
SOSYM manuscript No.
(will be inserted by the editor)

Distributed Implementation of Message
Sequence Charts

Rouwaida Abdallah1, Löıc Hélouët2, Claude Jard1

1 ENS Cachan – IRISA
Université Européenne de Bretagne
Campus de Ker-Lann, 35170 Bruz, France
e-mail: rouwaida.abdallah@bretagne.ens-cachan.fr

2 INRIA – IRISA
Campus de Beaulieu, 35042 Rennes, France
e-mail: loic.helouet@inria.fr

3 Université de Nantes - LINA
2 rue de la Houssinière, 44322 Nantes, France
e-mail: claude.jard@univ-nantes.fr

The date of receipt and acceptance will be inserted by the editor

Abstract This work revisits the problem of program synthesis from spec-
ifications described by High-level Message Sequence Charts. We first show
that in the general case, synthesis by a simple projection on each compo-
nent of the system allows more behaviors in the implementation than in
the specification. We then show that differences arise from loss of ordering
among messages, and show that behaviors can be preserved by addition
of communication controllers, that intercept messages to add stamping in-
formation before resending them, and deliver messages to processes in the
order described by the specification.

Key words scenarios, implementation, distributed system synthesis.

1 Introduction

Automatic program synthesis, that is deriving executable code from a high-
level description of a problem (the requirements) is an old dream in com-
puter science. The state of the art progresses through the invention of so-
phisticated compilation techniques which refine high-level specifications into
lower level descriptions that are understandable by an execution platform.

This paper addresses the automatic synthesis problem in the difficult
context of distributed applications running on networks of computers. The
high-level formalism chosen for this study is Message Sequence Charts (MSCs

2 Rouwaida Abdallah et al.

for short) [18]. MSCs have the advantage of specifying interactions patterns
between components with a global perspective (such as an external observer)
without worrying of how these interactions can be implemented locally by
transmission and reception of messages in each component. The lower level
for the synthesis is communicating finite automata [9] (CFSMs for short) ex-
changing messages asynchronously through FIFO channels. This well-known
formalism is easily implementable on many distributed platforms built on
top of standard communication protocols (TCP, REST, ...).

MSCs is a formal language based on composition of finite communica-
tion sequences. It is a prime example of scenario-based languages. It was
standardized at the ITU, and has formed the basis for the formal defini-
tion of UML sequence diagrams [13]. The approach presented in this paper
can certainly be adapted to other languages of this kind such as Use-Case
Maps [20] or Live Sequence Charts [14], used for user requirements in dis-
tributed systems [4]. Basic MSCs (bMSCs for short) describe finite com-
munication patterns involving a finite set of processes. Communications are
supposed point to point and asynchronous. BMSCs are then composed using
High-level MSCs (HMSCs for short), a finite automaton whose transitions
are labeled by bMSCs. HMSCs are very expressive, and can model infinite
state systems. Consequently, the usual verification techniques that apply
to finite state machines (model checking of temporal logic formulae, inter-
secting two specifications to discover undesired behaviors,...) are in general
undecidable [26,10].

HMSCs are also difficult to implement. The main difficulty is to trans-
form an HMSC specification with a global view (bMSCs contain complete
messages, i.e. a message sending and its corresponding reception appear in
the same diagram) of interactions into a set of local views (the communi-
cating machines, which define disjoint sequences of messages sendings and
receptions) that is consistent with the original specification. Consistency of
an implementation w.r.t a specification can be defined in several ways. In
this work, we impose that the synthesized model must exhibit the same
behaviors as the original model. In the context of distributed systems mod-
eling, it is natural to define these behaviors as a language of partial orders.
Note that all the global coordination expressed by HMSCs can not always
be translated to CFSMs. Consequently, some HMSC specifications may not
be implementable as CFSMs. For instance, HMSCs allow for the defini-
tion of distributed choices, that is configurations in which distinct processes
may choose to behave according to different scenarios. The HMSC seman-
tics assumes a global coordination among processes, so all processes decide
to execute the same scenario. However, when such distributed choice is im-
plemented by local machines, each process may decide locally to execute a
different scenario. When such unspecified situation occurs, the implemen-
tation is not consistent with the original HMSC: it exhibits more behav-
iors and even worse, the synthesized machines can deadlock. This should
of course be avoided. HMSCs that do not contain distributed choices are
called local HMSCs, and are considered as a reasonnable subclass to target

Distributed Implementation of Message Sequence Charts 3

a distributed implementation. However, the synthesis solutions proposed so
far do not apply to the whole class of local HMSCs.

This paper extends the state of the art by proposing an implementation
mechanism for the whole subclass of local message sequence charts, that
is HMSC specifications that do not require distributed consensus to be ex-
ecuted. Note that the class of local HMSCs seems a sensible specification
model: Indeed, an HMSC which is not local obviously needs additional syn-
chronization messages among participating processes, for instance to reach
an agreement on which scenario to execute. One can see this need of addi-
tional messages as a transformation of the original non-local HMSC into a
local one. Such transformation could be automated, but the solution is not
unique. We will not study HMSC localization in this article. The proposed
synthesis technique is to project an HMSC on each process participating
to the specification. This technique is correct for a subclass of local HM-
SCs, namely the reconstructible HMSCs, but may produce programs with
more behaviors than in the specification for local HMSCs that are not re-
constructible [16]. When an HMSC is not reconstructible, we compose the
projections with controllers, that intercept messages between processes and
tag them with sufficient information to avoid the additional behaviors that
appear in the sole projection. The main result of this work is that the pro-
jection of the behavior of the controlled system on events of the original
processes is equivalent (up to a renaming) to the behavior of the original
HMSC. One important aspect of this work is that processes and controllers
are independent units of processing, which communicate asynchronously
by means of delayed message passing and can be implemented on any dis-
tributed architecture. This provides a great genericity of the method.

This paper is organized as follows: Section 2 defines the formal models
that will be used in the next sections. Section 3 characterizes the syntac-
tic class of local HMSCs. Section 4 defines the projection operation, that
generates communicating finite state machines from an HMSC, and shows
that an HMSC and its projection are not equivalent in general. Note that
a large part of the material of sections 3 and 4 was already published in
our former work [16]. We however include these results in order to obtain a
self-contained article. Section 5 proposes a solution based on local control
and message tagging to implement properly an HMSC. Section 6 presents
a small use case, and section 7 compares our approach with existing tech-
niques, and classifies it with respect to some criteria for scenario-based syn-
thesis approaches. We then conclude and propose future research directions.

2 Definitions

In this section we first define our specification model, namely High-level
Message Sequence Charts [18]. We then define our implementation model,
communicating finite automata. We then list and justify the restrictions
that were assumed for the specification model.

4 Rouwaida Abdallah et al.

2.1 Basic MSCs, High-level MSCs

MSCs are composed of two specification layers: At the lowest level, ba-
sic MSCs define interactions among instances, and then these interactions
are composed by means of High-level MSCs. A bMSC consists essentially
of a finite set of processes (also called instances) denoted by I, that run
in parallel and exchange messages in a one-to-one, asynchronous fashion.
These instances represent different entities of a system such as processes,
machines, etc. The life lines of instances are represented as vertical lines.
They define sequences of events, ordered from top to bottom. An event
can be a message sending or reception, or a local action. Horizontal arrows
represent asynchronous messages from one instance to another. An exam-
ple of bMSC involving three instances {Sender,Medium,Receiver}, three
messages, and an internal action a is shown in Figure 1.

Sender Medium

Data

Ack

bMSC Example
Receiver

a
Info

Fig. 1: An example of bMSC

Definition 1 (bMSCs) A bMSC over a finite set of instances I is a tuple
M = (E,≤, C, φ, t, µ) where:

– E is a finite set of events. The map φ : E −→ I localizes each event
on an instance of I. E can be split into a disjoint union]p∈IEp, where
Ep = {e ∈ E | φ(e) = p} is the set of events occurring on instance p.
E can also be considered as the disjoint union S] R] L in order to
distinguish send events (e ∈ S), receive events (e ∈ R) or local actions
(e ∈ L).

– C is a finite set of message contents and action names.
– t : E −→ Σ gives a type to each event, with
Σ = {p!q(m), p?q(m), a | p, q ∈ I,m, a ∈ C}. We have t(e) = p!q(m) if
e ∈ Ep∩S is a send event of message “m” from p to q, t(e) = p?q(m) if
e ∈ Ep ∩R is a receive event of message “m” by p from q and t(e) = a
if e ∈ Ep ∩ L is a local action, named “a” located on p.

– µ : S −→ R is a bijection that matches send and receive events. If
µ(e) = f , then t(e) = p!q(m) and t(f) = q?p(m) for some p, q ∈ I and
m ∈ C.

Distributed Implementation of Message Sequence Charts 5

– ≤ ⊆ E2 is a partial order relation (the “causal order”). It is required that
events of the same instance are totally ordered: ∀(e1, e2) ∈ E2 φ(e1) =
φ(e2) =⇒ (e1 ≤ e2) ∨ (e2 ≤ e1). For an instance p, let us call ≤p this
total order. The causal ordering ≤ must also reflect the causality induced
by the message exchanges, i.e. ≤= (

⋃
p∈I
≤p ∪ µ)∗

For a bMSC M , we will denote by min(M) = {e ∈ E | ∀e′ ∈ E, e′ ≤
e ⇒ e′ = e}, the set of minimal events of M . Similarly, we will denote by
max(M) = {e ∈ E | ∀e′ ∈ E, e ≤ e′ ⇒ e′ = e} the set of maximal events
of M . We will call φ(E) the set of active instances of M , and an instance
will be called minimal if it carries a minimal event.

