
A Grammatical Approach to Data-centric Case
Management in a Distributed Collaborative Environment

ABSTRACT
This paper presents a purely declarative approach to artifact-
centric case management systems. Each case is presented as
a tree-like structure; nodes bear information that combines
data and computations. Each node belongs to a given stake-
holder, and semantic rules govern the evolution of the tree
structure, as well as how data values derive from informa-
tion stemming from the context of the node. Stakeholders
communicate through asynchronous message passing with-
out shared memory, enabling convenient distribution.

Keywords
Business Artifacts, Case Management, Attribute Grammars

1. INTRODUCTION
Case-management consists in assembling relevant infor-

mation during short collaborative processes that may in-
volve human stakeholders. It is frequently addressed using
the notion of Business Artifacts, also known as business en-
tities with lifecycles, as proposed in [8, 6, 3]. An artifact
is a document that conveys all the information concerning
a particular case from its inception in the system until its
completion. It contains all the relevant information about
the entity together with a lifecycle that models its possible
evolutions through the business process.

This paper presents a declarative model for the specifica-
tion of artifact-centric case management systems where the
stakeholders interact according to an asynchronous message-
based communication schema. Case-management usually
consists in assembling relevant information by calling tasks,
which may in turn call subtasks, etc. Case elicitation needs
not be implemented as a sequence of successive calls to sub-
tasks, and several subtasks can be performed in parallel. To
allow as much as concurrency as possible in the execution
of tasks, we favor a declarative approach where tasks depen-
dencies are specified without imposing a particular execution
order.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

Attribute grammars are particularly adapted to that pur-
pose. The model proposed in this paper is called Guarded
Attributed Grammars (GAG). A GAG is an extension of an
attribute grammars [7, 9] using a notation reminiscent of
unification grammars. It is made of production rules, that
are used to complete documents (via a standard rewriting
process) and at the same time synthesize and propagate in-
formation via the attributes of the grammar.

A production of a grammar is as usual described by a left
hand side, indicating a non-terminal to expand, and a right
hand side, describing how to expand this non-terminal. We
furthermore interpret a production of the grammar as a way
to decompose a task (the symbol in the left-hand side of the
production) into sub-tasks associated with the symbols in its
right-hand side. The semantics rules basically serve as a glue
between the task and its sub-tasks by making the necessary
connections between the corresponding inputs and outputs
(associated respectively with inherited and synthesized at-
tributes).

In this declarative model, the lifecycle of artifacts is left
implicit. Artifacts under evaluation can be seen as incom-
plete structured documents, i.e., trees with open nodes cor-
responding to parts of the document that remain to be com-
pleted. Each open node is attached a so-called form inter-
preted as a service call. A form consists of a task together
with some inherited attributes (data resulting from previous
executions) and some synthesized attributes. The latter are
variables subscribing to the values that should emerge from
task execution.

Productions are guarded by patterns occurring at the in-
herited positions of the left-hand side symbol. Thus a pro-
duction is enabled at an open node if the patterns match
with the corresponding attribute values appearing in the
form. The evolution of the artifact thus depends both on
previously computed data (stating which production is en-
abled) and the stakeholder’s decisions (choosing a particular
production amongst those which are enabled at a given mo-
ment, and inputting associated data). Thus GAGs are both
data-driven and user-centric.

Data manipulated in guarded attributed grammars are of
two kinds. First, the tasks communicate using forms which
are temporary information used for communication purpose
only. Second, artifacts are structured documents that record
the history of cases (log of the system). An artifact grows
monotonically (we never erase information) and every part
of it is edited by a unique stakeholder (the owner of the cor-
responding nodes), hence avoiding edition conflicts. These
properties are instrumental to obtain a simple and robust

model that can easily be implemented on a distributed asyn-
chronous architecture.

This paper is organized as follows : Section 2 introduces
the formal notations for GAGs. Section 3 gives a semantics
to the model in terms of rewriting steps. Section 4 briefly
states some formal properties of the model, before conclu-
sion.

2. GUARDED ATTRIBUTE GRAMMARS
This section introduces a Guarded Attributed Grammars a

grammatical notation for case management. It is inspired by
the work of Deransart and Maluszynski [4] relating attribute
grammars with definite clause programs. Throughout the
paper, the term case will designate a concrete instance of a
given business process. We will use the editorial process of
an academic journal as a running example to illustrate the
various notions and notations. A case for this example is
the editorial processing of a particular article submitted to
the journal.

The case is handled by various actors involved in the pro-
cess, the so-called stakeholders, namely the editor in chief,
an associate editor and some referees. We associate each
case with a document, called an artifact, that collects all
the information related to the case from its inception in the
process until its completion. When the case is closed this
document constitutes a full history of all the decisions that
led to its completion.

We interpret a case as a problem to be solved, that can be
completed by refining it into sub-tasks using business rules.
This notion of business rule can be modeled by a production
P : s0 ← s1 · · · sn expressing that task s0 can be reduced
to subtasks s1 to sn. If several productions with the same
left-hand side s0 exist then the choice of a particular pro-
duction corresponds to a decision made by some designated
stakeholder. For instance, there are two possible immediate
outcomes for a submitted article: either it is validated by
the editor in chief and it enters the evaluation process of the
journal or it is invalidated because its topic or format is not
adequate. This initial decision can be reflected by the two
following productions:

validate : Proposed submission← Submission
invalidate : Proposed submission←

If P is the unique production having s0 in its left-hand side,
then there is no real decision to make and such a rule is
interpreted as a logical decomposition of the task s0 into
substasks s1 to sn. Such a production will be automatically
triggered without human intervention.

Accordingly, we model an artifact as a tree whose nodes
are sorted. We write X :: s to indicate that node X is of
sort s. An artifact is given by a set of equations of the
form X = P (X1, . . . , Xn), stating that X :: s is a node
labeled by production P : s ← s1 · · · sn and with successor
nodes X1 :: s1 to Xn :: sn. In that case node X is said to
be a closed node defined by equation X = P (X1, . . . , Xn)
(we henceforth assume that we do not have two equations
with the same left-hand side). A node X :: s defined by no
equation (i.e. that appears only in the right hand side of an
equation) is an open node. It corresponds to a pending task.

The lifecycle of an artifact is implicitly given by a set of
productions:

1. The artifact initially associated with a case is reduced

to a single open node.

2. An open node X of sort s can be refined by choosing
a production P : s ← s1 . . . sn that fits its sort. The
open nodeX becomes a closed nodeX = P (X1, . . . , Xn)
under the decision of applying production P to it. In
doing so the task s associated with X is replaced by
n subtasks s1 to sn and new open nodes X1 :: s1 to
Xn :: sn are created accordingly.

?

s

P

s

?

s1

?

sn

3. The case has reached completion when its associated
artifact is closed, i.e. it no longer contains open nodes.

However, plain context-free grammars do not model the
interactions and data exchanged between the various tasks
associated with open nodes. To overcome this problem, we
attach additional information to open nodes using attributes.
Each sort s ∈ S comes equipped with a set of inherited at-
tributes and a set of synthesized attributes. Values of at-
tributes are given by terms over a ranked alphabet. Recall
that such a term is either a variable or an expression of
the form c(t1, . . . , tn) where c is a symbol of rank n, and
t1, . . . , tn are terms. In particular a constant c, i.e. a sym-
bol of rank 0, will be identified with the term c(). We will
denote by var(t) the set of variables used in term t.

Definition 2.1. A form of sort s is an expression

F = s(t1, . . . , tn)〈u1, . . . , um〉

where t1, . . . , tn (respectively u1, . . . , um) are terms over a
ranked alphabet —the alphabet of attribute’s values— and
a set of variables var(F). Terms t1, . . . , tn give the values
of the inherited attributes and u1, . . . , um the values of
the synthesized attributes) attached to form F .

We can now define productions where the left-hand and
right-hand sides of a rule are defined using forms. More
precisely, a production is of the form

s0(p1, . . . , pn)〈u1, . . . , um〉 ← s1(t
(1)
1 , . . . , t

(1)
n1)〈y

(1)
1 , . . . , y

(1)
m1 〉

· · ·
(1) sk(t

(k)
1 , . . . , t

(k)
nk

)〈y(k)1 , . . . , y
(k)
mk
〉

where the pi’s, the uj ’s, and the t
(`)
j ’s are terms and the

y
(`)
j ’s are variables. The forms in the right-hand side of a

production are service calls, namely they are forms F =
s(t1, . . . , tn)〈y1, . . . , ym〉 where the synthesized positions are
(distinct) variables y1, . . . , ym (i.e., they are not instanti-
ated). The rationale is that we invoke a service by filling
in the inherited positions of the form (the entries) and by
indicating the variables that expect to receive the results
returned by the service (the subscriptions).

