
Realizability of Schedules by Stochastic Time Petri
Nets with Blocking Semantics.

Löıc Hélouët

INRIA Rennes, loic.helouet@inria.fr

Karim Kecir

Alstom, karim.kecir@alstom.com

Abstract

This paper considers realizability of expected schedules by production systems
with concurrent tasks, bounded resources that have to be shared among tasks,
and random behaviors and durations. Schedules are high level views of desired
executions of systems represented as partial orders decorated with timing con-
straints. Production systems (production cells,train networks. . .) are modeled
as stochastic time Petri nets STPNs with an elementary (1-bounded) semantics.
We first propose a notion of time processes to give a partial order semantics
to STPNs. We then consider boolean realizability: a schedule S is realizable by
a net N if S embeds in a time process of N that satisfies all its constraints.
However, with continuous time domains, the probability of a time process with
exact dates is null. We hence consider probabilistic realizability up to α time
units, that holds if the probability that N realizes S with constraints enlarged
by α is strictly positive. Upon a sensible restriction guaranteeing time progress,
boolean and probabilistic realizability of a schedule can be checked on the finite
set of symbolic prefixes extracted from a bounded unfolding of the net. We give
a construction technique for these prefixes and show that they represent all time
processes of a net occurring up to a given maximal date. We then show how to
verify existence of an embedding and compute the probability of its realization.

Keywords: Petri nets, unfolding, scheduling, realizability.

1. Introduction

Correct scheduling of basic operations in automated systems (manufacturing
or transport systems. . .) is a way to manage at best available resources, avoid
undesired configurations, or achieve an objective within a bounded delay. Follow-
ing a predetermined schedule is also a way to meet QoS objectives. For instance,5

operating a metro network or a fleet of buses usually amounts to implementing at
best a predetermined timetable to meet users needs. In many cases, schedules are
designed in order to avoid congestion problems, and ease up recovery from minor

Preprint submitted to Theoretical Computer Science November 16, 2016

delays that are part of the normal behavior of the system. Failing to implement
a chosen schedule may then result in a loss of QoS, or even lead to congestion10

when delays accumulate. Schedules are high-level views for correct ordering of
important operations in a system. They consider time issues such as delays
between tasks, optimal dates, durations. . . in a production plan. They can be
seen as partial orders among basic tasks, that abstract low-level implementation
details, and are decorated with dates and timing constraints.15

Designing a correct and optimal schedule for a system is a complex problem.
On one hand, occurrence dates of events can be seen as variables, and correct
and optimal schedules as optimal solutions (w.r.t. some criteria) for a set
of constraints over these variables. Linear programming solutions have been
proposed to optimize scheduling in train networks [1, 2]. On the other hand,20

optimal solutions (for instance, w.r.t. completion date) are not necessarily the
most probable nor the most robust ones: indeed, systems such as metro networks
are subject to small delays (variations in trips durations from a station to another,
passengers misbehavior. . .). Delays are hence expected and considered as part of
the normal behavior of the system. To overcome this problem, metro schedules25

integrate small recovery margins that avoid the network performance to collapse
as soon as a train is late. Consequntly, optimal and realizable schedules are not
necessarily robust enough if they impose tight realization dates to systems that
are subject to random variations (delays in productions, faults. . .). Note also
that the size of timetabling problems for real systems running for hours cannot30

be handled in a completely automated way by tools, that usually have to be
guided by experts to return quasi-optimal solutions. Hence, timetables design
involves expert competences that differ from those needed to design systems.

When a schedule and a low-level system description are designed separately,
nothing guarantees that the system is able to realize the expected schedule.35

This calls for tools to check realizability of a schedule. One can expect systems
designers and timetable experts to share a common understanding of the behavior
of their system, so in general, the answer to a boolean realizability question
should be positive. However, being able to realize a schedule does not mean
that the probability to meet optimal objectives is high enough. Obviously, in40

systems with random delays, the probability to realize a schedule with precise
dates is null. Beyond boolean realizability, a schedule shall hence be considered
as realizable if it can be realized up to some bounded imprecision, and with a
significant probability.

This paper addresses realizability of schedules by stochastic timed systems.45

We define schedules as labeled partial orders decorated with dates and timing
constraints, and represent systems with elementary stochastic time Petri nets
(STPNs for short), a model inspired from [3]. We particularly emphasize on
resources: non-availability of a resource (represented by a place) may block
transitions. This leads to the definition of a blocking semantics for STPNs that50

forbids firing a transition if one of its output places is filled. We give a formal
operational semantics for STPNs, and show that this semantics can also be
captured in a concurrent setting by time processes. We then propose a notion
of realizability: a schedule S is realizable by an STPN N if S embeds in a time

2

process of N that meets constraints on dates and causal dependencies of events in55

S. We prove that upon some reasonable time progress assumption, realizability
can be checked on a finite set of symbolic processes, obtained from a bounded
untimed unfolding [4, 5] of N . Symbolic processes are processes of the unfolding
with satisfiable constraints on occurrence dates of events. A symbolic framework
to unfold time Petri nets was already proposed in [6, 7] but blocking semantics60

brings additional constraints on firing dates of transitions. Embedding of a
schedule in a process of N only guarantees boolean realizability: the probabilty
of a time process in which at least one event is forced to occur at a precise date
is null. We use transient analysis techniques for STPNs as proposed in [3] to
compute the probability that a schedule is realized by a symbolic time process65

of N up to an imprecision of α. This allows to show that N realizes S ± α with
strictly positive probability, and then define a notion of probabilistic realizability.

The paper is organized as follows: Section 2 gives the main motivations for
the models used in the paper, namely stochastic time Petri nets with a blocking
semantics, and schedules. Section 3 gives an interleaved and a concurrent70

semantics to STPNs. Section 4 defines a notion of unfolding and symbolic
process for STPNs. Section 5 shows how to verify that a schedule is compatible
with at least one process of the system and measure the probability of such
realization. Due to lack of space, proofs and several technical details are omitted,
but can be found in Appendices.75

2. Motivations

This section gives motivations for the models that are used in this paper. The
context for this study is the modeling of automated systems with concurrently
running tasks. In particular the models proposed hereafter can address production
systems with a broad understanding of this term, ranging from automated80

production cells, to transport networks and human organizations. A typical
example of such systems where concurrency is prominent is urban train systems,
which motivated many features of our model, and in particular an unusual
blocking semantics for stochastic time Petri nets.

A second topic addressed in this paper is accuracy of schedules. We want85

to ensure that a system with random perturbations can follow a predetermined
schedule up to some bounded imprecision. Schedules are objects of everyday’s
life, and are both used as documentation for a system (for instance, bus and train
schedules indicate to users when and where to pick up their transport), and to
guide a system along behaviors that guarantee some quality of service. Though90

schedules are often perceived as linear orderings of actions, some scheduled events
are causally related, and some other are independent (think for instance of tasks
in a Gantt diagram, or buses moving in different parts of a city). Natural models
for schedules should hence consider partial ordering.

2.1. A Petri net variant for urban train systems.95

First of all, let us justify why concurrency models are preferable in the
systems considered in this paper. Even in the case of finite resources, an

3

optimized production system runs several subtasks concurrently. Consider for
instance a manufacturing systems that transform objects with tools: each object
is eventually produced according to a production flow. Objects productions are100

independent most of the time, except when a common resource needs to be used.
This calls for the use of non-interleaved representation of processes. The same
consideration applies for train systems: a train can continue its planned trip as
long as the track ahead of it is not occupied by another vehicle. Considering
a bi-directional network of n stations with p trains, one can rapidly have to105

consider more than
(
n
k

)
states, which is not needed, as the decision for a train to

move is mainly a local decision, that can be taken without knowing the status
of the whole system (i.e. without maintaining a global state of the system).
A non-interleaved model for these systems is hence preferable if the targeted
applications do not call for calculus of global states of the system. In this paper,110

we will show that the targeted application (ensuring realizability of schedules)
can be done with a concurrent semantics.

Urban train systems are usually composed of closed imbricated loops. Trains
travel at predetermined speeds following a predetermined itinerary. They move
from a station to another following a track. A network is hence not just a simple115

cycle: it contains forks, junctions, etc. Nevertheless, complex topologies can
easily be captured by the flow relations of a Petri net. Consider for instance
the example network of Figure 1. This network is composed of 7 stations
and bidirectional tracks. A train in the network can be scheduled to serve
repeatedly stations A.B.C.D.E.F.G.Ḡ.F̄ .Ē.D̄.C̄.B̄.Ā, or follow smaller loops120

A.B.C.D.D̄.C̄.B̄.Ā and D.E.F.G.Ḡ.F̄ .Ē.D̄. The Petri net at the bottom part
of Figure 1 can represent this network: places are used to represent stations or
tracks between stations, and transitions model a possible move from a part of the
network to a consecutive one. The flow relation of this net is almost isomorphic
to the original network.125

A B C D E F G

A B C D E F G

PA td,A
PA,Bta,B PB

PB,C PC PC,D PD PD,E PE PE,F PF PF,G PG

PG,G

PA PB,A PB PC,B PC PD,C PD PE,D PE PF,E PF PG,F PG

PA,A PD,D
PD,D

Figure 1: Modeling trains flows in a network with Petri nets

Petri nets are good models to represent workflows (e.g., to show how trains

4

can move in a network), but are of little use without timing information and
randomness. A frequent question asked for train networks is whether the service
is properly ensured. This means in particular whether trains serve station at a
regular enough pace, or in case departure dates of trains are very sparse, whether130

trains arrivals and departures match an expected timetable.
Time: The second notion that a model for train systems must address is time.
Several models of time have been proposed for timed concurrency models, and
especially for Petri nets. Without claiming for exhaustiveness, one can cite at
least time Petri nets [8] (TPNs for short), timed Petri nets (see for instance [9]),135

and time Petri nets with multiple enablings (see for instance [10]). Time Petri
nets associate a rational time interval I(t) = [l, u] or I(t) = [l,∞) to every
transition t in the system. The semantics of time Petri nets considers that a
clock is attached to every transition, and reset every time the transition becomes
enabled. A transition can fire only if its clock’s value lays within the interval140

I(t). A particularity of this model is that time is not allowed to progress when a
clock xt reaches the upper bound of interval I(t). This phenomenon is called
urgency, and allows to model mandatory limits for execution dates. This is of
particular interest to handle requirements such as: ”A train has to leave at
most 10 seconds after a departure order was given”. Extensions of time Petri145

nets with multi-server semantics have been proposed to handle several enablings
(instances) of each transition. In this paper, we consider a setting where trains
are isolated from one another via a so-called fixed-block policy: track portions
are reserved for one particular train. This prevents train from being too close
from one another. Though this is not the only nor the most efficient way to150

avoid collision, this mechanisms is used in real systems 1. We discuss this issue
further in details in this section. Nevertheless, with such a fixed block policy, one
can address a train network at block level (i.e., attach a place to each portion of
the network that can be entered by at most one train), and hence multi-enabling
needs not be considered.155

The second well-known timed variant of Petri nets is called timed Petri nets.
In this model, markings associate a set of real values to places, and flow relations
from places to transitions are constrained by intervals. Tokens are hence not
blind tokens as in TPNs but rather ages: a newly created token has age 0, and
a transition t can fire iff every place p in its preset contains a token satisfying160

the constraint attached to p and t. A drawback of this model is that transition
firing is not urgent: a transition that can fire is not forced to fire, and once
tokens in a place become too old to satisfy a constraint allowing them to leave
the place, they can be forgotten (or not considered). A natural assumption is
that trains are modeled as tokens. However, discarding tokens amounts to losing165

trains, which is an undesirable feature for the systems we consider. Hence, in the
context of train systems, urgency seems to be an unavoidable feature. Solution
to integrate urgency in timed Petri nets have been proposed [11]. Though there
must be way to avoid losses in timed Petri nets with adequate extensions, we

1 https://en.wikipedia.org/wiki/Railway signalling]Fixed block

5

will not follow this approach in this paper and use a model with urgency.170

Randomness: As soon as one is interested in performances of train systems,
and not only in worst case scenarios, modeling randomness of these systems is
essential. Indeed, train systems are subject to many random events: mechanical
failures, bad weather conditions, passengers misconduct,... Some of these random
events have huge impact on the network performance (hours of delay), but are175

usually rare. Recovering from such events usually calls for unusual means,
and are not part of a normal schedule. One can see such highly impacting
events as an issue that deals more with crisis management, where recovery
scenarios have to be built to return to a normal situation. More frequent but
hopefully less severe events in terms of time penalty occur at every instant180

in a network: leaves or ice on a track causing spinning effects, small delays
in operations. . . Note that the time penalty due to such event is usually low.
However, in urban train systems, where departures and arrivals occur at a high
rate, accumulation of uncompensated delays happens very fast, and can result
in undesirable phenomena (unexpected overtaking, bunching phenomena. . .).185

In this paper, we will only address frequent delays with low individual penalty.
Assuming this, delays can be seen as deviations with respect to the expected most
probable value, i.e., as noise. Note that changes with respect to the expected
behavior of a particular train is not a change in the sequence of events occurring
along its journey in a network (a train is supposed to follow its journey from its190

beginning to its end), but rather changes in the occurrence dates of events, or in
the way several journeys are interleaved. A standard way to address noise is to
define continuous probability distributions for the actual value that a duration
(dwell time in stations, trip duration. . .) may take.

For simplicity, we will consider that random durations appearing in our195

systems are sampled from closed intervals of the form [a, b] with a < b and
open intervals of the form [a,+∞). A probability density function (PDF) for a
continuous random variable X is a function fX : R→ [0, 1] that describes the
relative likelihood for X to take a given value. Its integral over the domain of X
is equal to 1. A cumulative distribution function (CDF) FX : R→ [0, 1] for X200

describes the probability for X to take a value less than or equal to a chosen value.
We denote by Σpdf the set of PDFs, Σcdf the set of CDFs, and we only consider
PDFs for variables representing durations, i.e., whose domains are included in
R≥0. The CDF of X can be computed from its PDF as FX(x) =

∫ x
0
fX(y) dy.

Several standard solutions can be used to model continuous distributions:205

Gaussian distributions, exponential laws. . . A drawback of Gaussian distributions
is that, considering a duration as a randomly chosen value x around a pivot
value a, Gaussian distribution attributes the same probability to event x < a
and x > a. Intuitively, a train has the same probability to be late and to
be in advance. Everyday’s experience tends to show that the probability for210

a train to be delayed his higher, so Gaussian distributions does not match
exactly the needs for asymmetric distributions in transport systems. In the
rest of the paper, we will adopt distributions called truncated polyexponential
functions, that have all the features needed to model random delays. A truncated
polyexponential function is a function f(x) defined over an interval [a, b], such215

6

that
∫ b
a
f(x) dx = 1, and is a sum of K ∈ N weighted exponentials of the form:

f(x) =

{ ∑
k∈1..K ck.x

ak .e−λkx if x ∈ [a, b]
0 otherwise

0.5 4 6
x

f(x)

Figure 2: Expressing probability of a delay with a Gaussian distribution (plain line) and a
polyexponential function (dashed line).

