
Reducing the Cost of Aggregation in
Crowdsourcing

Singh, Rituraj and Hélouët, Löıc and Miklos, Zoltan

Univ Rennes/INRIA/CNRS/IRISA
rituraj.singh@irisa.fr,loic.helouet@inria.fr, zotlan.miklos@irisa.fr

Abstract. Crowdsourcing is a way to solve problems that need human contribu-
tion. Crowdsourcing platforms distribute replicated tasks to workers, pay them
for their contribution, and aggregate answers to produce a reliable conclusion. A
fundamental problem is to infer a correct answer from the set of returned results.
Another challenge is to obtain a reliable answer at a reasonable cost: unlimited
budget allows hiring experts or large pools of workers for each task but a limited
budget forces to use resources at best.

This paper considers crowdsourcing of simple boolean tasks. We first define
a probabilistic inference technique, that considers difficulty of tasks and exper-
tise of workers when aggregating answers. We then propose CrowdInc, a greedy
algorithm that reduce the cost needed to reach a consensual answer. CrowdInc
distributes resources dynamically to tasks according to their difficulty. We show
on several benchmarks that CrowdInc achieves good accuracy, reduces costs, and
we compare its performance to existing solutions.

1 Introduction

Crowdsourcing is a way to solve tasks that need human contribution. These tasks
include image annotation or classification, polling, etc. Employers publish tasks
on an Internet platform, and these tasks are realized by workers in exchange for
a small incentive [1]. Workers are very heterogeneous: they have different ori-
gins, domains of expertise, and expertise levels. One can even consider malicious
workers, that return wrong answers on purpose. To deal with this heterogeneity,
tasks are usually replicated: each task is assigned to a set of workers. Redun-
dancy is also essential to collect workers opinion: in this setting, work units are
the basic elements of a larger task that can be seen as a poll. One can safely
consider that each worker executes his assigned task independently, and hence
returns his own belief about the answer. As workers can disagree, the role of a
platform is then to build a consensual final answer out of the values returned. A
natural way to derive a final answer is Majority Voting (MV), i.e. choose as
conclusion the most represented answer. A limitation of MV is that all answers
have equal weight, regardless of expertise of workers. If a crowd is composed of
only few experts, and of a large majority of novices, MV favors answers from
novices. However, in some domains, an expert worker may give better answer
than a novice and his answer should be given more weight. One can easily replace
MV by a weighted vote. However, this raises the question of measuring workers
expertise, especially when workers competences are not prior known.

Crowdsourcing platforms such as Amazon Mechanical Turk (AMT) do not
have prior knowledge about the expertise of their worker. A way to obtain initial
measure of workers expertise is to use Golden Questions [8]. Several tasks with
known ground truth are used explicitly or hidden to evaluate workers expertise.
As already mentioned, a single answer for a particular task is often not sufficient
to obtain a reliable answer, and one has to rely on redundancy, i.e. distribute
the same task to several workers and aggregate results to build a final answer.
Standard static approaches fix prior number of k workers for each task. Each
task are displayed at platform and waits for bid by the k workers and is use by
AMT. There is no guideline to set the value for k, but two standard situations
where k is fixed are frequently met. The first case is when a client has n tasks
to complete with total budget B0 incentive units. Each task can be realized by
k = B0/n workers. The second case is when an initial budget is not known,
and the platforms fixes an arbitrary prior level of redundancy. In this case, the
number of workers allocated to each tasks is usually between 3 and 10 [6]. It is
assumed that the distribution of work is uniform, i.e. that each task is assigned
same number of workers, regardless of its difficulty. An obvious drawback of
static allocation of workers is that all tasks benefit from the same work power,
regardless of their difficulty. Further, the final answer returned by a platform is
usually obtained as a consensus among returned answers. Even a simple question
where the variance of answers is high calls for sampling of larger size. So, one
could expect each task t to be realized by kt workers, where kt is a number that
guarantee that the likelihood to change the final answer with one additional
worker is low. However, without prior knowledge on task’s difficulty and on
variance in answers, this number kt cannot be fixed.

In this paper, we address the questions of answers aggregation, task alloca-
tion, and we study the cost of crowdsourcing. For simplicity, we consider boolean
filtering tasks, i.e. tasks with answers in {0, 1}, but the setting can be easily ex-
tended to tasks with any finite set of answers. These tasks are frequent, for
instance to decide whether a particular image belongs or not to a given category
of pictures. We consider that each binary task has a truth label, i.e. there exists
a ground truth for each task. Each worker is asked to answer 0 or 1 to such a
task and returns a so-called observed label, which may differ from the ground
truth. The difficulty of a task is a real value in [0, 1]. A task with difficulty 0 is a
very easy task and a task with difficulty 1 a very complex one. The expertise of a
worker is modeled in terms of recall and specificity. Recall (also called true pos-
itive rate) measures the proportion of correct observed labels given by a worker
when the ground truth is 1. On contrary, specificity (also called true negative
rate) measures the proportion of correct observed labels given by a worker when
the ground truth is 0. We propose a generating function to measure the probabil-
ity of accuracy for each of the truth label (0/1) based on the observed label, task
difficulty, worker expertise. We rely on Expectation Maximization (EM) based
algorithm to maximize the probability of accuracy of ground truth for each task
and jointly estimate the difficulty of each of the task as well as expertise of the
workers. The algorithm provides a greater weight to the expert worker. In addi-

tion, if a worker with high recall makes a mistake in the observed label, then it
increases the difficulty of the task (correspondingly for specificity). Along with,
if expert workers fail to return a correct answer, then the task is considered
difficult. The EM algorithm converges with a very low error rate and at the end
returns the task difficulty, worker expertise and the final estimated label for each
of the task based on observed label.