Any open node is now attached a service call. The corre-
sponding service is supposed to (i) construct the tree that
will refine the open node and (ii) compute the values of the
synthesized attributes (i.e., it should return the subscribed

values). A service is enacted by applying productions. More
precisely, a production such as the one given in formula (1)
can apply in an open node X when its left-hand side matches
with the service call s0(d1, . . . , dn)〈y1, . . . , ym〉 attached to
node X. For that purpose the terms pi’s are used as pat-
terns that should match the corresponding data di’s. When
the production applies, new open nodes are created and they
are respectively associated with the forms (service calls) in
the right-hand side of the production. The values of uj ’s are
then returned to the corresponding variables yj ’s that had
subscribed to these values. For instance applying production

P : s0(a(x1, x2))〈b(y′1), y′2〉 ← s1(c(x1))〈y′1〉 s2(x2, y
′
1)〈y′2〉

to a node associated with service call s0(a(t1, t2))〈y1, y2〉
gives rise to the substitution x1 = t1 and x2 = t2. The two
newly-created open nodes are respectively associated with
the service calls s1(c(t1))〈y′1〉 and s2(t2, y

′
1)〈y′2〉 and the val-

ues b(y′1) and y′2 are substituted to the variables y1 and y2
respectively.

P

s0

?

s1

?

s2

a

?

x2

?

x1

b

y′
1 y′

2

c

x1

?

y′
1

y′
1

x2 ?

y′
2

A Guarded Attributed Grammar (GAG for short) is de-
fined as a set of production rules of the form P : F0 ←
F1 . . . Fk, where all F ′i s are forms.

Definition 2.2 (Guarded Attribute Grammars).
Given a set of sorts S with fixed inherited and synthesized
attributes. A guarded attribute grammar is a set of pro-
ductions P : F0 ← F1 · · ·Fk where the Fi :: si are forms.
The inherited attributes of left-hand side F0 are called the
patterns of the production. The values of synthesized at-
tributes in the right-hand side are variables. These occur-
rence of variables together with the variables occurring in
the patterns are called the input occurrences of variables.
We assume that each variable has at most one input oc-
currence.

A GAG is weel-formed whenever every output is defined in
terms of the inputs. More precisely, the inputs are associ-
ated with (distinct) variables and the value of each output
is given by a term using these variables. We will refer to
these correspondences as the semantic rules.

For our running example, a GAG defining the editorial
process can be defined as follows: A stakeholder has a spe-
cific role in the editorial process: he can be an author, the
editor in chief, an associate editor or a referee. Each role is
associated with a set of services and a set of productions ex-
plaining how each service is provided. For instance an asso-
ciate editor provides the service Submission(article)〈decision〉
consisting in returning an editorial decision about an arti-
cle submitted to the journal. The corresponding produc-
tions are listed in Table 1. The first two productions mean
that an associate editor makes an editorial decision about
a submitted paper on the basis of the evaluation reports
produced by two different referees. He can ask a report

from a reviewer through an invocation of the external service
ToReview(article)〈answer〉. The productions that govern
the actions of a reviewer are given in Table 2.

Productions Decline(msg) and Accepts(msg) reflect a non-
deterministic choice of a reviewer. They are also a way
to input new data by assigning a particular message Msg
to variable msg resulting in the respective attribute values
No(Msg) or Yes(Msg, report).

One can group the productions of Table 1 and Table 2
using an additional parameter reviewer to make as many
disjoint copies of the specification given in Table 2 as there
are individuals playing the role of a referee. The resulting
set of productions (where call to external services have been
eliminated) is given in Table 3. Similarly one has as many
instances of the productions in Table 1 as there are asso-
ciate editors in the editorial board. In the complete spec-
ification one should therefore add an additional parameter
associateEditor to distinguish between all associate editors.
If the specification is large and contains many different roles
the resulting global grammar can be quite complex. Yet, it
is still possible to build an equivalent monolithic grammar
without external service calls.

3. BEHAVIOR OF GAGS
Attribute grammars are traditionally applied to abstract

syntax trees which can be produced by some parsing algo-
rithm during a previous stage. The semantic rules are then
used to decorate the nodes of the tree by attribute values.
In our setting the generation of the tree and evaluation of
attributes, using the semantic rules, are intertwined since
the input tree represents an artifact under construction.

We consider collaborative systems relying on a distributed
memory consisting of the current artifacts. A configuration
of this memory can be represented as follows:

Definition 3.1 (Configuration). A configuration
Γ is an S-sorted set of nodes X ∈ nodes(Γ) each of which
is associated with a defining equation in one of the following
form where var(Γ) is a set of variables associated with Γ:

Closed node: X = P (X1, . . . , Xk) where P : F0 ← F1 . . . Fk

is a production of the grammar and X :: s, and Xi :: si
for 1 ≤ i ≤ k. Production P is the label of node X
and nodes X1 to Xn are its successor nodes.

Open node: X = s(t1, . . . , tn)〈x1, . . . , xm〉 where X is of
sort s and t1, . . . , tk are terms with variables in var(Γ)
that represent the values of the inherited attributes of
X, and x1, . . . , xm are variables in var(Γ) associated
with its synthesized attributes.

Each variable in var(Γ) occurs at most once in a synthesized
position.

We identify a substitution σ on a set of variables x1, . . . , xk,
called the domain of σ, with a system of equations xi =
σ(xi). The set var(σ) =

⋃
1≤i≤k var(σ(xi)) of variables of

σ is disjoint from the domain of σ. Conversely a system
of equations {xi = ti}1≤i≤k defines a substitution σ with
σ(xi) = ti if it is in solved form, i.e., none of the variables
xi appears in some of the terms tj . In order to transform a
system of equations E = {xi = ti}1≤i≤k into an equivalent
system {xi = t′j}1≤j≤m in solved form one can iteratively
replace an occurrence of a variable xi in one of the right-
hand side term tj by its definition ti until no variable xi

Table 1: Acting as an associate Editor

DecideSubmission : Submission(article)〈decision〉 ← Evaluate(article)〈report1〉
Evaluate(article)〈report2〉
Decide(report1, report2)〈decision〉

MakeDecision(decision) : Decide(report1, report2)〈decision〉 ←
AskReview(reviewer) : Evaluate(article)〈report〉 ← WaitReport(answer , article)〈report〉

Call(reviewer ,ToReview(article)〈answer〉)
CaseNo〈msg〉 : WaitReport(No(msg), article)〈report〉 ← Evaluate(article)〈report〉
CaseYes〈msg〉 : WaitReport(Yes(msg , report), article)〈report〉 ←

Table 2: Acting as a reviewer

Decline(msg) : ToReview(article)〈No(msg)〉 ←
Accept(msg) : ToReview(article)〈Yes(msg , report)〉 ← Review(article)〈report〉

MakeReview(report) : Review(article)〈report〉 ←

occurs in some tj . This process terminates when the rela-
tion xi � xj ⇔ xj ∈ var(σ(xi)) is acyclic. Then the result-
ing system of equations SF (E) = {xi = t′i}1≤i≤n in solved
form does not depend on the order in which the variables xi
have been eliminated from the right-hand sides. When the
above condition is met we say that the set of equations is
acyclic and that it defines the substitution associated with
its solved form.

The composition of two substitutions σ, σ′ is denoted by
σσ′ and defined by σσ′ = {x = tσ′ | x = t ∈ σ }. Similarly,
we let Γσ denote the configuration obtained from Γ by re-
placing the defining equation X = F of each open node X
by X = Fσ.

We now define more precisely when a production is en-
abled at a given open node of a configuration and the ef-
fect of applying the production. First note that variables
of a production are formal parameters which scope is lim-
ited to that production. They can injectively be renamed
in order to avoid clashes with variables names appearing
in a configuration. Therefore we shall always assume that
the set of variables of a production P is disjoint from the
set of variables of a configuration Γ when applying produc-
tion P to Γ. As informally stated in the previous section,
a production P applies in an open node X when its left-
hand side s(p1, . . . , pn)〈u1, . . . um〉 matches with the defi-
nition X = s(d1, . . . , dn)〈y1, . . . , ym〉, i.e., the service call
attached to X in Γ.