Figure 2 illustrates the advantages of using polyexponential functions to
model continuous distributions. The curves represented in this figure are a
standard Gaussian distribution centered around value 4, and a polyexponential220

function f(x) = 0.58 ·x2 ·e−1.7x+0.29 ·x3 ·e−1.2x defined over domain [0.5, 6]. As
already explained in [3], polyexponential functions can be used to model phase
functions, that is functions where distributions have the shape of several bell-like
curves centered around several pivot values. This is particularly interesting to
represent with a single distribution speed profiles of trains, i.e., very different225

values corresponding to discrete choice of a targeted travel time perturbed by
some noise. This ability allows to model sets of degenerate bells representing
quasi-discrete distributions. Last, polyexponential functions compose well and are
easy to manipulate: joint distributions are products of exponentials, projections
on a variable or on a domain can be done as simple integrations, and remain230

polyexponential functions.
Blocking Semantics: As already mentioned, we consider production systems
with limited resources, and in the case of train systems, with strict security
requirements. A safety headway requirement imposes that a train cannot enter a
track portion if it is occupied by another train. Similar requirements can also be235

essential for production cells, where a tool usually processes one item at a time.
Without care, one can design Petri nets that are not safe a priori (the contents
of places is not always 1-bounded). To guarantee such safety requirement, we
adapt the semantics of our nets in such a way that a transition cannot fire if
its postet contains an already filled place. In an untimed setting, these nets are240

usually called elementary nets. We will however show that in a timed setting,
elementary firing rules forces to adapdt the notion of urgency.
Stochastic time Petri nets: The model that we use to represent timed
concurrent systems is a variant of the stochastic Petri nets already proposed
by [3], with a blocking semantics. Intuitively, a stochastic Petri net is a Petri245

net with time intervals attached to transitions, and probability density functions
associated with these intervals.

7

Definition 1 (stochastic time Petri net). A stochastic time Petri net (STPN
for short) is a tuple N = 〈P, T,•(), ()•,m0, eft, lft,F ,W〉 where P is a finite set
of places; T is a finite set of transitions; •() : T → 2P and ()• : T → 2P are250

pre and post conditions depicting from which places transitions consume tokens,
and to which places they output produced tokens; m0 : P → {0, 1} is the initial
marking of the net; eft : T → Q≥0 and lft : T → Q≥0 ∪{+∞} respectively specify
the minimum and maximum time-to-fire that can be sampled for each transition;
and F : T → Σpdf and W : T → R>0 respectively associate a PDF and a strictly255

positive weight to each transition.

For a given place or transition x ∈ P ∪ T , •x will be called the preset of
x, and x• the postset of x. We denote by ft the PDF F(t), and by Ft the
associated CDF. To be consistent, we assume that for every t ∈ T , the support
of ft is [eft(t), lft(t)]. The semantics of STPNs can be summarized in a few lines:260

markings associates a certain number of tokens to places. A transition is enabled
if places in its preset are filled. When a transition t becomes enabled, a value xt
is sampled from the interval and the distribution attached to t. Then, this value
decreases over time. A transition can fire as soon as its clock has reached 0, its
preset is filled, and its postset is empty. We give a precise semantics for STPNs265

in section 3.
To illustrate how such nets can be used, consider the piece of network in

Figure 3. This piece of net represents a part of the train network in Figure 1.
Places are used to represent tracks (tokens symbolize trains), and transitions
model departures and arrivals of trains. Once at station D (represented by place270

PD), a train can be controlled to move towards station E, it will then enter the
track portion from D to E, represented by place PD,E , or it will follow another
itinerary, and enter another track (represented by place PD,D) to move towards

station D. This decision is represented by transition t2. When a train is on its
way to station E, entering station E (represented by place PE) is symbolized by275

firing of transition t3. Decision to fire t1 or t2 is controlled by additional places
(the dotted places Pc1 and Pc2). One can notice that firing t1 empties Pc1 and
fills Pc2, and firing t2 empties Pc2 and fills Pc1. With such a simple controller,
it is assumed that one train out of two goes from D to E, and the other goes
from D to D. The distributions f1, f2, f3 attached to transitions t1, t2, t3 are280

represented in the right part of Figure 3. Intuitively, a train staying at station
D will leave after a sojourn time comprised between 10 and 30 seconds, as
long as its destination place is empty. Sojourn times in place PD have different
distributions in interval [60, 80], depicted by function f1, f2, and that depend
on whether the train leaves for station E or station D. The trip from D to285

E lasts between 130 and 140 seconds, and the distribution of trip duration is
depicted by function f3. Now, if a train is ready to leave station D to go to E
after a sufficient dwell time, but a train already occupies the track portion from
D to E, then departure is forbidden. In our model, this is implemented by the
blocking semantics that says that a transition can fire only when its postset is290

empty. In particular, in the model of Figure 3, this means that a token will enter
place PD,E (resp. place PD,D) at earliest 10 time units after PD was filled if Pc1

8

(resp. Pc2) contains a token. However, even if Pc1 or Pc2 always contain a token,
there is no guarantee that the sojourn time of a token in PD is smaller than 80
seconds, despite urgency. Indeed, if places Pc2 and PD,E are filled, transition295

t1 has to for PD,E to be empty to fire, which may occur at earliest 130 seconds
and at latest 140 seconds later.

•PD

[60, 80]

t1

•
PD,E

[130, 140]

t3

•
PE

[60, 80]

t2

•PD,D • Pc1

• Pc2

60 65 70 75 80

ft1

ft2

130 132 134 136 138 140

ft3

Figure 3: Using STPNs to model trains moves

A possible execution for the STPN of Figure 3 is as follows. Assuming that
the value sampled for t1 is xt1 = 62, and the value sampled for t3 is xt3 = 132,
then clock xt1 expires after 62 time units, but t1 cannot fire as place PD,E is filled.300

Hence, one has to wait 132 time units, fire t3, and then fire t1. In terms of timed
word, this execution can be represented as w = (t3, 132) · (t1, 132). Equivalently,
one can describe this execution as a time process TP of N . Roughly speaking,
a time process unfolds the net and associates an execution date to occurrences
of transitions (the formal definition of time processes and their construction is305

given in Section 3). The time process corresponding to timed word w is given
in Figure 4. Note on this example that even if the first occurrences of t1 and
t3 seem to be concurrent (they occur at the same dates, and are not causally
related), the blocking semantics imposes that t13 fires before t11.

p1
D

t11 132

p1
D,E

t13 132

p1
c1

p1
c2

p2
D,E p1

E

Figure 4: Time process for the net of Figure 3

2.2. Schedules, timetables, and their realizability.310

Blocking semantics allows to handle safety requirements for systems with
critical resources. However, this semantics makes reasoning on systems harder.
On our example of Figure 3, a possible wish of designers is that a trains stays
no longer than 30 seconds at station D, and one train out of two goes to E.

9

The second requirement is easily implemented by the simple additional control315

represented by the dashed places and flows. However, nothing guarantees a
priori the first requirement, i.e., that place PD,E is emptied at latest 30 seconds
after a token entered PD. So, even if the model seems correct, trains may have
to wait longer that expected a priori. The objective of this paper is to make
sure that a system can implement a predetermined schedule. The principle of320

imposed schedule appear in many places of our everyday lives. Trains, metros,
buses, follow predetermined schedules, also called timetables. The view that an
everyday user of transports has of a schedule is only a partial view corresponding
to the station where she catches a train or a bus, listing all possible departure
hours. Now, this list of dates is simply a projection of more complex objects.325

Timetables describe a trajectory for every object: for instance the list of
stops that a bus has to visit, and the arrival/departure dates from these stops.
Distinct objects cannot use the same resource at the same date. Hence, although
individual trajectories can be seen as very linear, and could for instance be
modeled as timed words, dependencies exist: a train can enter a station only330

after its predecessor on the same line has left it.
The natural notion to encode timetable is hence that of partially ordered sets

of events decorated with dates. Events represent the beginning/end of a task,
the arrival/departure of a train or bus, etc. Partial ordering among events allows
to account for linearity in individual trajectories and for causal dependencies due335

to exclusive resource use (a train can enter a station only after its predecessor
has left). The dates decorating these partial order are dates that comply with
the dependencies, and also with some physical characteristics of the modeled
systems: a train move from a station Si to the following one Si+1 in its itinerary
takes time, which shall be reflected by the dates attached to departures and340

arrivals at different stations.
A schedule can be seen as a solution for a set of constraints over variables

representing dates of events. Even if a proposed solution satisfies all constraints
attached to a system, it is usually a high-level view of the overall expected
behavior of a system. This raises the question of whether a particular schedule345

can be effectively realized by the system. As schedules and systems models are
descriptions of the same system, one can expect the answer to be positive in
most of cases. However, solution returned by a solver for a constraint problem
are optimal solutions w.r.t. some criteria, but not necessarily the most plausible
nor the more robust ones. Indeed, for obvious reasons, one cannot ask a bus to350

reach each stop at the earliest possible date: such solution makes systems poorly
robust to random delays, that necessarily occur in transport systems. Providing
the ability to check that a schedule is realizable with reasonable chances is hence
an essential tool to design schedules.

In many transport systems, schedules are only ideal behaviors of vehicles, that355

are realized up to some imprecision, and used mainly to guide the system. Systems
such as bus fleets or metros often deviate from the expected timing prescribed
by a timetable at peak hours. This deviation mainly concerns occurrence dates
of events. Re-ordering of events is rare, and mainly occurs in case of a major
failure of the system that forces working in a degraded setting, where following360

10

a timetable makes no sense. Systems are also adaptive: production cells can
be equipped with controllers, bus drivers receive instructions to avoid bunching
phenomena [12], and metro systems are controlled by regulation algorithms that
help trains sticking to predetermined schedules. In this setting, a key question
is to asses how much regulation and control is needed to make a system run as365

expected in its schedule. A first way to answer to this question is to ask the
probability that a schedule is realized by the system. In this paper, we give
ways to compute the probability that a schedule is realized up to some minor
shift in occurrence dates of its events. This measure does not formally include a
particular adaptation technique (control, regulation) to help a system stick to a370

predetermined schedule. However, this measure still makes sense, as it quantifies
the need for correction to unregulated systems.

1 : dA

08 : 02

2 : dB

08 : 04

3 : dC

08 : 06

4 : dD

08 : 09

5 : dC

08 : 03

6 : dD

08 : 05

7 : dE

08 : 10

8 : dF

08 : 11

9 : dF

08 : 10

10 : dE

08 : 12

11 : dD

08 : 14

12 : dD

08 : 17

Figure 5: A possible schedule for trains departures in the metro network of Figure 1

Consider the example of Figure 5. This Figure represents the beginning
of a schedule for three trains, where only departure dates are planned. The
departures for each train are depicted as boxes, carrying a label of the form375

i : dJ , where i is the event number, and dJ means that this event is a departure
from station J . Furthermore, an execution date is attached to each node. One
can see on this drawing that schedules can be seen as partial orders organized
along train trajectories. However, there are some dependencies among events
from distinct trains: for instance, our schedule imposes that the second departure380

of the day at station D (event 6 : D) precedes departure 3 : C from station
C. Similarly, 7 : E must precede 12 : D. One can notice that arrivals are not
depicted in the schedule, that focuses on departures. Now, a sensible question
is: can the network of Figure 1 realize this schedule? More precisely, can the
Petri net designed for this network (with additional control places) realize such385

a schedule starting at 08 : 00 with a train at station A, a train at station C and
a train at station F? The answer to this question is not straightforward. Even
if the answer is positive, the next step is to ask whether this schedule, with a
tolerance of 1 min delay for each departure, is probable enough. If the answer is
that the probability to realize our schedule is very low, then this schedule should390

not be considered as operational.
A schedule describes causal dependencies among tasks, and timing constraints

on their respective starting dates. Schedules are defined as decorated partial
orders. We allow timing constraints among tasks that are not causally related.

11

Definition 2 (schedule). A schedule over a finite alphabet A is a quadruple395

S = 〈N,→, λ, C〉 where N is a set of nodes, → ⊆N ×N is an acyclic precedence
relation, λ : N → A is a labeling of nodes, and C : N ×N 7→ Q>0 is a partial
function that associates a time constraint to pairs of nodes. A dating function
for a schedule S is a function d : N → Q≥0 that satisfies all constraints of C and
→: 〈n, n′〉 ∈ → implies d(n′) ≥ d(n), and C(n, n′) = x implies d(n′)− d(n) ≥ x.400

This model for schedules is inspired from [1, 2]. Intuitively, if C(n, n′) = x,
then n′ cannot occur earlier than x time units after n, and if 〈n, n′〉 ∈ →,
then n (causally) precedes n′. Constraints model the minimal times needed to
perform tasks and initiate the next ones in production cells, the times needed
for trains to move from a station to another, etc. A schedule S is consistent405

if the graph 〈N,→ ∪ {〈n, n′〉 | C(n, n′) is defined}〉 does not contain cycles.
Obviously, consistent schedules admit at least one dating function. A frequent
approach is to associate costs to dating functions and to find optimal functions
that meet a schedule. A cost example is the earliest completion date. Optimizing
this cost amounts to assigning to each node the earliest possible execution date.410

However, these optimal schedules are not the most probable ones. For the earliest
completion date objective, if an event n occurs later than prescribed by d, then
all its successors will also be delayed. In real systems running in an uncertain
environment (e.g., with human interactions or influenced by weather conditions),
tight timings are impossible to achieve. Finding a good schedule is hence a415

trade-off between maximization of an objective and of the likelihood to stay
close to optimal realizations at runtime.
Realizability: Accuracy of schedules can be formally defined as follows: We
want to check whether a consistent schedule S with its dating function d can be
realized by a system, described as a stochastic time Petri net N . More formally,420

this amounts to verifying that there exists a timed execution TP of N and an
interpretation function ψ mapping abstract events of S onto concrete events of
TP , such that causally related events of S are causally dependent in TP and
dates of events in TP meet the constraints on their abstract representation. In
the rest of the paper, we show how to check realizability of a schedule by a425

STPN, and how to compute a lower bound on the probability that S is realized
by N . This allows in particular to check that the probability of realization of a
schedule is not null.

3. Semantics of Stochastic Time Petri Nets

Roughly speaking, an STPN is a time Petri net with distributions on firing430

times attached to transitions. The semantics of this model describes how tokens
move from the preset of a transition to its postset. The time that must elapse
between enabling of a transition and its firing is sampled according to the
distribution attached to the transition. This model borrows its main features
from [3], with the major difference that the semantics is blocking, i.e. it forces435

nets to remain safe (1-bounded), as in elementary nets. This restriction is
justified by the nature of the systems we address: in production chains, places

12

symbolize tools that process only one item at a time. Similarly, when modeling
train networks, security requirement impose that two trains cannot occupy the
same track portion. Standard time or stochastic Petri nets do not assume a priori440

bounds on their markings. A way to force boundedness is to add complementary
places to the original Petri net and then study it under the usual semantics [13].
However, this trick does not allow to preserve all time and probability issues of
the original net. Enforcing a bound via a blocking semantics is hence a practical
way to guarantee a priori that models do not allow specification of undesired445

situations.
Let N = 〈P, T,•(), ()•,m0, eft, lft,F ,W〉 be a STPN. A marking of N is a

function that assigns 0 or 1 token to each place p ∈ P . We will say that a
transition t is enabled by a marking m iff ∀p ∈ •t,m(p) = 1. We denote by
enab(m) the set of transitions enabled by a marking m. For a given marking450

m and a set of places P ′, we will denote by m − P ′ the marking that assigns
m(p) tokens to each place p ∈ P \ P ′, and m(p)− 1 tokens to each place p ∈ P ′.
Similarly, we will denote by m+P ′ the marking that assigns m(p) tokens to each
place p ∈ P \P ′, and m(p) + 1 tokens to each place p ∈ P ′. Firing a transition t
is done in two steps and consists in: (1) consuming tokens from •t, leading to a455

temporary marking mtmp = m−•t, then (2) producing tokens in t•, leading to a
marking m′ = mtmp + t•.