Additionally, we propose a dynamic worker allocation algorithm that handles
at the same time aggregation of answers, and optimal allocation of a budget to
reach a consensus among workers. The algorithm works in two phases. For the
initial Estimation phase, as we do not have any prior information about the
task difficulty and worker expertise, we allocate one third of total budget to
inspect the behavior of each task. Based on the answers provided by the human
workers for each of the task, we first derive the difficulty of each of the task, final
aggregated answer and along with the worker expertise using an EM algorithm.
For each task, we estimate the likelihood that the aggregated answer is the
ground truth. We terminate tasks which are above the derived threshold at that
particular instance. The second phase is named as Explore. Based on each of the
estimated task difficulty, we start to allocate workers for each of the remaining
tasks. The process continues until all task are terminated or the whole budget
is consumed.

Related work: Several papers have considered tools such as EM to aggregate
answers, or allocate tasks. We do not perform a complete survey of the domain,
but only highlight a few works that are close to our approach, and refer interested
readers to [19], a survey. Zencrowd [3] considers workers competences in terms
of accuracy (ratio of correct answers) and aggregates answers using EM. PM
[9] considers an optimization scheme based on Lagrange multipliers. Workers
accuracy and ground truth are the hidden variables that must be discovered
and optimize in order to minimize the deviations between workers answers and
aggregated conclusion. D&S [2] uses EM to synthesize answers that minimize
error rates from a set of patient records. It considers recall and specificity, but
not difficulty of tasks.

[7] proposes an algorithm to affect tasks to workers, synthesize answers, and
reduce the cost of crowdsourcing. They assume that all tasks have the same
difficulty, and that worker reliability is a consistent value in [0, 1] (whence con-
sidering accuracy as a representation of competences). CrowdBudget [14] is an
approach that divides a budget B among K existing tasks to achieve a low er-
ror rate, and then uses MV to aggregate answers. Workers answers follow an
unknown Bernoulli distribution. The objective is to affect the most appropriate
number of workers to each task in order to reduce the estimation error. Aggrega-
tion is done using Bayesian classifiers combination (BCC). The approach in [15]
extends BCC with communities and is called CBCC. Each worker is supposed
to belong to a particular (unknown) community, and to share characteristics of
this community (same recall and specificity). This assumption helps improving
accuracy of classification. Expectation maximization is used by [13] to improve
supervised learning when the ground truth in unknown. This work considers re-

call and specificity of workers and proposes maximum-likelihood estimator that
jointly learns a classifier, discover the best experts, and an estimation of ground
truth. Most of the works cited above consider expertise of workers but do not
address tasks difficulty. An exception is GLAD (Generative model of Labels,
Abilities, and Difficulties) [18] that proposes to estimate tasks difficulty as well
as workers accuracy to aggregate final answers. The authors recall the EM is
an iterative process that stops only after converging, but demonstrate that the
EM approach needs only a few minutes to tag a database with 1 million images.
Notice that expertise in GLAD is not expressed in terms of recall not specificity.
Most of the works in database and machine learning focus on data aggrega-
tion techniques and leave budget optimization apart. Raykar et.al [12] introduce
sequential crowdsourced labeling, where instead of asking for all the labels in
one shot, decides at each step whether evaluation of a task shall be stopped,
and which worker should be hired. The model incorporates a Bayesian model
for workers (workers are only characterized by their accuracy), and cost. Then,
sequential crowdsourced labeling amounts to exploring a (very large) Markov de-
cision process (states contain all pairs of task/label collected at a given instant)
with a greedy strategy.

It is usually admitted [19] that recall and specificity gives a finer picture
of worker’s competence than accuracy. Our work aggregates workers answers
using expectation maximization with three parameters : task difficulty, recall
and specificity of workers. The CrowdInc algorithm uses this EM aggregation to
estimate error and difficulty of tasks. This error allows to compute dynamically
a threshold to stop tasks which aggregated answers have reached a reasonable
reliability and to allocate more workers to the most difficult tasks, hence saving
costs. One can notice that we assign an identical cost to all tasks. This makes
sense, as the difficulty of tasks are prior unknown.

The rest of the paper is organized as follows. In Section 2.1, we introduce
our notations, the factors that influence results during aggregation of answers,
and the EM algorithm. In Section 3, we present a model for workers and our
EM-based aggregation technique. We detail the CrowdInc algorithm to optimize
the cost of crowdsourcing in Section 4. We then give results of experiments with
our aggregation technique and with CrowdInc in Section 5. Finally we conclude
and give future research directions in Section 6.

2 Preliminaries

In the rest of the paper, we will work with discrete variables and discrete prob-
abilities. A random variable is a variable whose value depends on random phe-
nomenon. For a given variable x, we denote by Dom(x) its domain. For a par-
ticular value v ∈ Dom(x) we denote by x = v the event ”x has value v”. A
probability measure Pr() is a function from a domain to interval [0, 1]. We de-
note by Pr(x = v) the probability that event x = v occurs. In the rest of the
paper, we mainly consider boolean events, i.e. variables with domain {0, 1}. A
probability of the form Pr(x = v) only considers occurrence of a single event.
When considering several events, we define the joint probability Pr(x = v, y = v′)

the probability that the two events occur simultaneously. The notation extends
to an arbitrary number of variables. If x and y are independent variables, then
Pr(x = v, y = v′) = Pr(x = v) · Pr(y = v′). Last, we will use conditional
probabilities of the form Pr(x = v | y = v′), that defines the probability for an
event x = v when it is known that y = v′. We recall that, when P (y = v′) > 0

Pr(x = v | y = v′) = Pr(x=v,y=v′)
Pr(y=v′) .

2.1 Factors influencing efficiency of crowdsourcing

During task labeling, several factors can influence the efficiency of crowdsourcing,
and the accuracy of aggregated answers. The first of them is Task difficulty.
Tasks submitted to crowdsourcing platforms by a client address simple questions,
but from different domains, that may need expertise. Event within a single do-
main, the difficulty for the realization of a particular task may vary from one
experiment to another: tagging an image can be pretty simple if the worker only
has to decide whether the picture contains an animal or an object, or conversely
very difficult if the boolean question asks whether a particular insect picture
shows an hymenopteran (an order of insects). The difficulty of a task may be
known prior by the client, but in most cases, one has no prior measure of the
difficulty of a task. Similarly, Expertise of workers play a major role in accu-
racy of aggregated answers. In general, an expert worker performs better on a
specialized task than a randomly chosen worker without particular competence
in the domain. For example, an entomologist can annotate an insect image more
precisely than any random worker.

