
An efficient evaluation scheme for KPIs in
regulated urban train systems
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Abstract. This paper considers evaluation of Key Performance Indica-
tors (KPIs) for urban train systems equipped with regulation algorithms.
We describe an efficient simulation model that can represent a network,
animate metros, and integrate existing regulation schemes as black boxes.
This macroscopic model allows efficient simulation of several hours of
networks operations within a few seconds. We demonstrate the capaci-
ties of this simulation scheme on a case study and show how statistics
can be derived during simulation campaigns. We then discuss possible
improvements to increase accuracy of models.
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1 Introduction

Urban train systems are subject to performance requirements originating from
customers, operators or local authorities. These requirements (or Key Perfor-
mance Indicators) can focus on punctuality of metros, regularity of service,
passengers comfort. . . recent indicators also address energy consumption. Usually,
trains follow predetermined schedules (a.k.a timetables) that allow, if realized
as expected, to meet quality requirements. In a perfect world, trains arrive at
stations and leave at the exact dates prescribed by a timetable or by a service
rate. However, in everyday life, perturbations arise, and schedules are rarely
satisfied.

Indeed, urban train systems are subject to random perturbations originating
from weather conditions, passengers misbehavior, or failures. To recover from
small delays, metro systems are equipped with regulation mechanisms, that give
advices to train drivers (or to automated systems embedded in trains, if the
line is driverless). Advices can be, for example, to reduce/increase dwell time or
change commercial speed for a while to resume to the original timetable or to
meet a regular service rate.

Regulation mechanisms are hence a key element for metros performance. They
should be seen as an important part of the design of a metro line, and considered
at early design stages. Several standard regulation techniques appear in the
literature: the simplest ones try to stick to a prescribed timetable, but complex



proprietary regulation algorithms are also in use. One can however notice that
there is no consensual mechanism considered as the best regulation technique:
efficiency of a regulation scheme depends on frequency of delays, passengers
behaviors, metro lines topology, and many other contextual features. Considering
regulation and evaluating its performance at early design stages has several
advantages. First, it allows to decide which regulation technique is adapted to
particularities of the line under construction. Second, it allows to build timetables
and to obtain estimates of achievable performances.

Several tools have been used to evaluate performance of mainline railway sys-
tems. Following the classification in [7], one can define these tools as macroscopic
or microscopic simulation tools. Macroscopic approaches abstract away details
and do not usually consider trains particularities for simulation; they usually lead
to optimistic results. An example of such macroscopic model is the NEMO tool [5].
This tool uses abstract network graphs to compute timetables and detect possible
bottlenecks. Microscopic approaches consider trains details, and many parameters
such as weather conditions and up to passenger flows. Usually, these approaches
consider how trains influence one another at runtime. They use synchronous
techniques, i.e., repeatedly evaluate evolution of a network during user-defined
time steps (for instance one second). OpenTrack is an example of such simulation
framework (see for instance a description in [7]). Synchronous simulation is time
consuming, and many steps simulated by the tools are simply useless, as no
interaction between trains (forcing one of them to brake, for instance) nor change
to a train’s behavior (excepted for their positions) occur during most of time
steps. OpenTrack and NEMO, as well as commercial softwares such as RailSys
target main lines, where delays between departures and arrivals are quite long,
and where small local perturbations have little influence on service performance.
Challenges for these models are to design timetables, that are quite stable, and
in case of failure in a network, find alternative paths for trains (see [2] for an
introduction to the timetabling problem and associated tools). Computation of
best alternative routes can take a few minutes without affecting too much traffic.
In metro networks, paradigms change: trains are really close, minor disturbances
may affect service quality, and advices have to be computed as fast as possible
to be usable. Hence, corrective mechanisms are quite reactive, and the computed
solutions to recover from a delay are applied as soon as possible. Models such as
those proposed in the SimMETRO tool [6] address performance of metro systems
in a microscopic (and stochastic) setting.

