
Compatibility of Data-Centric Web Services

Benôıt Masson1, Löıc Hélouët2, and Albert Benveniste2

1 Epitech Rennes, 12 square Vercingtorix, 35000 Rennes, France
2 INRIA Rennes, campus de Beaulieu, 35042 Rennes Cedex, France,

benoit.masson@epitech.eu,loic.helouet,albert.benveniste@inria.fr

Abstract. Before using a service in a composite framework, designers
must ensure that it is compatible with the needs of the application.
The inputs and outputs must comply with the intended ranges of data
in the composite framework, and the service must eventually return a
value. This paper addresses compatibility for modules described with
document-based workflow nets, that can depict the semantics of active
XML (AXML) systems, a language for Web Services design. The behav-
ior of non-recursive AXML specifications with finite data can be repre-
sented as Docnets, i.e., finite labeled Petri nets carrying information on
document types they transform. Compatibility of docnet modules is char-
acterized in terms of a decidable reachability property in the underlying
net. Finally, we show the distributivity of compatibility over composition,
which allows a faster semi-decision algorithm to verify compatibility be-
tween sets of modules.

Keywords: Data-Centric Web Services; Composition; Petri Nets

1 Introduction

E-business and supply chain management involve a combination of widely dis-
tributed workflow systems and data/information management. According to [13],
these systems can be viewed as workflows, or as information systems. In the
workflow-based perspective, process is emphasized. Web services and their or-
chestrations are now considered an infrastructure of choice for managing business
processes and workflow activities over the Web [12]. bpel has become the in-
dustrial standard for specifying orchestrations, and formalisms such as Orc [10]
have also been proposed. In the information-based perspective, processes are
considered as operations that are triggered as a result of information changes.
Information-centric systems typically rely on database-oriented technologies and
the notion of (semi-structured) document.

Today, technologies in use for these two aspects are mostly separated. The
wide approach [5] was a first attempt to combine them, and was further devel-
oped in [13] to consider process, information, and organization. The notion of
“business artifact” has been proposed at IBM as a framework combining work-
flow and data management [11,8]. Active XML (AXML) [1,2] was proposed as
a framework for document-based workflows. It consists of XML documents with
embedded guarded service calls and offers mechanisms to store and query semi-
structured data distributed over entities called peers. In [3,7] distribution was
explicitly introduced in AXML, thus giving rise to the model Distributed AXML

2 B. Masson, L. Hélouët, A. Benveniste

(DAXML). In DAXML, guards are local to a peer, services can be local or dis-
tant, and in the latter case specified through an interface. This allows to reason
about a DAXML system, either globally, or locally by representing distant ser-
vice calls by their interfaces. However, the notion of interface proposed in [7]
only specifies data exchanged during distant calls. Implementing an interface
then means accepting and returning correct data, but does not guarantee that
a distant call eventually returns a value.

This paper proposes a framework for document-based workflows, i.e., work-
flows that circulate documents and whose transitions are instantiated and guarded
by documents. Transitions of the workflow are guarded service calls and returns
(the pair (call; return) is not atomic). Documents are business processes com-
prising both data and references to the services needed to process the data.
Typically, documents are meant to be semi-structured data of XML type obey-
ing DTDs. However, unlike in the above-mentioned works where the mecha-
nisms of querying documents were explicitly considered, we will abstract away
from any XML-related pattern matching mechanism. We first propose a generic
model called Docnets. These nets are finite Petri nets whose places are typed by
document types, and whose transitions transform documents, or model calls to
distant websites. Docnets can be equipped with a composition operator, which
allows designing the evolution of documents owned by an agent of a system that
offers services to its environment. Such pair of document processing plus envi-
ronment will be called a module. Modules can then be assembled to model the
fact that an agent provides services to another agent. However, such composition
can only occur if the required services (interfaces) and the provided services are
compatible. We show that assuming that the data exchanged between docnet
modules can be typed by a finite set of documents, and that services are not
recursive, compatibility of services and termination of distant calls is decidable,
even for Docnets which may treat an unbounded number of documents.

The paper is organized as follows: Section 2 describes the concepts of active
documents. Then Section 3 introduces Docnets, their properties and two com-
position operators. Sections 4 and 5 propose two notions of compatibility for
docnet modules, and shows that they are decidable. Due to lack of space, proofs
are omitted but can be found in an extended version of this work [9].

2 Distributed active documents

Web Services architectures based on active documents were introduced by [1,2].
The concepts of this framework can be illustrated by the following example.
Consider a website that provides information on current weather in a panel of
cities in the world. This site returns XML-like documents that carry the name of
a city, current temperature and weather, plus a forecast for tomorrow. The main
function of this site is to return current data for a city, so for many clients of the
service, the forecast is useless. Active documents embed references to services
that can be called to extend the data in the document. In our weather website,
the returned value can embed a reference to a new service that can be called by
a client to get the forecast, or simply ignored (this is illustrated in Figure 1).