BMSCs allow for the compact definition of concurrent behaviors, but
are limited to finite and deterministic interactions. To obtain infinite and
non-deterministic specifications, we will use High-level MSCs, that compose
sequentially bMSCs to obtain languages of bMSCs. Before defining HMSCs,
we show how to assemble two bMSCs:

Definition 2 (Sequential composition) Let M1 = (E1,≤1, C1, φ1, t1, µ1)
and M2 = (E2,≤2, C2, φ2, t2, µ2) be two bMSCs, defined over disjoint sets
of events. The sequential composition of M1 and M2 is denoted by M1◦M2.
It consists in a concatenation of the two bMSCs instance by instance, and
is obtained as follows. M1 ◦M2 = (E,≤, C, φ, t, µ), where:

– E = E1 ∪ E2, C = C1 ∪ C2

– ∀e, e′ ∈ E, e ≤ e′ iff e ≤1 e
′ or e ≤2 e

′ or ∃(e1, e2) ∈ E1×E2 : φ1(e1) =
φ2(e2) ∧ e ≤1 e1 ∧ e2 ≤2 e

′

– ∀e ∈ E1, φ(e) = φ1(e), µ(e) = µ1(e), t(e) = t1(e)
– ∀e ∈ E2, φ(e) = φ2(e), µ(e) = µ2(e), t(e) = t2(e)

Note that the definition requires the concatenated bMSCs to be defined
over disjoint sets of events. In the rest of the paper, we will use concatenation
to assemble several occurrences of the same bMSC. Slightly abusing the
definition, we will consider that concatenation M1 ◦M2 is always defined,
and if E1 ∩ E2 6= ∅, we will consider that M1 ◦M2 is a bMSC obtained
by composing M1 with an isomorphic copy of M2 defined over a set of
events that is disjoint from E1. In particular, this allows us to define, for a
bMSC M , the bMSC M ◦M which denotes a scenario with two consecutive
occurrences of M . An intuitive and graphical interpretation for M1 ◦M2 is
that the interactions in M2 are appended to M1 after M1 (i.e. drawn below
M1). An example of sequential composition is shown in Figure 2: The bMSC
M1 ◦M2 can simply be obtained by drawing M2 below M1, and extending
the lifelines of instances. Note that sequential composition does not require
both bMSCs to have the same set of instances.

HMSC diagrams are automata that compose bMSCs or other HMSCs.
This allows for the definition of iterations and choices. We will suppose
without loss of generality that our HMSCs comprise only one hierarchical
level, i.e. they are automata whose transitions are labeled by bMSCs.

6 Rouwaida Abdallah et al.

A B

m1

bMSC M1
C

m2

(a)

A C

m3

bMSC M2
D

m4

(b)

A B

m1

bMSC M1o M2
C

m2

D

m3

m4

(c)

Fig. 2: Two bMSCs M1 and M2 and their concatenation M1 ◦M2

Definition 3 (HMSCs) An HMSC is a graph H = (I,N,→,M, n0), where

– I is a finite set of instances.
– N is a finite set of nodes and n0 ∈ N is the initial node of H.
–M is a finite set of bMSCs which participating instances belong to I,

and defined on disjoint sets of events.
–→⊆ N ×M×N is the transition relation.

HMSCs contain a unique initial node n0, that has no incoming transition
(i.e, there is no transition of the form (n,M, n0) in→), but also sink nodes,
i.e. nodes that have no successor, and choice nodes, i.e. nodes that have
several successors. Figure 3 shows an example of HMSC with two nodes
n0, n1, where n0 is the initial node (and also a choice node), and n1 is a
sink node. A node is represented by a circle. Initial nodes have a downward
pointing triangle connected to them, and sink nodes are connected to an
upward pointing triangle. In this example, we have M = {M1,M2} where
M1,M2 are the bMSCs defined in Figure 2. The transition relation contains
two transitions, namely (n0,M1, n0) and (n0,M2, n1). In the example of
Figure 3, the behavior M1 can be repeated an arbitrary number of times,
and then be followed by the behavior described in M2.

For convenience, we will consider that all nodes, except possibly the
initial node and sink nodes are choice nodes, i.e. have several successors by
the transition relation. This results in no loss of generality, as an HMSC can
be always transformed in such a canonical form by concatenating bMSCs
appearing in a path. A transition from a (choice) node will be frequently
called a branch of this choice. We also require HMSCs to be deterministic,

Distributed Implementation of Message Sequence Charts 7

that is if (n,M1, n1) ∈−→ ∧(n,M2, n2) ∈−→, then M1 6= M2. This can be
ensured by the standard determinization procedure of finite automata.

M1 M2

n0

n1

(a)

M3 M4

n0

n2n1

Client Server

Data

Ack

bMSC M3

Logout

Client Server

bMSC M4

(b)

Fig. 3: An example of local HMSC a) and a non-local HMSC b)

2.2 Semantics of HMSCs

In the next sections, executions of bMSCs will be represented as partially
ordered multisets of events (pomsets). These pomsets are not necessarily
bMSCs, as we will consider incomplete executions in which some messages
have been sent and not yet received. This notion of incomplete execution is
captured by the definition of pieces and prefixes.

Definition 4 (prefix, suffix, piece of bMSCs) Let M = (E,≤, C, φ, t, µ)
be a bMSC. A prefix of M is a tuple (E′,≤′, C ′, φ′, t′, µ′) such that E′ is
a subset of E closed by causal precedence (i.e. e ∈ E′ ∧ f ≤ e =⇒ f ∈
E′) and ≤′, C ′, φ′, t′, µ′ are restrictions of ≤, C, φ, t, µ to E′. A suffix of M
is a tuple (E′,≤′, C ′, φ′, t′, µ′) such that E′ is closed by causal succession
(i.e. e ∈ E′ ∧ e ≤ f =⇒ f ∈ E′) and ≤′, C ′, φ′, t′, µ′ are restrictions of
≤, C, φ, t, µ to E′. A piece of M is the restriction of M to a set of events
E′ = E \X \ Y , such that the restriction of M to X is a prefix of M and
the restriction of M to Y is a suffix of M .

Note that prefixes, suffixes and pieces are not always bMSCs, as their
message mappings m are not necessarily bijections from sending events to
receiving events. In the rest of the paper, we will denote by Pref(M) the
set of all prefixes of a bMSC M . We will denote by Oε the empty prefix, i.e.
the prefix that contains no event. For a particular type of action a, we will
denote by Oa a piece containing a single event of type a. The examples of
Figure 4 shows a bMSC M involving three processes P,Q,R, a prefix Pr,
a suffix S, and a piece Pc. Observe that Pc is obtained by erasing Pr and
S from M . Note also that Pr, S and Pc contain incomplete messages.

8 Rouwaida Abdallah et al.

P Q

m1

bMSC M
R

m3
m2

m4

m5

(a)

P Q

m1

Prefix Pr
R

m3

(b)

P Q

Suffix S
R

m4

m5

(c)

P Q

Piece Pc
R

m3
m4

m2

(d)

Fig. 4: A bMSC (a), a prefix (b), a suffix (c) and a piece (d)

In the next sections, we will also need to concatenate prefixes and pieces
of bMSCs. Prefix and piece concatenation is defined alike bMSC concatena-
tion with an additional phase that rebuilds the message mappings. Let O1

be a prefix of a bMSC, and O2 be a piece of bMSC. Then, the concatenation
of O1 and O2 is denoted by O1 ◦ O2 = (E,≤, C, φ, t, µ), where E,≤, C, φ,
and t are defined as in definition 2 and µ is a function that associates the
nth sending event from p to q to the nth reception from p on q for every pair
of processes p, q ∈ I. Note that this sequencing is not defined if for some
p, q, n, the types of the nth sending and reception do not match, that is one
event is of the form p!q(m) and the other one q?p(m′) with m 6= m′. In
particular, we will denote by O ◦ {e} the prefix obtained by concatenation
of a single event e to a prefix O.

Definition 5 (HMSC behavior) Let H = (I,N,→,M, n0) be an HMSC.
A path of H is a sequence ρ = (n0,M0, n1)(n1,M1, n2) . . . (nk,Mk, nk+1) of
transitions. We will say that a path is acyclic if and only if it does not con-
tain the same transition twice. We define as Paths(H) the set of paths of H
starting from the initial node. A path ρ = (n0,M0, n1) . . . (nk,Mk, nk+1) in
Paths(H) defines a sequence M0.M1 . . .Mk ∈ M∗ of bMSCs. We will de-
note by Oρ the bMSC associated to ρ and define it as Oρ = M0◦M1◦· · ·◦Mk.
The language of H is the set of behaviors L(H) =

⋃
ρ∈Paths(H) Pref(Oρ).

To simplify notation, we will write ρ = n0
M0−→ n1

M1−→ n2 . . .
Mk−→ nk+1

to denote a path ρ = (n0,M0, n1)(n1,M1, n2) . . . (nk,Mk, nk+1). Note that

Distributed Implementation of Message Sequence Charts 9

our definition of the language of an HMSC H includes all prefixes of bMSCs
generated by H. Note also that the language of an HMSC is not a regular
language in general. In the example of Figure 3, for instance, behaviors in
which machine A asynchronously sends an arbitrary number of messages
without waiting for their reception are contained in the language of the
specification. Clearly, such behaviors can not be represented as a regular
language. A correct implementation of an HMSC H is a distributed system
reproducing exactly (and nothing more) L(H).

2.3 Communicating Finite State Machines

In this section, we introduce our implementation model, namely Communi-
cating Finite State Machines (CFSM) [9]. A CFSM A is a network of finite
state machines that communicate over unbounded, non-lossy, error-free and
FIFO communication channels. Before formally introducing CFSM, let us
justify the choice of this model as implementation formalism. First of all,
HMSCs describe the behavior of independent agents, which continuously
run sequences of communication events. Hence, if we want to respect the
independence of agents in the architecture depicted in an HMSC, we need
a target model that allows for the definition of parallel components. Mod-
els such as Petri nets or networks of automata communicating via shared
actions fulfill these requirements. However, it is clearly stated in the Z.120
standard [18] that bMSCs and HMSCs depict the behavior of agents that
communicate asynchronously, which rules out communications using shared
actions. One can also notice that the projection of an HMSC on a single
instance gives a regular language. Last, one shall notice that HMSCs se-
mantics can enforce messages between a pair of processes to respect FIFO
ordering, which can not be enforced by Petri nets. In fact, it has been shown
that synthesis of Petri nets from HMSCs usually produces an overapproxi-
mation of the initial HMSC language [10]. All these considerations call for
the use of CFSMs as target architecture.

We will write A = ‖
i∈I

Ai to denote that A is a network of machines de-

scribing the behaviors of a set of machines {Ai}i∈I . A communication buffer
B(i,j) is associated to each pair of instances (p, q) ∈ I2. Buffers will imple-
ment messages exchanges defined in the original HMSC. More formally, we
can define a communicating automaton as follows:

Definition 6 A communicating automaton associated to an instance p is
a tuple Ap = (Qp, δp, Σp, q0,p) where Qp is a set of states, q0,p is the initial
state, Σp is an alphabet with all letters of the form p!q(m) p?q(m) or a,
symbolizing message sending to a process q, reception from a process q, an
atomic action a executed by process p, or a silent move ε. The transition
relation δp ⊆ Qp×Σp×Qp is composed of triples (q, σ, q′) indicating that the
machine moves from state q to state q′ when executing action σ. A CFSM
A = ‖

i∈I
Ai is a composition of communicating automata.