In this paper, we propose a macroscopic performance evaluation scheme for
regulated metro systems, that can be used at early design stages. Metro networks
are modeled as a variant of Stochastic Time Petri Nets [4]. Dwell and trip times
are modeled as sojourn times in places, perturbations are modeled as random
variations for these durations. In addition to the network dynamics, the system
integrates a timetable and a regulation algorithm. The regulation algorithm
is used as a black box that sends departure orders to trains and recomputes
the timetable. We consider a fixed block policy: the metro network is divided
into zones that can be entered by a single train. The distributions governing



trip and dwell durations are defined using expolynomial distributions. Indeed,
as delays are more likely than advances the repartition of trip durations have
particular asymmetric shapes that cannot be captured by standard uniform,
exponential or Gaussian distributions. Distributions are hence defined on an
interval in which durations with the highest probabilities are concentrated around
several nominal values (nominal dwell or running times). Simulation of traffic
is performed using an efficient technique that advances time to the date of the
next event(s) (departures and arrivals), hence avoiding useless steps of standard
synchronous simulation approaches. The proposed model is abstract enough to
allow efficient simulation (many characteristics of trains, tracks and so on are
abstracted away), but yet accurate enough to derive useful performance measures.
We show that KPIs can be easily evaluated from our model, and demonstrate
its practical interest on a real case study, namely line 1 on Santiago’s metro.
The paper is organized as follows: Section 2 introduces our simulation model.
Section 3 introduces KPIs and shows statistics obtained from a simulation of 4
hours of exploitation on our case study. Section 4 discusses our design choices,
and possible improvements of the model, before conclusion.

2 Modeling

Urban train networks are composed of tracks, trains, safety and regulation
mechanisms. Tracks can be decomposed in stations, rails and platforms, depots
and turnback areas. Trains follow paths expressed as a succession of trips from
departure to arrival terminuses and turnback maneuvers. The trip plans are
usually detailed in a preconstructed timetable for a day or part of a day of
exploitation. Timetables give a desired ideal schedule of trains departures and
arrivals. They are an idealized representation of behaviors of trains, that is never
perfectly met because of random delays due to incidents, weather conditions, etc.
To leverage the effects of these disturbances, urban train systems are equipped
with traffic regulation mechanisms that observe delays and compute orders and
reschedulings to help the system get back to the ideal timetable.

We propose to model urban train systems with a variant of Stochastic Time
Petri Nets as defined by Horváth et al. [4]. As we will show later in this section,
this graphical model is particularly adapted to represent a network topology,
and to manipulate durations subject to random perturbations. In the rest of the
section, we only give an informal presentation of the model and refer to [3] for a
complete presentation of the model and of its semantics.

Definition 1 (Stochastic Time Petri Net). A Stochastic Time Petri Net
(STPN for short) is a tuple N = 〈P, T,•(), ()•,m0, eft, lft,F〉 where P is a finite
set of places; T is a finite set of transitions; •() : T → 2P and ()• : T → 2P are
pre and post conditions depicting from which places transitions consume tokens,
and to which places they output produced tokens; m0 : P → {0, 1} is the initial
marking of the net; eft : T → Q≥0 and lft : T → Q≥0 ∪ {+∞} respectively specify
the minimum and maximum time-to-fire that can be sampled for each transition;
and F : T → Σpdf associates a probability distribution to each transition.
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Fig. 1. An example STPN, symbolizing a simple ring topology with two trains.

Intuitively, places of a net represent either a track segment, a station, or a
boolean condition allowing departure of trains. Transitions represent actions,
i.e., departures or arrivals of trains. Intervals associated to transitions symbolize
the range of possible dwell and trip times, and the distributions attached to
transitions the probability distribution for each of these durations.

We denote by ft the distribution F(t). To be consistent, we assume that for
every t ∈ T , the support of ft is [eft(t), lft(t)]. For a given transition t ∈ P ∪ T ,
•t will be called the preset of t, and t• the postset of t. Transitions represent
departures or arrivals of trains. The preset of an arrival transition has a single
place representing the track portion arriving to the station. The preset of a
departure transition has two places in its preset: a place representing a station,
and a place representing an order from the regulation system allowing departures
(we will come back to these places later in this section). Consider for instance
the drawing at the left of Figure 1. This is a toy ring topology with 3 stations
(S1, S2, S3). The distance between S1 and S2 is 2 kms, and the distance between
S2 and S3 is equal to the distance between S3 and S1 and is equal to 1.5 km. The
commercial speed of train is 20 km/h, and the ring contains 2 trains. This simple
topology can be depicted by the STPN at the right of the figure. The places labeled
by PSi symbolize station Si, and places labeled by tripi→j the track portion
between station Si and station Sj . Transitions t1, t3, t5 symbolize departures,
and t2, t4, t6 arrivals of trains. The intervals associated with transitions represent
possible ranges of dwell and trip times. In the represented net, places PS1

and
trip2→3 contain a token, which represents a situation where a train is stopped at
station S1 and another one is moving from station S2 to station S3.