First, the patterns pi should match with the data di ac-
cording to the usual pattern matching operation given by
the following inductive statements

match(c(p′1, . . . , p
′
k), c′(d′1, . . . , d

′
k′)) with c 6= c′ fails

match(c(p′1, . . . , p
′
k), c(d′1, . . . , d

′
k)) =

∑k
i=1 match(p′i, d

′
i)

match(x, d) = {x = d}

where the sum-substitution, σ =
∑k

i=1 σi, of substitutions
σi is defined and equal to

⋃
i∈1..k σi when all substitutions

σi are defined and associated with disjoint sets of variables.
Note that since no variable occurs twice in the whole set of
patterns pi, the various substitutions match(pi, di), when
defined, range over disjoint sets of variables. Note also that
match(c(), c()) = ∅.

Definition 3.2. A form F = s(p1, . . . , pn)〈u1, . . . um〉
matches with a service call F ′ = s(d1, . . . , dn)〈y1, . . . , ym〉
(of the same sort) when

1. the patterns pi’s match with the data di’s, defining a
substitution σin =

∑
1≤i≤n match(ti, di),

2. the set of equations {yj = ujσin | 1 ≤ j ≤ m} is acyclic
and defines a substitution σout .

The resulting substitution σ = match(F, F ′) is given by σ =
σout ∪ σinσout .

Definition 3.3 (Applying a Production). Let P =
F ← F1 . . . Fk be a production, Γ be a configuration, and X
be an open node with definition X = s(d1, . . . , dn)〈y1, . . . , ym〉
in Γ. We assume that P and Γ are defined over disjoint sets
of variables. We say that P is enabled in X and write
Γ[P/X〉, if the left-hand side of P matches with the defi-
nition of X. Then applying production P in X transforms
configuration Γ into Γ′, denoted as Γ[P/X〉Γ′, where:

Γ′ = {X = P (X1, . . . , Xk)}
∪ {X1 = F1σ, . . . ,Xk = Fkσ}
∪ {X ′ = Fσ | (X ′ = F) ∈ Γ ∧ X ′ 6= X }

where X1, . . . , Xk are new nodes added to Γ′ and σ = match(F,X).

Thus the first effect of applying production P to an open
node X is that X becomes a closed node with label P and
successor nodes X1 to Xk. The latter are new nodes added
to Γ′. They are associated respectively with the instances of
the k forms in the right-hand side of P obtained by applying
substitution σ to these forms. The definitions of the other
nodes of Γ are updated using substitution σ (or equivalently
σout). This update has no effect on the closed nodes because
their defining equations in Γ contain no variable.

One can show that applying a production P in an open
node X of a configuration Γ with Γ[P/X〉Γ′ cannot create a
variable with several occurrences in synthesized position, i.e.
the resulting set of equations Γ′ is also a configuration. Thus
applying an enabled production defines a binary relation on
configurations.

Definition 3.4. A configuration Γ′ is directly reach-
able from Γ, denoted by Γ[〉Γ′, whenever Γ[P/X〉Γ′ for some

Table 3: Making a decision on a submitted paper

DecideSubmission : Submission(article)〈decision〉 ← Evaluate(article)〈report1〉
Evaluate(article)〈report2〉
Decide(report1, report2)〈decision〉

MakeDecision(decision) : Decide(report1, report2)〈decision〉 ←
AskReview(reviewer) : Evaluate(article)〈report〉 ← WaitReport(answer , article)〈report〉

ToReview(reviewer , article)〈answer〉)
Decline(msg)〈reviewer〉 : ToReview(reviewer , article)〈No(msg)〉 ←
Accept(msg)〈reviewer〉 : ToReview(reviewer , article)〈Yes(msg , report)〉 ← Review(reviewer , article)〈report〉
MakeReview(report)〈reviewer〉 : Review(reviewer , article)〈report〉 ←
CaseNo〈msg〉 : WaitReport(No(msg), article)〈report〉 ← Evaluate(article)〈report〉
CaseYes〈msg〉 : WaitReport(Yes(msg , report), article)〈report〉 ←

production P enabled in node X of configuration Γ. Further-
more, a configuration Γ′ is reachable from configuration Γ
when Γ[∗〉Γ′ where [∗〉 is the reflexive and transitive closure
of relation [〉.

As already mentioned, an artifact is refined by applying a
production to one of its open node. However we also need
means to initiate cases. To this extent, we define interfaces
for GAGs, that describe how services can initialize new ar-
tifacts.

Definition 3.5. The interface of a guarded attribute
grammar is given by a subset I of forms, called its services,
F = s(t1, . . . , tn)〈x1, . . . , xm〉 where the synthesized posi-
tions are (distinct) variables x1, . . . , xm. This set is closed
by substitutions whose domains are disjoints from the set of
synthesized variables, namely Fσ ∈ I whenever F ∈ I and
σ is a substitution with σ(xj) = xj for 1 ≤ j ≤ m. The
invocation of the service produces a new artifact reduced to
a single open node defined by F , it is associated with ini-
tial configuration Γ0 = {X0 = s(t1, . . . , tn)〈x1, . . . , xm〉}.
A reachable configuration of a guarded attribute grammar
is a configuration reachable from one of its initial configura-
tions.

4. FORMAL PROPERTIES OF GAGS
The GAG model is very powerful. Indeed allowing rewrit-

ing using attributes that take values over unbounded terms
gives the model a huge expressive power. Unsurprisingly,
this expressive power implies that some formal properties
are undecidable.

A specification is sound if every case can reach completion
no matter how its execution started. A case is a service call
in the interface of the GAG (Definition 3.5) which already
contains all the information coming from the environment
of the guarded attribute grammar.

Definition 4.1. Given a guarded attribute grammar with
its interface, a case c = s(t1, . . . , tn)〈x1, . . . , xm〉 is an el-
ement of the interface such that var(ti) ⊆ {x1, . . . , xm}.
Stated otherwise a case is, but for the variables with a syn-
thesized value, a closed instance of a service.

Definition 4.2. A configuration is closed if it contains
only closed nodes. A guarded attribute grammar is sound
if a closed configuration is reachable from any configuration
Γ reachable from the initial configuration Γ0(c) = {X0 = c}
associated with a case c.

Let γ denote the set of configurations reachable from the
initial configuration of some case. We consider the finite se-
quences (Γi)0<i≤n and the infinite sequences (Γi)0<i of con-
figurations in γ such that Γi[〉Γi+1. A finite and maximal
sequence is said to be terminal, i.e., a terminal sequence
leads to a configuration that enables no production. Sound-
ness can the be rephrased by the two following conditions.

1. Every terminal sequence leads to a closed configura-
tion.

2. Every configuration on an infinite sequence also be-
longs to some terminal sequence.

We define the soundness problem as follows : Given a
GAG G, is G sound? We define two reachability problems
as follows: given a GAG G and a configuration Γ, is Γ a
reachable configuration of G ? Given a configuration Γ′, is
Γ reachable from Γ′ using productions of G ? These prob-
lems can unfortunately be proved undecidable by a simple
encoding of Minsky machines.

Theorem 4.3. The soundness and reachability problems
are undecidable in general for guarded attribute grammars.

Despite this result, interesting subclasses of the model en-
joy some monotony properties, and are well suited to distri-
bution.

The principle of a distribution of a GAG on a set of loca-
tions is as follows: A GAG is distributed by partitionning its
set of sorts according to locations. Each location maintains
a local configuration, and subscribes to results provided by
other locations. Productions are applied locally. When vari-
ables are given a value by a production, the location that
computed this value sends messages to the locations that
subscribed to this result. Messages are simply equations
defining the value of a particular variable. Upon reception
of a message, a subscriber updates its local configuration,
that is update some of its variables, and may in turn pro-
duce new messages sent to subscribers of affected variables.
A formal definition of the distribution framework is provided
in appendix B.

Recall that application of a production P to a node X
requires a matching condition, that is construction of a pair
of matchings σin and σout . We say that a production P
is triggered in node X if substitution σin is defined, i.e.,
the patterns pi match the data di. A specification can be

considered erroneous when a triggered transition is not en-
abled because the set of equations {yj = ujσin | 1 ≤ j ≤ m}
is cyclic.