The blocking semantics can be described by timed and discrete moves among
configurations, and can be described informally as follows. A variable τt is
attached to each transition t of the STPN. As soon as the preset of a transition460

t is marked, τt is set to a random value ζt (called the time-to-fire of t, or TTF
for short) sampled from [eft(t), lft(t)] according to ft. We will assume that
every CDF Ft is strictly increasing on [eft(t), lft(t)], which allows to use inverse
transform sampling to choose a value (see for instance [14] for details). Intuitively,
this TTF represents a duration that must elapse before firing t once t is enabled.465

The value of τt then decreases as time elapses but cannot reach negative values.
When the TTF of a transition t reaches 0, then if t• is empty in mtmp, t becomes
urgent and has to fire unless another transition with TTF 0 and empty postset
fires; otherwise (if t• is not empty in mtmp), t becomes blocked : its TTF stops
decreasing and keeps value 0, and its firing is delayed until the postset of t470

becomes empty; in the meantime, t can be disabled by the firing of another
transition. The semantics of STPNs is urgent : time can elapse by durations that
do not exceed the minimal remaining TTF of enabled transitions that are not
blocked. If more than one transition is urgent, then the transition that fires is
randomly chosen according to the respective weights of urgent transitions. We475

formalize the semantics of STPNs in terms of discrete and timed moves between
configurations that memorize markings and TTFs for enabled transitions.

Definition 3 (configuration of an STPN). A configuration of an STPN is
a pair CN = 〈m, τ〉 where m is a marking, and τ : enab(m)→ R≥0 is a function
that assigns a positive real TTF τi = τ(ti) to each transition ti enabled by m. A480

transition t is enabled in a configuration 〈m, τ〉 iff it is enabled by m.

Definition 4 (firable and blocked transitions). A transition t is firable in

13

〈m, τ〉 iff it is enabled by m, all places of its postset are empty in m−•t, and
its TTF is equal to 0. We denote by fira(〈m, τ〉) the set of firable transitions of
〈m, τ〉. A transition t is blocked in 〈m, τ〉 iff it is enabled by m, its TTF τ(t)485

is equal to 0, and one of its postset places is marked in m−•t. We denote by
blck(〈m, τ〉) the set of blocked transitions in 〈m, τ〉.

Timed moves: A timed move 〈m, τ〉 δ−→ 〈m, τ ′〉 lets a strictly positive duration
δ ∈ R elapse. To be allowed, δ must be smaller or equal to all TTFs of transitions
enabled by m and not yet blocked. The new configuration 〈m, τ ′〉 decreases TTFs490

of every enabled and non-blocked transition t by δ time units (τ ′(t) = τ(t)− δ).
Blocked transitions keep a TTF of 0, and m remains unchanged.

Discrete moves: A discrete move 〈m, τ〉 t−→ 〈m′, τ ′〉 consists in firing a transi-
tion t from a configuration 〈m, τ〉 to reach a configuration 〈m′ = m−•t+ t•, τ ′〉.
Discrete moves change the marking of a configuration, and sample new times to495

fire for transitions that become enabled after the move. To define the semantics
of discrete moves, we first introduce newly enabled transitions.

Definition 5 (newly enabled transitions). Let m be a marking and t a tran-
sition enabled by m. A transition t′ is newly enabled after firing of t from m iff
it is enabled by marking m′ = (m−•t) + t• and either it is not enabled by m−•t500

or t′ = t. We denote by newl(m, t) = enab(m′) ∩ ({t} ∪ (T \ enab(m−•t))) the
set of transitions newly enabled by firing of t from m.

The transition t fired during a discrete move is chosen among all firable
transitions of 〈m, τ〉. The new marking reached is m′ = (m−•t) + t•, and τ ′ is
obtained by sampling a new TTF for every newly enabled transition and keeping505

unchanged TTFs of transitions already enabled by m and still enabled by m′.
An initial configuration for N is a configuration 〈m0, τ0〉 where m0 is the

initial marking of N , and τ0 attaches a sampled TTF to each transition enabled
by m0. We will write 〈m, τ〉 → 〈m′, τ ′〉 iff there exists a timed or discrete

move from 〈m, τ〉 to 〈m′, τ ′〉, and 〈m, τ〉 ∗−→ 〈m′, τ ′〉 iff there exists a sequence510

of moves leading from 〈m, τ〉 to 〈m′, τ ′〉. Interested readers can find detailed
operational rules for moves of STPNs in Appendix A.

p1

t1 [0, 6]

p2

p3

t2 [2, 8]

p1
1

t11 5.5

p2
1 p1

2

t21 8.1 t12 8.1

p3
1 p1

3p2
2

Figure 6: a) An example STPN N1 and b) a time process of N1

14

Consider the STPN N1 of Figure 6, and suppose that N1 is in configuration
〈m, τ〉, with m(p1) = 1, m(p2) = m(p3) = 0, τ(t1) = 5.5. From this configuration,
one can let 5.5 time units elapse, and then fire t1. After this firing, the STPN515

reaches marking m′ with m′(p1) = m′(p2) = 1, m′(p3) = 0. New TTFs d1, d2

are sampled for t1, t2, leading to a configuration 〈m′, τ ′〉, where τ ′(t1) = d1 and
τ ′(t2) = d2. Let us suppose that d1 = 1.5 and d2 = 2.6. Then one can let 1.5
time units elapse, but after this timed move, transition t1 cannot fire, as place
p2 contains a token. N1 is hence in a configuration 〈m′, τ ′′〉, where τ ′′(t1) = 0,520

τ ′′(t2) = 1.1, and t1 is blocked. After letting 1.1 time units elapse, transition
t2 can fire, leading to marking m′′(p1) = m′′(p3) = 1,m′′(p2) = 0. Once t2 has
fired, t1 is urgent and firable, and immediately fires, at the same date.

Let us now assign probabilities to STPN moves. Randomness in STPNs se-
mantics mainly comes from sampling of TTFs. However, when several transitions525

are firable from a configuration, weights are used to determine the probabil-
ity for a transition to fire first. Timed moves are achieved with probability
1: once TTFs are set, there is a unique configuration allowing discrete moves.

In a discrete move 〈m, τ〉 t−→ 〈m′, τ ′〉, m′ is built deterministically, but τ ′ is
obtained by sampling a random value ζt for each newly enabled transition t.530

Each ζt is chosen according to CDF Ft, i.e., we have P(ζt ≤ x) = Ft(x) (for any
x ∈ [eft(t), lft(t)]). When more than one transition is firable from 〈m, τ〉, the
transition that fires is randomly chosen according to the respective weight of
each firable transition: each transition tk in fira(〈m, τ〉) has a probability to fire
Pfire(tk) = W(tk)

/∑
ti∈fira(〈m,τ〉)W(ti). Note that, as STPNs have continuous535

probability laws, the probability to choose a particular value ζt is the probability
of a point in a continuous domain and is hence null. However, in the next
sections, we will consider probabilities for events of the form τ(ti) ≤ τ(tj), which
may have strictly positive probabilities.

STPNs define sequences of moves ρ = (〈m, τ〉 ei−→ 〈m′, τ ′〉)i∈1...k, where540

ei is a transition name in discrete moves and a real value in timed moves.
Leaving probabilities for the moment, STPNs can also be seen as generators
for timed words over T . A timed word over an alphabet A is a sequence
〈a1, d1〉 . . . 〈aq, dq〉 . . . in (A× R≥0)∗, where each ai is a letter from A, each di
defines the occurrence date of ai, and d1, . . . , dq is an increasing sequence of545

positive real numbers. Letting i1, . . . , iq denote the indices of discrete moves in ρ,
we can build a timed word uρ = 〈ai1 , d1〉 . . . 〈aiq , dq〉 ∈ (T×R≥0)q that associates
dates to transitions firings, where d1 =

∑
j<i1

ej , and dj = dj−1 +
∑
ij−1<k<ij

ek
for j ∈ {2, . . . , q}. The timed language of an STPN N is the set L(N) of timed
words associated with its sequences of moves. We denote by L≤D(N) the set of550

words in L(N) whose maximal date is lower than D.
As already highlighted in [15] for TPNs, timed languages give a sequential

and interleaved view for executions of inherently concurrent models. A non-
interleaved semantics can be defined using time processes, i.e., causal nets
equipped with dating functions. We recall that causal nets are finite acyclic nets555

of the form CN = 〈B,E,•(), ()•〉, where for every b ∈ B, |b•| ≤ 1 and |•b| ≤ 1.
Intuitively, a causal net contains no conflict (pairs of transition with common

15

places in their presets) nor place receiving tokens from more than one transition.

Definition 6 (time process). A time process is a tuple TP = 〈CN, θ〉, where
CN = 〈B,E,•(), ()•〉 is a causal net, and θ : E → R≥0 associates a positive real560

date to transitions of net CN , and is such that ∀e, e′ ∈ E with e•∩ •e′ 6= ∅ we
have θ(e) ≤ θ(e′). In time processes, places in B are called conditions, and
transitions in E are called events. The depth of a time process is the maximal
number of events along a path of the graph 〈B∪E,•()∪ ()•〉. We will write e ≺ e′
iff e•∩•e′ 6= ∅, and denote by � the transitive and reflexive closure of ≺.565

Intuitively, conditions in B represent occurrences of places fillings, and events
in E are occurrences of transitions firings. We denote by tr(e) the transition
t attached to an event e, and by pl(b) the place p associated with a condition
b. The flow relations are hence implicit: •e = {b | e = 〈X, t〉 ∧ b ∈ X}, and
similarly e•= {b | b = 〈p, e〉}, and for b = 〈p, e〉, •b = e and b•= {e ∈ E | b ∈ •e}.570

We will then drop flow relations and simply refer to time processes as triples
TP = 〈B,E, θ〉. To differentiate occurrences of transitions firings, an event
will be defined as a pair e = 〈X, t〉, where t is the transition whose firing is
represented e and X is the set of conditions it consumes. Similarly, a condition
is defined as a pair b = 〈p, e〉, where p is the place whose filling is represented by575

b, and e is the event whose occurrence created b.
Given an STPN N , for every timed word u = 〈a1, d1〉 . . . 〈an, dn〉 in L(N),

we can compute a time process TPu = 〈B,E,•(), ()•, θ〉. The construction
described below is the same as in [15]. It does not consider probabilities
and, as the construction starts from an executable word, it does not have580

to handle blockings either. We denote by TPu obtained from a timed word
u = 〈t1, d1〉〈t2, d2〉 . . . 〈tk, dk〉 ∈ L(N). It can be built incrementally by adding
dates transitions one after another. We give a detailed construction in Appendix
B.

Figure 6-b is an example of a time process for STPN N1. In this ex-585

ample, event tji (resp. condition pji) denotes the jth occurrence of transi-
tion ti (resp. place pi). This time process corresponds to the time word
u = 〈t1, 5.5〉〈t2, 8.1〉〈t1, 8.1〉 ∈ L(N1). It contains causal dependencies among
transitions (e.g., from t11 to t12). Event t21 cannot occur before t12 as t1 cannot
fire as long as place p2 is filled. However, this information is not explicit in590

the process. The timed language L(N) of a TPN can be reconstructed as the
set of linearizations of its time processes. In these linearizations, ordering of
events considers both causality and dates of events: e must precede e′ 6= e in a
linearization of a process if θ(e) < θ(e′) or if e � e′. With blocking semantics,
some causality and time-preserving interleavings may not be valid timed words595

of L(N): in the process of Figure 6-b, t21 cannot occur before t12, even if both
transitions have the same date. A correct ordering among events with identical
dates in a process TPu can however be found by checking that a chosen ordering
does not prevent occurrence of other transitions.

16

4. Unfolding of STPNs600

A time process emphasizes concurrency but only gives a partial order view
of a single timed word. Many time processes of N1 have the same structure
as the process of Figure 6-b, but different dating functions. Indeed, there can
be uncountably many time processes with identical structure, but different
real dates. It is hence interesting to consider symbolic (time) processes, that605

define constraints on events dates instead of exact dates. Similarly, to avoid
recomputing the structural part of each symbolic process, we will work with
unfoldings, i.e., structures that contain all symbolic processes of an STPN, but
factorize common prefixes. Symbolic unfoldings were introduced for TPNs in [16]
and used in [17]. In this section, we show how to unfold STPNs with blockings610

and extract symbolic processes out of this unfolding. Our aim is to find the
minimal structure that represents prefixes of all symbolic processes that embed a
schedule of known duration. We show that if a system cannot execute arbitrary
large sets of events without progressing time, unfolding up to some bounded
depth is sufficient.615

Definition 7 (time progress). An STPN N guarantees time progress iff there
exists δ ∈ Q>0 such that ∀t ∈ T, i ∈ N, and for every time word u = 〈t1, d1〉 . . .
〈ti, θ1〉 . . . 〈ti+1, θ2〉 . . . 〈tk, dk〉 ∈ L(N) where ti denotes the ith occurrence of t,
we have θ2 − θ1 ≥ δ.

Time progress is close to non-Zenoness property, and is easily met (e.g., if no620

transition has an earliest firing time of 0). The example of Figure 6 does not
guarantee time progress as according to the semantics of STPNs, this net allows
an arbitrary number of occurrences of transition t1 to fire at date 0. However,
such specification can be considered as ill-formed. Let us consider our motivating
examples: in a production cell, the same kind of processing by a tool necessarily625

takes time, and conveying an item from a tool to another cannot either be
instantaneous. Similarly, in train networks, some time must elapse between two
consecutive arrivals of a train at a station, as well as between two consecutive
arrivals/departures of the same train. Hence, real-life systems ensure properties
that are often stronger than this time progress property. The example network630

of Figure 1 will hence necessarily contain exclusively transitions with rational
intervals of the form [a, b] or [a,∞), where a > 0. An interesting consequence of
time progress is that any execution of duration ∆ of an STPN that guarantees
time progress is a sequence of at most |T | · d∆

δ e transitions. It means that for
most of usual systems that run for a predetermined period (e.g., a metro network635

operate from 05:00 to 01:00), it is sufficient to consider behaviors of a model up
to a certain number of events.