10 Rouwaida Abdallah et al.

Client?Server(Logout)

Client?Server(Ack)

Client!Server(Data)

ClientA

Server!Client(Logout)

ServerA

Server?Client(Data)

Server!Client(Ack)

Fig. 5: Two communicating machines

Figure 5 describes a CFSM composed of two finite state machines AClient
and AServer. The initial states of these two machines are denoted by a
dark incoming arrow. Each run of a set of communicating machines defines
a prefix, that can be built incrementally starting from the empty prefix,
and appending one executed event after the other (i.e. it is built from a
total ordering of all events occurring on the same process, plus a pairing
of messages sendings and receptions). Then, the language L(A) of a set of
communicating machines is the set of all prefixes associated to runs of A.

The semantics of CFSM is usually defined as sequences of events. Each
event occurs on a single process, and changes the configuration of the CFSM.
A configuration of a network of automata A = ‖

i∈I
Ai is a pair C = (L,W)

where L is a sequence of states q1 . . . qI depicting the local state of each
communicating machine, and W = {w11, . . . w1|I|, w21, . . . w2|I|, . . . w|I||I|}
is a set of |I|2 words depicting the contents of message buffers. Each wij is
a sequence of message names, and depicts the contents of the queue from
Ai to Aj . Then, the behavior of A is defined as follows:

– all machines start from their initial states with all communication buffers
empty, that is the initial configuration is C0 = (L0 = q0,1.q0,|I|,W0 =
{ε, . . . ε}).

– From a configuration C, a machine Ap can send a message m to a ma-
chine Aq if Ap is in local state qp, there exists a transition (qp, p!q(m), q′p)
in Ap. Executing this action p!q(m) simply appends m to the buffer
wp,q from p to q and changes Ap’s local state to q′p in the confi-
guration. Hence, if C = (L,W) with L = q0 . . . qp . . . q|I| and W =
{w11, . . . wp,q . . . w|I||I|}, executing p!q(m) results in a configuration C ′ =
(L′,W ′) with L′ = q0 . . . q

′
p . . . q|I| and W ′ = {w11, . . . wp,q.m . . . w|I||I|}

Local actions of communicating automata change the local state of a
machine and leave the buffer contents unchanged.

– From a configuration C, Ap can receive a message m from process q, if
Ap is in local state qp, there exists a transition (qp, p?q(m), q′p) in Ap,

Distributed Implementation of Message Sequence Charts 11

and the first letter of wq,p is m (which means that m is the first message
that has to be received in the queue from q to p). Executing this action
p?q(m) simply removes m from the buffer wp,q from p to q and changes
Ap’s local state to q′p in the configuration. Hence, if C = (L,W) with
L = q0 . . . qp . . . q|I| and W = {w11, . . . wp,q = m.w . . . w|I||I|}, executing
p?q(m) results in a configuration C ′ = (L′,W ′) with L′ = q0 . . . q

′
p . . . q|I|

and W ′ = {w11, . . . wp,q = w . . . w|I||I|}.

This way, CFSMs define sequences of actions σ1. . . . σk that can be exe-
cuted by their local components from their initial states. Each action moves
the communicating machines from one configuration to another. However,
CFSM are concurrent models, and their executions can be represented in a
non-interleaved way by bMSC prefixes.

Definition 7 Let A = ‖
i∈I

Ai be a CFSM. The language of A is denoted by

L(A) and is the set of prefixes defined inductively as follows :

– the prefix associated to an empty sequence of actions is the empty prefix
Oε,

– the prefix associated to a sequence of actions σ1. . . . σk.σk+1 of A is the
prefix O ◦ {e} where e is an event labeled by σk+1 and O is the prefix
associated to σ1. . . . σk.

2.4 Restrictions

We have assumed some restrictions on the scenarios that we implement.
Some of them are introduced for the sake of readability, and some of them
are essential to ensure a solution to the synthesis problem. Standard nota-
tion of bMSCs allow for the definition of a zone on an instance axis called
co-region. Events appearing in a co-region can be executed in any order.
We do not consider co-regions, but they can be simulated by adding to an
HMSC a finite number of alternatives enumerating all possible interleav-
ings of events. We also consider that HMSCs are deterministic, and that
two bMSCs labeling distinct transitions of a local HMSC start with distinct
messages. We use this assumption to differentiate branches at runtime. We
could achieve a similar result by introducing additional tags during synthe-
sis. However, this mild restriction simplifies the notations and proofs.

BMSCs also allow behaviors with message overtaking, i.e. in which some
messages mandatorily cross other messages from the same bMSC. In this
paper, we consider only FIFO architectures as a target for synthesis. This is
hence a natural restriction to consider that all bMSCs are FIFO, that is for
two sending events e, e′ such that p = φ(e) = φ(e′), q = φ(µ(e)) = φ(µ(e′))
we always have e ≤p e′ ⇐⇒ µ(e) ≤q µ(e′). Note that our synthesis tech-
nique could be easily adapted to allow overtaking in bMSCs. This requires a
slight modification of the communication architecture, to allow a bounded
lookahead at the contents of communication buffers, and consumption of

12 Rouwaida Abdallah et al.

messages appearing at a fixed position in a FIFO buffer rather that in first
position. Such semantics exists for instance in extended automata models
such as SDL, and a synthesis technique to generate SDL code from HMSCs
in which bMSCs contain message crossings was proposed in [1].

We restrict to HMSCs without parallel frames for deeper reasons. When
parallel frames are used, the behavior of an agent may not be a regular
language, i.e. it may not be expressible as a finite state machine. The im-
plementation technique proposed in this paper uses vectorial clocks that
may grow unboundedly, but the systems generated always comport a finite
number of control states. Furthermore, the use of parallel frames may add a
new source of unexpected behaviors, as one agent may have to react differ-
ently when a pair of actions a, b are executed concurrently or in sequence,
and such non-determinism may lead to the execution of unspecified behav-
iors. Hence, we doubt that a simple machine model can handle at the same
time unbounded parallelism in agents and asynchronous communications,
to implement the extremely complex (and very often ambiguous) behaviors
allowed with parallel frames. Such extension to CFSMs goes beyond the
scope of this paper.

3 Local HMSCs

Consider a choice node in an HMSC, that is a node n with at least two
outgoing transitions (n,M1, n1) and (n,M2, n2). Executing an event in M1

(resp. M2) can be seen as taking the decision to execute the whole behavior
contained inM1 (resp.M2). Once the decision to perform M1 orM2 is taken,
all the other instances have to conform to this decision to remain consistent
with the HMSC specification. Hence, every bMSC Mi labeling a transition
leaving a choice node defines a set of deciding instances φ(Min(Mi)), which
is the set of instances that carry the minimal events of Mi, and hence can
take the decision to perform bMSC Mi. Obviously, the minimal events in
each Mi cannot be message receptions.

We can now state the main difficulty when moving from HMSCs to
local machines. In an HMSC, the possible executions are built by concate-
nating bMSCs one after another. Hence in an execution of an HMSC, all
processes conform to a single sequence of bMSCs collected along a path.
In a CFSM setting, when two processes have to take a decision to perform
scenario M1 or M2, they can of course take concurrently the same decision,
but conversely, one instance can decide to perform scenario M1 while the
other instance decides to perform M2. Consider for instance the HMSC of
Figure 3-b. The instance Client can decide to send Data and wait for an
acknowledgment while the instance Server decides to send Logout. Such sit-
uation can lead to a deadlock of the system. Even worse, this scenario was
not specified in the original description. Such unspecified scenarios are fre-
quently called “implied scenarios”, and were originally studied in [30]. The
main intuition behind this notion of implied scenario is that even though a

Distributed Implementation of Message Sequence Charts 13

scenario was not part of the original specification H, as a distributed im-
plementation of H can execute it, then it should be considered as part of
the specification, and explicitly appended to the original model [31]. This
approach may work for simple cases, but not for all kinds of HMSCs. First
of all, an HMSC may exhibit an infinite number of implied scenarios. Fur-
thermore, it is undecidable if an implied scenario is a prefix of some run that
already exists in the original specification (this problem can be brought back
to a language inclusion problem for HMSCs, which was shown to be unde-
cidable [26,10]). So, one can not decide if a specification already includes
an implied scenario that was discovered for a particular choice node. Fur-
thermore, every implied behavior appended to an HMSC may produce new
implied scenarios and the growth of a specification due to the integration
of these new behaviors may never stop. A safer design choice is to consider
that situations leading to non-local choices and hence to implied scenarios
have to be avoided. For this, we define local HMSCs.

When the outgoing transitions of a choice node are labeled by bMSCs
with distinct deciding instances, then, without additional synchronization
the synthesized machines might decide to perform distinct scenarios. This
situation is called non-local choice, and should be avoided in a specification.
We consider that specifications containing non-local choices are not refined
enough to be implemented.

Definition 8 (Local choice node) Let H = (I,N,→,M, n0) be an HMSC,
and let c ∈ N be a choice node of H. Choice c is local if and only if for

every pair of (not necessarily distinct) paths ρ = c
M1−→ n1

M2−→ n2 . . . nk and

ρ′ = c
M ′

1−→ n1
M ′

2−→ n′2 . . . n
′
k there is a single minimal instance in Oρ and in

Oρ′ (i.e. φ(Min(Oρ)) = φ(Min(Oρ′)) and |φ(Min(Oρ))| = 1). H is called
a local HMSC if all its choices are local.

We will also say that an HMSC is non-local if one of its choices is not
local. Intuitively, the locality property described in [6] guarantees that every
choice is controlled by a unique instance. We will show however that ensuring
locality of choices is not sufficient to guarantee a correct synthesis.

Proposition 1 (Deciding locality) Let H be an HMSC. H is not local
iff there exists a node c and a pair of acyclic paths ρ, ρ′ originating from
c, such that Oρ and Oρ′ have more than one minimal instance.

Proof: One direction is straightforward: If we can find a node c and two
(acyclic) paths with more than one deciding instance, then obviously, c is
not a local choice, and H is not local. Let us suppose now that for every
node c, and for every pair of acyclic paths of H originating from c, we have
only one deciding instance. Now, let us suppose that there exists a node c1
and two paths ρ1, ρ′1 such that at least one (say ρ1) of them is not acyclic,
and ends with transitions that appear several times along this path. Then
ρ1 has a finite acyclic prefix w1. The set of minimal instances in Ow1 and
in Oρ1 is the same, as for all bMSCs M , φ(min(M ◦M)) = φ(min(M)).