Substitution σin , given by pattern matching, is monotonous
w.r.t. incoming information and thus it causes no problem
for a distributed implementation of a model. However sub-
stitution σout is not monotonous: it may be undefined when
information coming from a distant location makes the match
of output attributes a cyclic set of equations.

Definition 4.4. A guarded attribute grammar is input-
enabled if every production that is triggered in a reachable
configuration is also enabled.

For input-enabled GAGs, messages consumptions and ap-
plication of productions commute (we refer interested reader
to appendix B for details). This property means in partic-
ular that distribution does not affect the global behavior of
an input-enabled GAG.

However, input-enabledness is a property of the whole set
of reachable configurations, and is thus undecidable. Nev-
ertheless one can find a decidable sufficient condition for
input-enabledness (called acyclicity). Acyclicity is similar
to the strong non-circularity of attribute grammars [2], and
can be checked by a simple fixed-point computation.

Definition 4.5. Let s be a sort of a guarded attribute
grammar with n inherited attributes and m synthesized at-
tributes. We let (j, i) ∈ SI(s) where 1 ≤ i ≤ n and 1 ≤
j ≤ m if exists X = s(d1, . . . , dn)〈y1, . . . , ym〉 ∈ Γ where
Γ is a reachable configuration and yj ∈ di. If P is a pro-
duction with left-hand side s(p1, . . . , pn)〈u1, . . . , um〉 we let
(i, j) ∈ IS(P) if exists a variable x ∈ var(P) such that
x ∈ var(di) ∩ var(uj). The guarded attribute grammar G
is said to be acyclic if for every sort s and production P
whose left-hand side is a form of sort s the graph G(s, P) =
SI(s) ∪ IS(P) is acyclic.

Theorem 4.6. An acyclic guarded attribute grammar is
input-enabled.

A consequence of this result is that acyclic guarded at-
tribute grammar can be safely distributed without changing
the results computed by the grammar for cases. A proof of
this property is provided in appendix B.

5. CONCLUSION
Guarded attribute grammar is a model of data-centric col-

laborative systems where emphasis is put on a simple math-
ematical syntax and semantics which can ease formal rea-
soning, a clear identification of stakeholder’s decisions (the
system is totally driven by user interactions), and an implicit
lifecycle of artifacts which allows maximal concurrency and a
straightforward distribution scheme. Distributed implemen-
tation has been considered for other artifact models, such as
Guard-Stage-Milestone1 [5]. However, it may require re-
structuring the original GSM schema and relies on locking
protocols to ensure that the outcome of the global execution
is preserved.

An artifact is a structured document with some active
parts. Indeed, an open node is associated with a service call

1A model describing artifacts lifecycles, adopted as a ba-
sis for the OMG standard Case Management Model and No-
tation (CMMN).

that implicitly describes the data to be further substituted
to the node. This notion of active documents is close to
the model of Active XML introduced by Abiteboul et al. [1]
which consists of semi-structured documents with embedded
service calls. Such an embedded service call is a query on
another document, triggered when a corresponding guard is
satisfied. The model of active documents can be distributed
over a network of machines. This setting can be instancied
in many ways, according to the formalism used for specifying
the guards, the query language, and the class of documents.
The model of guarded attribute grammars is close to this
general scheme with some differences: First of all guards
in GAG apply to a single node and its attributes, while
guards in AXML are properties that can be checked on a
complete document. The invocation of a service in AXML
creates a temporary document (called the workspace) that
is removed from the document when the service call returns.
In GAGs, a service call adds new children to a node, and all
computations performed for a service are preserved in the
artifact. This provides a kind of monotony to artifacts, that
can be an useful property for verification techniques.

In the future, we plan to design prototypes to analyze and
implement a GAG description together with the required
support tools (editor, parser, checker, simulators ...) to de-
velop some representative case studies to check applicability
and limitations of the model. In particular, in order to com-
ply with real-life applications, we might have to use non-
autonomous GAG systems, i.e., systems whose basic layer is
given by a guarded attribute grammar but which is coupled
with external facilities as making a query to a database or
calling a web service. The main concern is then to evalu-
ate the impact of these couplings on the distribution of the
model (we should avoid distributed conflits).

6. REFERENCES
[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and

R. Weber. Active xml: A data-centric perspective on
web services. In BDA’02, 2002.

[2] B. Courcelle and P. Franchi-Zannettacci. Attribute
grammars and recursive program schemes i and ii.
Theor. Comput. Sci., 17:163–191 and 235–257, 1982.

[3] E. Damaggio, A. Deutsch, and V. Vianu. Artifact
systems with data dependencies and arithmetic. ACM
Trans. Database Syst., 37(3):22, 2012.

[4] P. Deransart and J. Maluszynski. A grammatical view
of logic programming. MIT Press, 1993.

[5] R. Eshuis, R. Hull, Y. Sun, and R. Vacuĺın. Splitting
gsm schemas: A framework for outsourcing of
declarative artifact systems. In BPM, volume 8094 of
LNCS, pages 259–274. Springer, 2013.

[6] R. Hull. Artifact-centric business process models: Brief
survey of research results and challenges. In OTM 2008,
volume 5332 of LNCS, pages 1152–1163. Springer, 2008.

[7] D.E. Knuth. Semantics of context free languages.
Mathematical System Theory, 2(2):127–145, 1968.

[8] A. Nigam and N. S. Caswell. Business artifacts: An
approach to operational specification. IBM Syst. J.,
42:428–445, July 2003.

[9] J. Paakki. Attribute grammar paradigms - a high-level
methodology in language implementation. ACM
Computing Surveys, 27(2):196–255, 1995.

APPENDIX
The following appendix is not intended to be published in
the proceedings of the Conference, where it will be replaced
by a reference to a research report containing the corre-
sponding additional materials. The reading of this appendix
is left at the discretion of the referees. For readability, propo-
sitions and definitions that already appear in the paper are
duplicated in the appendix. Appendix A is devoted to the
proofs of some results mentioned in Section 3. The second
appendix describes formally the distribution of Guarded at-
tribute grammars on an asynchronous architecture, and con-
siders properties of distribution. Finally, Appendix C stud-
ies the soundness property and shows that the soundess of
GAGs is undecidable.

A. BEHAVIOUR OF GAGS
We first establish the following result mentioned in Sect. 3,

namely that applying a production P in an open node X of
a configuration Γ with Γ[P/X〉Γ′ cannot create a variable
with several occurrences in a synthesized position, i.e. the
resulting set of equations Γ′ is also a configuration.

Each variable can have several occurrences in a produc-
tion. First it may appear once as an input and it may also
appear in several occurrences within some output term. The
corresponding occurrence is respectively said to be in an in-
put or in an output position. One can define the following
transformation on productions whose effect is to annotate
each occurrence of a variable so that x? (respectively x!)
stands for an occurrence of x in an input position (resp. in
an output position).

!(F0 ← F1 · · ·Fk) = ?(F0)←!(F1) · · ·!(Fk)
?(s(t1, . . . tn)〈u1, . . . um〉) = s(?(t1), . . .?(tn))〈!(u1), . . .!(um)〉
!(s(t1, . . . tn)〈u1, . . . um〉) = s(!(t1), . . .!(tn))〈?(u1), . . .?(um)〉

?(c(t1, . . . tn)) = c(?(t1), . . .?(tn))
!(c(t1, . . . tn)) = c(!(t1), . . .!(tn))

?(x) = x?

!(x) = x!

The conditions stated in Definition 2.2 say that in the la-
belled version of a production each variable occurs at most
once in an input position, i.e., that {?(F0), !(F1), . . . , !(Fk)}
each variable x has at most one input occruurence x?. Sim-
ilarly a set of forms Γ is a valid configuration if each vari-
able x has at most one input occruurence x? in the set
{!F | F ∈ Γ}.

Proposition A.1. If production P is enabled in an open
node X0 of a configuration Γ and Γ[P/X0〉Γ′ then Γ′ is a
configuration.