As in processes, unfoldings will contain occurrences of transitions firings
(a set of events E), and occurrences of places fillings (a set of conditions B).
We associate to each event e ∈ E positive real valued variables doe(e), dof(e)640

and θ(e) that respectively define the enabling, firability and effective firing
date of the occurrence of transition tr(e) represented by event e. Similarly, we
associate to each condition b positive real valued variables dob(b) and dod(b)

17

that respectively represent the date of birth of the token in place pl(b), and the
date at which the token in place pl(b) is consumed. We denote by var(E,B) the645

set of variables
⋃
e∈E doe(e)∪dof(e)∪θ(e)∪

⋃
b∈B dob(b)∪dod(b) (with values in

R≥0). A constraint over var(E,B) is a boolean combination of atoms of the form
x ./ y, where x ∈ var(E,B), ./ ∈{<,>,≤,≥} and y is either a variable from
var(E,B) or a constant value. A set of constraints C over a set of variables V is
satisfiable iff there exists at least one valuation v : V → R such that replacing650

each occurrence of each variable x by its valuation v(x) yields a tautology. We
denote by Sol(C) the set of valuations that satisfy C.

Definition 8 (unfolding). A (structural) unfolding of an STPN N is a pair
U = 〈E,B〉 where E is a set of events and B a set of conditions.

Unfoldings can be seen as processes with branching. As for processes, each655

event e ∈ E is a pair e = 〈•e, tr(e)〉 where •e ⊆ B is the set of predecessor
conditions of e (the conditions needed for e to occur). A condition b ∈ B is
a pair b = 〈•b, pl(b)〉 where •b ⊆ E is the predecessor of b, i.e., the event that
created condition b. We assume a dummy event ⊥ that represents the origin of
the initial conditions in an unfolding. Function •(), ()•, pl() and tr() keep the660

same meaning as for time processes. The main difference between processes
and unfoldings is that conditions may have several successor events. Using
relations ≺ and � as defined for processes, we define the causal past of e ∈ E
as ↑ e = {e′ ∈ E | e′ � e}. A set of events E′ ⊆ E is causally closed iff
∀e ∈ E′, ↑ e ⊆ E′. This notion extends to conditions. Two events e, e′ are in665

conflict, and write e]′e, iff •e ∩•e′ 6= ∅. A set of events E′ ⊆ E is conflict free if
it does not contain conflicting pairs of events. Two events e, e′ are competing iff
tr(e)•∩ tr(e′)• 6= ∅ (they fill a common place).

Definition 9 (pre-processes of an unfolding). A pre-process of a finite un-
folding U = 〈E,B〉 is a pair 〈E′, B′〉 such that E′ ⊆ E is a maximal (i.e., there670

is no larger pre-process containing E′, B′), causally closed and conflict free set
of events, and B′ = •E′ ∪ E′•. PE(U) denotes the set of pre-processes of U .

Unfolding an STPN up to depth K is performed inductively, without con-
sidering time. We will then use this structure to find processes. Timing issues
will be considered through addition of constraints on occurrence dates of events.675

Unfoldings can be built inductively, following the procedure proposed for in-
stance in [5] and recalled in Appendix C. When building U0, . . . ,UK , each step
k adds new events at depth k and their postset to the preceding unfolding
Uk−1. The construction starts with the initial unfolding U0 = 〈∅, B0〉 where
B0 = {〈⊥, p〉 | p ∈ m0}.680

The structural unfolding of an STPN does not consider timing issues nor
blockings. Hence, an (untimed) pre-process of PE(UK) needs not be the un-
timed version of a time process obtained from a word in L(N). Indeed, urgent
transitions can forbid firing of other conflicting transitions. Similarly, blockings
prevent an event from occurring as long as a condition in its postset is filled.685

They may even prevent events in a pre-process from being executed if a needed

18

place is never freed. However, time processes of a net N can be built from
processes of its untimed unfolding. We will show later that, once constrained,
time processes of N are only prefixes of pre-processes in PE(UK) with associated
timing function that satisfy requirement on dates that only depend on the con-690

sidered pre-process. We re-introduce time in unfoldings by attaching constraints
to events and conditions of pre-processes. Let UK = 〈EK , BK〉 be the unfolding
of an STPN N up to depth K, and let E ⊆ EK be a conflict free and causally
closed set of events, and B = •E ∪E• (B is contained in BK). We define ΦE,B
as the set of constraints attached to events and conditions in E,B (i.e., defined695

over set of variables var(E,B)), assuming that executions of N start at a fixed
date d0. Constraints in ΦE,B set to guarantee:

• (net constraints): occurrence dates of events are compatible with the
earliest and latest firing times of transitions in N ,

• (causal precedence): if event e precedes event e′, then θ(e) ≤ θ(e′).700

• (no overlapping conditions): if b, b′ represent occurrences of the same
place, then intervals [dob(b), dod(b)] and [dob(b′), dod(b′)] have at most one
common point,

• (urgency): an urgent transition with empty postset fires if no other urgent
transition fires before. And, in particular, for every event e ∈ E, there is705

no event that becomes firable and urgent before e.

Overall, ΦE,B is a boolean combination of inequalities. We do not detail its
construction here: except for the additional constraint on place occupancy due to
blocking semantics, it is almost the solution proposed by [17]. Interested readers
can also find a complete description of the construction of ΦE,B in Appendix710

D. We can now define symbolic processes, and show how instantiation of their
variables define time processes of N . Roughly speaking, a symbolic process
is a prefix of a pre-process of UK (it is hence a causal net) decorated with a
satisfiable set of constraints on occurrence dates of events. Before formalizing
symbolic processes, let us highlight three important remarks. Remark 1: an715

unfolding up to depth K misses some constraints on occurrence dates of events
due to blockings by conditions that do not belong to UK but would appear
in some larger unfolding UK′ , with K ′ > K. We will however show (Prop. 1
and 2) that with time progress assumption, unfolding N up to a sufficient depth
guarantees that all constraints regarding events with θ(e) ≤ D are considered.720

This allows to define symbolic processes representing the time processes of N
that are executable in less than D time units. Remark 2: unfoldings consider
depth of events, and not their dates. Hence, if a process contains an event e
occurring at some date greater than d, and another event e′ that belongs to
the same pre-process and becomes urgent before date d, then e′ must belong725

to the process, even if it lays at a greater depth than e. Remark 3: Every
pre-process 〈E,B〉 of UK equipped with constraint ΦE,B is not necessarily a
symbolic process. Indeed, some events in a pre-process might be competing
for the same resource, and make ΦE,B unsatisfiable. Consider for instance the

19

STPN of Figure 7-a). Its unfolding is represented in b), and two of its (symbolic)730

processes in c) and d). For readability, we have omitted constraints. One can
however notice that there exists no symbolic process containing two occurrences
of transition t3, because conditions p1

4 and p2
4 are maximal and represent the

same place p4.

p0 p1

p2

t0 t1t2

p3

t3

p4

[0, 4] [0, 4][5, 7]

[0, 3]

a)

p1
0 p1

1

t10

p1
2 p2

2

t12

p1
3

t11

t13 t23

p1
4 p2

4

b)

p1
0 p1

1

t10

p1
2 p2

2

t11

t13

p1
4

c)

p1
0 p1

1

t10

p1
2 p2

2

t21

t23

p2
4

d)

Figure 7: An STPN with conflicts and blockings a), its symbolic unfolding b), and two of its
symbolic processes c) and d).

Definition 10 (prefixes of an unfolding). Let PP = 〈E,B〉 be a pre-process735

of UK . A symbolic prefix of PP is a triple 〈E′, B′,ΦE′,B′〉 where E′ ⊆ E is a
causally closed set of elements contained in E, and B′ = •E′ ∪ E′•.

Symbolic prefixes are causally closed parts of pre-processes, but their con-
straints inherited from the unfolding UK may not be satisfiable. Let SPP =
〈E′, B′,ΦE′,B′〉 be a symbolic prefix of pre-process PP = 〈E,B〉. We will say740

that SPP is maximal w.r.t. urgent events firing iff no more event of PP have
to belong to SPP. This property of SPP holds if every event f ∈ B′•∩ E that
could have become urgent before the last date of all events in E′ was prevented
from firing due to blocking. We show in Appendix D that this property of
symbolic prefixes can be verified as unsatisfiability of a property Φmax(f) for745

every f ∈ B′•∩ E.

Definition 11 (symbolic processes). A symbolic process of UK is a triple
Es = 〈E′, B′,ΦE′,B′〉 where 〈E′, B′,ΦE′,B′〉 is a symbolic prefix of some pre-
process PP = 〈E,B〉 of UK , ΦE′,B′ is satisfiable, and E′ is maximal w.r.t.
urgent events firing in PP.750

A crux in the construction of symbolic processes of UK is to find appropriate
maximal and causally closed sets of events with satisfiable constraints. This can
be costly: as illustrated by the example of Figure 7, satisfiability of constraints is
not monotonous: the constraints for processes in Fig 7−c) and d) are satisfiable.
However, adding one occurrence of transition t3 yields unsatisfiable constraints.755

Satisfiability of a prefix of size n hence does not imply satisfiability of a larger
prefix of size n + 1. The converse implication is also false: if a constraint

20

associated with a prefix of size n is not satisfiable, appending a new event may
introduce blockings that delay urgent transitions, yielding satisfiability of a
constraint on a prefix of size n+ 1. So, unsatisfiability of constraints cannot be760

used as a criterion to stop incremental unfoldings construction.

Definition 12 (executions of symbolic processes). Let Es = 〈E,B,Φ〉 be
a symbolic process of an unfolding UK . An execution of Es is a time process
TP = 〈E,B, θ〉 where θ is a solution for Φ. For a chosen θ, we denote by
Esθ = 〈E,B, θ〉 the time process obtained from Es. TP = 〈E,B, θ〉 is a time765

process of UK if there exists a symbolic process Es = 〈E,B,Φ〉 of UK s.t. TP is
an execution of Es.

Informally, symbolic pre-processes select maximal conflict-free sets of events
in an unfolding. Symbolic processes extract executable prefixes from symbolic
pre-processes, and executions attach dates to events of symbolic processes to770

obtain time processes. In the rest of the paper, we respectively denote by Es(UK)
and by E(UK) the set of symbolic processes and time processes of UK .

We can now show that upon time progress hypothesis, unfoldings and their
symbolic processes capture the semantics of STPNs with blockings. Given an
STPN that guarantees time progress with a minimal elapsing of δ time units775

between successive occurrences of every transition, and given a maximal date
D, we want to build an unfolding UD of N that contains all events that might
be executed before D, but also all places and events which may impact firing
dates of these events. We can show that UD is finite and that its processes are
of depth at most H = dD−d0δ e · |T |.780

Let b = 〈e, p〉 be a condition of an unfolding Un obtained at step n. Let
block(b) be the set of conditions that may occur in the same process as b, represent
the same place, and are not predecessors or successors of b in any unfolding Un+k

obtained from Un. Clearly, dates of birth and death of conditions in block(b)
may influence the date of birth and death of b, or even prevent b from appearing785

in the same process as some conditions in block(b). However, in general, block(b)
need not be finite, and at step n, block(b) is not fully contained in a pre-process
of Un. Fortunately, upon time progress assumption, we can show that elements
of block(b) that can influence dob(b) appear in some bounded unfolding UK .

Proposition 1. Let N be a STPN guaranteeing time progress of δ time units790

(between consecutive occurrences of each transition). For every date D ∈ R≥0

and condition b in an unfolding Un, there exists K ≥ n s.t. {b′ ∈ block(b) |
dob(b′) ≤ D} is contained in UK .

This proposition means that if some event cannot occur at dof(e) due to
a blocking, then one can discover all conditions that prevent this firing from795

occuring in a bounded extension of the current unfolding.

Proposition 2. Let N be a STPN guaranteeing time progress of δ time units.
The set of time processes executable by N in D time units are prefixes of time
processes of UK , with K = dDδ e · |T |

2 containing only events with date ≤ D.

21

5. Realizability of schedules800

We can now address the question of realizability of a high-level description of
operations (a schedule S) by a system (described by a STPN N). Considered in
a purely boolean setting, this question can be rewritten as: is there an execution
of N that implements S ? In many cases, a positive answer to this question is
not sufficient: as STPNs are equipped with continuous probability distributions,805

the probability of a particular execution TP = 〈E,B, θ〉 is always 0. A sensible
way to address realizability is a quantitative approach requiring that the set
of executions of N implementing S has a positive probability. In this section,
we first formalize the notion of realization of a schedule by an execution, and
define boolean realizability. We then define probabilistic realizability, and sketch810

how an under-approximation of the probability to realize a schedule can be
computed using a transient tree construction [3]. First of all, the connection
between high-level description of operations in S and their implementation in N
is defined via a realization function.

Definition 13 (realization function). A realization function for a schedule815

S and an STPN N is a map r : A → 2T that associates a subset of transitions
from T to each letter of A, and such that ∀a 6= a′ ∈ A, r(a) ∩ r(a′) = ∅.

A realization function describes which low-level actions implement a high-level
operation of a schedule. Each letter a from A can be interpreted as an operation
performed through the firing of any transition from the subset of transitions r(a).820

Allowing r(a) to be a subset of T provides some flexibility in the definition of
schedules: in a production cell, for example, a manufacturing step a for an item
can be implemented by different processes on different machines. Similarly, in a
train network, a departure of a train from a particular station in the schedule
can correspond to several departures using different tracks, or to departure with825

different speed profiles, which is encoded with several transitions in an STPN.
Realization functions hence relate actions in schedules to several transitions in
an STPN. The condition r(a) ∩ r(a′) = ∅ prevents ambiguity by enforcing each
transition to appear at most once in the image of r. Note that r(A) ⊆ T , that is
the realization of a schedule may need many intermediate steps that are depicted830

in the low-level description of a system, but are not considered in the high-level
view provided by a schedule. This allows in particular to define schedules that
constrain dates for a subset of events, and leave dates of other events free from
any constraint. In the context of a train network, this allows for the verification
of realizability of schedules that focus on a subset of stations, e.g., requiring835

a departure from a choosen station every x minutes during a normal day of
operation. We will call transitions that belong to r(A) realizations of A.

Definition 14 (embedding, realizability). Let S = 〈N,→, λ, C〉 be a sched-
ule, Es = 〈E,B,Φ〉 be a symbolic process of N and r : N → T be a realization
function. We say that S embeds into Es (w.r.t. r and d) and write S ↪→ Es iff840

there exists an injective function ψ : N → E such that:

22



∀n ∈ N, tr
(
ψ(n)

)
∈ r
(
λ(n)

)
(embedding is consistent with labeling)

∀〈n, n′〉 ∈→, ψ(n) � ψ(n′) (causal precedence is respected)

@f ≤ ψ(min(n)), tr(f) ∈ r(A) (embedding starts on 1st compatible events)

∀e ≤ f ≤ g, e = ψ(n) ∧ g = ψ(n′′) ∧ tr(f) ∈ r(A) (embedding "misses"

⇒ ∃n′, f = ψ(n′) ∧ n→∗ n′ →∗ n′′ no compatible event)

S embeds in Es iff there is a way to label every node n of S by a letter from
r
(
λ(n)

)
and obtain a structure that is contained in some restriction of a prefix

of Es to events that are realizations of actions from A and to a subset of its
causal ordering. This way, a process respects the ordering described in S, does845

not “forget” actions, and does not “insert” realizations that are not the image
by ψ of any high-level operation between two mapped realizations, or before the
image by ψ of minimal nodes in the schedule. Note that there can be several
ways to embed S into a process of N .