Compatibility of Data-Centric Web Services 3

<weather>

<city> Paris </city>

<current>

<sky> sunny</sky>

<temp> 24 </temp>

</current>

<forecast>

<sky> sunny </sky>

<temp> 20 </temp>

</forecast>

</weather>

<weather>

<city> Paris </city>

<current>

<sky> sunny</sky>

<temp> 24 </temp>

</current>

<forecast>

<service> www.meteofrance.fr/

getForecast?query=Paris

</service>

</forecast>

</weather>

Fig. 1. A document and an active document returned by a website

A system composed of active documents is distributed over a set of agents.
Each agent possesses local services, and references to services provided by other
agents, called external services. Local services are functions that transform doc-
uments in two phases: first the service is called, and then the service returns.
Calls and returns are guarded — for example, in AXML the guards are expressed
using a fragment of Xpath [2]. Calls and returns modify the document owned
by an agent in a deterministic way. Due to the mechanism of guards, services do
not return immediately after a call, thus, complex workflows can be designed.
In addition to local services, agents possess references to services provided by
other agents, and offer some of their services to the external world. When seen
from a given agent, an external service is simply perceived as a way of mapping
a possible set of input parameters to a possible set of output parameters. Calling
an external service consists in sending data to another agent and waiting for its
answer. Offering a service consists in receiving a new document, transforming it
using some local services, and returning the transformed document to the caller.

In this work, we will abstract away from concrete documents and query
languages and will only assume that checking that a guard is satisfied is an
effective procedure. Our model of active documents is introduced next.

3 Modeling active documents workflows with Petri Nets

We begin with background material on Petri nets. A labeled net (LPN) is a
tuple (P, T, F, L, ℓ) where P is the set of places, T is the set of transitions,
F ⊆ (P × T) ∪ (T × P) is the flow relation seen as a set of (directed) arcs
between places and transitions, L is the set of labels, and ℓ : T → L is the
labeling function. For any node n ∈ P ∪ T , its preset and postset are defined
as •n = {x | (x, n) ∈ F} and n• = {x | (n, x) ∈ F}, respectively. The “state”
of a labeled net is represented by a marking, i.e., a mapping m : P → N ,
where N is the set of non-negative integers. For p ∈ P , the value m(p) is the
number of tokens in place p. For m,m′ two markings and t a transition, say that
firing t from marking m is possible and produces marking m′, denoted m[t〉m′ if
∀p ∈ •t,m(p) ≥ 1 and ifm′(p) = m(p)−1 when p ∈ •t\t•,m′(p) = m(p)+1 when
p ∈ t• \ •t, and m′(p) = m(p) otherwise. A labeled Petri net (LPN) is a tuple
(P, T, F, L, ℓ,m0) where (P, T, F, L, ℓ) is a labeled net and m0 : P → N is the

4 B. Masson, L. Hélouët, A. Benveniste

initial marking. A firing sequence is a bipartite sequence m0, t1,m1, t2,m2, . . .

such that mi−1[ti〉mi. Say that m′ is reachable from m, if there exists a firing
sequence starting from marking m and ending in marking m′.

3.1 Documents and services

Petri nets alone are not sufficient to describe document manipulation. They
just consume and produce untyped tokens. A solution to increase the expressive
power of Petri nets is to add colors to tokens and control flows, but this usually
results in undecidability of many problems. In this paper, we adopt a different
technique. We add types to places (that is places will represent types of docu-
ments), and consider transitions as actions that transform documents. Tokens
in a place represent documents of a type defined by the place.

We assume a (non necessarily finite) set S of services and interfaces names,
and a set of service marks of the form f ! or f? for all f ∈ S. In a document, a
service mark f ! means that service f can be called. Similarly, a service mark f?
means that service f was called and a return is awaited. To simplify the model,
we will assume that every document that our systems manipulate contains at
most one occurrence of each service mark. Note however that the model can be
easily extended to documents carrying a bounded number of service marks.

Let us denote by D all types of documents (this set is not necessarily fi-
nite). We denote by σ : D 7→ 2S×{!,?} the labeling map that associates to every
document type d ∈ D the service marks that appear in this document, i.e., the
service calls and returns that may occur from this document provided guards of
the considered services hold. Additional (unspecified) marked services or infor-
mation may also occur in this document. We assume that D is equipped with a
partial order relation ≤ such that for all d, d′ ∈ D , d ≤ d′ implies σ(d) ⊆ σ(d′).
Two document types d and d′ are called comparable if either d ≤ d′ or d′ ≤ d

holds. We furthermore suppose that it is decidable whether d ≤ d′. For two sets
of document types D,D′, we will say that D ≤ D′ if for every d ∈ D, there
exists d′ ∈ D′ such that d ≤ d′.