Proof. Let P = F ← F1 . . . Fk with left-hand side F =
s(p1, . . . , pn)〈u1, . . . um〉 and X0 = s(d1, . . . , dn)〈y1, . . . , ym〉
be the defining equation of X0 in Γ. Since the values of
synthesized attributes in the forms F1, . . . , Fk are variables
(by Definition 2.2) and since these variables are unaffected
by substitution σin the synthesized attribute in the resulting
forms Fjσin are variables. The substitutions σin and σout

substitute terms to the variables x1, . . . , xk appearing to the
patterns and to the variables y1, . . . , ym respectively. Since
xi appears in an input position in P , it can appear only in
an output position in the forms !(F1), . . .!(Fk) and thus any
variable of the term σin(xi) will appear in an output position
in !(Fiσin). Similarly, since yi appears in an input position

in the form !(s(u1, . . . , un)〈y1, . . . , ym〉), it can only appear
in an output position in !(F) for the others forms F of Γ.
Consequently any variable of the term σout(yi) will appear in
an output position in !(Fσout) for any equation X = F in Γ
with X 6= X0. It follows that the application of a production
cannot produce new occurrences of a variable in an input
position and thus there cannot exist two occurrences x? of
a same variable x in Γ′. 2 Prop. A.1

In order to prove Proposition A.3 we first recall some fact
about unification.

Recall A.2 (on Unification). We consider sets E =
E?] E= containing equations of two kinds. An equation in

E?, denoted as t
?
= u, represents a unification goal whose

solution is a substitution σ such that tσ = uσ, i.e., substitu-
tion σ unifies terms t and u. E= contains only equations of
the form x = t where variable x occurs only there, i.e., we do
not have two equations with the same variable in their left-
hand side and such a variable cannot either occur in any
right-hand side of an equation in E=. A solution to E is
any substitution σ whose domain is the set of variables oc-
curring in the right-hand sides of equations in E= such that
the compound substitution made of σ and the set of equa-
tions {x = tσ | x = t ∈ E= } unifies terms t and u for any

equation t
?
= u in E?. Two systems of equations are said to

be equivalent when they have the same solutions. A unifica-
tion problem is a set of such equations with E= = ∅, i.e., it
is a set of unification goals. On the contrary E is said to
be in solved form if E? = ∅, thus E defines a substitution
which, by definition, is the most general solution to E. Solv-
ing a unification problem E consists in finding an equivalent
system of equations E′ in solved form. In that case E′ is a
most general unifier for E.

Martelli and Montanari Unification algorithm 2 proceeds
as follows. We pick up non deterministically one equation
in E? and depending on its shape we apply the corresponding
transformation:

1. c(t1, . . . , tn)
?
= c(u1, . . . , un): replace it by equations

t1
?
= u1, . . . , t1

?
= u1.

2. c(t1, . . . , tn)
?
= c′(u1, . . . , um) with c 6= c′: halt with

failure.

3. x
?
= x: delete this equation.

4. t
?
= x where t is not a variable: replace this equation by

x
?
= t.

5. x
?
= t where x 6∈ var(t): replace this equation by x = t

and substitute x by t in all other equations of E.

6. x
?
= t where x ∈ var(t) and x 6= t: halt with failure.

The condition in (5) is the occur check. Thus the compu-
tation fails either if the two terms of an equation cannot be
unified because their main constructors are different or be-
cause a potential solution of an equation is necessarily an in-
finite tree due to a recursive statement detected by the occur
check. System E′ obtained from E by applying one of these
rules, denoted as E ⇒ E′, is clearly equivalent to E. We

2Alberto Martelli and Ungo Montanari. An efficient uni-
fication algorithm. ACM Trans. Program. Lang. Syst.,
4(2): 258–282, 1982.

iterate this transformation as long as we do not encounter a
failure and some equation remains in E?. It can be proved
that all these computations terminate and either the original
unification problem E has a solution (a unifier) and every
computation terminates (and henceforth produces a solved
set equivalent to E describing a most general unifier of E)
or E has no unifier and every computation fails. We let

σ = mgu({ti = ui}1≤i≤n) iff {ti
?
= ui}1≤i≤n ⇒∗ σ

2 Recall A.2

Note that (5) and (6) are the only rules that can be applied

to solve a unification problem of the form {yi
?
= ui}1≤i≤n,

where the yi are distinct variables. The most general unifier
exists when the occur check always holds, i.e., rule (5) always
applies. The computation amounts to iteratively replacing
an occurrence of a variable yi in one of the right-hand side
term uj by its definition ui until no variable yi occurs in
some uj . This process terminates precisely when the rela-
tion yi � yj ⇔ yj ∈ ui is acyclic. When this condition is
met we say that the set of equations {yi = ui | 1 ≤ i ≤ n}
is acyclic and we say that it defines the substitution σ =
mgu({yi = ui | 1 ≤ i ≤ n}).

Recall that a substitution σ unifies a set of equations E if
tσ = t′σ for every equations t = t′ in E. A substitution σ
is more general than a substitution σ′ if σ′ = σσ′′ for some
substitution σ′′. If a system of equations has a some unifier,
then it has (up to an bijective renaming of the variables in
σ) a most general unifier. In particular a set of equations of
the form {xi = ti | 1 ≤ i ≤ n} has a unifier if and only if it
is acyclic. In this case, the corresponding solved form is its
most general unifier.

Proposition A.3. If F = s(p1, . . . , pn)〈u1, . . . , um〉, left-
hand side of a production P , matches with the service call
s(d1, . . . , dn)〈y1, . . . , ym〉 attached to an open node X then
the substitution σ = match(F,X) is the most general uni-
fier of the set of equations

{pi = di | 1 ≤ i ≤ n} ∪ {yj = uj | 1 ≤ j ≤ m}

.

Proof of Proposition A.3.
If a production P of left-hand side s(p1, . . . , pn)〈u1, . . . um〉 is
triggered in nodeX0 defined byX0 = s(d1, . . . , dn)〈y1, . . . , ym〉
then by Definition 3.3

{pi
?
= di}1≤i≤n∪{yj

?
= uj}1≤j≤m ⇒∗ σin∪{yj

?
= ujσin}1≤j≤m

using only the rules (1) and (5). Now

σin ∪ {yj
?
= ujσin}1≤j≤m ⇒∗ σin ∪mgu{yj = ujσin}1≤j≤m

by applying iteratively rule (5) if the set of equations {yj =
ujσin}1≤j≤m satisfies the occur check. Finally σin +σout ⇒∗
σ again by using rule (5). 2 Prop. A.3

Note that the converse does not hold. Namely, one shall not
deduce from Proposition A.3 that the relation Γ[P/X〉Γ′ is
defined whenever the left-hand side, lhs(P), of P can be uni-
fied with the definition def(X,Γ) of X in Γ with Γ′ defined
as in Definition 3.3 where σ = mgu(lhs(P), def(X0,Γ)) is
the corresponding most general unifier. Indeed, when uni-
fying s(d1, . . . , dn, y1, . . . , ym) with s(p1, . . . , pn, u1, . . . , um)

one may generate an equation of the form x = t where x
is a variable in an inherited data di and t is an instance of
a corresponding subterm in the associated pattern pi. This
would correspond to a situation where information is sent to
the context of a node through one of its inherited attribute.
Otherwise stated some parts of the pattern pi are actually
used to filtered out the incoming data value di while some
other parts of the same pattern would be used to transfert
synthesized information to the context.

B. DISTRIBUTION OF A GAG

B.1 Input-enabled GAGs
We say that a production P is triggered in node X if

substitution σin is defined, i.e., the patterns pi match the
data di. One can suspect an error in the specification when
a triggered transition is not enabled due to the fact that
the system of equations {yj = ujσin | 1 ≤ j ≤ m} is cyclic.
This situation also impacts the distributability of a grammar
as shown by the following example.

Example B.1. Let us consider the GAG with the follow-
ing productions:

P : s()〈 〉 ← s1(x)〈y〉 s2(y)〈x〉
Q : s1(z)〈a(z)〉 ←
R : s2(u)〈a(u)〉 ←

Production P is enabled in configuration Γ0 = {X0 = s()〈 〉}
with Γ0[P/X0〉Γ1 where

Γ1 = {X0 = P (X1, X2); X1 = s1(x)〈y〉, X2 = s2(y)〈x〉}

In configuration Γ1 productions Q and R are enabled in
nodes X1 and X2 respectively with Γ1[Q/X1〉Γ2 and Γ1[R/X2〉Γ3

where

Γ2 = {X0 = P (X1, X2); X1 = Q, X2 = s2(a(x))〈x〉}
Γ3 = {X0 = P (X1, X2); X1 = s2(a(y))〈y〉, X2 = R}

Now production R is triggered but not enabled in configu-
ration Γ2 because of the cyclicity of {x = a(a(x))}. There
is a conflict between the application of productions R and
Q in configuration Γ1, which makes this specification non-
implementable in case nodes X1 and X2 have distinct loca-
tions.

