
of records. All actions occurring during the execution of a
complex workflows can be expressed as a sequence of all these
basic transformation of datasets (for instance, insertion of
imprecise data can be seen as an insertion of a record followed
by a linear transformation. As all weakest preconditions for
basic transforms of dataset are FO formulas, and as separated
formulas also give separated weakest preconditions, we obtain
our result. �

B ADDITIONAL MATERIAL

For the convenience of readers, this section provides ad-
ditional material on Symbolic execution trees and on the
elimination technique (Fourier-Motzkin) used to compute
new predicates on record.

B.1 Symbolic Execution Tree

Remind that a symbolic execution tree is a tree (V,E) where
every vertex represents a set of configurations of a complex
workflow that only differ w.r.t. their data assignment, and
E represents moves among these configurations (user assign-
ments, task executions, refinements). Figure 3 represents a
symbolic execution tree. Vertices of the tree are represented
by circles. Deadlocked vertices are represented by dotted
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v3 Potential Deadlock Node

v8 Deadlocked Node

v9 Terminated Node

Figure 3: Symbolic Execution Tree

circles, terminated vertices by dotted-dashed circles, and po-
tential deadlocks by circles with dashed lines. Two vertices
vi, vj are connected by an arrow iff there exists an action
(user assignment, task execution, complex task refinement)
that transforms the configuration represented by vertex vi
into another configuration represented by vertex vj .

If the execution tree of a complex workflow contains a dead-
locked vertex, then obviously all executions of the workflow
do not terminate, as there is a path from the initial config-
uration to a deadlocked situation, and that the sequence of
actions represented by this path cannot be prevented by the
contents of data forged during the execution.

If the execution tree contains a potential deadlock Vi =
(Wi, Assi,DassSi ), then the workflow part Wi of this ver-
tex contains a split node n, minimal in the workflow. To
be able to split and distribute data, Dassi(n), the data
input to n should not contain an empty dataset. Other-
wise, an execution starting from a configuration of the form
Ci = (Wi, Assi,Dassi) will eventually deadlock. On the Fig-
ure, the property to check is that no execution ending in a
configuration with signature v3 and such that dataset D3 is
empty is accessible. In this example, if there is no way to
derive preconditions for Din such that D3 = ∅, then the split
operation can be done safely, and all executions stating from
v3 terminate.

B.2 Elimination with Fourier-Motzkin

The Fourier-Motzkin Elimination (FME) technique is a stan-
dard algorithm to eliminate variables and solve systems of
linear inequalities. Let X = {x1, . . . xk} be a set of vari-
ables. A system of linear inequalities over X is an expres-
sion of γ ::= A.X ≤ B, i.e. a collection of inequalities of
the form a1.x1 + a2.x2 + . . . ak.xk ≤ b. Given a variable xi,
the FME technique computes a new system of inequalities

γ′ ::= A′.X ′ ≤ B′ over X ′ = X \ {xi}, and such that γ has a
solution if and only if γ′ has a solution. The algorithm works
in three steps:
Step 1: Normalize all inequalities in γ, i.e. rewrite every
inequality containing xi of the form

a1.x1 + a2.x2 + · · ·+ ai.xi + · · ·+ ak.xk ≤ b

into a new inequality of the form

xi ≤
b

ai
− a1
ai
.x1 −

a2
ai
.x2 − · · · − ak

ai
.xk

or
xi ≥

b

ai
− a1
ai
.x1 −

a2
ai
.x2 − · · · − ak

ai
.xk

Step 2: separate the obtained system into γ+, γ−, γ∅, where
γ+ contains all inequalities of the form

xi ≥ f(x1, . . . xi−1, xi+1, . . . . . . xk),

γ− contains all inequalities of the form

xi ≤ f(x1, . . . xi−1, xi+1, . . . . . . xk),

and γ∅ all other inequalities that do not refer to xi.
Step 3: create a new system of inequalities that contains γ∅

and, for each pair of inequalities

xi ≤ f1(x1, . . . xi−1, xi+1, . . . , xk) ∈ γ−

and
xi ≥ f2(x1, . . . xi−1, xi+1, . . . , xk) ∈ γ+,

a fresh inequality of the form

f2(x1, . . . xi−1, xi+1, . . . , xk) ≤ f1(x1, . . . xi−1, xi+1, . . . , xk)

The new system obtained is still a system of linear inequal-
ities. It does not contain variable xi and is equivalent to the
original system.
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