The technique used for Amalgamation also play a major role. Given a set
of answers returned for a task t, one can aggregate the results using majority
voting (MV), or more interesting, as a weighted average answer where individual
answers are pondered by workers expertise. However, it is difficult to get a prior
measure of workers expertise and of the difficulty of tasks. Many crowdsourcing
platforms use MV and ignore difficulty of tasks and expertise of workers to
aggregate answers or allocate workers to tasks. We show in Section 5 that MV
has a low accuracy.

In Section 3, we propose a technique to estimate the expertise of workers and
difficulty of tasks on the fly. Intuitively, one wants to consider a task difficult if
even experts fail to provide a correct answer for this task, and consider it easy if
even workers with low competence level answer correctly. Similarly, a worker is
competent if he answers correctly difficult tasks. Notice however that to measure
difficulty of tasks and expertise of workers, one needs to have the final answer for
each task. Conversely, to precisely estimate the final answer one needs to have
the worker expertise and task difficulty. This is a chicken and egg situation, but
we show in section 3 how to get plausible value for both.

The next issue to consider is the cost of crowdsourcing. Workers receive
incentives for their work, but usually clients have limited budgets. Some task
may require a lot of answers to reach the consensus, while some may require
only a few answers. Therefore, a challenge is to spend efficiently the budget to
get the most accurate answers. In Section 4, we discuss some of the key factors

in budget allocation. Many crowdsourcing platforms do not considers difficulty,
and allocate the same number of workers to each task. The allocation of many
workers to simple tasks is usually not justified and is a waste of budget that
would be useful for difficult tasks. Now, tasks difficulty is not prior known. This
advocates for on the fly worker allocation once the difficulty of a task can be
estimated.

Last, one can stop collecting answers for a task when there is an evidence
that enough answers have been collected to reach a consensus of a final answer.
A immediate solution is to measure the confidence of final aggregated answer
and take as Stopping Criterion for a task the fact that this confidence exceeds
a choose threshold. However, the criteria do not works well in practice as client
usually want high thresholds for all their tasks. This may lead to consuming all
available budget without reaching an optimal accuracy. Ideally, we would like to
have a stopping criteria that balances both in terms of confidence in the final
answers and budget, optimizing the overall accuracy of all the tasks.

2.2 Expectation Maximization

Expectation Maximization [4] is an iterative technique to obtain maximum like-
lihood estimation of parameter of a statistical model when some parameters are
unobserved and latent, i.e. they are not directly observed but rather inferred from
observed variables. In some sense, the EM algorithm is a way to find the best
fit between data samples and parameters. It has many applications in machine
learning, data mining and Bayesian statistics.

LetM be a model which generates a set X of observed data, a set of missing
latent data Y, and a vector of unknown parameters θ, along with a likelihood
function L(θ | X ,Y) = p(X ,Y | θ). In this paper, observed data X represents the
answers provided by the crowd, Y depicts the final answers which needs to be
estimated and is hidden, and parameters in θ are the difficulty of tasks and the
expertise of workers. The maximum likelihood estimate (MLE) of the unknown
parameters is determined by maximizing the marginal likelihood of the observed
data. We have L(θ | X) = p(X | θ) =

∫
p(X ,Y | θ)dY. The EM algorithm

computes iteratively MLE, and proceeds in two steps. At the kth iteration of the
algorithm, we let θk denote the estimate of parameters θ. At the first iteration
of the algorithm, θ0 is randomly chosen.

E-Step: In the E step, the missing data are estimated given observed data
and current estimate of parameters. The E-step computes the expected value of
L(θ | X ,Y) given the observed data X and the current parameter θk. We define

Q(θ | θk) = EY|X ,θk [L(θ | X ,Y)] (1)

In the crowdsourcing context, we use the E-Step to compute the probability
of occurrence of Y that is the final answer for a each task, given the observed
data X and parameters θk obtained at kth iteration.

M-Step: The M-step finds parameters θ that maximize the expectation com-
puted in equation. 1.

θk+1 = arg max
θ

Q(θ | θk) (2)

Here, with respect to estimated probability for Y for final answers from the last
E-Step, we maximize the joint log likelihood of the observed data X (answer
provided by the crowd), hidden data Y (final answers), to estimate the new
value of θk+1 i.e. the difficulty of tasks and the expertise of workers. The E and
M steps are repeated until the value of θk converges. A more general version of
the algorithm is presented in algorithm 1.

Algorithm 1: General EM Algorithm

Data: Observed Data X
Result: Parameter values θ, Hidden data Y

1 Initialize parameters in θ0 to some random values.

2 while ||θk − θk−1|| > ε do

3 Compute the expected possible value of Y, given θk and observed data X
4 Use Y to compute the values of θ that maximize Q(θ | θk).

5 end

6 return parameter θk, Hidden data Y

3 The Aggregation model

We address the problem of evaluation of binary properties of samples in a
dataset by aggregation of answers returned by participants in a crowdsourcing
system. This type of application is frequently met: one can consider for instance
a database of n images, for which workers have to decide whether each image is
clear or blur, whether a cat appears on the image, etc. The evaluated property
is binary, i.e. workers answers can be represented as a label in {0, 1}. From now,
we will consider that tasks are elementary work units which objective is to asso-
ciate a binary label to a particular input object. For each task, an actual ground
truth exists, but it is not known by the system. We assume a set of k indepen-
dent workers, which role is to realize a task, i.e. return an observed label in {0, 1}
according to their perception of a particular sample. We consider a set of tasks
T = {t1, . . . tn} that need to be evaluated. For a task tj ∈ T the observed label
given by worker 1 ≤ i ≤ k is denoted by lij . We let yj denote the final label
of an image j obtained by aggregating the answers of all workers. Lj =

⋃
i∈1..k

lij

denotes the set of all labels returned by workers for task j, L denotes the set of
all observed labels, L =

⋃
j∈1..n

Lj . The goal is to estimate the ground truth by

synthesizing a set of final label Y = {yj , 1 ≤ j ≤ n} from the set of observed
label L = {Lj} for all tasks.