14 Rouwaida Abdallah et al.

Hence, c, ρ1, ρ
′
1 are witnesses for the non-locality of H iff c, w1, ρ

′
1 are also

such witnesses. �

Theorem 1 (Complexity of local choices) Deciding if an HMSC is local
is in co−NP .

Proof: The objective is to find a counter example, that is two paths origi-
nating from the same node with distinct deciding instances. One can choose
in linear time in the size of H a node c and two finite acyclic paths ρ1, ρ2
of H starting from c, that is sequences of bMSCs of the form M1 . . .Mk.
One can compute a concatenation O = M1 ◦ · · · ◦Mk in polynomial time
in the total size of the ordering relations. Note that to compute minimal
events of a sequencing of two bMSCs, one does not have to compute the
whole causal ordering ≤, and only has to ensure that maximal and min-
imal events on each instance in two concatenated bMSCs are ordered in
the resulting concatenation. Hence it is sufficient to recall a covering of the
local ordering ≤p on each process p ∈ I plus the message relation m. Then
finding the minimal events (or equivalently the minimal instances) of O
can also be performed in polynomial time in the number of events of O, as
Min(M) = E \ {f | ∃e, e ≤p f ∨ f = µ(e)}. �

From theorem 1, an algorithm that checks locality of HMSCs is straight-
forward. It consists in a width first traversal of acyclic paths starting from
each node of the HMSC. If at some time we find two paths with more than
one minimal instance, then the choice from which these paths start is not lo-
cal. Note that the set of minimal instances on a path ρ (or the whole bMSC
Oρ labeling this path) needs not be recomputed everytime a path is ex-
tended, and can be updated at the same time as paths. Indeed, if ρ = ρ1.ρ2 is
a path of H, then φ(Min(Mρ)) = φ(Min(Mρ1))∪(φ(Min(Mρ2)) \ φ(Mρ1)).
It is then sufficient for each path to maintain the set of instances that ap-
pear along this path, and the set of minimal instances, without memorizing
exactly the scenario that is investigated.

Algorithm 1 was originally proposed in [16]. It builds a set of acyclic
paths starting from each node of an HMSC. A non-local choice is detected
if there is more than one deciding instance for a node c. The algorithm
remembers a set of acyclic paths P , extends all of its members with new
transitions when possible, and places a path ρ in MAP as soon as the set
of transitions used in ρ contains a cycle. The correctness of the algorithm is
guaranteed by theorem 1, and as we consider a finite set of maximal acyclic
paths, termination is guaranteed.

4 The Synthesis Problem

The objective of the synthesis algorithm from an HMSC H is to obtain
a CFSM A that behaves exactly as H. An obvious solution is to project
the original HMSC on each instance, that is if H is defined over a set of
instances I, we want to build a CFSM A = ‖

i∈I
Ai such that L(H) = L(A).

Distributed Implementation of Message Sequence Charts 15

Algorithm 1 LocalChoice(H)

for c node of H do
P = {(t, I, J) | t = (c,M, n) ∧ I = φ(min(M)) ∧ J = φ(M)}
/*P contains acyclic paths*/
MAP = ∅ /*Maximal acyclic paths*/

while P 6= ∅ do

MAP = MAP ∪
{

(w.t, I) | ∃(w, I, J) ∈ P,∃t = (nk,M, n) ∈ w,
w = t1...tk ∧ tk = (nk−1,Mk, nk)

}

P =

(w.t, I ′, J ′) | ∃(w, I, J) ∈ P,∃t = (nk,M, n) ∈−→,

w = t1...tk ∧ tk = (nk−1,Mk, nk),
∧t 6∈ w ∧ J ′ = J ∪ φ(M) ∧ I ′ = I ∪ (φ(min(M))− J)

end while
DI =

⋃
(w,I)∈MAP

I /*Deciding Instances*/

if | DI | >1 then
H contains a non-local choice c

end if
end for

The principle of projection is to copy the original HMSC on each in-
stance, and to remove all the events that do not belong to the considered
instance. This operation preserves the structure of the HMSC automaton:
Starting from an automaton labeled by bMSCs, we obtain an automaton
labeled by (possibly empty) sequences of events located on the considered in-
stance. This object can be considered as a finite state automaton by adding
intermediary states in sequences of events. Empty transitions can be re-
moved by the usual ε-closure procedure for finite state automata (see for
instance chapter 2.4 of [17]).

Definition 9 (Projection) Let us consider an HMSC H = (I,N,→,M, n0).
The set of events of a bMSC M is denoted by EM , and the set of events of
M located on instance i by EMi. The set EMi is totally ordered by ≤i. We
denote its elements by e1, · · · , e|EMi|. The finite state automaton Ai, result
of the projection of H onto the instance i is Ai = (Qi,→i, Ei ∪ {ε}, n0).
We encode states of Ai as tuples (n,M, n′, k) ∈ N ×M × N × N, where
the first three components designate an HMSC transition labeled by a bMSC
M defined over a set of events EM , and the last component k is an in-
dex ranging from 1 to |EMi

| indicating the progress of instance i during
M , or simply as a reference to an HMSC node n (designating a confi-
guration in which Ai has not yet started the execution of a bMSC from
n). We then have Qi = {n} ∪ {(n,M, n′, k) | (n,M, n′) ∈−→ ∧ k < |EMi |},

16 Rouwaida Abdallah et al.

and Ei =
⋃
M∈MEMi. We can then define the transition relation −→i as

−→i = {(n, ε, n′) | ∃(n,M, n′) ∈−→ ∧|EMi
| = 0}

∪ {(n, t(e1), n′) | ∃(n,M, n′) ∈−→ ∧|EMi
| = 1}

∪ {(n, t(e1), (n,M, n′, 1)) | (n,M, n′) ∈−→ ∧|EMi
| ≥ 2}

∪ {((n,M, n′, k − 1), t(ek), (n,M, n′, k)) | (n,M, n′) ∈−→ ∧2 ≤ k < |EMi
|}

∪ {((n,M, n′, k − 1), t(ek), n′) | (n,M, n′) ∈−→ ∧k = |EMi |}

A!B(m1)

A!D(m3)

C?B(m2)

C?D(m4)

B!C(m2)

ε D?A(m3)

D!C(m4)

B?A(m1)

εq0,A
q0,B

q1,C

q0,D

q1,A
q1,B

q2,B

q1,D
q2,D

q0,C

Fig. 6: The instance automata projected from the HMSC of Fig. 3-a).

The synthesis by projection from the HMSC of Figure 3-a) produces the
CFSM of Figure 6. Note that as instance D is not active in bMSC M1, there
is an ε-transition in the automaton associated to D. The synthesis from the
HMSC of Figure 3-b) produces the CFSM of Figure 5. In this model, the
CFSM can behave as specified in scenarios M1 and M2. However, Aclient can
also decide to send a Data message while AServer sends a logout message.
This situation was not specified in the HMSC of Figure 3-b), so the CFSM of
Figure 5 cannot be considered as a correct implementation. In general, the
projection of an HMSC on its instances can define more behaviors than the
original specification, but can also deadlock. Hence, synthesis by projection
on instance is not correct for any kind of HMSC. It was proved in [16] that
the synthesized language contains all runs of the HMSC specification.

Theorem 2 ([16]) Let H be an HMSC and let A be the CFSM obtained by
projection of H on its instances. Then L(H) ⊆ L(A).

In the rest of the paper, we will only consider local HMSCs. However,
this is not sufficient to ensure correctness of synthesis. Let us consider the
projection of H in Figure 3 on all its instances given in Figure 6. A correct
behavior of H is shown in Figure 7-a), while a possible but incorrect behav-
ior of the synthesized automata is shown in Figure 7-b). We can see that
message m4 sent by machine D can arrive at machine C while m2 sent by
machine B is still in transit. According to the HMSC semantics, machine C
should delay the consumption of m4 to receive message m2 first. However,

Distributed Implementation of Message Sequence Charts 17

A B

m1

C

m2

D

m3

m4

(a)

A B

m1

C

m2

D

m3

m4

(b)

Fig. 7: a) A correct behavior of the HMSC of Fig. 3-a), and b) a possible
distortion due to the loss of information on projected instances.

C does not have enough information to decide to delay the consumption of
m4, and hence exhibits an unspecified behavior.

This example proves that in general, even for local HMSCs, the synthesis
by projection is not correct. Problems arise when an instance does not have
enough information on the sequences of choices that have occurred in the
causal past of a message reception event. In some sense, the projection
of an HMSC on local components breaks the global coordination between
deciding instances and the other instances in the system.

Definition 10 Let H be a local HMSC and c be a choice node of H. Let
ρ be a cyclic path starting from c, and ρ′ be any acyclic path starting from
c. Let Hc be the HMSC with two nodes c, c′, two transitions (c,Oρ, c) and
(c,O′ρ, c

′). Let Ac be the CFSM obtained by projection from Hc. We will say
that c, ρ, ρ′ is a sequence-loss witness iff L(Hc) 6= L(Ac).

We will say that an HMSC is reconstructible if and only if it is lo-
cal and has no sequence-loss witnesses. The class of reconstructible HM-
SCs was proposed in [16]. This paper also shows that it is sufficient to
consider simple cycles leaving a choice to detect sequence-loss witnesses,
which allows for the definition of a terminating algorithm. Furthermore,
one does not have to simulate all runs of communicating automata in Ac
to detect that L(Hc) 6= L(Ac). Indeed, sequence losses can be detected
by checking if the sequential ordering of events along a non-deciding in-
stance in prefix Oρ ◦ Oρ′ can be lost during projection. To avoid techni-
cal details, we will not show in this paper how the sequence losses can
be found from Oρ ◦ Oρ′ , but rather illustrate the approach on an exam-
ple. We refer interested readers to [16] for formal details. Let us consider
the example of Figure 3-a), with a single choice node n0, and the path
(n0,M1, n0).(n0,M2, n1). According to the semantics of HMSCs, reception
of messages m2 and m4 on instance C should occur in this order in a cor-
rect implementation of the example. Now let us consider the automata
obtained by projection of H on instances, as in Figure 6. After execut-
ing A!B(m1).B?A(m1).B!C(m2).A!D(m3).D?A(m3).D!C(m4), the CFSM
is in configuration (L = q1,A.q0,B .q0,C .q2,D,W = {ε, . . . wBC = m2, wDC =
m4, . . . ε}). From this configuration, the automaton corresponding to in-
stance C can receive m2, which is the expected behavior, or conversely

18 Rouwaida Abdallah et al.

receive m4 which is wrong according to the choices that were performed by
instance A. Hence n0, (n0,M1, n0), (n0,M2, n1) is a sequence loss witness.
This can be easily seen from M1 ◦M2: If one removes the ordering between
the reception of m2 and the reception of m4, there is no way to infer this
ordering from remaining causalities. One important fact is that synthesis
by projection is correct for the subclass of reconstructible HMSCs.