A service is a tuple (f c, Gc
f , f

r, Gr
f), where f ∈ S is the name of the service,

f c and f r are the service call and return functions, with Gc
f and Gr

f the cor-
responding guards. Mappings f c, f r : D 7→ D are partial and map document
types to document types, and Gc

f , G
r
f : 2D 7→ {t, f} are boolean predicates over

sets of document types. Write D |= Gc
f (resp. D |= Gr

f) if any set of documents
with types D = {d1, . . . , dk} satisfies Gc

f (resp. Gr
f). We also assume that guard

satisfaction is monotonous w.r.t ≤, i.e., if D |= Gc
f and D ≤ D′, then D′ |= Gc

f .

3.2 Docnets

Definition 1. A docnet is a tuple N = (P, T, F, L, ℓ,m0, S,D, ℓ′) where S ⊆ S
is a finite set of service and interface names, D ⊆ D , L =

(

S×{c, r}
)

, ℓ′ : P 7→
D associates a type to each place of P and (P, T, F, L, ℓ,m0) is a LPN.

Intuitively, places in docnets represent types of documents involving a finite

set of service marks. This is captured by a chain of labeling maps P
ℓ′

→ D
σ
→

2S×{!,?} A token in a place represents an instance of a document of the given

Compatibility of Data-Centric Web Services 5

type. In particular, this document must contain the service marks of the docu-
ment type associated to the place (plus possibly some additional information). A
place can hold any non-negative number of tokens of the referred type. Figure 2
represents a partial docnet. Places are represented by circles, and labeled by the
service marks provided by the σ map. Transitions are represented by rectangles
with labels at their side. The dashed arrows indicate that the net contains more
places and transitions that are not represented. The initial marking is symbolized
by dark circles located in the initially marked places. For the sake of readability,
we will not discuss the role of interfaces immediately and introduce them only
at the end of this section.

f c

e!f !

ec

e!f?

f !

e?f !

e?f?

f c
er

Fig. 2. A well-formed docnet.

As we want docnets to model guarded transformations of documents, we
need to impose some consistency between transitions labeling, places labeling,
and the transformations attached to transitions.

Definition 2 (well-formedness). A docnet N is well-formed iff:

1. Every transition labeled f c (resp. f r) possesses in its preset a place having
f ! (resp. f?) as part of its σ-label and in its postset a place whose σ-label
has f? substituted for f ! (resp. has f? removed from it).

2. Any subset of places P ′ such that:
– there exists a place p ∈ P ′ with f ! (resp. f?) as part of its σ-label
– ℓ′(P ′) satisfies the guard Gc

f (resp.Gr
f), and no subset P ′′⊂P ′ satisfies it.

possesses in its postset a transition t labeled f c (resp. f r). In addition, places
in P ′ \ {p} have t in their preset.

3. Every transition labeled by f c (resp. f r) possesses a places p in its preset
and p′ in its postset such that ℓ′(p′) = f c(ℓ′(p)) (resp. ℓ′(p′) = f r(ℓ′(p))).

Condition 1 means that a service can be activated only if it was mentioned
in some document in the preset of a transition; activating this service results in
a modification of the document. Condition 2 defines guards for docnets. Observe
that well-formed docnets may specify services that return documents containing
additional service marks of the form f !, thus allowing new service calls. Condi-
tion 3 indicates that a transition labeled by a service call or return transforms a
document into another one according to the function labeling the transition. A
consequence of these well-formedness rules is that transitions always have at least
one place in their postset, and that subsets of places from which a service can be

6 B. Masson, L. Hélouët, A. Benveniste

called (or can return) have a common transition in their postset. A well-formed
docnet can thus be infinite. However, if no recursion among services occur, the
docnet associated to the evaluation of a given document with local services (i.e.,
the replacement of all services by the actual data they represent in documents)
is necessarily finite. It can be represented as the smallest well-formed docnet
containing the initially marked places depicting the document under evaluation.

When a docnet is not well-formed, one can nevertheless define a closure
operation to make it a well-formed docnet. For N a finite docnet defined over a
set S of services, the closure operation close(N) is defined as follows: for every
service f ∈ S, for every place p such that f ! ∈ σ(ℓ′(p)) and every minimal subset
P ′ of places of N such that ℓ′(P ′) |= Gc

f , add a new transition t labeled by
f c, and a new place p′ in the postset of t such that ℓ′(p′) = f c(ℓ′(p)) (if such
transition/place does not already exist). Add t to the postset of each place in
{p} ∪ P ′ and in the preset of each place in {p′} ∪ P ′. For every service f ∈ S,
for every place p and minimal subset P ′ of places of N such that f? ∈ σ(ℓ′(p))
and ℓ′(P ′) |= Gr

f , add a new transition t labeled by f r, and a new place p′ in
the postset of t such that ℓ′(p′) = f r(ℓ′(p)) (if such transition/place does not
already exist). Add t to the postset of each place in {p}∪P ′ and in the preset of
each place in {p′}∪P ′. We can now define the well-formed closure wf-closure(N)
as the limit wf-closure(N) = limn7→∞ wf-closuren(N), with:

wf-closure0(N) = N and wf-closuren(N) = close(wf-closuren−1(N))

The wf-closure of a docnet N may not be finite if some services of S are
recursively called. For N a finite docnet with finite set of places P , set of doc-
ument types D = ℓ′(P) and set S of services, if there exists no k ≤ |S| and no
f such that f ! ∈ (σ(D) ∩ σ(Dk \ D)) where Dk is the set of document types
occurring in wf-closurek(N), then the wf-closure of N is finite. Note that this
is only a sufficient condition, and that due to markings, recursion might never
occur. The closure operation for a net without transitions is a well-formed net.