Despite the apparent simplicity of the problem, crowdsourcing binary tag-
ging tasks hides several difficulties, originating from unknown parameters. These
parameters are the difficulty of each task, and the expertise of each worker. The
difficulty of task tj is modeled by a parameter dj ∈ (0, 1). Here value 0 means
that the task is very easy, and can be performed successfully by any worker. On
the other hand, dj = 1 means that task tj is very difficult. A standard way to
measure expertise is to define workers accuracy as a pair ξi = {αi, βi}, where

Fig. 1: (left) Generative function for the probability to get lij = 1, given yj = 1,
for growing values of task difficulty. The curves represent different recall for the
considered workers.(right) The threshold values based on current estimate on
consumed budget and fraction of task remaining at the beginning of a round.

αi is called the recall of worker i and βi the specificity of worker i. The recall
is the probability that worker i annotates an image j with label 1 when the
ground truth is 1, i.e. αi = Pr(lij = 1|yj = 1). The specificity of worker i
is the probability that worker i annotates an image j with 0 when the ground
truth is 0, i.e. βi = Pr(lij = 0|yj = 0).

In literature,[19] the expertise of workers is often quantified in terms of ac-
curacy, i.e. Pr(lij = yj). However, if the data samples are unbalanced, i.e. the
number of samples with actual ground truth 1 (respectively 0) is much larger
than the number of samples with ground truth 0 (respectively 1), defining com-
petences in terms of accuracy leads to bias. Indeed, a worker who is good in
classifying images with ground truth 1 can obtain bad scores when classifying
image with ground truth 0, and yet get a good accuracy (this can be the case
of a worker that always answers 1 when tagging a task). Recall and Specificity
overcomes the problem of bias and separates the worker expertise, considering
their ability to answer correctly when the ground truth is 0 and when it is 1,
and hence give a more precise representation of workers competences.

Another advantage of knowing recall and specificity is that it allows to build
a probabilistic model (a generative model) for workers answers. We assume that
workers have constant behaviors and are faithful, i.e. do not return wrong an-
swers intentionally. We also assume that workers do not collaborate (their an-
swers are independent variables). Under these assumptions, knowing the recall αi
and specificity βi of a worker i, we build a model that generates the probability
that he returns an observed label lij for a task j with difficulty dj :

Pr(lij = yj |dj , αi, yj = 1) =
1 + (1− dj)(1−αi)

2
(3)

Pr(lij = yj |dj , βi, yj = 0) =
1 + (1− dj)(1−βi)

2
(4)

Figure 1-(left) shows the probability of associating label 1 to an image for
which the ground truth is 1 when the difficulty of the tagging task varies, and
for different values of recall. The range of task difficulty is [0, 1]. The vertical
axis is the probability of getting lij = 1. One can notice that this probability
takes values between 0.5 and 1. Indeed, if a task is too difficult, then returning
a value is close to making a random guess of a binary value. Unsurprisingly, as
the difficulty of tasks increases, the probability of correctly annotating the image
decreases. This generative function applies for every worker. For a fixed difficulty
of task, workers with higher recalls have higher probability to correctly label an
image. Also, note that when the difficulty of a task approaches 1, the probability
of annotating image as lij = 1 decreases for every worker. However, for workers
with high recall, the probability of a correct annotation is always greater than
with a smaller recall. Hence, the probability of correct answer depends both on
the difficulty of task and on expertise of the worker realizing the task.

3.1 Aggregating Answers

For a given task j, with unknown difficulty dj , the answers returned by k workers
(observed data) is a set Lj = {l1j , . . . , lkj}, where lij is the answer of worker i to
task j. In addition, workers expertise are vectors of parameters α = {α1, . . . αk}
and β = {β1, . . . βk} and are also unknown. The goal is to infer the final label yj ,
and to derive the most probable values for dj , αi, βi, given the observed answers
of workers. We use a standard EM approach to infer the most probable actual
answer Y = {y1, . . . yn} along with the hidden parameters Θ = {dj , αi, βi}. Let
us consider the E and M phases of the algorithm.

E Step: We assume that all the answers L are independently given by
the workers as there is no collaboration between them. So, in every Lj =
{l1j , . . . , lkj}, lij ’s are independently sampled variables. We compute the pos-
terior probability of yj ∈ {0, 1} for a given task j given the difficulty of task dj ,
worker expertise αi, βi, i ≤ k and the worker answers Lj = {lij | i ∈ 1..k}. Using
Bayes’ theorem, considering a particular value λ ∈ {0, 1} we have:

Pr[yj = λ|Lj , α, β, dj] =
Pr(Lj |yj=λ,α,β,dj)·Pr(yj=λ|α,β,dj)

Pr(Lj |α,β,dj) (5)

One can remark that yj and α, β, dj are independent variables. We assume
that both values of yj are equiprobable, i.e. Pr(yj = 0) = Pr(yj = 1) = 1

2 . We
hence get:

Pr[yj=λ|Lj , α, β, dj] =
Pr(Lj |yj=λ,α,β,dj)·Pr(yj=λ)

Pr(Lj |α,β,dj) =
Pr(Lj |yj=λ,α,β,dj)· 12

Pr(Lj |α,β,dj) (6)

Similarly, the probability to obtain a particular set of labels is given by:

Pr(Lj | α, β, dj) = 1
2 · Pr(Lj | yj=0, α, β, dj) + 1

2 · Pr(Lj | yj=1, α, β, dj) (7)

Overall we obtain:

Pr[yj=λ|Lj , α, β, dj] =
Pr(Lj |yj=λ,α,β,dj)