Theorem 3 ([16]) Let H be a reconstructible HMSC, and A be the CFSM
obtained from H by projection. Then, L(H) = L(A).

As for local HMSCs, one can easily show that detecting if an HMSC is
reconstructible is a co−NP problem. According to theorem 3, the commu-
nicating automata synthesized from reconstructible HMSCs are correct im-
plementations. However, we show in the next section, that all local HMSCs
can be implemented with the help of additional controllers. This allows for
the following synthesis approach: first check if an HMSC is reconstructible.
If the answer is yes, then synthesize the CFSM by simple projection as pro-
posed in section 4. If the answer is no, then synthesize the CFSM with their
controllers, as proposed in section 5.

5 Implementing HMSCs with message controllers

The class of reconstructible HMSCs shown in section 4 is contained in the
class of local HMSCs. This subclass is quite restrictive (for instance, the
HMSC of Figure 3-a) is not reconstructible, and hence can not be imple-
mented by a simple projection). Note also that the difference between the
languages of an HMSC and of the synthesized machines comes from the fact
that some communicating automata consume a wrong message instead of
waiting for the arrival of the message specified by the HMSC. In this sec-
tion, we address the synthesis problem in a different setting, that is we add
a local controller to each communicating machine that can tag messages
and delay their delivery. As synthesis fails because of reception of messages
in the wrong order, each controller will receive messages destinated to the
machine it controls, and decide whether it should deliver it or delay its de-
livery. This decision is taken depending on additional information carried by
messages, namely a vector clock. Vector clocks is a well known mechanism,
and helps keeping track of global progress in distributed systems.

This new mechanism allows for the implementation of any local HMSC
H, without syntactic restriction. The architecture is as follows: For each
process, we compute an automaton, as shown in previous section by projec-
tion of H on each of its instances. The projection is the same as previously,
with the slight difference that the synthesized automaton communicates
with his controller, and not directly with other processes. To differentiate,
we will denote by K(Ai) the “controlled version” of Ai, keeping in mind
that Ai and K(Ai) are isomorphic machines. Then, we add to each au-
tomaton K(Ai) a controller Ci, that will receive all communications from

Distributed Implementation of Message Sequence Charts 19

K(Ai), and tag them with a stamp. In every automaton K(Ai) we re-
place each transition of the form

(
(n1,M1, k, n2), p!q(m), (n3,M2, k

′, n4)
)

(respectively
(
(n1,M1, k, n2), p?q(m), (n3,M2, k

′, n4)
)

) in Ai, by a transi-

tion of the form
(
(n1,M1, k, n2), p!Cp(q,m, b), (n3,M2, k

′, n4)
)

(respectively(
(n1,M1, k, n2), p?Cp(q,m, b), (n3,M2, k

′, n4)
)
), where b indicates the branch

to which the sending or the reception belongs. A controller Ci can receive
messages of the form (q,m, b) from his controlled process K(Ai). In such
cases, it tags them with a clock (the contents of this clock is defined later
in this section), and sends them to controller Cq. Similarly, each controller
Ci will receive all tagged messages destinated to K(Ai), and decide with
respect to its tag whether a message must be sent immediately to K(Ai)
or delayed (i.e. left intact in buffer). Automata and their controllers com-
municate via FIFO channels, which defines a total ordering on message
receptions or sendings. Controllers also exchange their tagged messages via
FIFO buffering. In this section, we first define the distributed architecture
and the tagging mechanism that will allow for preservation of the global
specification. We then define control automata and their composition with
synthesized automata. We then show that for local HMSCs the controlled
local system obtained by projection behaves exactly as the global specifica-
tion (up to some renaming and projection that hides the controllers).

5.1 Distributed architecture

We consider the n = |I| automata {K(Ai)}1≤i≤n obtained by projection
of the original HMSC on the different instances, and a set of controllers
{Ci}1≤i≤n. Each communicating automaton K(Ai) is connected via a bidi-
rectional FIFO channel to its associated controller Ci. The controllers are
themselves interconnected via a complete graph of bidirectional FIFO chan-
nels. We will refer to these connections among communicating automata as
ports. A machine K(Ai) communicates with its controller via a port Pi,
and for all i 6= j, port Pi,j of controller Ci is connected to the port Pj,i
of controller Cj . This architecture is illustrated in Figure 8 for three pro-
cesses i, j, k. This architecture is quite flexible: All the components run
asynchronously and exchange messages, without any other assumption on
the way they share resources, memory or processors.

5.2 Tagging mechanism

Vector clocks are a standard mechanism to record faithfully executions of
distributed systems (see for instance [11,24]), or to enforce some ordering
on communication events [27]. Usually, vector clocks count events that have
occurred on each process. In the architecture that we defined, each controller
maintains a vector clock that counts the number of occurrences of each
branch of an execution it is aware of.

20 Rouwaida Abdallah et al.

K(Ai K(Aj)

K(Ak)

Ci Cj

Ck

Pj,k

)

Pi,k

Pk,i

Pj,i

Pk,j

Pi,j

Pi
Pj

Pk

Fig. 8: The distributed controlled architecture.

To allow for faithful recording of branches chosen along an execution we
have to set up a total ordering on branches of HMSCs. Let H be an HMSC.
We will denote by BH the branches of H, and fix an arbitrary total ordering
C on BH . We use this arbitrary order on branches to index integer vectors
that remember the number of occurrences of branches that have occurred
during an execution of an HMSC. Let us consider the example of Figure 3,
that contains two branches b1 = (n0,M1, n0) and b2 = (n0,M2, n1). We
can fix b1 C b2, and associate to every execution a vector τ of two integers,
where τ [bi], i ∈ 1, 2 represents the number of occurrences of branch bi in the
execution.

Definition 11 (Choice clocks) A choice clock of an HMSC H is a vector

of NBH . Let ρ = n0
M1−→ n1

M2−→ n2 . . .
Mk−→ nk be a path of H. The choice

clocks labeling of Oρ is a mapping τ : EOρ −→ NBH such that for every i ∈
1..k, e ∈Mi, τ(e)[b] is the number of occurrences of branch b in M1◦· · ·◦Mi.

Intuitively, choice clocks count the number of occurrences of each choice
in a path of H. In the rest of this section, we will show that communicating
automata and their controllers can maintain locally a choice clock along the
prefix that they are executing, and that choice clocks carry all the needed
information to forbid the execution of prefixes that are not in L(H).

The usual terminology and definitions on vectors apply to choice clocks.
A vector V2 is an immediate successor of a vector V1 of same size, denoted
V1 l V2, if there is a single component b such that V1[b] + 1 = V2[b], and
V1[b′] = V2[b′] for all other entries b′. We will say that vectors V1 and V2 are
equal, denoted V1 = V2, if V1[b] = V2[b] for every entry b. We will say that
V2 is greater than V1, denoted V1 ≺ V2, iff V1[b] = V2[b] for some entries b,
and V1[b] < V2[b] for all others.

For a given path ρ = n0
M1−→ n1

M2−→ n2 . . .
Mk−→ nk, we will call the

choice events of Oρ the minimal events in every Mi, i ∈ 1..k. It is rather
straightforward to see that when an HMSC H is local, then for every path

Distributed Implementation of Message Sequence Charts 21

ρ of H, the set of choice events in Oρ is totally ordered. Note also that for a
pair of events e, f in Oρ, τ(e) = τ(f) if and only if e, f belong to the same
bMSC Mi. From these facts, the following proposition is straightforward:

Proposition 2 Let H be a local HMSC, ρ be a path of H, and τ be the
choice clock labeling of Oρ. Then, (τ(EOρ),≺) is a totally ordered set.

This proposition is important: maintaining locally a consistent tagging
of messages allows a controller that has two tagged messages available in
two of its buffers to decide which one should be delivered first.

Definition 12 (Concerned instances) Let b = (c,M, n) be a branch of
an HMSC H. We will say that instance p ∈ I is concerned by branch b if
and only if there exists an event of M on p (EMp 6= ∅). Let K ∈ NBH be a
choice clock, and let p ∈ I be an instance of H. The vector of choices that
concern p in K is the restriction of K to branches that concern p, and is
denoted by [K]p.

In the example in Figure 3, the choice clock is a integer vector indexed by
b1, b2, where b1 = (n0,M1, n0) and b2 = (n0,M2, n1). Considering M1 and
M2 as defined in Figure 2, instances A,C are concerned by both branches
(they are active in M1 and M2), but instance B is concerned only by b1 and
instance D is concerned only by b2.

For a given instance i ∈ I, the controller Ci associated with the pro-
jected automaton K(Ai) will receive the messages sent by K(Ai) and by
the other controllers. Messages exchanged between the automata and the
controllers are triples (j,m, b) where j ∈ I is the destination automaton,
m ∈ C is the message name, and b the branch in which the sending event
has occurred. In other words, in our controlled architecture, an automaton
executes p!Cp(q,m, b) instead of p!q(m). The messages exchanged between
controllers are tagged and represented by pairs (m, τ) where m is a message
name and τ ∈ NBH a choice vector. In addition, the controller Ci maintains
several local variables:

– τi ∈ NBH , its locally known choices vector. It is initialized to the null
vector, and updated upon consumption of incoming messages.

– numEvt, which counts the remaining number of communication events
of the instance i to be treated in the current branch that is being pro-
cessed.

– Rec is a sequence of reception events. numEvt and Rec are initialized
with constant values (that depend on the chosen branch) when dealing
with the first event of a branch on process i.

– currentb, which memorizes the branch of H that is currently executed
by process i.

In the rest of the paper, we will denote by πi(M) the sequence of events
obtained by projection of M on instance i ∈ I, and by πi,?(M) the re-
striction of this sequence to receptions. For a sequence of events w, we will

22 Rouwaida Abdallah et al.

denote by tail(w) the sequence of events obtained by removing the first
event from w, that is if w = a.v, then tail(w) = v. The generic algorithm
for a controller Ci is composed of two rules, which are always active (see
Algorithm 2). Rule 1 applies to communications from K(Ai) to Ci. First
case corresponds to minimal events controlled by the projected automaton
K(Ai). When dealing with the first event of the bMSC (branch b) to be pro-
cessed, the only role of the controller is to compute the tag (increment of
the corresponding component of τi) and to initialize the variables numEvt
and Rec. The currently processed branch is stored in variable currentb. The
other case deals with communications from K(Ai) that are not choices of
K(Ai). These events are generated in correct order by construction of the
projection.