This syntax of STPNs is similar to the one in [4], but we need to adapt their
semantics to represent metro systems: for safety reasons, trains in a metro network
have to preserve a safety headway. A way to address this safety requirement is to
decompose a network into blocks, and allow a train to enter a block only when
no other train uses it. This policy is called fixed block policy. Standard semantics
of transitions firing in Petri nets consume tokens from the preset of a transition
and produce tokens in its postset regardless of the contents of a place. In the
standard setting, places can contain more that one token. To implement a fixed
block policy, we define a blocking semantics that requires, in addition to standard
rules, that places in •t that receive tokens when firing a transition t are empty.



The semantics of STPNs is defined in terms of sequences of discrete transition
firings, and timed moves. We will say that a transition t is enabled by a marking
m iff ∀p ∈ •t,m(p) = 1. For a given marking m and a set of places P ′, we will
denote by m−P ′ the marking that assigns m(p) tokens to each place p ∈ P \P ′,
and m(p)−1 tokens to each place p ∈ P ′. Similarly, we will denote by m+P ′ the
marking that assigns m(p) tokens to each place p ∈ P \ P ′, and m(p) + 1 tokens
to each place p ∈ P ′. Firing a transition t is done in two steps and consists in:
(1) consuming tokens from •t, leading to a temporary marking mtmp = m −•t,
then (2) producing tokens in t•, leading to a marking m′ = mtmp + t•.

The blocking semantics of an STPN can be informally described as follows.
A variable τt is attached to each transition t of the STPN. If a transition t
represents an arrival at a station S, when •t is marked, this means that there a
train on its way to station S. If t represents a departure from a station S, when
•t is marked this means that a train is stationed at station S, and has received an
authorization to leave. As soon as a transition t is enabled, τt is set to a random
value ζt (called the time-to-fire of t, or TTF for short) sampled from [eft(t), lft(t)]
according to ft. Intuitively, this TTF represents a duration that must elapse
before firing t once t is enabled. The value of τt then decreases as time elapses
but cannot reach negative values. When the TTF of a transition t reaches 0, then
if t• is empty t becomes urgent and has to fire unless another transition with
TTF 0 and empty postset fires; otherwise (if t• is not empty ), t becomes blocked :
its TTF stops decreasing and keeps value 0, and its firing is delayed until the
postset of t becomes empty; in the meantime, t can be disabled by the firing
of another transition. The semantics of STPNs is urgent : time can elapse by
durations that do not exceed the minimal remaining TTF of enabled transitions
that are not blocked. At a given moment, one can consider all remaining time
to fire of enabled transitions, and compute the delay that has to elapse before
some transition firing will occur. This allows to avoid synchronous approaches
and perform macro time steps between two discrete events.

Let us say a few words about distributions attached to transitions. In our
model, transitions symbolize departures and arrivals of trains. Places symbolize
a station, or a track portion between two stations. A departure occurs a certain
amount of time after arrival of the train at the considered station, and similarly,
going from one station to another one takes time. Distributions describe the
probability of durations for dwell and trip times. If one wants to obtain realistic
models and accurate enough performance measures, these distributions have
to be realistic enough. Distributions can be discrete (i.e., a list of possible
values with associated weight), but for precision reasons, it is preferable to use
continuous distributions. An usual way to model continuous distributions is to

use Gaussian distributions, i.e., of the form f(x) = 1√
2πσ2

.e
(x−µ)2

2σ2 , where µ and

σ are parameters of the distribution. Such distributions describe a bell shaped
curve, centered around the most probable value. In the setting of durations for
dwell times or trips, delays are more likely than advance, and in general our
distributions are not that symmetric. We hence use asymmetric distributions,
modeled with expolynomial distributions.



Definition 2. A truncated expolynomial function over domain [u, v] is a func-

tion of the form f(x) =

{∑K
0 ck.x

ake−λk.x if x ∈ [u, v]
0 otherwise

where u, v and ck, ak, λk

for every k ∈
{

0, 1, . . . ,K
}

are rational values.

f(x) is an expolynomial distribution iff
∫ v
u
f(x) = 1.

During simulations of our Petri net model, dwell and trip durations are
sampled according to distributions attached to transitions. Sampling from con-
tinuous distributions can be done using inverse transform techniques (see for
instance [10]). Let us denote by Ft the cumulative distribution function (CDF)
associated with ft, i.e., Ft(x) =

∫ x
0
ft. We will assume that every CDF Ft is

strictly increasing on [eft(t), lft(t)], which allows inverse transform sampling. Then
sampling a value for a distribution defined by ft amounts to sampling a value v
from the standard uniform distribution in the interval [0, 1], compute the value x
such that Ft(x) = v, and take x as the random duration sampled from law ft.