Docnets describe the evolution of documents through embedded services eval-
uation. Of course an agent can only use local services that it implements. This
is captured by the notion of peer: a peer is a pair (N , S), where S is the set of
services that are accessible by the agent, and N is a well-formed docnet w.r.t.
services of S, which services calls and returns all belong to S. Adding new docu-
ments to a system may allow new service calls or returns by making their guards
true. Composing workflows of disjoint documents is then more than the simple
union of their nets, and is defined by the parallel composition operation below.

Definition 3 (Parallel composition). Let N1 and N2 be two well-formed doc-
nets. Their parallel composition N1 ‖N2 is obtained as follows:

1. Compute the disjoint union of the underlying nets, seen as graphs, i.e., com-
pute the disjoint union of places, transition, initial markings and flows.

2. Make the resulting docnet well-formed by wf-closure.

The parallel composition preserves the behaviors of both nets. It also allows
more behaviors, by synchronizing the filling of places, and then by performing

Compatibility of Data-Centric Web Services 7

‖

N2N1

N1 ‖N2

e?f !

ec

g!

g?

gc

gr

h?z!

hc

h!

d2

z!x!

hr

e?f !

ec

z!

z?

e!f !

d1

zc

g!

g?

gc

gr

d1
e!f !

f c

e!f? z!

z?

h?z!

hc

h!

d2

h?z? z!x!

hr

zc

zc

Fig. 3. Parallel composition of docnets.

the well-formed closure of the so obtained system. The main intuition behind
parallel composition is that when a place with document type d2 is filled in net
N2, and when there exists a place with type d1 ≤ d2 in net N1, then anything
allowed due to the presence of a token of type d1 in N1 should be allowed as soon
as a new token arrives in place of type d2. Figure 3 is an illustration of parallel
composition. Note that in N2 alone, firing zc is not possible, as no place in N2

satisfies the guard for zc. Composing with N1 provides the needed guard. This
hence results in appending a transition labeled by zc. A similar situation holds
for transition labeled by f c. The places, transitions and flows added at step 2 are
represented with dashed lines. Parallel composition is commutative, associative,
but not idempotent (composing a docnet with itself results in a larger net).

3.3 Modules and interactions with the environment

A site in web service architectures is an open system: it accepts incoming service
calls from its environment, and also expects the environment to provide ser-
vices, known only through a web address (URI), accepted inputs and returned
outputs. Even if a site never produces documents of some type, external calls
or returns from distant services may involve documents of this type. Hence in-
teracting with an environment may validate guards of services that would not
be enabled otherwise. It is thus worth augmenting a docnet by a model of all
demands coming from its environment, and all interactions it may have with
distant services. This is achieved by adding a model for interactions with the
environment to the considered docnet.

Consider a docnet N and a service g it provides to its environment. Let
Dg = {d1, . . . , dn} be the set of (valid) document types that are allowed as
parameters for a call to g. We assume Dg to be finite, and that each di embeds a
call to g. Exposing the pair (g,Dg) to the environment is described as the parallel
composition of N with the well-formed closure of a docnet Nenv that contains n
places P g

env = p
g
1, . . . , p

g
n with respective types d1, . . . , dn, plus a transition tdi

g,env

labeled by envcg for each allowed parameter di, with p
g
i in its postset. We also

8 B. Masson, L. Hélouët, A. Benveniste

‖N Nenv (plus return transitions)

NenvN

e!f !

g? g?

g! g!

g?

g!

envc
g

f c

gc gc

e!f?

g! g! g!
e?f !

e!f !

d1 d2 d3

d1 d2 d3

envc
g

gr gr

gc

gr

envr
g

envr
g

envr
g

envc
g

envc
g

ec

e?f !
envc

g
envc

g
ec

Fig. 4. A docnet providing service g with Dg = {d1, d2, d3} to its environment.

add to Nenv a place penv of type initpenv
, which has each tdi

g,env in its postset
and preset. Though this place does not change fundamentally the behavior of
the environment net, it allows to control the environment if needed. As a result
of step 2 of definition 3, constructing N ‖Nenv unfolds both N and Nenv.

Arrival of new calls is symbolized by the set of transitions td1

g,env, . . . , t
dn

g,env,
with respective postsets pg1, . . . , p

g
n. However, termination of calls is not yet mod-

eled in N ‖Nenv. We symbolize this termination by adding a transition tp la-
beled by envrg from every place p accessible from some p

g
i in P g

env such that
{g?, g!} ∩ σ(ℓ′(p)) = ∅ (which means that the call to service g was completed).
This construction is illustrated in Figure 4, for a net N allowing environment
calls to service g with parameters {d1, d2, d3}. This modeling of environment can
be extended to an arbitrary number of services in S with their call parameters.