The second rule applies for every port Pi,j , j 6= i, and aims at control-
ling the order of the different receptions of messages arriving in the buffers
between each controller Cj , j ∈ I \ {i} and controller Ci. This is the main
objective of the controller. Note that these messages arrive in a distinct
buffer for each neighbor controller. There are three cases:

– The first case occurs when a branch of H has already been started, that
is a controller Ci has received (i.e. consumed) a message indicating the
choice performed by the deciding instance of this branch, and a valid
message arrives. In this situation, all the components concerning K(Ai)
of the current tag τi and of the tag τ labeling the incoming message must
be equal, and this incoming message must be the next expected message
(i.e. the next reception in Rec) in the currently executed branch. Then
the message can be consumed by Ci and forwarded to K(Ai). The fact
that there is only one FIFO channel between the controller Ci and the
projected automaton K(Ai) ensures the correct order of receptions on
this automaton.

– The second case is when the incoming message is the first communication
signaling a new choice. The controller then checks if the received message
defines the next branch of H that must be executed by K(Ai). This
is done by verifying if the received tag is the next tag to be treated
(considering only the components that concern K(Ai)), that is [τi]il[τ]i.
In that case, the current tag can be updated. The current branch is
retrieved by considering the component that differs between [τ]i and
[τi]i. Then the remaining number of events that should be executed
within this branch (the number of events on the instance i in the bMSC
of the current branch, minored by one) is set, as well as the expected
sequence of receptions, before transmission of the message to K(Ai).

– The third case applies when none of the above situations hold, that is the
incoming message on port Pi,j can not yet be consumed, either because
it is not the next reception expected (another reception on another port
should occur before this one) or the incoming message signals that a new
choice has been started, but more events must occur before consuming
it. In such case, the controller does nothing, and waits for other messages
on other ports.

Distributed Implementation of Message Sequence Charts 23

The algorithm 2 executed by every controller is presented next page.

Algorithm 2 Controller Ci

RULE 1: when (j,m, b) available on port Pi

/* There is a message from K(Ai) in the buffer from K(Ai) to Ci*/
consume (j,m, b)
if numEvt = 0 then
τi[b]++
numEvt := |Πi(Mb)| − 1
Rec = Πi,?(Mb)
send (m, τi) to Cj via port Pi,j

else
numEvt - -
send (m, τi) to Cj via port Pi,j

end if

RULE 2: when there exists a port Pi,j with (m, τ) available on port Pi,j

/* There is a message from controller Cj in the buffer between Cj and
Ci*/
if ([τi]i = [τ]i) ∧ (Rec = Ai?Aj(m).w) then

/* continuation of an already started branch */
consume (m, τ)
numEvt - -
send (j,m) to K(Ai) via port Pi

Rec = w
else

if (numEvt = 0) ∧ ([τi]i l [τ]i) then
/* A new branch b was started, and this is the next */
/* branch that Ai should execute (i is concerned by b)*/
consume (m, τ)
τi := τ
currentb := b s.t. [τ][b]− [τi][b] 6= 0
numEvt := |Πi(Mcurrentb)| − 1
Rec := tail(Πi,?(Mcurrentb))
send (j,m) to K(Ai) via port Pi

end if
/* The last situation is when the message can not be consumed be-
cause it does not have the right sequence number */

end if

Now that we have defined controlled automata and their controllers, we
can define formally how they compose. Recall thatK(Ai) is a finite state ma-
chine with the same states as Ai, but in which each transition (q, i!j(m), q′)
is replaced by a transition (q, i!Ci(j,m, b), q

′) (where b denotes the name
of the branch currently executed by Ai, and each transition (q, i?j(m), q′)
is replaced by a transition (q, i?Ci(j,m), q′). Each controller Ci is not a
communicating automaton, but yet it is a machine that sends and receives
messages. The composition K(Ai) | Ci of a machine with its controller is a

24 Rouwaida Abdallah et al.

pair of communicating machines with a FIFO buffer from K(Ai) to Ci, and
another from Ci to K(Ai). Then, the composition of controlled machines
‖
i∈I

(K(Ai)|Ci) is the union of all K(Ai)|Ci, with communication buffers

from each Ci to each Cj , for i 6= j in I. Note that K(Ai)
′s communicate

only with their controllers. This composition is illustrated in Figure 8, where
the depicted architecture is

(
K(Ai) | Ci

)
‖
(
K(Aj) | Cj

)
‖
(
K(Ak) | Ck

)
.

At this point, let us note that our controlled implementation is not a CFSM
anymore. Note that our controllers are defined with several lines of code,
but that they simply recall a local state plus an increasing vector of inte-
gers. The number of local states that a controller can record is finite (they
are simply the states of the finite automaton obtained by projection on
the instance). So, the infinite part of the controller only comes from the
vector. Another light modification with respect to standard communicating
machines is that the controller needs to read messages without consuming
them. Note however, that variables, message reading, etc. are allowed in
extended state machine models such as SDL [19]. Considered individually,
process descriptions obtained after controlled synthesis are represented by
an automaton plus its controller. However, the correctness result presented
hereafter shows that the synthesis does not change the individual behav-
ior of an instance, which remains regular. The major difference between
the standard architecture and the controlled one is that the controlled au-
tomata ‘simulate’ the original specification (controllers are allowed to play
additional hidden sequences of events before delivering a message), while
the automata obtained by projection in the standard synthesis framework
of section 4 have to play exactly the sequences of events described by the
original HMSC to be a correct implementation.

5.3 Correctness of controlled synthesis

Let us show correctness of the synthesis with local controllers. Of course,
adding controllers to the system means adding the controllers’ actions to
the executions. Hence, we can not require that L(H) = L(‖

i∈I
(K(Ai)|Ci)

anymore. We propose another notion of correctness, namely language equal-
ity up to abstraction of controllers. Abstraction erases controllers’ actions,
and considers communications (q,m, b) from a process p to his controller as
a communication of a message m from p to q.

Definition 13 Let O = (E,≤, t, φ, µ) be a prefix in L(‖
i∈I

(K(Ai)|Ci). The

restriction of O to non-control events is a restriction of O to events lo-
cated on K(Ai)’s. We will denote this restriction by Unc(O). The uncon-
trolling of O = (E,≤, t, φ, µ) is a renaming function Ru() that replaces
communications to and from the controller of a process by direct communi-
cations with the process concerned by the sent/received message, and builds
the message mapping. Ru(O) = (E,≤, t′, φ, µ′), where t′(e) = p!q(m) if

Distributed Implementation of Message Sequence Charts 25

t(e) = K(Ap)!Cp(m, q, c), t′(e) = p?q(m) if t(e) = K(Ap)?Cp(m, q), and
t′(e) = t(e) otherwise. Function µ′ maps the ith sending from p to q with
the ith reception on q from p for every pair of processes.

Note that for a prefix O in L(K(Ai)|Ci) (i.e. located on a single in-
stance), the message mapping in Unc(O) is an empty relation.

Theorem 4 Let H be an HMSC, and let ‖
i∈I

K(Ai)|Ci be its controlled

synthesis. Then, Ru(Unc(L(‖
i∈I

K(Ai)|Ci))) = L(H).

Proof sketch: We want to show that the original specification given as an
HMSC and the synthesized controlled machines exhibit the same behaviors.
We proceed in several steps. We first show that in the synthesized machines,
all choices (i.e. events corresponding to the first event of some bMSC) are
causally ordered in any execution of the network of synthesized machines
and controllers. We then show that for every configuration of an HMSC H
reachable after an execution O, there exists a finite set of configurations of
the synthesized machines reachable by observing the same execution. The
last steps of the proof show inclusion of specification and implementations
languages in both directions by contradiction. Supposing that there exists a
configuration of H reached after executing a prefix O that allows firing of an
event a but that there exists no corresponding configuration of the CFSM
reachable after O that allows a leads to a contradiction. We consider each
type of events for a and show that allowing a in one language but not in the
other contradicts either the fact that O is a prefix of both the original speci-
fication and the synthesized language, or the fact that choices are ordered. A
complete proof of this theorem can be found in a research report available at
http://people.rennes.inria.fr/Loic.Helouet/Papers/RR-7597.pdfut

This result shows correctness of synthesis up to renaming, and erasing
of controllers’ moves. As a consequence, the behavior of an instance i ∈ I
in an HMSC, and the behavior of the CFSM K(Ai) are isomorphic. Hence,
even after adding infinite controllers, the behaviors of processes remains
regular.

6 Use case

In order to illustrate the way our algorithm works we study controlled syn-
thesis from an example HMSC describing a simple transmission protocol
based on the Morse code. This example is shown in Figure 9. In this figure,
we indicate in italic an index associated to each branch of the HMSC (for
instance transition (n0,M0, n1) is branch b1). One can immediately notice
that this HMSC is local. However, it is not reconstructible, and the respec-
tive ordering between messages zero and one can be lost. In this example,
process A wants to transmit Morse coded information to process B. The
protocol can be decomposed into several phases. If A has nothing to send,

26 Rouwaida Abdallah et al.

it indicates it to the coder which acknowledges that there will be no trans-
mission via a message Leave (bMSC M6). To send a message, A requires a
connection to B via the Morse Coder C (bMSC M0). Once the connection is
established A can leave the transmission (bMSC M5), or send the informa-
tion to the Morse Coder C (bMSC M1). Then, C translates the information
received from A into a sequence of binary digits (0’s and 1’s) that represent
respectively the dots and the dashes of the Morse code. Then C can send
the elements of this sequence to B via two channels: All the 0s are sent
via the channel chan0 (bMSC M2) and all the 1s are sent via the channel
chan1 (bMSC M3). Once the coded information is completely transmitted
to B, the process C sends an acknowledgment to the process A that can
choose either to send a new piece of data or to close the connection.