For efficiency reasons, one can also approximate truncated expolynomial func-
tions with areas defined by zones, which greatly simplifies sampling for an accept-

able precision loss. Figure 2 shows a Gaussian distribution g(x) = 1√
2π
.e−

(x−4)2

2

(i.e., with parameters µ = 4 and σ = 1), an expolynomial distribution f(x) =
0.58.x2.e−1.7x + 0.29.x3.e−1.2x defined over [0.5, 6], and an approximation of this
function on the same domain by an area delimited by two affine functions. On
this figure, one can notice that a Gaussian distribution is centered around a pivot
value: g(x) describes a distribution in which the most probable values lay around
4 time units, but where the probability density of values before and after 4 is
exactly 0.5. Conversely, the expolynomial distribution f(x) has its most probable
values centered around 2 time units, but the probability mass of values greater
than 2 (0.67) is larger than that of values smaller than 2 (0.33). This can be
interpreted as: the normal value for a delay is 2, but the probability to be delayed
is higher than the probability to be in advance.

0.5 4 6
x

f(x)

Fig. 2. A Gaussian distribution (plain line), an expolynomial function (dashed line),
and its area approximation (dotted line).

Now, STPNs only describe the dynamics of trains, i.e. how they move from
one track portion to another, and the time needed to move from one part of
the network to another. As already mentioned, unwanted delays are recovered
using regulation techniques that should be hence be considered when evaluating



the overall dynamics and performance on an urban train network. The overall
behavior of our model is hence provided by a combination of a Petri net, and
of a regulation algorithm. The Petri net part of our simulator simulates train
moves, dwell and trip times and random delays for these durations. Firing a
transition in this net means a departure or an arrival of a train at a given date.
The regulation part of the model reads arrival and departure dates of trains
(i.e., firing dates of transitions of the Petri net), and allows departures at dates
prescribed by a timetable. Upon delay, the regulation algorithm recomputes a
new timetable according to a regulation policy. Regulation algorithms usually
recompute future departure or arrival dates of trains, which amounts to change
dwell time or commercial speed (through the reduction of running and dwell
times) upon observation of a delay. These techniques usually allow to catch up
delays within a few stations. However, more involved regulation algorithms can
redefine trains paths, allow overtaking of trains, insert/extract trains, etc.

Our simulation framework integrates regulation as follows: places of the
Petri net represent stations or track portions. Transitions of the net represent
departures or arrivals of trains. Some places in the preset of a departure transition
(dotted places in Figure 3) represent orders given by the regulation algorithm.
When all places of •t are filled ans in particular the dotted place, the departure is
allowed. This way, regulation algorithms can allow departures at a precise date, or
impose a direction to a train leaving a station, in order to follow a plan. Consider
the example of Figure 3. Place PS1 contains a token. This token was put in the
place by transition t1. The occurrence date of t1 can be recorded and compared
by the regulation algorithm to detect whether this event (a train arrival) was late.
If this is the case, then the time table attached to the system can be updated. As
soon as the regulation part fills place C1, a value from [12, 20] can be sampled,
and the train will leave as soon as this TTF reaches 0. Place PS2 also contains a
token, but the place has several transitions consuming tokens from it. According
to the mission of the next train leaving station S2, the regulation module will
fill either place C2, allowing firing of t4 between 20 and 25 seconds later, or C3,
allowing firing of t5 between 18 and 25 seconds later.

This way, our simulator is an abstract representation of trains moves, but
integrates a real regulation policy. Regulation algorithms are written as a set of
rules applicable following a triggering event such as the delayed arrival of a train.
They can be simple rules of the form ”if a train arrives late by more than x time
units then reduce dwell time to minimum allowed dwell time for the station”.
They can also be intricate rules choosing a decision to perform according to a set
of thresholds... The framework proposed above has the advantage of integrating
a real regulation policy. The same network and train fleets can be tested with
different regulation algorithms without changing the whole model. However, this
modularity and the expressiveness allowed in regulation has a cost: it is very
hard to formalize and analyze the effect of regulation on the overall behavior of
the model, that is hence more adapted to statistical analysis of performance via
simulation.
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Fig. 3. The SIMSTORS simulation framework

In the modeled setting, we consider that regulation is a deterministic process:
for a given delay detected at departure or arrival of a train, the changes to the
schedule computed by the regulation algorithm is always the same. Though our
simulation framework uses regulation as a black box, i.e., imposes no constraint
of the type of regulation used by the system, this assumption seems sensible.
An advantage of this assumption is that randomness comes exclusively from the
part of the system represented by the stochastic time Petri net. An access to the
current state of the schedule and to the times to fire of all transitions suffices
to know the date of the next event that will occur in the system (a departure
order given by the regulation, an effective departure, or an arrival of a train). As
a consequence, one needs not discretize time according to a fixed sampling rate,
and can consider only dates at which events occur. This is called event-based
simulation, and allows for fast simulation of long runs of metro systems.