Definition 15 (realizability). Let d be a dating function for a schedule S =850

〈N,→, λ, C〉, r be a realization function. The pair (S, d) is realizable by Es =
〈E,B,Φ〉 (w.r.t. r) iff there exists an embedding ψ from S to Es, and furthermore,
Φψ,S,d = Φ∧

∧
n∈N θ

(
ψ(n)

)
= d(n) is satisfiable. (S, d) is realizable by N (w.r.t.

r and d) iff there exists a symbolic process Es such that S is realizable by Es.

For simplicity, we address realizability of a schedule with respect to a fixed855

dating function d. However, realizablity of a schedule S = 〈N,→, λ, C〉 with
constraints C stands for realizability of any of the dating functions d meeting
constraints C. Letting Cψ denote the conjunction of inequations obtained by
replacing every map (i, j)→ v in C by inequation θ(ψ(nj))− θ(ψ(ni)) ≤ v, we
will say that S is realizable by Es (w.r.t. r) iff there exists an embedding ψ860

from S to Es and Φψ,S,C = Φ ∧ Cψ is satisfiable. We write Es |= S when S is
realizable by Es, and N |= S when S is realizable by N . Appendix G gives an
algorithm to compute a set ΨS,Es of embeddings of a schedule S in a process
Es. As soon as an embedding ψ ∈ ΨS,Es from S to a symbolic process Es is
obtained, it suffices to prove that Φψ,S,d (resp. Φψ,S,C) is satisfiable to prove865

that S is realizable by Es. Realizability hence consists in finding at least one
symbolic process of N with an appropriate embedding in ψ ∈ ΨS,Es . When
a maximal occurrence date D for operations in S is provided, and when N
guarantees time progress, such a process is a process of unfolding UK (where
K is the bound given in Prop. 2). We can then compute the set of symbolic870

processes ES = {Es0 , Es1 , . . . , EsN−1} of UK that embed S and similarly for each
Esi ∈ ES , the set of possible embedding functions Ψi = {ψi,0, ψi,1, . . . , ψi,Ni−1}
for which constraint Φψi,j ,S,d is satisfiable.

To illustrate the construction of unfoldings and of processes, let us consider
the example of figure 8. This toy example depicts two train carousels: line 1875

serves stations A, B and C, and line 2 serves stations D, B′ and C ′. Both lines
share a common track portion between stations B,C and B′, C ′, and line 1 uses

23

two trains. The up left picture shows the aspect of both lines and stations,
and the bottom left figure a STPN model of this network (we do not show
distributions). Stations are represented by places labeled by station names,880

and track portions between two stations by places labeled by pairs of letters
representing the connected stations (e.g., place CA represents the track from
C to A). Transitions consuming tokens from a station place represent trains
departures, and transitions consuming tokens from a track place are arrivals. A
possible required schedule (middle of the figure) is that one train leaves every885

10 time units from station A on line 1, starting from date 10, and one train
leaves station B′ every 10 time units, but starting from date 15. Arrivals of
trains and departures from other stations are not represented, and are hence
not constrained. Departures from A are nodes labeled by dA and departures
from B′ are nodes labeled by dB′ . The righmost part of the figure is a structural890

unfolding of the net. We set r(dA) = {t5} and r(dB′) = {t7}. Note that the
topmost occurrence of place OK, that plays the role of a boolean flag in a critical
section can be both consumed by occurrences t11 and t21 of transition t1, which
is a standard conflict. Note also that events t14 and t24 output a token in place
A. Even if these events are not in conflict, due to non-blocking semantics, their895

firing dates may influence one another. The way operations of the schedule inject
in a process of the net is symbolized by dotted lines. Notice that if t51 has to
fire at date 10, then according to intervals attached to transitions, t14 has to fire
at date 5. This means that there exists a unique way to guarantee a departure
from station A at date 10, which is to sample the smallest trip durations from900

C to A and the smallest possible dwell time at station A. The probability of
such kind of schedule with precise dates is obviously 0.

B

B’

C

C’

A

D

1

2

dA10

dA20

dA30

dB′ 15

dB′ 25

dB′ 35

B
t1

[6, 8]

BC t2

[10, 18]

C

t3[4, 8]

CA
t4

[5, 15]

At5

[5, 8]

AB

t6 [5, 10]

B’ t7

[9, 15]

BC’ t8

[3, 8]

C’

t9[1, 3]

CDt10

[10, 15]

Dt11

[3, 5]

DB

t12 [15, 20]

OK

B1 D1 CA1

t11 t111 t14

BC1 DB’1 A1

t12 t112 t15

C1 B’1 AB1

OK1

t16

B2

t13

CA2

t24 t17 t21

A2 B’C’1 BC2

OK2

t27 t31

BC3BC’2

Figure 8: Realizability of a schedule for a metro network with two lines and a shared track.

The example of Figure 8 shows that boolean realizability characterizes an

24

embedding that is consistent with time constraints, but not the probability to
realize a schedule. Consider the STPN of Figure 9. This net has two symbolic905

processes: Es1 in which transition t1 fires, and Es2 in which t2 fires. The probability
of process Es1 is the probability that a value v1 sampled to assign a TTF for t1 is
smaller or equal to another value v2 sampled independently to assign a TTF for
t2. Clearly, the probability that v1 ≤ v2 is equal to the probability that v1 ∈ [0, 1]
(and is hence equal to 1). The probability of the second process Es2 is equal to910

the probability that v1 ≥ v2, but the set of values allowing this inequality is
restricted to a single point v1 = 1, v2 = 1. Conforming to continuous probability
distributions semantics, the probability of this point, and consequently the
probability of executing a time process that is consistent with constraints in Es2 is
0. A schedule S composed of a single node n with a realization function such that915

r
(
λ(n)

)
= {t2} and a date d(n) = 1 are realizable according to Definition 14, but

with null probability. This is not a surprise: requiring a schedule to be realized
with an exact timing in a continuous probability setting leads to realizations with
null probabilities. Let us slightly change the example of Figure 9-a). We now
assign interval [0, 3] to transition t1 in the STPN and interval [1, 4] to transition920

t2. We keep the same schedule S and realization function r, but require that
d(n) = 2. The probability that t2 fires from the initial marking is equal to the
probability that v1 ≥ v2, which is not null (we explain in Appendix I how to
compute the probability of such domain and the joint probability of v1, v2), and
is equal to the joint probability of values of v1, v2 laying in domain v1 ≥ v2925

depicted by the grey zone in Figure 9-b). However, within this continuous
domain of possible values, the probability to fire t2 exactly at precise date 2 as
required by dating function d is still null. Nevertheless, if t2 is allowed to fire
at date 2 with some imprecision α, then the probability to realize the expected
schedule is equal to the integration of the joint probability distribution over the930

domain where (v1 ≥ v2) ∧ (2−α ≤ v2 ≤ 2+α) (represented as a dashed part in
Figure 9-b), which can be strictly positive if distributions attached to t1 and
t2 are properly set. Note that requiring dates to be implemented up to some
imprecision does not necessarily increase the probability to realize a schedule: in
the example of Figure 9-a with intervals [0, 1] and [1, 2] the only way to realize935

the schedule S mentioned before with date d(n) = 1 is to execute the unique
time process in which t2 fires at date 1, and the probability of this process is
null. More generally, the probability to realize a schedule when the embedding
relation leaves a single possible occurrence date for at least one event in the
chosen symbolic process is always null.940

Boolean realizability is a first step to check that a schedule and an implemen-
tation are not totally orthogonal visions of a system. However, examples 8 and 9
demonstrate that it is not precise enough. They also show that boolean realizabil-
ity up to imprecision still allows to consider sets of processes with null probabilities
as realizations of a schedule. An accurate notion of realizability should require945

that schedules embed into symbolic processes of UK with strictly positive proba-
bility and up to some admissible imprecision on dates of events, bounded by
some value α ∈ Q≥0. An operation x in a schedule should now be implemented

25

by a occurrence tji of a transition t at date θ(tji) ∈ [max(d(x)− α, 0), d(x) + α].
Once an injection ψ from a schedule S = 〈N,→, λ, C〉 to a symbolic process Es is950

found, the constraint to obtain realizability of a dating function d up to impreci-
sion of α becomes: Φψ,S,d±α = Φ∧

∧
n∈N max(d(n)−α, 0) ≤ θ(ψ(n)) ≤ d(n)+α.

One can similarly require constraints C in S to be realized up to imprecision of α,
that is, require that constraints of the form d(nj)−d(nj) ≤ v imposed by map C
are implemented in the low level net by a process satisfying a relaxed constraint955

of the form θ(ψ(nj))−θ(ψ(ni)) ≤ v+α. This notion of realization up to bounded
imprecision is more natural that boolean realizability. Indeed, for systems such
as train networks, one cannot expect a schedule to be precisely realized (trains
are subject to random delays), but rather that differences between realized and
scheduled dates are usually not too important.960

p1

t1

p2

t2

p3

[0, 1] [1, 2]

0 1 2 3 4
0

1

2

3

4

v1

v2

v1 = v2

Figure 9: a) An example STPN b) A domain for τ(t1), τ(t2) allowing firing of t2, assuming
I(t1) = [0, 3] and I(t2) = [1, 4].

Definition 16 (probabilistic realizability). Let d be a dating function with
maximal date D for a schedule S = 〈N,→, λ, C〉, r be a realization function.
The pair (S, d) is realizable with non-null probability (w.r.t. r) up to imprecision
α iff there exists an embedding ψ of S into a symbolic process Es of UK such
that: P(Es ∧ Sol(Φψ,S,d±α)) > 0.965

Intuitively, this definition requires that a symbolic process embeds S, and that
the probability that this process is executed and satisfies all timing constraints
imposed by the STPN and by the dating function is strictly positive. This
probability can be evaluated using a transient execution tree, as proposed in [3].
Roughly speaking, nodes of this tree are abstract representations of time domains970

for sampled values attached to enabled transitions (this is the usual notion of
state class, already used in [18, 19] to analyze time Petri nets). In addition to
state classes, transient tree nodes contain abstract representations of continuous
probability distributions over the time domains defined by these classes. The
probability to fire a particular transition from a state and move to a successor975

node is computed as an integration over the time domain allowing this transition
to fire first. On the example of Figure 9 (with intervals [0, 3] and [1, 4], this
corresponds to integration of a joint distribution for values v1, v2 over the domain
in grey. The distributions attached to transitions of STPNs are polyexponential
functions. Beyond their expressive power, polyexponential functions are closed980

under projections, integrations, or multiplication. Further, (joint) distributions
of clock values in a node can always be encoded as polyexponential functions.

26

This way, one can iteratively build a tree whose nodes contain state classes and
distributions over these classes. The parent-child relation is driven by which
transition t fires from the parent node (this implies projecting existing values on985

a part of the class of the parent that allows firing t first), and which transitions
are newly enabled after firing t (yielding re-sampling of TTFs for the newly
enabled transitions). As time progress is guaranteed in our model, a finite
tree representing executions of an STPN or of one of its processes up to some
bounded duration can always be built. As shown in [3], after this transient990

tree construction the (sum of) probabilities attached to paths of the tree can
be used to compute the probability of properties such as safety of a system
within a bounded horizon. In our case, the sum of probabilities of all paths
that end with the execution of a chosen symbolic process gives the probability
to realize this process. If this probability is not null, then there is a positive995

probability to realize the considered schedule. Note that the computed value
is only a lower bound for the exact probability to realize a schedule: indeed
there can be more that one process realizing a schedule. However, computing
the exact probability is rather involved, as distinct realizations of a schedule are
not necessarily independent. Details on the construction of this transient tree1000

are provided in Appendix H.

6. Conclusion

Related work: we have addressed realizability of partially ordered timed
schedules by timed and stochastic concurrent systems with safety requirements.
Realizability in a timed setting has formerly been addressed as a timed game1005

problem [20], with a boolean answer. The objective in this work is to check
whether a player in a timed game has a strategy to ensure satisfaction of a
formula written in a timed logic called Metric Interval Temporal Logic. This
work could be used to answer a boolean realization question, by translating a
schedule to a formula. However, this work of [20] lies in an interleaved setting:1010

a sequential formula cannot differentiate interleaved and concurrent actions. It
does not address randomness in systems and hence cannot quantify realizability.
Scheduling of train networks was already addressed as a constraint satisfaction
problem [1]. The input of the problem is given as an alternative graph (that can
be seen as some kind of unfolding of a systems’s behavior, decorated with time1015

constraints). The solutions proposed in [1] use a branch and bound algorithm to
return an optimal schedule for the next 2 hours of operation of a train network,
but do not consider randomness. Note however that this algorithm is efficient
enough to be used online to guide decisions of a scheduling system. Stability of
timetables in an environment with random perturbations was considered in [21]:1020

a schedule is considered as an immutable ordering on trains, and delays are
modeled as probability distributions. Reliability of a given timetable (with fixed
dates) is then defined via probability measures (probability that a given number
of trains gets late by more than a fixed threshold. . .).

Realizability is also close to diagnosis. Given a log (a partial observation1025

of a run of a system), and a model for this system, diagnosis aims at finding

27

all possible runs of the model of the system whose partial observation complies
with the log. Considering a log as a schedule, the ability to compute a diagnosis
implies realizability of this high-level log by the model. Diagnosis was addressed
for stochastic Petri nets in [22]. In this work, the likelihood of a process that1030

complies with an observation is evaluated, and time is seen as a sequence of
discrete instants. Diagnosis was addressed for parameterized Petri nets in [6].
The proposed solution unfolds a parameterized Petri net to find explanations
for an observed log. Time Petri nets can be considered as a particular case of
this parameterized model. [23] proposes temporal patterns called chronicles that1035

represent possible evolutions of an observed system. A chronicle is a set of events,
linked together by time constraints. The diagnosis framework explains stream
of time-stamped events as combinations of chronicles. Assembling chronicles
is some kind of timed unfolding. However, event streams are not a concurrent
model, and chronicles extraction does not consider randomness.1040

Schedulability can also be seen as conformance of an expected behavior (the
schedule) to an implementation (the STPN model). Conformance was defined
as a timed input/output conformance relation (tIOCO) relation between timed
input/output automata in [24]. More precisely, timed automaton A1 is in tIOCO
relation with timed automaton A2 iff after some timed word, the set of outputs1045

produced by A1 is included in the outputs produced by A2. This relation cannot
be verified in general (as inclusion of timed automata languages is not decidable),
but can be tested. Boolean realizability can be seen as some kind of conformance
test. Note however that tIOCO is defined for an interleaved timed model without
probabilities.1050

Assessment: The techniques described in this work first build an unfolding UK
up to a depth K that depends on the maximal date appearing in the schedule,
find symbolic processes of UK that embed the schedule, and then check that
at least one of them has a strictly positive probability to be executed. In a
purely boolean setting, this amounts to answering a satisfiability question for1055

a combination of linear inequations, and in a probabilistic setting, this means
computing a transient execution tree to obtain a quantitative answer. A first
question is whether all these steps can be factorized. A second question is of
course complexity of this algorithm.

A noticeable fact is that satisfiability of constraints associated with pro-1060

cesss and embeddings and unfolding are rather distinct parts of the proposed
method. Usually, unfoldings can be stopped as soon as some criterion is met
(completeness for construction of finite prefixes[4, 5], satisfaction of a property. . .
As shown in Section 4, due to blocking semantics, satisfiability of constraints
is not monotonous w.r.t. the size of unfoldings, and hence cannot be used as a1065

criterion to stop unfolding. However, embedding verification and unfolding can
be done jointly: one can stop a branch of unfolding as soon as a schedule does
not embed in the pre-process on this branch.