Pr(Lj |yj=0,α,β,dj)+Pr(Lj |yj=1α,β,dj) (8)

Let us consider one of these terms, and let us assume that every lij in Lj
takes a value λp . We have

Pr(Lj | yj=λ, α, β, dj) =

k∏
i=1

Pr(lij = λp | αi, βi, dj , yj=λ) (9)

If λp = 0 then Pr(lij = λp | αi, βi, dj , yj = 0) is the probability to classify

correctly a 0 as 0, as defined in equation 4 denoted by δij =
1+(1−dj)(1−βi)

2 .
Similarly, if λp = 1 then Pr(lij = λp | αi, βi, dj , yj = 1) is the probability
to classify correctly a 1 as 1, expressed in equation 3 and denoted by γij =
1+(1−dj)(1−αi)

2 . Then the probability to classify yj = 1 as λp = 0 is (1 − γij)
and the probability to classify yj = 1 as λp = 0 is (1 − δij). We hence have
Pr(lij = λp | αi, βi, dj , yj = 0) = (1 − λp) · δij + λp · (1 − γij). Similarly, we can
write Pr(lij = λp | αi, βi, dj , yj=1) = λp · γij + (1−λp) · (1− δij). So equation 8
rewrites as :

Pr[yj=λ|Lj , α, β, dj] =

∏k
i=1 Pr(lij = λp | yj=λp), αi, βi, dj

Pr(Lj | yj=0, α, β, dj) + Pr(Lj | yj=1, α, β, dj)

=

∏k
i=1(1− λp).[(1− λp)δij + λp(1− γij)] + λp.[λp.γij + (1− λp)(1− δij)]

Pr(Lj | yj=0, α, β, dj) + Pr(Lj | yj=1, α, β, dj)

=

∏k
i=1(1− λp).[(1− λp)δij + λp(1− γij)] + λp.[λp.γij + (1− λp)(1− δij)]∏k

i=1(1− λp)δij + λp(1− γij) +
∏k
i=1 λp.γij + (1− λp)(1− δij)

(10)

In the E step, as every αi, βi, dj is fixed, one can compute E[yj |Lj , αi, βi, dj]
and also choose as final value for yj the value λ ∈ {0, 1} such that Pr[yj =
λ|Lj , αi, βi, dj] > Pr[yj = (1 − λp)|Lj , αi, βi, dj]. We can also estimate the like-
lihood for the values of variables P (L ∪ Y | θ) for parameters θ = {α, β, d}, as
Pr(yj = λ, L | θ) = Pr(yj = λp, L).P r(Lj | yj = λp, θ) = Pr(yj = λp).P r(Lj |
yj = λp, θ)

M Step: With respect to the estimated posterior probabilities of Y com-
puted during the E phase of the algorithm, we compute the parameters θ that
maximize Q(θ, θt). Let θt be the value of parameters computed at step t of the
algorithm. We use the observed values of L, and the previous expectation for Y .
We maximize Q′(θ, θt) = E[logPr(L, Y | θ) | L, θt] (we refer interested readers
to [5]-Chap. 9 and [4] for explanations showing why this is equivalent to maximiz-
ing Q(θ, θt)). We can hence compute the next value as: θt+1 = arg max

θ
Q′(θ, θt).

Here in our context the values of θ are αi, βi, dj . We maximize Q′(θ, θt) using
bounded optimization techniques, truncated Newton algorithm [10] provided by
the standard scipy1 implementation. We iterate E and M steps, computing at
each iteration t the posterior probability and the parameters θt that maximize
Q′(θ, θt). The algorithm converges, and stops when the improvement (difference
between two successive joint log-likelihood values) is below a threshold, fixed in
our case to 1e−7.

1 docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

4 Cost Model

A drawback of many crowdsourcing approaches is that task distribution is static,
i.e. tasks are distributed to prior fixed number of workers, without considering
their difficulty, nor checking if a consensus can be reached with fewer workers.
Consider again the simple boolean tagging setting, but where each task real-
ization are paid, and with a fixed total budget B0 provided by the client. For
simplicity, we assume that all workers receive 1 unit of credit for each realized
task. Hence, to solve n boolean tagging tasks, one can hire only n/B0 workers
per task. In this section, we show a worker allocation algorithm that builds on
collected answers and estimated difficulty to distribute tasks to worker at run
time, and show its efficiency w.r.t. other approaches.

Our algorithm works in rounds. At each round, only a subset Tavl ⊆ T of the
initial tasks remain to be evaluated. We collect labels produced by workers for
these tasks. We aggregate answers using the EM approach described in Section 3.
We denote by yqj as the final aggregated answer for task j at round q, dqj is
the current difficulty of task and αqi , β

q
i denotes the estimated expertise of a

worker i at round q. We let Dq = {dq1 . . . d
q
j} denote the set of all difficulties

estimated as round q. We fix a maximal step size τ ≥ 1, that is the maximal
of workers that can be hired during a round for a particular task. For every

task tj ∈ Tavl with difficulty dqj at round q, we allocate aqj =

⌈(
dqj

maxDq

)
× τ

⌉
workers for the next round. Once all answers for a task have been received,
the EM aggregation can compute final label yqj ∈ {0, 1}, difficulty of task dqj ,
expertise of all workers αq1, . . . , α

q
k, β

q
1 , . . . , β

q
k. Now, it remains to decide whether

the confidence in answer yqj obtained at round q is sufficient (in which case, we
do not allocate workers to this task in the next rounds). Let kqj be the number
of answers obtained for task j at round q. The confidence ĉqj in a final label yqj
is defined as follows:

ĉqj(y
q
j = 1) = 1

kqj
·
∑kqj
i=1

{
lij × (

1+(1−dqj)
(1−αq

i
)

2) + (1− lij)× (1− 1+(1−dqj)
(1−αq

i
)

2)

}
(11)

ĉqj(y
q
j = 0) = 1

kqj
·
∑kqj
i=1

{
(1− lij)× (

1+(1−dqj)
(1−βq

i
)

2) + (lij)× (1− 1+(1−dqj)
(1−βq

i
)

2)

}
(12)

Intuitively, each worker adds its probability of doing an error, which depends
on the final label yqj estimated at round q and on his competences, i.e. on the
probability to choose lij = yqj . Let us now show when to stop the rounds of
our evaluation algorithm. We start with n tasks, and let Tavl denote the set of
remaining tasks at round q. We define rq ∈ [0, 1] as the fraction of task that
are available at the current instance as compared to total number of task, i.e.

rq = |Tavl|
n . We start with an initial budget B0, and denote by Bqc the total budget

consumed at round q. We denote by Bq the the fraction of budget consumed at

that current instance, Bq =
Bqc
B0

. We define the stopping threshold Thq ∈ [0.5, 1.0]

as Thq = 1+(1−Bq)r
q

2 .