We have used this model to represent Line 1 of Santiago’s metro [?]. This
line is a complex ring topology: two imbricated rings connecting 24 stations.
The Petri net built for this line was a a net with 102 dwell places, 147 trip
places, 147 control places, 147 departure transitions and 147 arrival transitions.
The model contains depots and turnback zones in addition to stations and their
interconnections. With this Petri net, we can simulate 4 hours of operations of
Santiago’s metro with 50 trains and random perturbations in 40 seconds on an
average laptop.

3 KPIs and simulation campaign results

Urban train networks are driven by operators that have commitments with
local authorities to meet quality criteria. These criteria are standardized by the
UITP [8], and known as Key Performance Indicators (KPIs for short). Failing to
meet fixed performance objectives can result in financial penalties for operators.
KPIs address several criteria: punctuality, regularity of service, number of failures,
ratios of successful missions completed, but also more subjective measures such as



passengers comfort,... Usually, KPI measures are obtained by computing statistics
from logs of train operations. Of course, these statistics make sense only if logs
are recorded for a sufficiently long duration (day, week or month). Statistics are
derived from a set of complete trips (travel from one terminus of a line to another
endpoint of a line). In what follows, we assume that a sufficiently large set of
effectively realized trips T is recorded. For each trip, departure and arrival dates
at all stations have been recorded. We also assume that reference timetables are
provided, indicating expected dates of departures and arrivals of trains when no
perturbation arises.

Given this set T , the punctuality KPI is defined as the ratio of train trips
delayed by less than x minutes over the total number of trips [8]. As formalized
by UITP, this KPI only considers ending dates of trips. Formally speaking, this
KPI is defined as

PKPI ,
∣∣{t ∈ T | ḋ(t)− d(t) < x

}∣∣ / ∣∣T ∣∣
ḋ(t) is the occurrence date of the last event of trip t, d(t) the scheduled date of
the last event of t, and x is a given threshold (in minutes).

The regularity KPI is defined by UITP as “the ratio of train departures
at specified stations complying with planned headways within x minutes over
the total number of departures from the specified stations”. More formally, we
assume a selection of stations S = {s1, s2, . . . , sm} of interest where regularity is
important. For each station sj ∈ S, we denote by Edj = {ed1,j , ed2,j , . . . , edk,j}
the ordered set of departures from station sj . We also denote by ḣ(edi+1,j) the
effective headway between departure event edi+1 and its predecessor edi, and by
h(edi+1,j) the reference headway (for instance the headway planned for these
trips in a reference timetable). The regularity KPI is then formally defined as:

RKPI ,
m∑
j=1

∣∣{edi+1,j ∈ Edj | 1 < i ≤ k∧ḣ(edi+1,j)−h(edi+1,j) < x
}∣∣ / m∑

j=1

∣∣Edj∣∣
x is a given threshold.

We have performed a simulation campaign for Santiago’s metro based on
the model of line 1 mentioned in section 2. We have simulated the first 4 hours
of operation of the line, with 50 trains operating on the line1. The system was
equipped with a regulation algorithm trying to stick as much as possible to a
precomputed ideal timetable TT id. The regulation plays on dwell times to recover
from unexpected delays, and maintains a feasible timetable that associates to
departures and arrivals their earliest possible occurrence date. This 4 hours
simulation has been performed 100 times to record arrival and departure dates at
all stations. During each simulation, dwell and running times for each event are
randomly sampled from their respective distributions. The distributions attached
to transitions were discretization of asymmetric bell shaped curves (i.e., close to
a discretization of an expolynomial function).

1 Traffic is not immediately maximal but increases progressively as trains are inserted
in the network.



Fig. 4. Mean deviations from reference timetable for n = 100 runs

At the end of the simulation campaign, the obtained data were a succession
of departure and arrival dates corresponding to 100 simulations, each simulation
providing departure and arrival dates for all steps of realized trips. From these
data, we have computed statistics and derived a KPI, namely the mean deviation
w.r.t. desired departure headways. Overall, the campaign took around 1 hour.