Regarding complexity, the size of unfoldings and hence of constraints asso-
ciated with symbolic processes can grow exponentially with depth. However,1070

these constraints can be simplified to refer only to event variables. One can
also notice that atoms in constraints are rather simple inequalities. Hence,

28

satisfiability of constraints could remain simple linear problems in most cases.
However, due to blocking semantics, constraints also contain disjunctions. This
may raise combinatorial issues and make satisfiability of constraint costly. The1075

cost of the algorithm to compute realization probability for processes is also an
issue. We use the transient tree construction of [3], that builds a symbolic but
interleaved representation of some process. This is obviously very costly. We
are currently investigating ways to evaluate probabilities of symbolic processes
in a non-interleaved setting. Note also that the algorithm designed so far only1080

computes lower bounds for realization probability.
As future work, we would like to implement and improve this realizability

verification framework, and use it as a basis to prove more properties. For
instance, it is interesting to prove that a schedule can be realized while ensuring
that the overall sum of delays w.r.t. the expected schedule does not exceed some1085

threshold. Another improvement would be to provide means to compute an
exact value for the realization probability, and not only lower bounds.

References

[1] A. D’Ariano, D. Pacciarelli, M. Pranzo, A branch and bound algorithm for
scheduling trains in a railway network, European Journal of Operational1090

Research 183 (2007) 643–657.

[2] A. D’Ariano, M. Pranzo, I. Hansen, Conflict resolution and train speed
coordination for solving real-time timetable perturbations, IEEE Trans. on
Intelligent Transportation Systems 8 (2007) 208–222.

[3] A. Horváth, M. Paolieri, L. Ridi, E. Vicario, Transient analysis of non-1095

Markovian models using stochastic state classes, Performance Evaluation
69 (2012) 315–335.

[4] K. L. McMillan, A technique of state space search based on unfolding,
Formal Methods in System Design 6 (1995) 45–65.

[5] J. Esparza, S. Römer, W. Vogler, An improvement of McMillan’s unfolding1100

algorithm, Formal Methods in System Design 20 (2002) 285–310.

[6] T. Chatain, C. Jard, Symbolic diagnosis of partially observable concurrent
systems, in: FORTE’04, volume 3235 of LNCS, pp. 326–342.

[7] T. Chatain, C. Jard, Complete finite prefixes of symbolic unfoldings of safe
time Petri nets, in: ICATPN’06, 2006, pp. 125–145.1105

[8] P. Merlin, A Study of the Recoverability of Computing Systems, Ph.D.
thesis, University of California, Irvine, CA, USA, 1974.

[9] R. R. Razouk, C. V. Phelps, Performance analysis using timed petri nets,
in: Protocol Specification, Testing and Verification IV, pp. 561–576.

29

[10] M. Boyer, M. Diaz, Multiple enabledness of transitions in Petri nets with1110

time, in: Proc. of PNPM 2001, IEEE, 2001, pp. 219–228.

[11] S. Akshay, B. Genest, L. Hélouët, Decidable classes of unbounded Petri
nets with time and urgency, in: Proc. of PETRI NETS 2016, volume 9698
of LNCS, pp. 301–322.

[12] D. Bartholdi, J.J. ans Eisenstein, A self-coordinating bus route to resist1115

bus bunching, Transportation Research, Part B 46 (2012) 481–491.

[13] J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakovlev, Synthesizing Petri
nets from state-based models, in: ICCAD’95, pp. 164–171.

[14] R. Y. Rubinstein, D. Kroese, Simulation and the Monte Carlo Method,
Wiley, 2 edition, 2008.1120

[15] T. Aura, J. Lilius, Time processes for time Petri nets, in: ICATPN’97,
volume 1248 of LNCS, pp. 136–155.

[16] A. Semenov, A. Yakovlev, Verification of asynchronous circuits using time
Petri net unfolding, in: DAC, pp. 59–62.

[17] T. Chatain, C. Jard, Time supervision of concurrent systems using symbolic1125

unfoldings of time Petri nets, in: FORMATS’05, volume 3829 of LNCS, pp.
196–210.

[18] B. Berthomieu, M. Diaz, Modeling and verification of time dependent
systems using time Petri nets, IEEE Trans. Software Eng. 17 (1991) 259–
273.1130

[19] D. Lime, O. Roux, Model checking of time Petri nets using the state class
timed automaton, Discrete Event Dynamic Systems 16 (2006) 179–205.

[20] L. Doyen, G. Geeraerts, J. Raskin, J. Reichert, Realizability of real-time
logics, in: FORMATS’09, volume 5813 of LNCS, pp. 133–148.

[21] M. Carey, Ex ante heuristic measures of schedule reliability, Transportation1135

Research 33 (1999) 473494.

[22] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, C. Jard, Fault
detection and diagnosis in distributed systems: An approach by partially
stochastic Petri nets, Discrete Event Dynamic Systems 8 (1998) 203–231.

[23] C. Dousson, Extending and unifying chronicle representation with event1140

counters, in: ECAI’02, pp. 257–261.

[24] M. Krichen, S. Tripakis, Conformance testing for real-time systems, Formal
Methods in System Design 34 (2009) 238–304.

30

Appendix A. Formal semantics of STPNs

Timed moves are formally defined by the following rule:1145

δ > 0
∧ ∀t ∈ enab(m) \ blck(〈m, τ〉), τ(t) ≥ δ ∧ τ ′(t) = τ(t)− δ
∧ ∀t ∈ blck(〈m, τ〉), τ ′(t) = τ(t)

〈m, τ〉 δ−→ 〈m, τ ′〉
A transition t′ is persistent after firing of t from m iff it is enabled in m, t 6= t′,

and t′ is enabled inm−•t. We denote by pers(m, t) = (enab(m)∩enab(mtmp))\{t}
the set of persistent transitions after firing of t from m.

Discrete moves are formally defined by the following operational rule:

t ∈ fira(〈m, τ〉)
∧ m′ = (m−•t) + t•

∧ ∀ti ∈ pers(m, t), τ ′(ti) = τ(ti)
∧ ∀ti ∈ newl(m, t), τ ′(ti) ∈ [eft(t), lft(t)]

〈m, τ〉 t−→ 〈m′, τ ′〉

Appendix B. Construction of time processes1150

The time process TPu obtained from a timed word u = 〈t1, d1〉〈t2, d2〉 . . . 〈tk, dk〉 ∈
L(N) is built inductively as follows. We assume a dummy initial event ⊥ that
initializes the initial contents of places according to m0. We start from the initial
process TP0 = 〈B0, E0, θ0〉 with a set of conditions B0 = {(p,⊥) | p ∈ m0}, a
set of events E0 = {⊥}, and a function θ0 : {⊥} → {0}.1155

Let TPu,i = 〈Bi, Ei, θi〉 be the time process built after i steps for the prefix
〈t1, d1〉 . . . 〈ti, di〉 of u, and let 〈t, di+1〉 be the (i+ 1)th entry of u. We denote by
last(p,Ei, Bi) the last occurrence of place p in TPu,i, i.e., the only condition b =
〈p, e〉 with an empty postset. Then, we have Ei+1 = Ei ∪ {e}, where e = 〈t,X〉
with X = {b | b = last(p,Ei, Bi) ∧ p ∈ •t} and Bi+1 = Bi ∪ {〈p, e〉 | p ∈ t•}. We1160

also set θ(e) = di+1. The construction ends with TPu = TPu,|u|.

Appendix C. Structural unfolding of a STPN

We say that a condition b ∈ B is maximal in U = 〈E,B〉 or in a pre-process
of U when it has no successor event (b•= ∅), and denote the set of maximal
conditions of B by max(B). As for time processes construction, given a finite1165

pre-process 〈E′, B′〉 ∈ PE(U), and a place p of the considered STPN, we denote
by last(p,E′, B′) the maximal occurrences of place p w.r.t. ≺ in 〈E′, B′〉. Pre-
processes of an unfolding are conflict free sets of events and conditions. They
represenyt potential processes (executions) of N when timing constraints are
forgotten. A cut of a pre-process is an unordered set of conditions. As this set of1170

conditions originates from a pre-process, conditions in a cut have no conflicting
events in their causal past. They represent place contents that can be consumed

31

by the next firable transitions at some point in an execution. We denote by
Cuts(E,B) the set of cuts of pre-process 〈E,B〉. Unfolding of a Petri net simply
consists in successively appending transitions to already built processes, i.e. to1175

cuts of these procvesses.
Structural unfolding: Following [5], we inductively build unfoldings U0, . . . ,UK .
Each step k adds new events at depth k and their postset to the preceding
unfolding Uk−1. We start with the initial unfolding U0 = 〈∅, B0〉 where
B0 = {〈⊥, p〉 | p ∈ m0}. Each induction step that builds Uk+1 from Uk1180

adds new events and conditions to Uk as follows. Letting Uk = 〈Ek, Bk〉 be
the unfolding obtained at step k, we have Uk+1 = 〈Ek ∪ Ê, Bk ∪ B̂〉 where
Ê , {〈B, t〉 ∈ (2Bk× T) \ Ek | ∃〈X,Y 〉 ∈ PE(Uk), B ⊆ Cuts(X,Y),•t = pl(B)},
and B̂ , {〈e, p〉 ∈ Ê × T | e = 〈B, t〉 ∈ Ê ∧ p ∈ t•}. Intuitively, Ê adds an occur-
rence of a transition if its preset is contained in the set of conditions representing1185

the last occurrences of places contained in some pre-process of Uk, and B̂ adds
the conditions produced by Ê.

Appendix D. Constraints to reintroduce time in processes

Let UK = 〈EK , BK〉 be the unfolding of an STPN N up to depth K, and let
E ⊆ EK be a conflict free and causally closed set of events, and B = •E ∪ E•1190

(B is contained in BK). We define ΦE,B as the set of constraints attached
to events and conditions in E,B, assuming that executions of N start at a
fixed date d0. Constraints must be set to guarantee that occurrence dates of
events are compatible with the earliest and latest firing times of transitions
in N , and that urgency or blocking is never violated. Let us first define the1195

constraints associated with each condition b = 〈e, p〉. Recalling that variable
dob(b) represents the date at which condition b is created, ΦE,B must impose
that for every b ∈ B0, dob(b) = d0.

For all other conditions b = 〈e, p〉, as the date of birth is exactly the occurrence
date of e, we set dob(b) = θ(e) for every b = 〈e, p〉. Despite this equality, we will1200

use both variables θ(e) and dob(b) for readability reasons. Recall that dod(b)
is a variable that designates the date at which a place is emptied by some
transition firing, dod(b) is hence the occurrence date of an event that has b as
predecessor. Within a conflict free set of events, this event is unique. In the
considered subset of conditions B, several conditions may represent fillings of1205

the same place, and B can hence be partitioned into B1]B2] · · ·]B|P |, where
conditions in Bi represent fillings of place pi. Due to blocking semantics, all
conditions in a particular subset Bi = {bi,1, bi,2, . . . , bi,k} must have disjoint
existence dates, that is for every j, j′ ∈ {1, 2, . . . , k} with j 6= j′, the intersection
between [dob(bi,j), dod(bi,j)] and [dob(bi,j′), dod(bi,j′)] is either empty, or limited1210

to a single value. This constraint can be encoded by the disjunction:
no-overlap(bi,j , bi,j′) = dod(bi,j) ≤ dob(bi,j′) ∨ dod(bi,j′) ≤ dob(bi,j) if bi,j

• 6= ∅ ∧ bi,j′• 6= ∅,
dod(bi,j) ≤ dob(bi,j′) if bi,j

• 6= ∅ ∧ bi,j′•= ∅,
dod(bi,j′) ≤ dob(bi,j) otherwise.

32

Note that if bj � bj′ , then the constraint among events and transitions imme-
diately ensures dob(bj,i) ≤ dod(bj,i) ≤ dob(bj′,i) ≤ dod(bj′,i). However, we need
to add a consistency constraint for every pair of concurrent conditions bi,j , bi,j′1215

that belong to the same Bi. Hence, calling I(bi,j , E,B) the set of conditions that
represent the same place as bi,j and are concurrent with bi,j in 〈E,B〉, we have to
ensure the constraint non-blocking(bi,j) =

∧
bi,j′∈I(bi,j ,E,B) no-overlap(bi,j , bi,j′).

In words, condition bi,j does not hold during the validity dates of any concurrent
condition representing the same place. In particular, a time process of N cannot1220

contain two maximal conditions with the same place.
Let us now consider the constraints attached to events. An event e =

〈B, t〉 is an occurrence of a firing of transition t that needs conditions in B to
be fulfilled to become enabled. Calling doe(e) the date of enabling of e, we
necessarily have doe(e) = max{dob(b) | b ∈ B}. Event e is firable at least eft(t)1225

time units, and at most lft(t) time units after being enabled. We hence have
doe(e)+eft(t) ≤ dof(e) ≤ doe(e)+ lft(t). However, execution of e does not always
occur immediately when e is firable. Execution of e occurs after e is firable,
as soon as the places filled by e are empty, i.e., e occurs at a date θ(e) that
guarantees that no place in t• is occupied. This is guaranteed by attaching to1230

every event e the constraints θ(e) = dob(b1), θ(e) = dob(b2), . . . , θ(e) = dob(bk),
where {b1, b2, . . . bk} = e•, and constraints non-blocking(b1), non-blocking(b2), . . . ,
non-blocking(bk). Last, as semantics of STPNs is urgent, once firable, e has to fire
at the earliest possible date. This is encoded by the constraint θ(e) = min{x ∈
R≥0 | x /∈]dob(b), dod(b)[for some b ∈

⋃
I(bi)∧ x ≥ dof(e)}. Figure D.10 shows1235

the effect of blocking and possible free firing dates for some event with a condition
b in its postset. The top of the figure is a part of a pre-process, with conditions
b, b0, b1, b2 referring to the same place p1. Suppose that values of variables
[dob(bi) and dod(bi)] for i ∈ 0, 1, 2 are already known. The situation is depicted
by the drawing at the bottom of Figure D.10. Horizontal lines represent real1240

lines, and line portion between brackets represent intervals [dob(bi), dod(bi)] for
i ∈ 0, 1, 2. Accoridng to the considered pre-process, we have I(b) = {b0, b1, b2}.
Then [dob(b), dod(b)] have to be fully inscribed in one of these thick segments of
the Figure. An event with b in its postset (as event e in the pre-process at the
top of the Figure) can occur only at dates contained in these thick segments.1245

Written differently,

θ(e) =

{
dof(e) if

∧
b∈I(b1)∪...I(bk) dof(e) ≤ dob(b), and

min{dod(b) | ∀b′ ∈
⋃
bi∈e
•I(bi), dod(b) /∈]dob(b′), dod(b′)[} otherwise.