A C

Data

Morse
Coding

bMSC M1

A C

Ack

bMSC M4A C

ConAck

bMSC M0
B

Connect

Connected

ConReq

A C

disConAck

bMSC M5
B

disConnect

disConnected

disConReq

C Chan0

bMSC M2
B

Zero

send0

C Chan1

bMSC M3
B

one

send1

n4

M0

n0

M1

n1

M4

n5

M5

n6

A C

bMSC M6

NoMessage

Leave

M6

n2

M2 M3

M5

n3

M1

b1

b4

b2

b3

b5
b6

b7

b8
b9

Fig. 9: A simple transmission protocol based on Morse code

Figure 10 shows the projection of the HMSC of Figure 9 on all the
instances of the system. As this HMSC is not reconstructible, we must use
the controlled synthesis technique described in section 5. Hence, each process
interacts with its controller. We will give a number to each process going
from 0 to 4 associated respectively to the processes A,B,C,Chan0 and
Chan1, and call Contx the controller attached to instance x. Let us explain
the structure of the exchanged messages between the automata and their
controllers: For example A wants to send to C the message ConReq (hence
choosing branch b1 in the HMSC), then A sends to its controller the message

Distributed Implementation of Message Sequence Charts 27

!Cont (2,ConReq,B1)

?Cont (2,ConAck,_)

!Cont (2,Data,B4)

?Cont (2,Ack,B7)

!Cont (2,Data,B9)
!Cont (2,disConReq,B8)

?Cont (2,disConAck,_)

?Cont (2,Connect,B1)

!Cont (2,Connected,_)

?Cont (3,zero,B5)

?Cont (4,one,B6)

?Cont (2,disconnect,B3)

!Cont (2,disconnected,_)

?Cont (0,ConReq,B1)

!Cont (1,Connect,_)

?Cont (1,Connected,_)

!Cont (0,ConAck,_)

?Cont (0,Data,B4)

Morse Coding

!Cont (4,send0,B5)!Cont (3,send1,B6)

!Cont (0,Ack,B7)

?Cont (0,Data,B9)

?Cont (1,disconnected,_)

?Cont (2,send0,B5)

?Cont (0,disConReq,B8)

?Cont (2,send1,B6)

!Cont (1,one,_)

?Cont (1,zero,_)

!Cont (1,disconnect,_)

!Cont (0,disConAck,_)

?Cont (2,Leave,_)

?Cont (0,NoMessage,B2)

!Cont (0,Leave,_)

!Cont (2,disConReq,B3)

?Cont (2,disconnect,B8)

?Cont (0,disConReq,B3)

!Cont (2,NoMessage,B2)

A

A

A

A

A

A

A

A

A A

Chan0

Chan0

Chan1

Chan1

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

B

B

B

B

B

B

B

Fig. 10: The CFSM obtained by projection of the HMSC Figure 9

(2, ConReq, b1) that corresponds to the (i,m, j) structure described in the
algorithm. The 2 in the message corresponds to the destination process,
so when the controller receives the messages it knows to which instance
controller it should be forwarded (the process number 2 is C). ConReq
represents simply the data part of the message that should be sent by the
controller, b1 means that the process A wants to start a new scenario (or
bMSC). So, upon reception of this message, the controller ContA have to
update its local tag. The new tag will then be concatenated to the message
that will be sent by ContA. The Morse example can be controlled using tags
in N9, as there are 9 different branches in our HMSC. Note that the tagging
mechanisms are not meant to be written by a user, but rather automatically
generated by a tool. The tool SOFAT [15], a scenario platform developed at
IRISA has been extended to allow such generation.

28 Rouwaida Abdallah et al.

A Cont B Cont C Cont Chan0 Cont Chan1 Cont
(2,ConReq,b1)

(ConrReq,[1 0 0 0 0 0 0 0 0])

(0,ConReq)

(1,Connect,_)

(2,Connect)

(Connect,[1 0 0 0 0 0 0 0 0])

(2,Connected,_)
(Connected,[1 0 0 0 0 0 0 0 0]),

(1,Connected)

(0,ConAck,_)

(ConAck,[1 0 0 0 0 0 0 0 0])

(2,ConAck)

(2,Data,b4)

(Data,[1 0 0 1 0 0 0 0 0])

(0,Data)
Morse
Coding

(3,send0,b5)

(4,send1,b6)
(send0,[1 0 0 1 1 0 0 0 0])

(send1,[1 0 0 1 1 1 0 0 0])

(2,send0)

(1,zero,_)

(2,send1)

(1,one,_)

(one,[1 0 0 1 1 1 0 0 0])

(zero,[1 0 0 1 1 0 0 0 0])
(3,zero)

(4,one)

A B C Chan0 Chan1

Fig. 11: An execution of the CFSM of Figure 10 with their controllers

An example of execution for the path n0
M0−→ n1

M1−→ n4
M2−→ n4 −→

n4
M3−→ n4 is shown in Figure 11. In M0 the connection is established be-

tween the processes A and B via C, then process A sends to C the data
to be coded and sent to process B. C codes the data: In the example, it is
coded as a sequence of two bits: 0 1. Instance C chooses branch b5 (bMSC
M2) then branch b6 (bMSC M3). A difference in the performance between
chan0 and chan1 causes a delay and a message overtaking in the diagram:
The message one is received by ContB (the controller associated with B)
before the message zero. Hence, ContB has a message of the form (one, τ)
in its buffer collecting messages from ContChan1, and no message in its
buffer collecting messages from ContChan0. Then, ContB compares the tag
τ = [100111000]) of this message with its local tag τB = [100000000] (set
to this value after the execution of the bMSC M0 as B is an active in-
stance of M0). The projection [τ]B = [10110] of the received tag on the
branches concerning B is not an immediate successor of [τB]B = [10000],

Distributed Implementation of Message Sequence Charts 29

so the controller delays the delivery of the message one to the automaton
B, and leaves the message in its buffer. When ContB , receives the message
zero with tag τ ′ = [100110000] in its buffer from ContC0, as [τ ′]B = [10100]
is the immediate successor of [τB]B = [10000], the message is forwarded to
B and ContB updates its local tag to [100110000]. When ContB compares
again the tag of the delayed message one with its local tag, [τ]B = [10110] is
the immediate successor of [τB]B = [10100] so ContB forwards the message
one to B and updates its local tab to [100111000]. Hence, a correct ordering
in the reception of messages zero and one on instance B is ensured by the
tagging mechanisms despite the message crossing.

7 Related work

Protocol synthesis is not a new problem, and stems from the 80’s [7]. The
addressed problem is: Given a high level specification with global control
(the decisions taken in the system may consider a global state of all agents),
how to produce an implementation, i.e. a set of independent (hence with
local control only) machines that exhibit the same behaviors as the original
specification? This problem has been addressed with many specification and
implementation formalisms. For a generic survey on protocol synthesis, we
refer interested readers to [28]. Note that synthesis may not be achievable.

In recent years, a lot of attention has been paid to synthesis from sce-
nario notations. Synthesis from scenarios can be easier to implement when
the chosen formalism includes indications on communications and on the
distribution of tasks among agents. The problem has been addressed for
MSCs [1,16], LSCs [14], sequence diagrams [32], and other scenario-based
models. We do not claim for exhaustiveness in our bibliography, and refer
interested readers to [3,22] for surveys on synthesis from scenarios. These
surveys compare and classify many approaches, and we next classify our
technique according to the comparison criteria provided in these surveys.

Liang et al [22] compare the synthesis approaches according to the source
formalism, the intended use (analysis or code generation), the support for
composition operators and parallelism. Our approach uses High-level MSCs
as input language, and supports composition operators such as loops, se-
quence, and choices. We consider parallelism among agents, but there is
no support of parallel frames. The reasons for this restriction are discussed
in section 2: Parallel frames introduce non-determinism leading to incor-
rect synthesized behaviors, and may force implementations to have an un-
bounded number of control states. The intended use of our technique is
mainly code generation. Other interesting criteria address the target model,
which can be with global or local control, the degree of automation, and tool
support. The synthesis proposed in this paper derives local finite state ma-
chines, which are controlled asynchronously by machines able to delay some
messages according to some information about ordering of messages coded
as counters. The technique is fully automated, and is implemented in our

30 Rouwaida Abdallah et al.

SOFAT tool [15]. Last, Liang et al check if the synthesis technique checks
correctness and completeness of the synthesized model. Our synthesis ap-
proach is not concerned by these criteria, as the derived CFMS are correct
and complete by construction, i.e. they exhibit exactly the same behaviors
as the original description.

Amyot et al [3] use some criteria of [22], and introduce several other such
as component focus, which considers whether the distribution of behaviors
is detailed in the specification formalism, hiding i.e. the specification for-
malism considers internal behavior of the modeled system as a black box
or allows description of internal details. In addition, Amyot et al consider
representation issues i.e. whether the specification formalism is graphical or
textual, and ordering issues, i.e. whether concurrency is made explicit in
the formalism, time (does the scenario model and the synthesis approach
address time issues?), abstraction (can the scenario model represent generic
behaviors), identity (the ability to define generic scenarios involving groups
of agents rather than precisely identified ones), and dynamicity (the ability
to change the behavior of agents at runtime). Clearly, the HMSCs considered
in our approach emphasize distribution of actions over agents, and allows
for description of internal behaviors using internal actions. HMSCs are both
a graphical and textual language. Though the whole HMSC language allows
for abstraction, time (use of timers and expression of time constraints on
scenarios), decomposition, dynamic process creation, or definition of ab-
stract instances, we do not address these features of the language in our
synthesis solutions. The most important and interesting (but also the most
difficult) issues to address using such techniques are certainly time and dy-
namic process creation. However, defining time constraints, for instance can
completely change the interpretation of a specification, and even make it
inconsistent. Furthermore, time constraints involving events located on dis-
tinct instances (for instance the maximal delay allowed between the sending
of a message and its reception) are hard to implement. Dynamicity is also
hard to address, as there is a lack of formal distributed models allowing
dynamic process creation. A first attempt to propose a dynamic communi-
cating automaton model appeared in [8], but the proposed model must be
highly non-deterministic in order to implement dynamic MSCs.