Substitution σin , given by pattern matching, is monotonous
w.r.t. incoming information and thus it causes no problem
for a distributed implementation of a model. However sub-
stitution σout is not monotonous since it may become un-
defined when information coming from a distant location
makes the match of output attributes a cyclic set of equa-
tions, as illustrated by example B.1.

Definition 4.4 A guarded attribute grammar is input-
enabled if every production that is triggered in a reachable
configuration is also enabled. 2 Def. 4.4

It is difficult to verify input-enabledness as the whole
set of reachable configurations are involved in this condi-
tion. Nevertheless one can find sufficient condition for input-
enabledness, similar to the strong non-circularity of attribute
grammars [2], that can be checked by a simple fixed-point
computation.

Definition 4.5 Let s be a sort of a guarded attribute
grammar with n inherited attributes and m synthesized at-
tributes. We let (j, i) ∈ SI(s) where 1 ≤ i ≤ n and

1 ≤ j ≤ m if exists X = s(d1, . . . , dn)〈y1, . . . , ym〉 ∈ Γ
where Γ is a reachable configuration and yj ∈ di. If P is
a production with left-hand side s(p1, . . . , pn)〈u1, . . . , um〉
we let (i, j) ∈ IS(P) if exists a variable x ∈ var(P) such
that x ∈ var(di) ∩ var(uj). The guarded attribute gram-
mar G is said to be acyclic if for every sort s and produc-
tion P whose left-hand side is a form of sort s the graph
G(s, P) = SI(s) ∪ IS(P) is acyclic. 2 Def. 4.5

Theorem 4.6 An acyclic guarded attribute grammar is
input-enabled.

Proof. Suppose P is triggered in node X with substitu-
tion σin such that yj ∈ uiσin then (i, j) ∈ G(s, P). Then
the fact that occur check fails for the set {yj | 1 ≤ j ≤ m}
entails that one can find a cycle in G(s, P). 2 Prop. 4.6

Relation SI(s) still takes into account the whole set of
reachable configurations. The following definition provides
an overapproximation of this relation given by a fixed point
computation.

Definition B.2. The graph of local dependencies of a
production P : F0 ← F1 · · ·F` is the directed graph GLD(P)
that records the data dependencies between the occurrences
of attributes given by the semantics rules. We designate
the occurrences of attributes of P as follows: we let k(i)
(respectively k〈j〉) denote the occurrence of the ith inherited
attribute (resp. the jth synthesized attribute) in Fk. If s is a
sort with n inherited attributes and m synthesized attributes
we define the relations IS(s) and SI(s) over [1, n] × [1,m]
and [1,m]× [1, n] respectively as the least relations such that
:

1. SI(s) = SI(s) if s is an axiom, i.e., it is given by the
set of pairs (j, i) such that yj ∈ var(di) for some service
F = s(d1, . . . , dn)〈y1, . . . , ym〉 of sort s in the interface
of the guarded attribute grammar.

2. For every production P : F0 ← F1 · · ·F` where form Fi

is of sort si and for every k ∈ [1, `]{
(j, i)

∣∣∣ (k〈j〉, k(i)) ∈ GLD(P)k
}
⊆ SI(sk)

where graph GLD(P)k is given as the transitive closure
of

GLD(P) ∪
{

(0〈j〉, 0(i))
∣∣∣ (j, i) ∈ SI(s0)

}
∪
{

(k′(i), k′〈j〉)
∣∣∣ k′ ∈ [1, `], k′ 6= k, (i, j) ∈ IS(sk′)

}
3. For every production P : F0 ← F1 · · ·F` where form Fi

is of sort si{
(i, j)

∣∣ (0(i), 0〈j〉) ∈ GLD(P)0
}
⊆ IS(s0)

where graph GLD(P)0 is given as the transitive closure
of

GLD(P) ∪
{

(k(i), k〈j〉)
∣∣∣ k ∈ [1, `], (i, j) ∈ IS(sk)

}
The guarded attribute grammar G is said to be strongly-
acyclic if for every sort s and production P whose left-hand
side is a form of sort s the graph G(s, P) = SI(s) ∪ IS(P)
is acyclic. 2 Def. B.2

Proposition B.3. A strongly-acyclic GAG is acyclic and
hence input-enabled.

Proof. The proof is analog to the proof that a strongly
non-circular attribute grammar is non-circular and it goes as
follows. We let (i, j) ∈ IS(s) when var(diσ) ∩ var(yjσ) 6= ∅
for some form F = s(d1, . . . , dn)〈y1, . . . , ym〉 of sort s and
where σ is the substitution induced by a firing sequence
starting from configuration {X = F}. Then we show by
induction on the length of the firing sequence leading to the
reachable configuration that IS(s) ⊆ IS(s) and SI(s) ⊆
SI(s). 2 Prop. B.3

Note that the following two inclusions are strict

strongly-acyclic GAGs (acyclic GAGs (input-enabled GAGs

Indeed the reader may easily check that the guarded at-
tribute grammar{

A(x)〈z〉 ← B(a(x, y))〈y, z〉
B(a(x, y))〈x, y〉 ←

is cyclic and input-enabled whereas guarded attribute gram-
mar with productions A(x)〈z〉 ← B(y, x)〈z, y〉

A(x)〈z〉 ← B(x, y)〈y, z〉
B(x, y)〈x, y〉 ←

is acyclic but not strongly-acyclic. Attribute grammars aris-
ing from real situations are almost always strongly non-
circular so that this assumption is not really restrictive. Sim-
ilarly we are confident that most of the guarded attribute
grammars used in practise are input-enabled (at least it is
the case for all the concrete examples we have but those
constructed specially for that purpose) and that most of
the input-enabled guarded attribute grammars are in fact
strongly-acyclic. Thus most of the specifications are dis-
tributable and most of those can be proved so by checking
the strong non-circularity condition.

B.2 Some Properties of input-enabled GAGs
We call the substitution induced by a sequence Γ[∗〉Γ′ the

corresponding composition of the various substitutions as-
sociated respectively with each of the individual steps in
the sequence. If X is an open node in both Γ and Γ′,
i.e., no productions are applied to X in the sequence, then
we get X = s(d1σ, . . . , dnσ)〈y1, . . . , ym〉 ∈ Γ′ where X =
s(d1, . . . , dn)〈y1, . . . , ym〉 ∈ Γ and σ is the substitution in-
duced by the sequence.

Proposition B.4 (Monotony). Let Γ be a reachable
configuration of an input-enabled guarded attribute gram-
mar, X = s(d1, . . . , dn)〈y1, . . . , ym〉 ∈ Γ and σ the sub-
stitution induced by some sequence starting from Γ. Then
Γ[P/X〉Γ′ implies Γσ[P/X〉Γ′σ.

Proof. Direct consequence of Definition 2.2 due to the
fact that

1. match(p, dσ) = match(p, d)σ, and

2. mgu({yj = ujσ}1≤j≤m) = mgu({yj = uj}1≤j≤m)σ.

The former is trivial and the latter follows by induction on
the length of the computation of the most general unifier
(relation⇒∗ using rule (5) only). Note that the assumption

that the guarded attribute grammar is input-enabled is cru-
cial because in the general case it could happen that the set
{yj = ujσin}1≤j≤m satisfies the occur check whereas the set
{yj = uj(σinσ)}1≤j≤m does not satisfy the occur check.

2 Prop. B.4

Proposition B.4 is instrumental for the distributed imple-
mentation of guarded attribute grammars. Namely it states
that new information coming from a distant asynchronous
location refining the value of some input occurrences of vari-
ables of an enabled production do not prevent from applying
that production. Thus a production that is locally enabled
can freely be applied regardless of information that might
further refine the current local configuration. It means that
conflict arises only from the existence of two distinct pro-
ductions enabled in the same open node. Hence the only
form of non-determinism corresponds to the decision of a
stakeholder to apply one particular production among those
enabled in a configuration. This is expressed by the follow-
ing confluence property.