This formula can be translated in boolean combinations of inequalities over
variables of var(E,B). Similarly, event e = 〈B, t〉 must occur before all its
conflicting events. If an event e′ in conflict with e is executed, at least one
condition in B is consumed, and e cannot occur in a time process containing
e′. We hence need the additional constraint

∧
e′]e notMoreUrg(e, e′) to guarantee1250

that there exists no other event that is forced to occur before e due to urgency.
We define notMoreUrg(e, e′) as the following constraint:
notMoreUrg(e, e′) = θ(e) ≥ doe(e′)+lft(tr(e′))⇒ tiled(e, e′)∨

∨
e′′||e preempts(e′, e′′)

33

p1
1b

p1
0 p2

1b0

p3
1b1

p2
2

p3
1 b2

p3
3

t11e t12

t13

t14

b

b0
dob(b0) dod(b0)

b1
dob(b1) dod(b1)

b2
dob(b2) dod(b2)

Figure D.10: Constraints on dates of birth of tokens in a shared place.

where tiled(e, e′) = free(e′) ∩ [doe(e′) + lft(tr(e′)), θ(e)] = ∅, e′′||e refers to
events that are concurrent with e in the considered set of events E, free(e′) =1255

R≥0 \ {[dob(b), dod(b)] | ∃b′ ∈ e′•, b ∈ I(b′)} is the set of intervals in which
places attached to conditions in e′• are empty, and preempts(e′, e′′) = θ(e′′) ≤
min(]doe(e′) + lft(tr(e′)), θ(e)[∩ free(e′)) means e′′ disabled e′ by consuming a
condition in •e′′.

Constraint notMoreUrg(e, e′) means that if e′ is in conflict with e, then at1260

least one condition in •e′ is consumed before e′ can fire, or if e′ becomes firable
before e fires, the urgent firing of e′ is delayed by blockings so that e can occur.
As for constraint attached to blockings, notMoreUrg(e, e′) can be expressed as a
boolean combination of inequalities. One can also notice that notMoreUrg(e, e′)
can be expressed without referring to variables attached to event e′ nor e′•, as1265

doe(e′) = max
bi∈
•
e′

dob(bi) and the intersection of I(b) and e′• is void.

For causally closed sets of events and conditions E ∪ B contained in some
pre-process of UK , the constraint ΦE,B applying on events and conditions of
E ∪B is now defined as ΦE,B =

∧
x∈E∪B ΦE,B(x) where:

∀b ∈ B,ΦE,B(b) = non-blocking(b)∧


dob(b) = d0 if b ∈ B0, and b is maximal,
dob(b) = d0 ∧ dob(b) ≤ dod(b) if b ∈ B0,
dob(b) = θ(•b) if b /∈ B0 and b is maximal,
dob(b) = θ(•b) ∧ dob(b) ≤ dod(b) otherwise.

1270

34

∀e ∈ E,ΦE,B(e) =



doe(e) = max
b∈•e dob(b)

∧ doe(e) + eft(tr(e)) ≤ dof(e) ≤ doe(e) + lft(tr(e))

∧ dof(e) ≤ θ(e) ∧
∧
b∈•e dod(b) = θ(e)

∧
∧
b∈e• θ(e) = dob(b)

∧
∧
e′]e notMoreUrg(e, e′)

Let us now address maximality of symbolic prefixes wrt urgent events firing.
Let SPP = 〈E′, B′,ΦE′,B′〉 be a symbolic prefix of pre-process PP = 〈E,B〉.
Symbolic process SPP is maximal w.r.t urgent events firing iff no more event
of PP have to belong to SPP. This property of SPP holds if every event1275

f ∈ B′•∩ E that could have become urgent before the last date of all events
in E′ was prevented from firing due to blocking. This property prefixes can be
verified as a property Φmax(f) that have to be satisfied for every f ∈ B′•∩ E.
Let Cf = pl−1(f•)∩B′ denote the set of conditions of B′ whose place appears in
the postset of f . Then, SPP is maximal iff for every f ∈ B′•∩ E, the following1280

constraint is not satisfiable.

Φmax(f) =


ΦE′,B′

∧ θ(f) ≤ maxe′∈E′ θ(e
′)
(
f fires before the last event in E’

)
∧ eft(f) + max

b∈•f dob(b) ≤ θ(f) (f is urgent)

∧
∨
X∈2Cf maxx∈X dod(x) ≤ θ(f) ≤ minx∈Cf\X dob(x)

(f is not blocked for the whole duration of the process)
Intuitively, Φmax(f) means that f , that is not in the symbolic process,

becomes urgent, is not blocked by conditions in B′, and has to fire before the
execution of the last event in E′. If Φmax(f) is satisfiable, then f should appear1285

in the process.

Appendix E. Proof of proposition 1

Proposition 1. Let N be a STPN guaranteeing time progress of δ time units
(between consecutive occurrences of each transition). For every date D ∈ R≥0

and condition b in an unfolding Un, there exists K ≥ n s.t. {b′ ∈ block(b) |1290

dob(b′) ≤ D} is contained in UK .
Proof : Consider a pre-process PP of Un, which depth is more than dDδ e.|T |
events. Every event of the unfolding appended at depth i consumes conditions
that were created at depth j < i, and at least one condition that was produced
at step i of the unfolding. Hence, for every event en and bn condition created1295

at depth n, there exists a sequence b0 < e1 < b1 < · · · < en < bn of events
and conditions of increasing depth (and also increasing dates). With the time
progress assumption, we know that every consecutive pair of events representing
the same transition occurs at lest at dates that differ by δ. Hence, an event
created at depth n has an occurrence date of at least δ.bn/|T |c. The occurrence1300

date of an event created at depth greater than D
δ .|T | is hence greater than D.

The number of events and conditions created at step n and appearing in the
same pre-process of Un is finite (as creating an event uses exclusively at least
one condition of the preceding step). It is hence sufficient to unfold a net up to

35

depth D
δ .|T | to obtain the (finite) set of conditions that refer to the same place1305

as some condition b before a given date D. �

Appendix F. Proof of Proposition 2

Proposition 2. Let N be a STPN guaranteeing time progress of δ time units.
The set of time processes executable by N in D time units are prefixes of time
processes of UK , with K = dDδ e · |T | containing only events with date ≤ D.1310

Proof : We will show inclusion of the set of processes in the two directions.
First of all, we define an ordering on symbolic processes. Let Es = 〈E,B,Φ〉 and
Es′ = 〈E′, B′,Φ′〉 be two symbolic processes. We will say that Es v Es′ iff there
exists an event e′ such that E′ = E ∪ {e′}, B′ = B ∪ e′•, and Φ = Φ′|var(E,B). �

Lemma 1. Let Es be a symbolic process of unfolding UK , starting from m0, d0,1315

that is satisfiable and complete. Let θ be one of its solutions guaranteeing
∀e ∈ E, θ(e) ≤ D. Then, there exists a sequence Es,0 = 〈E0, B0,Φ0〉 v Es,1 =
〈E1, B1,Φ1〉 · · · v Es of symbolic processes of UK such that E0 = ∅, B0 =
{〈⊥, p〉 | p ∈ m0} Φ0 = {θ(⊥) = d0 ∧

∧
b∈B0

dob(b) = d0} and θ is a solution for

every Es,i and θ(ei) ≤ θ(ei + 1).1320

Proof : We can show this property by induction on the size of prefixes of
Es. The base hypothesis is straightforward, taking the sequence with only one
symbolic process Es,0 without events. Suppose that this property is satisfied
for symbolic processes up to size n, and consider a satisfiable and complete
symbolic process Es,n+1 of size n+ 1. Let θn+1 denote a solution for this process.1325

A growing sequence from Es,0 to Es,n+1 exists.In this sequence, the difference
between Es,n+1 and Es,n is a single event e that is maximal in Es,n+1 w.r.t.
ordering on events �, and such that θ(e) ≥ θ(x) for every event x in Es,n+1 \{e},
and θ(e) ≥ dob(b) for every b in Es,n+1 \{e}. Let En, Bn denote the set of events
in Es,n+1 \ {e}. Let us denote by Φn+1|En,Bn the restiction of Φn+1 to variables1330

attached to events and conditions En, Bn. One has to remove variables θ(e),
dod(b) for every b ∈ •e, and dob(b) for every b ∈ e•using an elimination technique
such as Fourier-Motzkin. Using the properties of elimination, θ satisfies Φn+1

if and only if the restriction of θ to var(En, Bn) satisfies Φn+1|En,Bn . However,
the restriction of θ is exactly θn, and as θ(e), dod(b) for b ∈ e•, and dod(b) for1335

b ∈ •e are all greater than variables in var(En, Bn), the elimination of variables
is simply a projection on atoms that do not contain variables related to e, and
Φn+1|En,Bn = Φn. �

Lemma 2. Given a symbolic process Es of UK , one of its solutions θ, and an
ordering Es,0 = 〈E0, B0,Φ0〉 v Es,1 = 〈E1, B1,Φ1〉 · · · v Es as above, then the1340

word uEs,θ = 〈t1, θ(e1)〉 . . . 〈t|E|, θ(e|E|)〉 is a timed word of L(N).

36

Proof : Again we can prove this lemma by induction. The base case is obvious,
as the empty word ε is a timed word of L(N). Let us suppose that the property
is satisfied up to n, that is for every process En of size n and solution θn meeting
all constraints of En, there exists an increasing sequence of prefixes of En such1345

that the word associated with this sequence is a timed word of L(N).
Let us now consider a time process En+1 with n + 1 events and one of its

solutions θn+1. As in Lemma 1, one can find an event en+1 and a process En
such that En and En+1 only differ by addition of this single event. There exists
a timed word un = 〈e1, θn+1(e1)〉 . . . 〈en, θn+1(en)〉 ∈ L(N) corresponding to En.1350

This word may lead the net to any configurations in a set Confn with identical
markings, but distinct times to fire attached to transitions. However, as we
know that θn+1 meets all constraints of En+1, there exists a configuraton in
Confn whose times to fire allow firing of en+1 at date θ(en+1), and un+1 =
un.〈en+1, θ(en+1)〉 ∈ L(N). �1355

Note that assuming time progress, the dates attached to an event of a process
of UK that occur at a date smaller than D cannot be further constrained by
addition of constraints coming from events that are not in UK . The two lemmas
above hence allow to conclude that for a given symbolic process Es of unfolding
UK , in which one considers events that occur before date D, and for each solution1360

of Es, we have Esθ = TPuEs,θ for some word uEs,θ ∈ L(N). Hence, the set of
time processes of UK whose events occur before D is contained in the set of
time processes TP (L≤D(N)). All time processes of some pre-process of UK (and
hence all time processes of unfolding UK) can be built from a timed word that is
executable by N in less than D time units, and are hence time processes of N .1365

We now have to prove the converse direction, i.e., every time process associated
with a word u ∈ L≤D(N) is a time process of UK .

Lemma 3. Let u ∈ L≤D(N). Then, TP (u) is a time process of UK .

Proof : We proceed by induction on the size of words. First, for the empty
words, the time process with only initial conditions is clearly a time process1370

of UK . Let us now assume that for every un = 〈e1, θ(e1)〉 . . . 〈en, θ(en)〉 ∈
L≤D(N) of length n, TP (un) is a time process of UK . Let us consider a word
un+1 = 〈e1, θ(e1)〉 . . . 〈en, θ(en)〉.〈en+1, θ(en+1)〉 ∈ L≤D(N). One can build a
time process Eu for u = 〈e1, θ(e1)〉 . . . 〈en, θ(en)〉. Clearly, as un+1 ∈ L≤D(N),
word u leads from marking m0 to a marking that enables en+1. Let ep1 , . . . , epk1375

denote the k events that produce the tokens that are consumed by en+1. If
event en+1 is a firing of some transition t that occurs exactly when its time to
fire has expired, θ(en+1) meets the constraint eft(t) + max{θ(epi)} ≤ θ(en+1) ≤
lft(t) + max{θ(epi)}. In any case, we have eft(t) + max{θ(epi)} ≤ θ(en+1)
(which is the only constraint w.r.t predecessors imposed by constraint in the1380

unfolding. Similarly, let eb1 , . . . ebq denote the last events of u that free places in
which t outputs some tokens (and hence may have blocked the execution of t
before θ(en+1)). We have θ(en+1) meets the constraint max({θ(ebi)}) ≤ θ(en+1).
Hence, any event that had to occur before θ(en+1) (due to urgency, causality,
or blockings) also appears in Eu. Hence, θ witnesses satisfiability of a set of1385

37

constraints over occurrence dates of events e1, . . . , en, and one can safely append
en+1 = (B, t) to maximal places of Eu, and obtain a symbolic prefix Eun+1

(satisfiable, conflict free and complete). It now remains to show that Eun+1
is a

symbolic process of UK . As θ(en+1) ≤ D, en+1 appears in the unfolding of N at
depth at most D

δ , which is lower than K = dDδ e · |T |. Hence, Eun+1
is an causally1390

closed set of events that also contains all mandatory urgent transition firings
and place unblockings whose set of constraints is satisfiable, and contained in
UK , i.e., it is a symbolic process of UK . �

Appendix G. Algorithm to compute embeddings of a schedule in a
process1395

Finding the set of embedding functions Ψ = {ψ0, ψ1, . . . , ψk} that satisfy the
conditions of definition 14 is achieved building iteratively injective functions
meeting the embedding requirements, by matching at every step minimal yet
unexplored nodes of S with minimal unmatched nodes of Es. This construction
is depicted in Algorithm 1. We will define an embedding function f as a set1400

pairs of the form 〈n, e〉, interpreted as f(n) = e. We define in particular the
empty embedding f⊥, that is undefined for every node of N , and will be used as
starting point of the algorithm. For a given function f , the function f ∪ 〈n, e〉
is the function that associates e to node n, and f(n′) to every other node
n′ ∈ domain(f).1405

Appendix H. Stochastic state class tree

In this part of the appendix, we detail how to build a stochastic state class
tree for a particular process of a stochastic Petri net with blocking seantics.

Definition 17 (transient stochastic state class). A transient stochastic state
class (or class for short) of an STPN N is a tuple Σ = 〈m,D, fτ

˜
, blk, urg〉1410

where m is a marking, τ
˜

= 〈τage, τ
¯
〉 is a vector where τage is the opposite of the

elapsed time and D is a domain for τ
˜

. τ
¯

= 〈τ0, τ1, . . . , τN−1〉 is a vector of ran-
dom variables with support D↓τage representing the possible TTFs of transitions
enabled by marking m s.t. for every τi in τ

¯
, the elimination of all other variables

from D yields a non-empty set of possible values that is different from {0}; fτ
˜

1415

is a PDF over D, blk is a set of blocked transitions, and urg is a set of urgent
transitions.

The domain D of τ
¯

is simply the domain of a class as defined in the usual
state class graph construction of TPNs (see for instance [19, 18]). It represents
possible values for TTFs attached to transitions. As our STPN is bounded, the1420

number of domains that can be generated inductively at construction time is
finite (as proved by [18]). Urgent and blocked transitions are also finite subsets of
T . However, as shown in [3], the number of distributions that can be iteratively
computed needs not be finite.