Interfaces and their implementation. Web services are often orchestrations of
local services, or services provided by other sites. At design time, these latter
are usually known only as interfaces, that depict the parameters sent to a service
that implements this interface, and the expected possible values returned by an
implementation. In addition to usual service transitions, we allow for interface
transitions. We will differentiate interfaces from services by writing their name in
capital. Interface transitions will be simply labeled by Ic and Ir, denoting a call
to an external service and a return. Like services, a call to an interface updates a
document. It also sends parameters to the called site. The return from a distant
call may be of several types, and hence distant call returns can not be modeled as
for services. An interface is a pair I = (paramsI , DI), where paramsI : D 7→ D
is a function that extracts parameters of a call from a document, and DI is
a finite set of document types depicting the expected returned values after a
call to a distant service implementing interface I. At design stage, interfaces
need not be implemented, and calls and returns can be represented as transition
labeled by Ic and Ir that are fireable from any place with I! in σ(ℓ′(p)) (resp. I?
in σ(ℓ′(p))). When no implementation is known, firing an interface changes a
tag in a document from I! to I? indicating that an external service is being

Compatibility of Data-Centric Web Services 9

processed. Unlike services, when a return from an interface call occurs at a place
with type d such that I? ∈ σ(d), the effect of receiving an answer on d depends
on the received value. Hence for every place with type d such that I? ∈ σ(d), we
will create one transition labeled Iri per document type di in DI . As for services,
we will assume that the effect of receiving an answer of type di from a document
d is computable and deterministic, and results in a new document type d+I di
(operation +I usually inserts document di into d at correct place). Hence, a
transition labeled by Iri takes a token in a place of type d, and necessarily
outputs a token in a place p′ of type d +I di. I

c and Ir transitions are not
guarded: external service can always be called to enrich a document, and the
answer can be returned at any moment after a distant call.

Figure 5 shows a docnet with a non-implemented interface I that accepts
two return types. Non-implemented interfaces refer to functionalities provided
by the environment. Defining the kind of document that can be returned is
sometimes sufficient to study properties of a docnet in any possible environment:
if a document type d is not reachable from an initial marking of a net with non-
implemented interfaces, then this document type is not reachable either when
interfaces are implemented by services returning only expected values. To keep
well-formedness in presence of interfaces, we add a rule to definition 2:
(4) for every place p such that there exists an interface I with I? ∈ ℓ′(p) then
there exists a set t1, ...t|DI | of transitions labeled by Iri , i ∈ {1, .., |DI |} in the
postset of p, and each ti, i ∈ {1, .., |DI |} has a place of type ℓ′(p) +I di in its
postset.

g!f !I!

Ic

f !I?

Irf c

f?

Ir

f c

Ir

f?I? f ! f !

f cIr

gr

gc

g?

Fig. 5. A docnet with a non-implemented interface

A peer whose docnet models interactions with the environment and contains
interface calls and returns can be seen as a module. Once modules are defined,
the remaining task is to compose them, that is connect interfaces with services
of other modules that implement them.

Definition 4. A docnet module is a triple M = (N , S,F , I), where (N , S) is
a peer, F ⊆ S is a set of pairs of the form (f,Df) depicting services proposed to
the environment and their call parameters, I is a set of interfaces of the form
(paramsI , DI). We require that for every (f,Df) ∈ F , the environment part of
N models external calls to every service f with parameters Df .

10 B. Masson, L. Hélouët, A. Benveniste

4 Composability

Composability of a service and an interface ensures that modules agree on the
exchanged data during a call. Algorithms to check such property are important
for distributed systems, since it allows component-based design and orchestration
of services. A notion of composability for document-based workflow systems was
already proposed in [3,7].

Definition 5. Let N be a docnet, and p be one of its places. The subnet of N
connected to p is the restriction of N to set of places P and transitions T , where
P ,T are the solutions of fixed point equation (Pn, T n) = (Pn−1, T n−1) where:

P 0 = {p} P i = {p ∈ P | ∃t ∈ T i−1, p ∈ t• and p 6∈ •t}
T 0 = {t ∈ p• | p ∈ P 0} T i = {t ∈ p• | p ∈ P i−1}

The subnet connected to a place depicts the successive evolutions of a docu-
ment, forgetting details about guards needed to launch service calls or returns.
We will use subnets to characterize control flows associated to external calls.

Definition 6. Let N be a docnet, f be a service, and d be a document type such
that f ! ∈ σ(d). Let N ′ = N||Nd, where Nd is a net comprising a single place pd
of type d. The execution of f at N from d is the subnet connected to pd in N ′.
The return places of this execution are places p such that f?, f ! 6∈ σ(ℓ′(p)).

Intuitively, the execution of f at N from d depicts the control flow followed
by an external call to service f with parameters d arriving at a site that provides
service f . Return places are the result of the execution of a request to f starting
from parameter of type d.