Corollary B.5. Let Γ be a reachable configuration of an
input-enabled GAG. If Γ[P/X〉Γ1 and Γ[Q/Y 〉Γ2 with X 6=
Y then Γ2[P/X〉Γ3 and Γ1[Q/Y 〉Γ3 for some configuration
Γ3.
Note that the artifact contains a full history of the case in the
sense that one can reconstruct from the complete artifact all
the sequence that corresponds to the resolution of the case
(up to the commutation of independent transitions).

We might have considered a more symmetrical presenta-
tion in Definition 2.2 by allowing patterns for synthesized
attributes in the right-hand sides of productions with the
effect of creating forms in a configuration with patterns in
their co-arguments. These patterns express constraints on
the synthesized values. This extension could be acceptable
as long as one sticks to purely centralized models. However,
as soon as one wants to distribute the model on an asyn-
chronous architecture, one cannot avoid such a constraint
to be further refined due to a transformation occurring in
a distant location. Then the monotony property (Proposi-
tion B.4) is lost: a locally enabled production can later be
disabled when a constraint on a synthesized value gets a re-
fined value. This is why we required synthesized attributes
in the right-hand side of a production to be given by plain
variables in order to prohibit the expression of constraints
on synthesized values.

B.3 Distribution of an input-enabled GAG
The principle of a distribution of a GAG on a set of lo-

cations is as follows: Each location maintains a local con-
figuration, and subscribes to results provided by other loca-
tions. Productions are applied locally. When variables are
given a value by a production, the location that computed
this value sends messages to the locations that subscribed
to this value. Messages are simply equations defining the
value of a particular variable. Upon reception of a message,
a subscriber updates its local configuration, and may in turn
produce new messages.

More formally, a GAG can be distributed by specifying a
partition S =]1≤`≤pS` of the set of sorts. The projections
Γ`, called the local configurations associated with sites S`,
are defined as follows. Each site S` has a namespace ns(S`)
used for the nodes X whose sorts are in S` and for the vari-
ables x representing attributes of these nodes but also for

references to variables belonging to distant sites (subscrip-
tions). Hence we have name generators that produce unique
identifiers for each newly created variable for each site. For
each equation X = P (X1, . . . , Xn) with X :: s and Xi :: si
we insert equation X = P (X1, . . . , Xn) in Γ` where s ∈ S`

and variable Xi is Xi if si ∈ S` or is a new variable in
the namespace of S` if si ∈ S`′ with `′ 6= `. In the latter
case we add equation Xi = Xi in Γ`. Similarly for each
equation X = s(t1, . . . , tn)〈y1, . . . , ym〉 in Γ we add equa-
tion X = s(t1, . . . , tn)〈y1, . . . , ym〉 in Γ` where s ∈ S` and t
is obtained by replacing each variable x in term t by x where
variable x is x if x :: s′ with s′ ∈ S` else is a new variable
in the namespace of S`. In the latter case one adds equa-
tion x = x, called a subscription, to Γ`′ . Similarly for the
variables yj . Hence a local configuration contains the usual
equations associated with their closed and open nodes (and
containing only local variables) together with equations of
the form X = Y and y = x where x and X are local names
and y and Y belongs to distant sites. Clearly the global
configuration can be recovered as Γ = Γ1 ⊕ · · · ⊕ Γn where
operator ⊕ consists in taking the union of the systems of
equations given as arguments and simplifying the resulting
system by elimination of the copy rules: we drop each equa-
tion of the form X = Y (respectively y = x) and replace
each occurrence of X by Y (resp. of y by x). Therefore the
global configuration Γ may be identified with the vectors of
local configurations (Γ1, . . . ,Γp).

Each production can then be locally applied: we write

Γ`
P/X−→
M

Γ′` when application of production P at node X re-

sults in a new configuration Γ′` and the sending of a set of

messages M . More formally, Γ`
P/X−→
M

Γ′` when

X = s(t1, . . . , tn)〈y1, . . . , ym〉 ∈ Γ`

and P = F ← F1 · · ·Fk is a production whose left-hand side
matches with X and

Γ′` = {X = P (X1, . . . , Xk)}
∪ {Xi = Fiσ | Xi :: si and si ∈ S` }
∪ {X ′ = Fσ | (X ′ = F) ∈ Γ` ∧ X ′ 6= X }
∪ {y′ = yjσ | (y′ = yj) ∈ Γ` and yjσ is a variable}

M = {Xi = Fiσ | Xi :: si and si 6∈ S` }
∪ {y′ = yjσ | (y′ = yj) ∈ Γ` and yjσ not a variable}

whereX1, . . . , Xk are new names in ns(S`) and σ = match(F,X).
This relation means that applying production P in X in
site S` generates messages M send to distant sites. The
reception of a message may generate new messages and is
described by relation Γ`

m−→
M

Γ′` where

1. Ifm = {X = s(t1, . . . , tn)〈y1, . . . , yq〉} withX ∈ ns(S`′),
s ∈ S` with `′ 6= ` then

Γ′` = Γ`∪
{
X = s(t1, . . . , tn)〈y1, . . . , yq〉

}
∪{yj = yj | 1 ≤ j ≤ q }

where X, the variables x for x ∈ var(ti) and the vari-
ables yj are new names in ns(S`) and t = t[x/x], and

M = {x = x | x ∈ var(ti) 1 ≤ i ≤ n} ∪
{
X = X

}
2. If m = {x = t} with x ∈ ns(S`) then Γ′` = Γ`[x =
t[y/y]] where y are new names in ns(S`) associated with
the variables y in t and M = {y = y | y ∈ var(t)}.

3. If m = (X = Y) with X ∈ ns(S`) then Γ′` = Γ` ∪
{X = Y } and M = ∅.

4. If m = (y = x) with x ∈ ns(S`) then Γ′` = Γ`∪{y = x}
and M = ∅.

The global dynamics of the system can then be derived as
follows, where e stands for P/X or a message m:

1. If Γ`
e−→
M

Γ′` then Γ
e

=⇒
M

Γ′ with Γ`′ = Γ′`′ for `′ 6= `.

2. If Γ
e

=⇒
M

Γ′ and Γ′
m

=⇒
M′

Γ′′ form ∈M then Γ
e

=⇒
M\{m}∪M′

Γ′′

Input-enabled GAGs possess useful properties with re-
spect to distribution, namely messages consumptions and
application of productions commute, as shown in the follow-
ing proposition:

Proposition B.6. For an input-enabled guarded attribute
grammar:

1. If Γ
P/X
=⇒
M

Γ′ then there exists a substitution σM such that

Γ
P/X
=⇒
∅

Γ′σM .

2. Γ[P/X〉Γ′ if and only if Γ
P/X
=⇒
∅

Γ′

3. Let Γ
P1/X1
=⇒
M1

Γ1 and Γ
P2/X2
=⇒
M2

Γ2 with X1 6= X2. One can

assume w.l.o.g that M1 and M2 have no common vari-
ables (the name generator chooses different names for
the new variables in both cases). Then the diagram in
Fig. 1, where denotes messages consumption, com-
mutes.

Intuitively, proposition B.6 and in particular (3) mean
that distribution does not affect the global behavious of an
input-enabled GAG.

Proof. We first prove (1): whenever Γ
P/X
=⇒
M

Γ′ then there

exists a substitution σM such that Γ
P/X
=⇒
∅

Γ′σM .

Let us assume that Γ
P/X
=⇒
M

Γ′, and examine how consuming

messages in M = {m1, . . . ,mq} affects Γ′. Messages can be
of several kinds :

• if mi = (y = x) (or mi = (X = Y)) then consum-
ing the message results in adding an equation σmi =
{y = x} (resp. σmi = {X = Y }) to the local configura-
tion that receives this message, and generates no new
message.

• if mi = {x = t}, then consumption of the message re-
sults in production of new variables, and a new (finite)
set of messages Mi that are all of the form {ȳ = y} and
can then be consumed without producing new messages
by the location that has subscribed to this value. We
can denote by σi the substitution that replaces every x
in the local configuration that receives mi.

• if mi is of the form {X = s(t1, . . . , tn) < y1, . . . , yn >},
then consuming mi results in adding new equations to
the local configuration that receives it, and generating a
set of messages Mi = {mi,1,mi,q}, that are of the form
{ȳ = y} and {X = X̄} and can hence be consumed by
the location that will receive them without generating
new messages.