38

Algorithm 1: Computation of embeddings of a schedule in a symbolic
process

input: a schedule S = 〈N,→, λ, C〉, a symb. process E = 〈E,B,Φ〉;
Ψ := ∅; // the set of solutions is initially empty

F := {f⊥}; // the exploration starts from the undefined map

while F 6= ∅ do
choose f ∈ F ;

MinS,f := min
→

(
N \ domain(f)

)
;

if MinS,f = ∅ then ; // all nodes of S have an image in E
Ψ := Ψ ∪ {f}; // f is an embedding

else
F := F \ {f}; // we will explore extensions of partial

embedding f

MinE,f := min
�

(
E \ image(f)

)
;

Found := false;
while MinS,f 6= ∅ ∧ Found = false do

choose n ∈ MinS,f ;
MinS,f := MinS,f \ {n};
cand := {e ∈ MinE,f | tr(e) ∈ r

(
λ(n)

)
∧ ∀n′ ∈ dpred

→
(n), f(n′) �

e};
if Cand 6= ∅ then

F := F ∪
⋃
e∈Cand{f ∪ 〈n, e〉}; // update f with pairs

〈n, e〉 that meet the matching criteria and add the

new functions to candidate embeddings

Found := true;

end

end

end

end

39

Definition 18 (transient stochastic state class tree). A transient stochas-1425

tic state class tree for an STPN N (that we shall call tree, for short) is a directed
acyclic graph S = 〈V, ◦→ ∪•→〉 where vertices in V are classes, edges in ◦→
represent firing transitions after (symbolically) elapsing time, and edges in •→
represent firings of urgent transitions. Every vertex in the tree has only one
predecessor except for the root of the tree, denoted v0, that has no predecessor.1430

Edges carry probabilistic informations on transitions firings and the sum of
probabilities of all edges leaving the same vertex is equal to 1.

The construction of a tree starts from the initial class Σ0 (with marking
m0, a domain D0 for the TTFs of transitions enabled in m0 and all other
components defined accordingly, see appendix E) and inductively computes1435

edges and reachable classes. Edges Σ
t,µ−→ Σ′ from a class Σ to a successor class

Σ′ are labeled by a transition name t and by the probability µ to fire t from Σ,
and are of two forms:

Firing after elapsing time: A move Σ
ti,µi◦→ Σ′ from Σ = 〈m,D, fτ

˜
, blk, urg〉

to Σ′ = 〈m′, D′, fτ ′
˜
, blk′, urg′〉, achievable with probability µi, consists in firing1440

transition ti after symbolically elapsing its TTF. Such a move is only allowed
if urg = ∅ and the TTF τi of ti is less than or equal to TTFs of all other
transitions that could fire from Σ. The time domain Di from which ti can
fire is hence Di = D ∩

⋂
τj∈τ

¯
{τi ≤ τj}, and the probability of firing ti from Σ

is µi =
∫
Di
fτ
˜

(x
˜
) dx

˜
. We have m′ = m − •ti + ti

•. The new domain D′ and1445

distribution f ′τ
˜

are computed as for STPNs with non-blocking semantics: Vector
τ
˜

is obtained by advancing time, removing variables of disabled transitions and
adding those of newly enabled transitions [3], and then removing variables of
transitions whose domain is the singleton {0}. The domain of a single variable τi
in a domain D over several variables can be obtained by eliminating all variables1450

but τi from D. As soon as a variable has domain {0}, the time to fire of the
associated transition is necessarily zero, and the transition has to fire. It is
then stored in the set of urgent transitions if it is not blocked, and in the set of
blocked transitions otherwise. The set blk′ is obtained by removing from blk

transitions that were disabled by firing of ti and transitions that are not blocked1455

anymore in m′ thanks to the places freed by firing of ti (they become urgent),
and adding transitions which are enabled in m′ with a firing domain in D′ that
is {0}. Finally, the set urg′ contains all enabled transitions that became urgent
when firing ti, i.e., transitions with firing domain {0} among enabled transitions,
and formerly blocked transitions unblocked by ti.1460

Firing urgent transitions: In STPNs semantics, when more than one tran-
sition is firable from a configuration, their weights are used to compute the
probability of firing each transition. This case can occur because of blocking
semantics: an STPN can keep several transitions blocked, and firing a transition
can also unlock several of them at the same time (all unblocked transitions1465

become urgent). When a class Σ has urgent transitions (urg 6= ∅), only moves of

the form Σ
ti,µi•→ Σ′ are allowed. They consist in firing a transition ti among urgent

transitions in urg with probability µi = W(tk)
/∑

tj∈urgW(tj). Components

40

m′, D′ and fτ ′
˜

of the successor class are computed as for timed moves, with the
only difference that no time elapses before the firing of ti. Set blk′ is obtained1470

by removing from blk transitions that are unlocked or disabled by the firing of
ti and adding those that become blocked in m′, and urg’ contains transitions
from urg that were not disabled by firing of ti and transitions from blk that
were unblocked when firing ti.

Transient trees are a priori infinite, but very often, one can work with a1475

bounded horizon. This is our case when evaluating the probabilty of realization
in UK . Let Ψi = {ψi,0, ψi,1, . . . , ψi,n−1} denote all possible embeddings of a
schedule S into a symbolic process Esi of N . We denote by P(Φψi,j ,d±α) the
probability that N executes a time process Esi and realizes S within a precision
of ±α when ψi,j is the embedding of S in Esi . We adapt the tree construction to1480

consider only Esi and embedding ψi,j , and compute P(Esi ∧Φψi,j ,d±α). We build a
tree whose vertices of the form 〈Σ, S〉 memorize a class and a suffix of Esi not yet

executed. We start from vertex 〈Σ0, Esi 〉. We create an edge 〈Σ, S〉 tk,µk−−−→ (Σ′, S′)
representing firing of a transition tk if there is a minimal event e in the remaining
suffix of Esi , and tr(e) = tk. S′ is the new suffix obtained by removing e from1485

S. Σ′ is the successor class obtained after firing this transition from Σ. Edges
are built as before in the tree, but with an additional constraint: edges with
label tk, µk and components m, D, fτ

˜
, blk, urg of classes are built with the

additional requirement that when creating an edge from an event e that is in
the image of ψi,j , the firing time domain is restricted to impose that e occurs1490

in the time interval Ik = [max(0, d(ψ−1
i,j (e)) − α), d(ψ−1

i,j (e)) + α]. In this case,

the probability of firing tk = tr(e) becomes µk =
∫
Dk ∩D′k fτ

˜
(x
˜
) dx

˜
, where D′k

is the part of D in which τk − τage (the firing date for e) belongs to Ik. We stop
developing a branch of the tree at vertices whose suffix does not contain events
that are images of nodes in S via ψi,j . The construction ends with a tree Si,j,α.1495

Transient tree Si,j,α measures the probability of solutions and of occur-
rence of a particular process. The probability P(Esi ∧ Φψi,j ,α) is computed as
P(Esi ∧ Φψi,j ,α) =

∑
ρ∈Path(Si,j,α) P(ρ) where Path(Si,j,α) is the set of paths

from 〈Σ0, Esi 〉 to a leaf of Si,j,α, and the probability P(ρ) of a path ρ =

Σ0
ti,µi−−−→ . . .

tl−1,µl−1−−−−−−→ Σl that start at Σ0 and end on a leaf Σl is the product1500

Πi∈{0,...,l−1}µi. As soon as P(Esi ∧ Φψi,j ,α) > 0, S has a non-null probabil-
ity to be realized (with a tolerance of ±α). Noticing that different embed-
dings yield disjoint paths in their respective transient stochastic state class
trees, the probability for a schedule to be realized by a process is hence
P(Esi |= S) =

∑
ψi,j∈Ψi

P(Esi ∧ Φψi,j ,α).1505

Finally, denoting by E(PP, S) the symbolic processes of a pre-process PP
that embed S, the probability P(N |= S) is greater than max{P(Esi ∧ Φψi,j ,α) |
PP ∈ PE(UK) ∧ Esi ∈ E(PP, S)}. It is difficult to obtain more than a lower
bound for realization, as symbolic processes of E(PP, S) might have overlapping
executions.1510

41

Appendix I. Derivation of components of successor class

We hereafter provide details on how to compute components D′ and fτ
˜
′

of a class Σ′ obtained from a class Σ through a transition
ti,µi◦→ . Derivation of

components m′, blk′ and urg′ has already been covered and need not further
explanations.1515

We shall use the following notations:

• given a time domain D delimiting the possible values of a set of variables
x
¯

= 〈x0, x1, . . . , xN−1〉, we will denote by D↓xi the projection of D that
eliminates variable xi from x

¯
. The elimination is done via the Fourier-

Motzkin method detailed in Appendix Appendix J;1520

• given a vector x
¯

= 〈x0, x1, . . . , xN−1〉, we denote by x
¯
\ xi the vector x

¯
from which variable xi is removed, with i ∈ {0, 1, . . . , N − 1};

• the addition of a scalar x0 to each element of a vector x
¯

= 〈x1, x2, . . . , xn〉
is simply written x

¯
+ x0.

Fist of all, the initial class is Σ0 = 〈m0, D0, fτ0
˜
, blk0, urg0〉. Marking m0 is the1525

initial marking of the net, domain D0 is a product of domains [eft(t), lft(t) for
all transitions enabled in m0 (their domain is not {0} as we have eft(t) < lft(t).
Vector τ0

˜
=< 0, τ1, τenab(m0) is a vector representing elapsed time (in the inital

class it must be 0, and times to fires of enabeled variables. As domains for τi’s
are not singletons, we can safely set blk0 = ∅, and urg0 = ∅.1530

Probability of firing: A transition ti can fire from class Σ iff ti is enabled by
m and no postset place of ti is occupied; that is ∀p ∈ t•,m(p) = 0. We also need
its TTF τ i to be less than or equal to TTFs of all variables in τ

˜
; transition ti

will then fire from Σ with probability µi, with:

µi =

∫
Di
fτ
˜

(x
˜
) dx

˜

Di is the time domain from which ti shall fire with all its TTF less than or
equal to every variable in τ

¯
.

Di = D ∩
⋂
tj∈τ

¯

{τ i ≤ τ j}

Precedence condition: The assumption that ti fires before any other transition
adds conditions on the time vector and thus leads to a new random variable τ

˜
a

distributed over Di according to the following conditional PDF:

fτ
˜
a
(x
˜
) = fτ

˜
(x
˜
)
/
µi

Time elapsing and elimination: According to the semantics of STPNs, when
ti fires, TTFs of activated transitions are decreased by the value of the TTF of
ti, namely τ i. This yields a new random variable τ

˜
b = τ

˜
a − τ i distributed over

42

the domain Db = Di ↓τ i in which the variable attached to the fired transition ti
is eliminated. The PDF of the new multivariate random variable τ

˜
b is then:

fτ
˜
b
(x
˜
) =

∫ Maxi

Mini
fτ
˜
a
(x
˜

+ xi, xi) dxi

where Mini and Maxi denote the bounds of the support of variable τ i.
Disabling: If the firing of ti disables a transition tj , variable τ jb has to be

eliminated from the time vector, yielding a new vector τ
˜
c = τ

˜
b \ τ jb distributed

over Dc = Db ↓τjb with PDF:

fτ
˜
c(x

˜
) =

∫ Maxj

Minj
fτ
˜
b
(x
˜
, xj) dxj

The same procedure is repeated for every disabled transition by the firing of
ti. Let τ

˜
c∗ , Dc∗ and fτ

˜
c∗ then respectively denote the resulting time vector,

domain and PDF.
Newly enabling: If the firing of ti enables a transition tk, with PDF ftk over
[eft(tk), lft(tk)], then the new time vector, that we denote by τ

˜
d, shall include an

additional component τkd and shall be distributed over Dd = Dc∗×[eft(tk), lft(tk)]
according to the PDF:

fτ
˜
d
(x
˜
, xk) = fτ

˜
c∗ (x

˜
)× ftk(xk)

The same procedure is similarly repeated for every newly enabled transition to1535

finally obtain the PDF of the successor class Σ′.

Appendix J. Fourier–Motzkin elimination method

The Fourier–Motzkin elimination method is an algorithm for eliminating
variables from a system of linear inequalities. Let φ be a system of linear
inequalities with variables x1, x2, . . . , xr where xr is the variable to be removed.

φ can be written as φ+ ∧ φ− ∧ φ∅ where φ− =
m∧
i=1

−xr ≤ bi −
r−1∑
k=1

aikxk and

φ+ =
n∧
i=1

xr ≤ bi −
r−1∑
k=1

aikxk are the sets of inequations where the coefficients of

xr are respectively negative and positive, and φ∅ is the inequations subsystem
in which xr doesn’t appear. Eliminating the variable xr from φ refers to the
creation of another system of inequations in which xr doesn’t appear and which
has the same solutions over the remaining variables. The original system can be
written as

max
i=1,...,m

(−bi +

r−1∑
k=1

aikxk) ≤ xr ≤ min
i=1,...,n

(bi −
r−1∑
k=1

aikxk) ∧ φ∅

43

Which, by eliminating xr, gives

max
i=1,...,m

(−bi +

r−1∑
k=1

aikxk) ≤ min
i=1,...,n

(bi −
r−1∑
k=1

aikxk) ∧ φ∅

example: Let φ be the following system of linear inequalities:

φ =



α1 ≤ x1 ≤ β1

α2 ≤ x2 ≤ β2

α3 ≤ x3 ≤ β3

−γ21 ≤ x1 − x2 ≤ γ12

−γ31 ≤ x1 − x3 ≤ γ13

−γ32 ≤ x2 − x3 ≤ γ23

Suppose that we want to eliminate the variable x1. We start by identifying φ∅,
the subsystem of inequations in which x1 doesn’t appear, as follows:

φ =



α1 ≤ x1 ≤ β1

−γ21 ≤ x1 − x2 ≤ γ12

−γ31 ≤ x1 − x3 ≤ γ13

α2 ≤ x2 ≤ β2

α3 ≤ x3 ≤ β3

−γ32 ≤ x2 − x3 ≤ γ23

 = φ∅

We then isolate x1 by rewriting the inequations left, as follows:

φ =


α1 ≤ x1 ≤ β1

x2 − γ21 ≤ x1 ≤ x2 + γ12

x3 − γ31 ≤ x1 ≤ x3 + γ13

φ∅

One can easily see that an equivalent solution of this system is the one where x1

is bounded with the maximum value of its left bounds and the minimum of its
right bounds in the system of inequations; adding to that φ∅.

φ ⇐⇒ max(α1, x2 − γ21, x3 − γ31) ≤ x1 ≤ min(β1, x2 + γ12,≤ x3 + γ13) ∧ φ∅

Finally, eliminating x1 consists in saying that the left bound is inferior or equal
to the right bound and we get the following:

φ′ ⇐⇒ max(α1, x2 − γ21, x3 − γ31) ≤ min(β1, x2 + γ12,≤ x3 + γ13) ∧ φ∅

44

	Introduction
	Motivations
	A Petri net variant for urban train systems.
	Schedules, timetables, and their realizability.

	Semantics of Stochastic Time Petri Nets
	Unfolding of STPNs
	Realizability of schedules
	Conclusion
	Formal semantics of STPNs
	Construction of time processes
	Structural unfolding of a STPN
	Constraints to reintroduce time in processes
	Proof of proposition 1
	Proof of Proposition 2
	Algorithm to compute embeddings of a schedule in a process
	Stochastic state class tree
	Derivation of components of successor class
	Fourier–Motzkin elimination method