Definition 7. Let M1,M2 be docnet modules, and I = (paramsI , DI) be an
interface of M1. We will say that service f of M2 is composable with interface
I at place p in M1 if and only if:

– I! ∈ σ(ℓ′(p)): an external call to a service depicted by interface I in N1 can
be performed from place p.

– M2 accepts call to service f with parameter d = paramsI(ℓ
′(p)), i.e., (f,Df) ∈

F2, with d ∈ Df .
– Every return place connected to place pd in the net N2||Nd has a type in DI.

We will say that service f of M2 is composable with interface I of M1,
and write f ‖= I, if it is composable with I at all places p of N1 such that
I! ∈ σ(ℓ′(p)).

Note that composability of a service and its interface does not mean that the
called service always terminates. It ensures that parameters of calls are accepted,
that returned values are defined in the interface, but not that a return place is
eventually filled, nor that such place exists (this might for instance be the case
if executing f c needs a guard that is never true at the called site). Section 5
addresses termination of external service calls. Composability of an interface

Compatibility of Data-Centric Web Services 11

I = (paramsI , DI) and of a service f that accepts input parameters Df is
decidable when the type of all places in the preset of transitions labeled by Ic

is finite (this ensures finiteness of call possibilities as paramsI(ℓ
′(•(l−1(Ic))))

is finite) and the environment part of N2 is finite. In particular, if N1 and N2

are finite, composability of I and f is decidable. See [3] for a full proof in the
DAXML context.

All AXML concepts can be mapped to Docnets. An AXML document is a
finite XML document, depicted by a document type in a docnet. AXML works
by calling services, and returning separately the results. Calls and returns are
guarded queries, that is deterministic computations of a set of values from a
finite XML database. Guards are defined with a fragment of Xpath, and their
evaluation is also an effective procedure. However, negation of Xpath expressions
to test absence of some data breaks monotony (i.e., we do no necessarily have
d |= g and d ≤ d′ ⇒ d′ |= g). To preserve monotony, which is essential for parallel
composition and modeling interactions with the environment, we have to restrict
to positive guards that can only test the presence of some data or pattern on
documents. Last, an AXML service can return references to other services to be
called, hence yielding recursion. However, one can easily avoid recursion by for-
bidding cyclic dependencies among calls and returned values embedding services.
Hence as far as positively guarded document transformations are concerned, doc-
nets and AXML systems are equivalent models. The remaining question is then
the modeling of an environment. In docnets, we assume that every service pro-
posed to the environment can be called with a finite set of parameters, described
as a finite set of document types. Such a restriction does not exist in AXML,
but could be enforced using a DTD to filter external calls. We refer to [3] for a
complete semantic mapping between AXML and Docnets.

5 Compatibility between Modules

In this section, we go beyond composability and address the termination of dis-
tant calls. We study two different notions of “behavioral” compatibility between
modules, namely weak and strong compatibility. The weak notion allows the
reception of particular environment calls (i.e., firing of transitions labeled envcf
for some f ∈ F) that may unblock the treatment of a distant call, while the
strong one should complete requests in any environment. We then show that for
finite modules, these properties are decidable (Theorem 2). We also show that
compatibility “distributes” over the composition of modules (Theorem 4), which
leads to a faster semi-algorithm to decide compatibility. The work in [4] considers
a close notion for session types. Starting from a global specification, the problem
is to ensure that a distribution on distant sites allows termination and correct
typing of returned values. We emphasize that in our model, services distribution
is already performed, which leverages a part of the problem addressed in [4].

Definition 8 (compatibility). Consider a module M1 accepting environment
calls to f ∈ F , and a module M2 owning an interface I such that f ‖= I. M1

and M2 are weakly (I, f)-compatible (denoted M1 I⊳
∼

f M2) if and only if after

12 B. Masson, L. Hélouët, A. Benveniste

some environment calls to F , any firing of a transition envcf with parameters
allowed by I is eventually followed by a corresponding response envrf .

M1 and M2 are (strongly) (I, f)-compatible (denoted M1 I⊳f M2) if and
only if after any environment calls to F , any firing of a transition envcf with
parameters allowed by I is eventually followed by a corresponding response envrf .

Clearly,M1 I⊳f M2 implies M1 I⊳
∼

f M2. Let us now prove that these notions
of compatibility are decidable. The two notions mean that an external call to a
service can terminate with or without the help of its environment. If we consider
a marking of the docnet depicting behaviors of module M1, and if we isolate a
token in a parameter place pd filled by a transition labeled by envcf , we should
be able to find a reachable marking in which this token can be consumed by a
transition labeled with envrf . “Isolating a token” can be modeled by adding to N1

(with the parallel composition operator) a copy of the net NparamsI associated
to the processing of a the call parameters of I, which minimal place can be fed
only once. We can then connect N1 to NparamsI in two different ways: in the
first way, the first transitions (transitions labeled by envcf in NparamsI) consume
the token of place penv in the environment part of N1. This modeling prevents
any incoming call from the environment once a document is being processes
in NparamsI . Call this net Nstrong. The second solution is to let the N1 and
NparamsI run in parallel, hence allowing environment calls while a document is
being processes in NparamsI . Call this net Nweak.