These observations show that, after application of a pro-
duction, message consumption is a finite process. We have

Γ
P/X
=⇒
M

Γ′
m1=⇒
M1

Γ1
M1=⇒
∅

Γ′1 . . .
m|M|
=⇒
M|M|

Γ|M|
M|M|
=⇒
∅

Γ′|M|

Now, the difference between each Γi and Γ′i is a set of sub-
scriptions, that are appended to some local configurations,
and erased during the step. Therefore, the global configura-
tions Γi and Γ′i are identical. Similarly, we have Γ1 = Γ′σm1 ,
and Γi = Γ′i−1σmi for every i ∈ [2, |M |]. Hence, the substi-
tution σM = σm1 . . . σ|M| is such that Γ′σM = Γ′|M|. Hence

Γ
P/X
=⇒
∅

Γ′σM .

We now give a proof for (2). We have to establish the fol-

lowing equivalence: Γ[P/X〉Γ′ if and only if Γ
P/X
=⇒
∅

Γ′. First,

whenever Γ
P/X
=⇒
∅

Γ′, then, by definition, Γ[P/X〉Γ′. Con-

versely, Γ[P/X〉Γ′ implies the existence of ` and M such

that Γ`
P/X−→
M

Γ1
` , thus, by definition Γ

P/X
=⇒
M

Γ1 (with Γ1
`′ = Γ`′

for `′ 6= `). Hence, by (1) we have Γ
P/X
=⇒
∅

Γ1σM . Note that

productions applications are deteministic, and messages con-
sumption too. Hence, it suffices to prove Γ′ := Γ1σM to
obtain the desired result. In fact the nodes replacement
performed to obtain Γ′ and Γ1 are identical, since the same
production is applied to the same node. Let us denote by
Γ[P/X] the configuration obtained by replacement of X. We
have to show the equality Γ′ = Γ[P/X]σ = Γ[P/X]σlσM ,
where σ is the usual substitution applied during production
application, σl is the substitution resulting from applying
production locally to Γl, and σM is the substitution ob-
tained by consumption of messages in M . Now, one can
notice that all substitutions in σM replace a variable y by
a term t whenever y is a subscription to some value pro-
duced in Γl. The effect is exactly the same as applying σ to
nodes that differ from X in Γ. As additional subscription
generated by messages consumption is not considered in the
product, we have Γ′ = Γ[P/X]σ = Γ[P/X]σlσM .

The last statement, (3), expresses the Confluence property
(Fig. 1). We first consider the commutativity of the center:

Γ
P1/X1
=⇒
M1

Γ1
P2/X2
=⇒
M2

Γ3 commutes into Γ
P2/X2
=⇒
M2

Γ2
P1/X1
=⇒
M1

Γ3.

This follows directly from the properties of input-enabled
grammars: Γ3 is simply Γ where both open nodes X1 and X2

have been replaced respectively by the closed nodes X1 =
P1(Y 1

1 , . . . , Y
1
m) and X2 = P2(Y 2

1 , . . . , Y
2
k) (since M1 and

M2 have no common variables they are unaffected by each
other).

Let us consider the left hand-side of the diagram. From

(1), we have that Γ
M1

P1/X1 // Γ1
// Γ1σM1 . And by (2),

this implies that Γ[P1/X1〉Γ1σM1 . Using Proposition B.4,
and the fact that Γ1[P2/X2〉Γ1, whe have that P2 is triggered

and enabled in Γ1σM1 . Hence, Γ1σM1

P2/X2
=⇒
M2

Γ′1. Using again

Proposition B.4, configuration Γ′1 is simply Γ3σM1 . Further-

more, from (1), we have Γ1σM1 M2

P2/X2 // Γ′1 // Γ′1σM2 .

From Γ′1 = Γ3σM1 it follows Γ′1σM2 = Γ3σM1σM2 . By
a symmetric argument, we obtain: Γ′2σM1 = Γ3σM2σM1 .
Since these substitutions have disjoint support, we have

σM1σM2 = σM2σM1 = σM1 ∪ σM2

Thus, Γ3σM1σM2 = Γ3σM2σM1 = Γ3σM1 ∪ σM2 .

Now, the last arrow: Γ3
// Γ3(σM1 ∪ σM2) this is

Γ

M1

P1/X1

vv

P2/X2

M2

((
Γ1σM1

P2/X2M2

��

Γ1
oo

P2/X2

M2

''

Γ2
//

M1

P1/X1

ww

Γ2σM2

P1/X1M1

��

Γ′1

))

Γ3

��

Γ′2

uu

Γ3(σM1 ∪ σM2)
= Γ′2σM1 = Γ′1σM2

Figure 1: Confluence property

obvious from the definitions of σM1 and σM2 .
2 Prop. B.6

C. SOUNDNESS
A specification is sound if every case can reach completion

no matter how its execution started. A case is a service call
in the interface of the GAG (Definition 3.5) which already
contains all the information coming from the environment
of the guarded attribute grammar.

Definition 4.1 Given a guarded attribute grammar with
its interface, a case c = s(t1, . . . , tn)〈x1, . . . , xm〉 is an el-
ement of the interface such that var(ti) ⊆ {x1, . . . , xm}.
Stated otherwise a case is, but for the variables with a syn-
thesized value, a closed instance of a service. 2 Def. 4.1

Definition 4.2 A configuration is closed if it contains
only closed nodes. A guarded attribute grammar is sound
if a closed configuration is reachable from any configuration
Γ reachable from the initial configuration Γ0(c) = {X0 = c}
associated with a case c. 2 Def. 4.2

Let γ denote the set of configurations reachable from the
initial configuration of some case. We consider the finite se-
quences (Γi)0<i≤n and the infinite sequences (Γi)0<i of con-
figurations in γ such that Γi[〉Γi+1. A finite and maximal
sequence is said to be terminal, i.e., a terminal sequence
leads to a configuration that enables no production. Sound-
ness can the be rephrased by the two following conditions.

1. Every terminal sequence leads to a closed configuration.

2. Every configuration on an infinite sequence also belongs
to some terminal sequence.

We now turn to the proof of Theorem 4.3:

Theorem 4.3 Both the soundness problem (is a given
GAG sound) and the reachability problem (is a given con-
figuration reachable from another one, for a given GAG) are
undecidable for guarded attribute grammars.

We first prove the undecidability of soundness.

Proposition C.1. Soundness of guarded attribute gram-
mar is undecidable.

Proof. We consider the following presentation of the
Minsky machines. We have two registers r1 and r2 hold-
ing integer values. Integers are encoded with the constant

zero and the unary operator succ. The machine is given by
a finite list of instructions instr i for i = 1, . . . , N of one of
the three following forms

1. INC(r,i): increment register r and go to instruction i.

2. JZDEC(r,i,j): if the value of register r is 0 then go
to instruction i else decrement the value of the register
and go to j.

3. HALT: terminate.

We associate such a machine with a guarded attribute gram-
mar whose sorts corresponds bijectively to the lines of the
program, (i.e., S = {s1, . . . , sN}) with the following encod-
ing of the program instructions by productions:

1. If instrk = INC(r1, i) then add production

Inc(k, 1, i) : sk(x, y)← si(succ(x), y)

2. If instrk = INC(r2, i) then add production

Inc(k, 2, i) : sk(x, y)← si(x, succ(y))

3. If instrk = JZDEC(r1, i, j) then add the productions

Jz(k, 1, i) : sk(zero, y)← si(zero, y)
Dec(k, 1, j) : sk(succ(x), y)← sj(x, y)

4. If instrk = JZDEC(r2, i, j) then add the productions

Jz(k, 2, i) : sk(x, zero)← si(x, zero)
Dec(k, 2, j) : sk(x, succ(y))← sj(x, y)

5. If instrk = HALT then add production

Halt(k) : sk(x, y)←

Since there is a unique maximal firing sequence from the
initial configuration Γ0 = {X0 = s1(zero, zero)} the corre-
sponding guarded attribute grammar is sound if and only if
the computation of the corresponding Minsky machine ter-
minates. 2 Prop. 4.3

Adapting the proof of Proposition C.1 to the reachability
problem completes the proof of Theorem 4.3.