The intuition behind this function is simple: when the number of remaining
tasks decreases, one can afford a highest confidence threshold. Similarly, as the
budget decreases, one shall derive a final answer for tasks faster, possibly with
a poor confidence, as the remaining budget does not allow hiring many workers.
Figure 1-(right) shows the different threshold based on the current estimate of
the budget on the horizontal axis. Each line depicts the corresponding fraction
of task available in the considered round. Observe that when rq approaches
1, the threshold value falls rapidly, as large number of tasks remain without
definite final answer, and have to be evaluated with the remaining budget. On
the other hand, when there are less tasks (e.g. when rq = 0.10), the threshold
Thq decreases slowly.

We can now define a crowdsourcing algorithm (Crowdinc) with a dynamic
worker allocation strategy to optimize cost and accuracy. This strategy allo-
cates workers depending on current confidence on final answers, and available
resources. Crowdinc is decomposed in two phases, Estimation and Convergence.

Estimation: As difficulty of tasks is not known a priori, the first challenge is
to estimate it. To get an a priori measure of difficulties, each task needs to be
answered by a set of workers. Now, as each worker receives an incentive for
a task, this preliminary evaluation has a cost, and finding an optimal number
of workers for difficulty estimation is a fundamental issue. The initial budget
gives some flexibility in the choice of an appropriate number of workers for
preliminary evaluation of difficulty. Choosing a random number of workers per
task does not seem a wise choice. We choose to devote a fraction of the initial
budget to this estimation phase. We devote one third of the total budget (B0/3)
to the estimation phase. It leaves a sufficient budget (2B0/3) for the convergence
phase. Experiments in the next Section show that this seems a sensible choice.
After collection of answers for each task, we apply the EM based aggregation
technique of Section 3 to estimate the difficulty of each task as well as the
expertise of each worker. Considering this as an initial round q = 0, we let d0j
denote the initially estimated difficulty of each task j, and α0

i , β
0
i denote the

expertise of each worker and y0j denote the final aggregated answer. Note that
if the difficulty of some tasks is available a priori and is provided by the client,
we may skip the estimation step. However, in general clients do not posses such
information and this initial step is crucial in estimation of parameters. After this
initial estimation, one can already compute Th0 and decide to stop evaluation
of task with a sufficient confidence level.

Convergence: The difficulty of task dqj and the set of remaining tasks Tavl are
used to start the convergence phase. Now as the difficulty of each task is esti-
mated, we can use the estimated difficulty dqj to allocate the workers dynamically.
The number of workers allocated at round q > 0 follows a difficulty aware worker
allocation policy. At each round, we allocate aqj workers to remaining task tj .
This allocation policy guarantees that each remaining task is allocated at least
one worker, at most τ workers, and that the tasks which are more difficulty (i.e.
have the more disagreement) are allocated more workers than easier tasks.

Algorithm 2: CrowdInc

Data: A set of tasks T = {t1, . . . , tn}, a budget = B0

Result: Final Answer: Y = y1, . . . , yn, Difficulty: dj ,Expertise: αi, βi
1 Initialization : Set every dj , αi, βi to a random value in [0, 1].
2 Tavl = T ; q = 0; B = B − (B0/3); Bc = B0/3; r = (B0/3)/n
3 //Initial Estimation:

4 Allocate r workers to each task in Tavl and get their answers
5 Estimate dqj , α

q
i , β

q
i , ĉ

q
j , 1 ≤ j ≤ n, 1 ≤ i ≤ B0/3 using EM aggregation

6 Compute the stopping threshold Thq.
7 for j = 1, . . . , n do
8 if ĉqj > Thq then Tavl = T \ {j};
9 end

10 //Convergence:

11 while (B > 0) && (Tavl 6= ∅) do
12 q = q + 1; l = |Tavl|
13 Allocate aq

1, . . . ,a
q
l workers to tasks t1, . . . tl based on difficulty.

14 Get the corresponding answers by all the newly allocated workers.
15 Estimate dqj , α

q
i , β

q
i , ĉ

q
j using aggregation model.

16 B = B −
∑

i∈1..|Tavl|
aq
i

17 Compute the stopping threshold Thq

18 for j = 1, . . . , n do
19 if ĉqj > Thq then Tavl = Tavl \ {j};
20 end

21 end

The complete process of Crowdinc is given in Algorithm 2. It starts with the
Estimation phase and allocates workers for an initial evaluation round (q = 0).
After collection of answers, and then at each round q > 0, we first apply EM
based aggregation to estimate the difficulty dqj of each of task tj ∈ Tavl, the
confidence ĉqj in final aggregated answer yqj , and the expertise αqi , β

q
i of the

workers. Then, we use the stopping threshold to decide whether we need more
answers for a task. If ĉqj is greater than Thq, the task tj is removed from Tavl.
This stopping criterion hence takes a decision based on the confidence in the final
answers for a task and on the remaining budget. Once solved tasks have been
removed, we allocate aqj workers to each remaining task tj in Tavl following our
difficulty aware policy. The algorithm stops when either all budget is exhausted
or there is no additional task left. It returns the aggregated answers for all tasks.