Figure 4 depicts the mean deviations computed for each individual simulation.
Abscissae indicate the simulation number (ranging from 1 to 100). The different
curves on the picture represent the mean deviation with respect to the ideal
timetable TT id at each station (1 curve per station). The dark curve represents
one particular station, namely Pajaritos, in running direction 1. Note that we
slightly abuse the term “station”, as for each physical location of line 1, we have
a station number for each running direction. (There are two possible directions:
direction 1 from station “San Pablo” to “Los Dominicos” and direction 2 the
converse way.) From these recorded mean deviations w.r.t. TT id, one can observe
the randomness of the simulation, as for each run, the results are different.

Let n be the number of simulations performed during a campaign (in our
case n = 100), and let rj with j = 1, 2, . . . , n denote the jth simulation (also
called a run hereafter). Let m be the number of stations, and let us denote by
sk with k = 1, 2, . . . ,m the kth station on the line. Events occurring at a given
station sk in a run rj are denoted ei,j,k with i = 1, 2, . . . , qk. Note that, during
our simulation campaign, the number of events per station was the same from
a run to another. Considering the idealized timetable TT id, one can easily find
the ith event (departure or arrival) at station k, and hence obtain its planned
occurrence date. We denote by d(ei,j,k) the reference date for the occurrence



Fig. 5. Progress of deviations from reference timetable for station Pajaritos, direction 1

of event ei,j,k, which is the ideal occurrence date. Note that as d(ei,j,k) is the

same for all runs, we can simply write it as di,k. We denote by ḋi,j,k the effective
occurrence date of event ei,j,k in run rj at station sk. The deviation (w.r.t. the

reference timetable dates) for an event ei,j,k is the difference δi,j,k = ḋi,j,k − di,k
between its effective date of occurrence and its desired occurrence date. Consider
Figure 5. This graphics represent data collected during a single run of our
simulation. Each curve represents the evolution of deviations for a particular
station. Abscissae represent time elapsing, and ordinates give the deviations
δ1,1,k, δ2,1,k, . . . , δqk,1,k. It might seem surprising that deviations grow but this is
due to the chosen parameters for the simulation: we have deliberately selected
high values of perturbations, to be able to observe the impact of regulation. One
can see that, in the beginning of the simulation, the regulation is able to recover,
more or less, from the perturbations but, as time progresses, the system becomes
unstable. This is due to the fact that more and more trains are inserted into
the network. As a consequence, it becomes harder for regulation algorithms to
recover from consequent delays, and bunching phenomena appear.

Instead of reasoning in terms of occurrence dates and deviations, one can
also consider headways, as they give a better measure of traffic regularity. For
headways to be relevant, they have to be measured only between events of the
same type (i.e., departures or arrivals). We hence denote by edi,j,k (resp. eai,j,k)

the ith departure (resp. arrival) at station sk in run rj . Similarly, we denote by qdk
(resp. qak) the total number of departures (resp. arrivals) at station k (one need
not differentiate between runs). We then denote by hdi,k , d(edi+1,k)− d(edi,k) the

reference headway at departure i+1 and by hai,k , d(eai+1,k)−d(eai,k) the reference

headway at arrival i+ 1 at station sk. We denote by ḣdi,j,k , ḋ(edi+1,j,k)− ḋ(edi,j,k)



Fig. 6. Effective and reference headways for station Los Héroes, dir. 1 for one simulation

the effective headway at departure i+1 in run rj and ḣai,j,k , ḋ(eai+1,j,k)− ḋ(eai,j,k)
the reference headway at arrival i+ 1 at station sk.

We can then define h
d

k ,
∑qdk−1
i=1 hdi,k

/ (
qdk − 1

)
and h

a

k ,
∑qak−1
i=1 hai,k

/
(qak − 1)

as the mean reference headways for departures and arrivals at station sk respec-

tively. Also, h̃dj,k ,
∑qdk−1
ix=1 ḣ

d
i,j,k

/ (
qdk − 1

)
and h̃aj,k ,

∑qak−1
i=1 ḣai,j,k

/
(qak − 1) are

the mean effective departure (resp. arrival) headway at station sk during run
rj , and h̃dk ,

∑n
j=1 ḣ

d
j,k

/
n and h̃ak ,

∑n
j=1 ḣ

a
j,k

/
n the mean effective headway at

station sk for the simulation campaign.