Let us now compare our approach with some former synthesis works
based on HMSC projection. Most of these works propose solutions for syn-
tactic subclasses of HMSCs only, and usually local HMSCs. We have shown
in this paper that working with local HMSCs is not sufficient to guaran-
tee a correct synthesis. Indeed, the machines synthesized by the MSC2SDL
tool [1] or the MOST tool [23] frequently allow for more behaviors than the
original specification. To solve this problem, [16] introduced reconstructible
HMSCs and showed that synthesis by projection is correct for this subclass.
The solution in [12] uses local HMSCs, and furthermore requires that all
processes of the HMSC are active (i.e. send or receive a message) in all
branches. The approach in [5] considers regular HMSC specifications, that
is a subclass of HMSCs with the expressive power of finite automata, and

Distributed Implementation of Message Sequence Charts 31

synthesizes a correct target model. Other works allow the implementation
to deadlock [25] and consider that deadlocked runs are not part of the im-
plemented language. In our approach, we have ruled out this possibility,
and considered that every initiated run had to be considered as a behav-
ior of the synthesized machines, which seems more realistic. Our approach
synthesizes a correct distributed implementation for the whole class of local
HMSCs. Correctness is an improvement with respect to [1,23], and com-
pleteness an improvement with respect to [12]. Many synthesis approaches
proposed these last 10 years assume a synchronous semantics of HMSCs
(usually by considering synchronous communications among instances, or
synchronization among instances at the end of each bMSC), and take finite
state machines, or statecharts variants as target language. The work in [29]
assumes synchronous communications in bMSCs, and defines the semantics
of HMSCs as a parallel (and synchronous) composition of finite state ma-
chines associated to instances. As a result, the synthesized specification is
a finite automaton. The work in [21] synthesizes RoomCharts (a variant of
statecharts) as target language, and hence assumes a synchronous semantics
of HMSCs. The synchronous approach is well adapted to contexts where in-
stances are seen as components of a synchronous system. Synthesizing finite
objects then allows for standard model-checking techniques. Again, we refer
interested readers to surveys [3,22] for a more exhaustive list of synthesis
approaches with statecharts variants as target language. On the other hand,
our approach considers the standard asynchronous semantics of HMSCs [18],
and allows for the synthesis of independent components, that communicate
asynchronously. The semantics of the synthesized machines is not always
finite state.

8 Conclusion

We have considered the synthesis problem for HMSCs. Synthesis of CFSMs
by a simple projection mechanism is correct for local and reconstructible
HMSCs. We have proposed a new solution to synthesize correct implemen-
tation for local HMSCs that are not reconstructible: Additional controllers
simply tag messages and delay them to ensure correct ordering of message
receptions. We think that the class of local HMSCs is a good compromise
between the abstraction that is required in a specification formalism, and
the preciseness that is needed for a model to be implementable. Indeed,
imposing local choices avoids considering in the synthesis some heavy syn-
chronization mechanisms among instances to ensure that distant processes
behave according to the same chosen scenario. The class of local HMSCs
seems expressive enough to model many interesting protocols, and further-
more, locality of HMSCs is decidable. The synthesis algorithms have been
implemented in our tool SOFAT [15], to generate a formal description of the
CFSM from an HMSC, Promela code, or even java code for all the instances
and controllers needed in the system.

32 Rouwaida Abdallah et al.

This paper focuses on local HMSCs, but solutions still exist to synthesize
correct (up to some abstraction) machines from non-local HMSCs. Indeed,
a non-local HMSC can be made local by adding new synchronization mes-
sages. In the future, we plan to explore how to integrate the computation
of optimal and efficient synchronization in a design methodology. The in-
tegration of data is another challenging aspect. The techniques proposed
in this paper only address the control flow in a high-level description, and
do not consider data. Inserting manipulation of local data in the internal
actions of processes can be done easily by mixing the language of bMSCs
with a data manipulation language. The code attached to actions can then
be copied as it is in the generated code, which does not really impact the
synthesis process. However, if data are shared and used to guard choices in
HMSCs, the projection technique does not necessarily work, and additional
synchronization and consistency mechanisms are needed to ensure that the
synthesized processes work with the same data values.

Time issues are also complex to handle. If we consider for instance as
an input model a time-constrained MSC [2], synthesizing a correct model
means synthesizing machines that meet all the time constraints expressed
in the specification. This imposes in particular that controllers should also
play the role of timed schedulers. In such a context, using timed languages
equality as a notion of correctness for synthesis seems too constraining, and
one should probably restrict to timed languages inclusion.

A more technical perspective is to optimize our algorithm to reduce the
size of tags. A first challenge is to reduce the number of branches that a
controller have to consider. A first intuition is that only non-reconstructible
choices should be remembered, but yet this has to be demonstrated. A
second possibility is that all branches of a choice need not be remembered
if they can not be used as witnesses for non-locality. Another aspect is to
try to bound the integers used in choice clocks. This could be done by
general decrease of all entries of clocks when every entry has exceeded some
threshold k, but with additional synchronization among controllers.

Last, to keep the construction of CFSM simple, we have assumed that
communications were FIFO, and as a consequence that the HMSCs con-
sidered did not contain message overtaking. The standard HMSCs allow
explicit specification of message crossing inside a bMSC (but not of two
messages from distinct bMSCs). Extending our techniques to models that
allow message overtaking in bMSCs should be easy, as it needs only to al-
low a bounded number of lookaheads in FIFO buffers. Such possibility was
for instance proposed in the MSC2SDL tool [1]. One fact worth mentioning
again is that the controllers are purely asynchronous, which leaves a lot of
freedom to choose a particular architecture. In a real implementation, one
may suppose that a process and its controller are implemented on the same
machine, but this is not mandatory. Controllers are designed to need as
little information as possible to ensure that the processes they control are
always executing a valid run of the specification: Each process executes its
task as defined in the projection of the specification, and controllers ensure

Distributed Implementation of Message Sequence Charts 33

coordination. In the future, we would like to study whether asynchronous
controllers can in addition enforce properties such as boundedness of buffers,
avoidance of a given configuration, etc.

Acknowledgments: We wish to thank anonymous reviewers for careful
reading of this paper, and for numerous comments which helped improving
it.

References

1. M. Abdalla, F. Khendek, and G. Butler. New results on deriving SDL speci-
fications from MSCs. In SDL Forum, pages 51–66, 1999.

2. S. Akshay, M. Mukund, and N.K. Kumar. Checking coverage for infinite
collections of timed scenarios. In CONCUR’07, pages 181–196, 2007.

3. D. Amyot and A. Eberlein. An evaluation of scenario notations and construc-
tion approaches for telecommunication systems development. Telecommuni-
cation Systems, 24(1):61–94, 2003.

4. D. Amyot and G. Mussbacher. User requirements notation: the first ten years,
the next ten years. Journal of software, 6(5):747–768, May 2011.

5. N. Baudru and R. Morin. Synthesis of safe message-passing systems. In
FSTTCS, pages 277–289, 2007.

6. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and
non-local choice in Message Sequence Charts. In Proc. of TACAS’97, volume
1217 of LNCS, pages 259 – 274, April 1997.

7. G. Bochmann and R. Gotzhein. Deriving protocol specifications from service
specifications. In Proc. of the ACM SIGCOMM conference on Communica-
tions architectures & protocols, pages 148–156, 1986.

8. B. Bollig and L. Hélouët. Realizability of dynamic MSC languages. In Proc.
of CSR (Computer Science in Russia), volume 6072 of LNCS, pages 48–59.
Springer, 2010.

9. D. Brand and P. Zafiropoulo. On communicating finite state machines. Tech-
nical Report RZ1053, IBM Zurich Research Lab, 1981.

10. B. Caillaud, P. Darondeau, L. Hélouët, and G. Lesventes. HMSCs en tant
que spécifications partielles et leurs complétions dans les réseaux de Petri.
Research Report RR-3970, INRIA, 2000.

11. C. Fidge. Logical time in distributed computing systems. IEEE Computer,
24(8):28–33, August 1991.

12. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level
MSCs: Model-checking and realizability. In ICALP, volume 2380 of LNCS,
pages 657–668, 2002.

13. Object Management Group. UML 2.0 : Unified Modeling Language. 2005.
14. D. Harel and H. Kugler. Synthesizing state-based object systems from lsc

specifications. Int. J. Found. Comput. Sci., 13(1):5–51, 2002.
15. L. Hélouët, R. Abdallah, and D. Bhatia. SOFAT : Scenario formal analysis

toolbox. 2011. www.irisa.fr/distribcom/Prototypes/SOFAT/.
16. L. Hélouët and C. Jard. Conditions for synthesis of communicating automata

from HMSCs. In 5th International Workshop on Formal Methods for Indus-
trial Critical Systems (FMICS), 2000.

17. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

34 Rouwaida Abdallah et al.

18. ITU-T. Z.120 : Message sequence charts (MSC). Technical report, Interna-
tional Telecommunication Union, 1998.

19. ITU-T. Z.100 : Specification and description language (SDL). Technical
report, International Telecommunication Union, 2011.

20. ITU-T. Z.150 : User requirements notation (URN) - language requirements
and framework. Technical report, International Telecommunication Union,
2011.

21. S. Leue, L. Mehrmann, and M. Rezai. Synthesizing software architecture
descriptions from message sequence chart specifications. In ASE, pages 192–
195, 1998.

22. H. Liang, J. Dingel, and Z. Diskin. A comparative survey of scenario-based to
state-based model synthesis approaches. In Proc. of SCESM ’06: the 2006 In-
ternational Workshop on Scenarios and State Machines: Models, Algorithms,
and Tools, pages 5–12, 2006.

23. N. Mansurov and D. Zhukov. Automatic synthesis of sdl models in use case
methodology. In SDL Forum, pages 225–240, 1999.

24. F. Mattern. Time and global states of distributed systems. in Proc. Int.
Workshop on Parallel and Distributed Algorithms , Bonas, France , North
Holland, pages 215–226, 1988.

25. M. Mukund, K.N. Kumar, and M. Sohoni. Synthesizing distributed finite-
state systems from MSCs. In CONCUR, pages 521–535, 2000.

26. A. Muscholl, D. Peled, and Z. Su. Deciding properties for Message Sequence
Charts. In FoSSaCS, volume 1378 of LNCS, pages 226–242, 1998.

27. M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and a
simple way to implement it. Inf. Process. Lett., 39(6):343–350, 1991.

28. K. Saleh. Synthesis of communications protocols: an annotated bibliography.
SIGCOMM Comput. Commun. Rev., 26:40–59, 1996.

29. S. Uchitel and J. Kramer. A workbench for synthesising behaviour models
from scenarios. In ICSE, pages 188–197, 2001.

30. S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in Message
Sequence Chart specifications. In ESEC / SIGSOFT FSE, pages 74–82, 2001.

31. S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration of scenario-
based specifications and behavior models using implied scenarios. ACM Trans.
Softw. Eng. Methodol., 13(1):37–85, 2004.

32. T. Ziadi, L. Hélouët, and J-M Jézéquel. Revisiting statechart synthesis with
an algebraic approach. In ICSE, pages 242–251, 2004.