5 Experiments

We evaluate the algorithm on three public available dataset, namely the product
identification [16], duck identification [17] and Sentiment Analysis [11] bench-
marks. We briefly detail each dataset and the corresponding tagging tasks. All
tags appearing in the benchmarks were collected via Amazon Mechanical Turk.

In the Product Identification use case, workers were asked to decide whether
a product-name and a description refer to the same product. The answer re-
turned is True or False. There are 8315 samples and each of them was evaluated
by 3 workers. The total number of unique workers is 176 and the total number
of answers available is 24945. In the Duck Identification use case, workers had
to decide if sample images contain a duck. The total number of tasks is 108 and
each of task was allocated to 39 workers. The total number of unique worker is
39 and the total number of answers is 4212. In the Sentiment Popularity use
case, workers had to annotate movie reviews as Positive or Negative opinions.
The total number of tasks was 500. Each task was given to 20 unique workers
and a total number of 143 workers were involved, resulting in a total number of
10000 answers. All these information are synthesized in table 1.

Dataset Number of Tasks
Number of tasks

with ground truth
Total Number of answers

provided by crowd
Average number of answers

for each task
Number of unique

crowd workers

Product
Identification

8315 8315 24945 3 176

Duck
Identification

108 108 4212 39 39

Sentiment
Popularity

500 500 10000 20 143

Table 1: Datasets description.

Methods Recall Specificity
Balanced
Accuracy

MV 0.56 0.91 0.73

D&S [2] 0.81 0.93 0.87

GLAD [18] 0.47 0.98 0.73

PMCRH [9] 0.58 0.95 0.76

LFC [13] 0.87 0.91 0.89

ZenCrowd [3] 0.39 0.98 0.68

EM + recall,
specificity

& difficulty
0.89 0.91 0.90

(a) Duck Identification

Methods Recall Specificity
Balanced
Accuracy

MV 0.61 0.93 0.77

D&S [2] 0.65 0.97 0.81

GLAD [18] 0.48 0.98 0.73

PMCRH [9] 0.61 0.93 0.77

LFC [13] 0.64 0.97 0.81

ZenCrowd [3] 0.51 0.98 0.75

EM + recall,
specificity

& difficulty
0.77 0.90 0.83

(b) Product Identification

Methods Recall Specificity
Balanced
Accuracy

MV 0.93 0.94 0.4

D&S [2] 0.94 0.94 0.94

GLAD [18] 0.94 0.94 0.94

PMCRH [9] 0.93 0.95 0.94

LFC [13] 0.94 0.94 0.94

ZenCrowd [3] 0.94 0.94 0.94

EM + recall,
specificity

& difficulty
0.94 0.95 0.94

(c) Sentiment Popularity

Table 2: Comparison of EM + aggregation (with Recall, specificity & task diffi-
culty) w.r.t MV, D&S, GLAD, PMCRH, LFC, ZenCrowd.

Evaluation of aggregation: We first compared our aggregation technique to
several methods available in the literature: MV, D&S [2], GLAD [18], PM-
CRH [9], LFC [13], and ZenCrowd [3]. We ran the experiment 30 times with
different initial values and found that the aggregation is insensitive to initial
prior values. The standard deviation over all the iteration was less than 0.05%.
We compare Recall, Specificity and Balanced Accuracy of all methods. Balanced
Accuracy is the average of recall and specificity. We can observe in table 2 that
our method outperforms other techniques in Duck Identification, Product Iden-
tification, and is comparable for Sentiment Popularity.
Evaluation of Crowdinc: The goal of the next experiment was to verify that
the cost model proposed in Crowdinc achieves at least the same accuracy but
with a smaller budget. We have used Duck identification and Sentiment popu-
larity for this test. We did not consider the Product Identification benchmark:
indeed, as shown in table 1, the Product Identification associates only 3 answers

to each task. This does not allow for a significant experiment with Crowdinc.
We compared the performance of Crowdinc to other approaches in terms of cost
and accuracy. The results are given in Figure 2. Static(MV) denotes the tradi-
tional crowdsourcing platforms with majority voting as aggregation technique
and Static(EM) shows more advanced aggregation technique with EM based ag-
gregation technique. Both algorithms allocate all the workers (and hence use all
their budget) at the beginning of crowdsourcing process.

Fig. 2: Comparison of cost vs. Accuracy.
The following observation can be made from figure 2. First, CrowdInc achieves

better accuracy than a static(MV) approach. This is not a real surprise, as MV
already showed bad accuracy in table 2. Then, CrowdInc achieves almost the
same accuracy as a Static(EM) based approach in Duck identification, and the
same accuracy in Sentiment Popularity. Last, CrowdInc uses a smaller budget
than static approaches in all cases.

Table 3 shows the time (in seconds) needed by each algorithm to aggregate
answers. Static(MV) is the fastest solution: it is not surprising, as the complexity
is linear in the number of answers. We recall however that MV has the worst
accuracy of all tested aggregation techniques. We have tested aggregation with
EM when the number of workers is fixed a priori and is the same for all tasks
(Static(EM)). CrowdInc uses EM, but on a dynamic sets of workers and tasks,
stopping easiest tasks first. This results in a longer calculus, as EM is used sev-
eral times on sets of answers of growing sizes. The accuracy of static(EM) and
CrowdInc are almost the same. Aggregation with CrowdInc takes approximately
11% longer than static(EM) but for a smaller budget, as shown in the Figure 2.
To summarize the CrowdInc aggregation needs more time and a smaller budget
to aggregate answers with a comparable accuracy. In general, clients using crowd-
sourcing services can wait several days to see their task completed. Hence, when
time is not a major concern CrowdInc can reduce the cost of crowdsourcing.

Dataset/Methods CrowdInc Static(EM) Static(MV)

Duck Identification 843.26 106.81 0.073

Sentiment Popularity 1323.35 137.79 0.102

Table 3: Running time(in seconds) of Crowdinc, MV and Static EM.