Figure 6 shows departure headways from Los Héroes station in running
direction 1. Absissae depict events indexes, and ordinates the effective departure
headways for one simulation run. Reference headways are depicted in gray and
effective headways in black. One can observe that the regulation has an effect on
headways. Indeed the curves of reference and effective headways are different, but
their general profile remains close (there is no divergence in the effective headway
curve). Now, one cannot draw conclusions from a single run of a stochastic
simulation. In what follows, we give confidence intervals for means of deviations
between mean effective departure headways and mean reference headways per
station derived from a simulation campaign of several runs (here, 100).

A stochastic simulation campaign can be used to measure KPIs defined
as mean value of some quantity ζi measured for each sampled run ri. It is
however interesting to know how the computed value approaches the theoretical
mean µ for this KPI. Such a confidence can be quantified through confidence
intervals. We call M , 1

n

∑n
i=1 ζi the sample mean obtained from ζi’s, and σ

the corresponding estimated standard deviation. According to the law of large
numbers, M approaches µ only when the number of samples n is sufficiently
large. To increase confidence in the computed value, a standard approach is to
set a confidence level α, and compute a confidence interval I from M . I is the
confidence interval for µ at confidence level 1 − α, i.e., the probability that µ
belongs to I is 1− α. Given n, M , σ and α, the confidence interval is defined as:

I ,

[
M − γα

σ√
n
,M + γα

σ√
n

]
(1)



where γα is value depending only on α called the z-score. 2

Fig. 7. 99.9% confidence intervals for means of deviations between mean effective
departure headways and mean reference headways per station

Let us now consider a KPI measuring the mean deviation w.r.t. reference
departure headways for a station. The headway deviation (difference between
the effective headway and the reference headway) for event i, in run rj at

station sk is defined as θi,j,k = ḣdi,j,k − hdi,k. The mean headway deviation in

a run rj at station sk is given by θj,k ,
∑qdk−1
i=1 θi,j,k

/ (
qdk − 1

)
. Finally, the

mean headway deviation at station sk for a simulation campaign of n runs is
θk ,

∑n
j=1 θj,k

/
n. The standard deviation of θk in a simulation campaign of n

runs is σk ,
√∑n

j=1

(
θk − θj,k

)2 /
(n− 1).

Figure 7 shows the confidence intervals computed for headway deviations at
each station. The parameters of the simulation are n = 100 runs, and the intervals
are computed for a confidence 1− α = 99.9%. In this Figure, the horizontal axis
carries station names, and the ordinates represent values of mean deviations. For
each station, the graphics contain an interval around the sample mean value
computed from the simulation campaign. One can notice that headway deviations
grow progressively from station Pajaritos direction 1 to Manquehue direction 1
and from Manquehue direction 2 to Pajaritos direction 2. This is explained by an
accumulation of delays due to bottlenecks at both ends of the network. One can
also notice that mean headway deviations at the ends of the line (stations SP1,
NP1, HM1, LD1, SP2, NP2, HM2, and LD2) do not follow this general profile
(they have smaller effective headways). This is due to the fact that these stations
are used for train insertaion and turnback maneuvers and allow for more flexible
regulation margins. Accumulated delays can be recovered at these stations (up
to a certain limit) by considerably reducing sojourn time or using fast turnback

2 This value is the real value such that P [|N | ≤ γα] = 1 − α, where N is a variable
following a normal law N (0, 1). This value is not easily computable, but all statistical
tools provide means to obtain γα, for instance using precalculated z-tables.



techniques. Last, one can see that the chosen perturbation level for this simulation
is too high to allow recovery from delays by the selected regulation.

4 Discussion and improvements

The model proposed in this paper has been tested on a real case study; namely,
the Line 1 of Santiago’s Metro, with a hold-on regulation policy that tries to stick
as much as possible to a predetermined timetable. This first experimentation
allows to obtain simulation results within a reasonable time (a few seconds for 4
hours of operation of a real network, i.e., a real topology with its actual train
fleet). This shows feasibility of a simulation approach to evaluate performance of
regulation algorithms.

Now, the setting of the paper can be improved along several directions. First
of all, distributions for delays were designed from an a priori knowledge of normal
dwell and trip times between two stations. To guarantee that these distributions
are accurate enough, one could observe trains and passengers behaviors over a
long enough period, and derive distributions from the collected data. A second
issue regarding distributions is that the delays are modeled as Markovian noise.
In this setting, every delay is sampled independently from the others. In urban
train networks, latencies are correlated. For instance, if a train gets late, more
passengers will enter the train, which will increase the chances of delay. Similarly,
if a train is delayed due to bad weather between two stations, all trains of the
network are likely to be delayed on the same part of the network. This means that
sampling in our simulator should consider a context, and that distributions should
be conditional distributions of the form p (x | c1, c2, . . . , ck) where x is a delay,
and c1, c2, . . . , ck are variables representing the context (station, weather, day of
the week, time of the day, etc.) in which delay x is sampled. This change does not
require much effort to be integrated to our simulation model. However, it does
require a lot of effort from designers to evaluate the impact of an environmental
factor on the distributions.