Then, we can show that weak and strong (I, f)-compatiblity amounts to veri-
fying some home-space property [6] respectively in Nweak and Nstrong (complete
proof is detailed in [9]). Note that an environment call that does not terminate
in general, may terminate when restricted to parameters DI . So, the fact that a
particular environment call does not return in general does not imply that two
modules are not (I, f)-compatible. Note also that deciding a home-space prop-
erty relies on reachability in Petri nets, and can hence be a costly operation.

Theorem 1. Consider two modules M1 and M2. Let I be an interface of M2

and f a service of M1 such that f ‖= I. If N1 and N2 are finite, strong (I, f)-
compatibility and weak (I, f)-compatibility are decidable.

Usually, module composition involves more than one pair service/interface. A
module M1 can provide some services to M2, but at the same time expect some
functionalities (expressed as interfaces) that are implemented in M2. Interfaces
and services are paired via explicit mappings specified by the designer. A pairing
map ξ is a mapping from some interfaces of a module to services provided by
another module, with the constraint that ξ(I) ‖= I for all I ∈ dom(ξ).

We can now define compatibility of two modules with respect to a composi-
tion schema defined by a pairing map. The modules M1 and M2, with respec-
tive sets of external services I 1 and I 2, are strongly [resp., weakly] compat-
ible with respect to a pairing map ξ if and only if for all I ∈ dom(ξ) ∩ I 1,
M1 I⊳ ξ(I) M2 [resp., M1 I⊳

∼
ξ(I) M2], and for all I ∈ dom(ξ)∩I 2, M2 I⊳ ξ(I) M1

[resp., M2 I⊳
∼

ξ(I) M1]. Strong and weak compatibility are denoted respectively

M1
ξ
⊲⊳ M2 and M1

ξ
⊲⊳∼ M2 (the symbol ξ may be omitted when it is clear from

Compatibility of Data-Centric Web Services 13

the context). The decidability result of compatibility of services and interfaces
can be easily extended to modules and pairing maps (complete proof in [9]).

Theorem 2. Let M1,M2 be two docnet modules, with finite docnets. Then, com-
patibility and weak compatibility of modules are decidable.

5.1 Connecting interfaces and their implementations

Let us consider two docnet modules M1 and M2 such that M1 comprises a
non-implemented interface I and M2 a service f with f ‖= I. As M1 and M2

represent distinct sites that communicate through invocations, the document
types manipulated in a module should not be used to satisfy guards in the
other module. We will hence consider that distinct modules are defined over
distinct and incomparable document types. The composition of M1 and M2

under mapping (f, I) is denoted by M1

⊗

I,f M2 and consists in a new module
M = (N ′, S1 ∪ S2,F1 ∪ F2, I1 \ {(paramsI , DI)} ∪ I2), where N ′ is the docnet
computed as follows:

– Compute N = N1||N2

– Compute N||Nd1
|| . . . ||Ndk

for every di, i ∈ {1, .., k} such that there exists
a transition ti in N with label Ic, and a place p ∈ •ti with type d such that
paramsI(d) = di.

– Connect every transition ti in N1 to place pdi
in Ndi

(i.e., set t• = t• ∪ pdi
).

– Connect every return place pj of type dj in a net Ndi
to every transition t′i

labeled by Irj in the subnet connected to the transition ti that feeds place
pdi

in N1 (i.e., set t′i ∈ p•j).
– Remove from N1 all transitions t′i labeled by Irj in the subnet connected to

the transition ti that feeds place pdi
such that no return place carries type

dj in the subnet connected to pdi
.

Note that as N2 already accepts calls from the environment to service f ,
adding a request from N1 to execute service f does not add new document types
to N2. Figure 6 below illustrates an implementation of an interface I by a service
h. The interface can call h with a single parameter type, and accordingly, h can
return two results. In this drawing, the added arcs are represented by dashed
lines, return places by thick circles, and the removed part of the net by a gray
zone. Transition Ir3 cannot be fired anymore in the composition, as return type
d3 is never produced when executing h. This construction extends in an obvious
way to an arbitrary number of modules and arbitrary pairing maps, and we will
denote by M1

⊗

ξ M2 the composition of two modules under pairing map ξ (the
ξ symbol may be omitted when the map is clear from context). Slightly abusing
the notation , we will also write

⊗

i∈KMi to denote the composition of a set of
modules {Mi | iinK} with appropriate pairing maps.

Theorem 3. Let (Mi)i∈K be a finite family of modules, and let
M ′ = (M1

⊗

ξ1
M2)

⊗

ξ2
· · ·

⊗

ξk−1
Mk)). Let m be a non-reachable marking of

N1. Then for every reachable marking m′ in the docnet of M ′, the restriction of
m′ to places of N1 differs from m.