6 Conclusion and discussions

In this paper, we have introduced a new aggregation technique for crowdsourcing
platforms. Aggregation is based on expectation maximization and jointly esti-
mates the answers, the difficulty of tasks, and the expertise of workers. Using
difficulty and expertise as latent variables improves the accuracy of aggrega-
tion in terms of recall and specificity. We also proposed CrowdInc an incremen-
tal labeling technique that optimizes the cost of answers collection. The algo-
rithm implements a worker allocation policy that takes decisions from a dynamic
threshold computed at each round, which helps achieving a trade off between
cost and accuracy. We showed in experiments that our aggregation technique
outperforms the existing state-of-the-art techniques. We also showed that our
incremental crowdsourcing approach achieves the same accuracy as traditional
solutions such as majority voting at lower costs.

The ideas proposed in this paper can lead to several improvements that
will be considered in future work. In the paper, we addressed binary tasks for
simplicity, but the approach can be easily extended to tasks with a finite number
m of answers. The difficulty of each task remains a parameter dj . Expertise is
the ability to classify a task as m when its ground truth is m. An EM algorithm
just has to consider probabilities of the form Pr(Lij = m|yj = m) to derive
hidden parameters and final labels for each task. Another easy improvement is
to consider incentives that depend on workers characteristics. This can be done
with a slight adaptation of costs in the CrowdInc algorithm. Another possible
improvement is to try to hire experts when the synthesized difficulty of a task
is high, to avoid hiring numerous workers or increase the number of rounds.

Last, we think that the complexity of CrowdInc can be improved. The com-
plexity of each E-step of the aggregation is linear in the number of answers. The
M-step maximizes the log likelihood with an iterative process (truncated New-
ton algorithm). However, the E and M steps have to be repeated many times.
The cost of this iteration can be seen in table 3, where one clearly see the differ-
ence between a linear approach such as Majority Voting (third column), a single
round of EM (second column), and Crowdinc. Using Crowdinc to reduce costs
results in an increased duration to compute final answers. Indeed, the calculus
performed at round i to compute hidden variables for a task t is lost at step i+1
if t is not stopped. An interesting idea is to consider how a part of computations
can be reused from a round to the next one to speed up convergence.

References

1. F. Daniel, P. Kucherbaev, C. Cappiello, B. Benatallah, and M. Allahbakhsh. Qual-
ity control in crowdsourcing: A survey of quality attributes, assessment techniques,
and assurance actions. ACM Computing Surveys, 51(1):7, 2018.

2. A.Ph. Dawid and A.M. Skene. Maximum likelihood estimation of observer error-
rates using the em algorithm. J. of the Royal Statistical Society: Series C (Applied
Statistics), 28(1):20–28, 1979.

3. G. Demartini, D.E. Difallah, and Ph. Cudré-Mauroux. Zencrowd: leveraging prob-
abilistic reasoning and crowdsourcing techniques for large-scale entity linking. In
Proc. of WWW 2012, pages 469–478. ACM, 2012.

4. A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the em algorithm. J. of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977.

5. P.A. Flach. Machine Learning - The Art and Science of Algorithms that Make
Sense of Data. Cambridge University Press, 2012.

6. H. Garcia-Molina, M. Joglekar, A. Marcus, A. Parameswaran, and V. Verroios.
Challenges in data crowdsourcing. Trans. on Knowledge and Data Engineering,
28(4):901–911, 2016.

7. D.R. Karger, S. Oh, and D. Shah. Iterative learning for reliable crowdsourcing
systems. In Proc. of NIPS’11, pages 1953–1961, 2011.

8. J. Le, A. Edmonds, V. Hester, and L. Biewald. Ensuring quality in crowdsourced
search relevance evaluation: The effects of training question distribution. In SIGIR
2010 workshop on crowdsourcing for search evaluation, volume 2126, pages 22–32,
2010.

9. Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts in het-
erogeneous data by truth discovery and source reliability estimation. In Proc. of
SIGMOD’14, pages 1187–1198. ACM, 2014.

10. S. G. Nash. Newton-type minimization via the lanczos method. SIAM J. on
Numerical Analysis, 21(4):770–788, 1984.

11. B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectiv-
ity summarization based on minimum cuts. In Proc. of the 42nd annual meeting
on Association for Computational Linguistics, page 271. Association for Compu-
tational Linguistics, 2004.

12. V. Raykar and P. Agrawal. Sequential crowdsourced labeling as an epsilon-greedy
exploration in a markov decision process. In Artificial intelligence and statistics,
pages 832–840, 2014.

13. V. C. Raykar, S. Yu, L.H. Zhao, G.H. Valadez, C. Florin, L. Bogoni, and L. Moy.
Learning from crowds. J. of Machine Learning Research, 11(Apr):1297–1322, 2010.

14. L. Tran-Thanh, M. Venanzi, A. Rogers, and N.R. Jennings. Efficient budget al-
location with accuracy guarantees for crowdsourcing classification tasks. In Proc.
of AAMAS’13, pages 901–908. International Foundation for Autonomous Agents
and Multiagent Systems, 2013.

15. M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi. Community-based
bayesian aggregation models for crowdsourcing. In Proc. of WWW’14, pages 155–
164. ACM, 2014.

16. J. Wang, T. Kraska, M.J. Franklin, and J. Feng. Crowder: Crowdsourcing entity
resolution. Proc. of the VLDB Endowment, 5(11):1483–1494, 2012.

17. P. Welinder, S. Branson, P. Perona, and S.J. Belongie. The multidimensional
wisdom of crowds. In Proc. Of NIPS’10, pages 2424–2432, 2010.

18. J. Whitehill, T. Wu, J. Bergsma, J.R. Movellan, and P.L. Ruvolo. Whose vote
should count more: Optimal integration of labels from labelers of unknown exper-
tise. In Proc. of NIPS’09, pages 2035–2043, 2009.

19. Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng. Truth inference in crowdsourcing:
Is the problem solved? Proc. of the VLDB Endowment, 10(5):541–552, 2017.