Train fleets: A second issue that should be considered is the impact of fleet
composition on computed metrics. In the simulation that we have performed, we
have considered regulation techniques that cannot change composition of fleets
to meet their objectives. The number of running trains changes according to the
period of the day, but follow planned insertions and removals of trains: It would
be interesting to consider regulation techniques that can recommand to insert
or remove trains to meet a desired KPI. In a similar way, we have considered
uniform fleets. This is however not the case that all trains have the same speed,
same capacities, etc. One can easily integrate to distributions (and to the context
as described above) the type of each train when sampling a dwell or running
duration. As for all environmental factors, this difference between trains can be
defined using conditional distributions, but with an increased design cost.

Moving block: In this paper, all experiments have been conducted assuming
that the line was operated with a fixed block policy, forbidding trains to enter an
already occupied track section (block). However, in reality, trains can also follow



a moving block policy [9]. The moving block policy as described by Pearson states
that “A train is continuously supplied with accurate information of the position
of the nearest obstacle on the track ahead of it [. . . ] it may be a preceding train,
which itself may be moving or stationary. The speed of the train is constantly
checked and adjusted [. . . ] so that it is always possible for the train to be brought
to rest without colliding with the obstacle.” In this setting, several trains can
enter a track portion as long as they adapt their speed to their predecessors.
Changing the Petri net setting to adapt to this change needs to consider trip
durations as constrained delays attached to trains and not as time to fire attached
to transitions. This change to the model is currently under study.

Passengers flows: the last aspect that may improve accuracy of the model
is to consider how passengers transfer from one line to another. Indeed, metro
networks are often composed of several interconnected lines. A flow of passenger
entering a line at an endpoint is likely to transfer to another line at a junction
point of the network. This flow of passengers is often captured with Origin-
Destination Matrices, in which entries indicate the proportion of passengers
alighting at station i that leave a train at station j, or which proportion of
passengers leaving at a junction station enter the next train of another line. In
its current status, our model does not integrate flows nor address the number
of passengers. As already mentioned, the number of passengers impacts the
distribution of delays. However, integrating passengers flows to our model is
likely to increase simulation time dramatically, as it requires counting (or at least
quantizing) trains population, and remembering passengers alighting histories
to guarantee faithful representation of passengers flows. An inspiration for this
improvement of our model and of our simulation framework is the multiphase
fluid Petri nets proposed in [1]. Another difficulty in flows representation is that
input-output matrices are not known a priori. They are not available at early
design stages. They have to be built once a metro network is operational, which
usually requires observation of passenger habits for long periods of time.

5 Conclusion

In this paper, we have detailed a framework for performance evaluation of regula-
tion algorithms on a particular metro line. This framework consists of a high-level
model of the network and of train moves, with random perturbations, in which a
regulation algorithm is inserted to correct these delays. The overall systems allow
for fast simulation, and hence for realization of simulation campaigns to obtain
statistics on the efficiency of a regulation algorithm to meet KPI objectives.

The proposed framework allowed us to derive statistics for a case study,
namely Line 1 of Santiago’s Metro. A key question raised by our study is the
tradeoff between abstraction (allowing efficiency of simulation) and accuracy
of the statistics derived. Petri nets allow for an accurate modeling of network
topologies, the key ingredient for our model is hence accuracy of trip and dwell
times. As explained in the paper, truncated expolynomial functions allow for
precise modeling of distributions in which trains are more likely to be delayed



than advanced. When sampling for such functions is too time consuming, these
functions can be approximated with areas delimited by affine functions.

Now, a major challenge is to define these distributions. Of course, at early
stages of design, one can rely on expected characteristics of the network and
trains to design distributions a priori. For an existing system, when the challenge
is not design but rather to adapt regulation train fleets and their paths to improve
KPIs, one may want to work with accurate distributions, that consider elements
from context: passengers, trains, but also regulation itself. In such a situation,
collected logs can help learning parameters of a distribution for dwell or trip time,
but it remains a challenging task to estimate the contribution of passengers or
regulation to a certain duration, as these parameters are usually not remembered
logs. As a future work, we plan to use our tool to compare regulation techniques,
and to improve its accuracy by learning distributions.
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