14 B. Masson, L. Hélouët, A. Benveniste

N2

Nd1

N1

g?h!

g?h? g?h?

f !I?

f !I!

f !f !

f !

hr

g? g?

hc

g!

Ir
1

Ir
3

Ir
2

gr

hc

hr

gr

Ic

gc

Fig. 6. Composition of modules

This property can be used to check for local safety properties of modules.
The proof of this theorem is rather straightforward, as assembling modules does
not create documents that were not already considered in the environment.

5.2 Distributivity of Compatibility

Compatibility has an interesting property: if several modules are pairwise-compatible,
then any of their compositions are also compatible. This is useful because it
allows a faster semi-algorithm to decide whether a large set of modules is com-
patible, by checking compatibility between pairs of modules only.

Theorem 4. Let (Mi)i∈K be a finite family of modules. For any disjoint sets
K1,K2 ⊆ K and any pairing maps defined over disjoint domains, if all modules
Mi are pairwise-compatible, then (

⊗

i∈K1
Mi) ⊲⊳ (

⊗

j∈K2
Mj)

Note that this theorem also holds for weak compatibility (a complete proof
can be found in [9]). Also observe that the converse implication of Theorem 4 is
not always true, i.e., (

⊗

i∈K1
Mi) ⊲⊳ (

⊗

j∈K2
Mj) does not imply that Mi ⊲⊳ Mj

for all i ∈ K1 and j ∈ K2. Considering three modules Mi,Mj,Mk, with i ∈ K1

and j, k ∈ K2, the composition ofMj with Mk can restrict the possible behaviors
of Mj. Hence, a value returned by a service of Mj that was not allowed by
interface I of Mi may never be returned by the composition of Mj and Mk.

Theorem 4 provides a semi-algorithm to check compatibility of a set of mod-
ules without building a docnet involving all modules. The semi-algorithm checks
compatibility for every pair of modules, and returns true when all the checks are
positive, thus proving global compatibility. It returns false otherwise: it does
not necessarily mean that the modules are not compatible, and finer checks can
then be performed. Again, complete details and algorithms can be found in [9].

Compatibility of Data-Centric Web Services 15

6 Conclusion and perspectives

We have proposed a Petri net model for document-based workflows called doc-
nets. It encodes the semantics of a subset of Distributed Active XML. Compos-
ability and compatibility between modules with finite docnets are decidable, and
semi-algorithms can be used for faster decision. A first extension of this work is
to refine compatibility to cases where some environment calls needed to ensure
progress of a service are guaranteed to occur by a contract. Even if recursion
leads to undecidability [3,7], we also think that our results still hold if recursion
does not create an unbounded number of service references in document types.

Compatibility is brought back to home-space problems, which use reacha-
bility checks (an EXPSPACE-hard problem). This may mean that our com-
patibility notion is not practical. However, Docnets have well-structured sets
of configurations, and the markings considered in our compatibility definition
contain only one token in return places. This may allow solving compatibility
with efficient backward analysis techniques. We also need to improve drastically
the size of the considered docnets, which grow rapidly during composition. A
key issue is to avoid enumerating data values (for instance in calls parameters).
Finally, we think that working with infinite but well-structured sets of document
types, still allows decidability of compatibility.

References

1. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML:
A data-centric perspective on web services. In BDA 2002, 2002.

2. S. Abiteboul, L. Segoufin, and V. Vianu. Static analysis of Active XML systems.
In PODS 2008, pages 221–230, 2008.

3. A. Benveniste and L. Hélouët. Distributed Active XML and service interfaces.
Technical Report 7082, INRIA, 2009.

4. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred pro-
gramming for web services. In ESOP, volume 4421 of LNCS, pages 2–17, 2007.

5. S. Ceri, P. Grefen, and G. Sánchez. WIDE: A distributed architecture for workflow
management. In RIDE 1997, pages 76–79, 1997.

6. D. de Frutos Escrig and C. Johnen. Decidability of home space property. Technical
Report 503, LRI, 1989.

7. L. Hélouët and A. Benveniste. Document based modeling of web services chore-
ographies using Active XML. In ICWS 2010, pages 291–298, 2010.

8. R. Hull. Artifact-centric business process models: Brief survey of research results
and challenges. In OTM 2008, volume 5332 of LNCS, pages 1152–1163, 2008.

9. B. Masson, L. Hélouët, and A. Benveniste. Compatibility between DAXML
schemas. Technical Report 7559, INRIA, 2011.

10. J. Misra and W.R. Cook. Computation orchestration. Software and Systems Mod-

eling, 6(1):83–110, 2007.
11. Anil Nigam and Nathan S. Caswell. Business artifacts: An approach to operational

specification. IBM Systems Journal, 42(3):428–445, 2003.
12. Wil M. P. van der Aalst and Kees van Hee. Workflow management: Models, Meth-

ods, and Systems. MIT Press, 2002.
13. J. Wang and A. Kumar. A framework for document-driven workflow systems. In

BPM 2005, volume 3649 of LNCS, pages 285–301, 2005.

