Diagnosis with a Logic of Partial Order Computations

Shaofa Yang1, Loïc Héouët1, Thomas Gazagnaire2

1: INRIA Rennes 2: ENS Cachan-Bretagne
shaofa.yang, loic.helouet, thomas.gazagnaire@irisa.fr

Abstract. This paper proposes a diagnosis framework based on a new partial order logic. The purpose of this logic-based diagnosis is to recover some information that was not observed from a set of formulae describing the expected behaviors of a distributed system and an incomplete observation. We first propose a local partial order logic as a way to describe distributed behaviors, and show that without restriction, satisfiability of a set of formulae, and hence diagnosis is not decidable. We show that we can restrict the class of distributed behaviors to models that ensure decidability of satisfiability and of the diagnosis problem. We then show the complexity of diagnosis and unobserved information inference.

1 Introduction

Diagnosis consists in inferring missing information (unobserved events or states, faulty behaviors,...) from a partial observation of a system. It is an important task in telecommunication networks, where the size and heterogeneity of the architectures forces partial observation. When a fault occurs, it is crucial for safety and economical reasons to discover the cause for the failure and to correct it as fast as possible. Model-based diagnosis brings automated solutions for this problem. Roughly speaking, it consists in comparing runs of a model with the observed behaviors, and infer the missing parts. One might be interested in discovering if an unobserved fault has occurred, as in [26], or in finding all possible runs that may have lead to the observation, as in [3]. Another possibility is to augment observations with useful information such as causal relationships among observed events, known local properties of the system along the run, and events of interest missed by the observation as in [15]. Within this setting, several models have been proposed to represent runs of distributed systems: automata [26], Petri nets [3], Message Sequence Charts (MSCs) [17]. However, diagnosis always needs an up to date model of the running system to be accurate. In nowadays’ architectures, new services are added and modified every day, which calls for a daily redesign of models. Clearly, this is not possible with automata or nets, where the smallest modification implies updating many transitions. We propose a new logic-based approach for diagnosis. The main idea is to collect users and designers knowledge with a logic that describes known interactions as partial orders, and temporal relations between these known pieces of behavior. Hence, a model for a running system is
a conjunction of formulae, and one can expect that a modification of the system only implies redefining a limited number of formulae.

The LPOC logic proposed in this paper is a CTL-like logic of partial order, with past and future modalities. It is a local logic, that defines the shape of causal chains in all executions of a system. We first show that satisfiability of this logic is undecidable. This is not really surprising, as similar undecidability results hold for m-LTL [23], a local temporal logic on Lamport diagrams and for template MSCs [16] a logical framework for MSCs. Hence, without restriction on the logic or on the shape of the explanations (i.e. the models of the formulae that are compatible with the observation), satisfiability of LPOC formulae is undecidable (and as a corollary, diagnosis is also an untractable problem).

We then show a restriction on models allowed for LPOC formulae that makes diagnosis a decidable problem, and show how to extract explanations from a partial observation and a set of formulae. When the runs of the system meet a syntactical requirement called “K-influence”, then explanations can be computed as the intersection of an automaton representing all runs that are compatible with the observation and an automaton representing all runs that are compatible with the LPOC description of the system.

This paper is organized as follows. The LPOC logic is described in 2. The negative satisfiability result is shown in Section 3. Section 4 shows that assuming that all executions are K-influencing, satisfiability and diagnosis become decidable problems, and establishes complexity results for diagnosis. Section 5 compares our results with some related works. Section 6 concludes this work.

2 Preliminaries

Through the rest of the paper, we fix a finite nonempty set of process names \mathcal{P} and let p, q range over \mathcal{P}. We also fix a finite nonempty set \mathcal{A} of atomic propositions.

Definition 1. A partially ordered computation (or computation for short) over $(\mathcal{P}, \mathcal{A})$ is a tuple (S, η, \leq, V) where:
- S is a finite set of (local) states.
- $\eta : S \rightarrow \mathcal{P}$ identifies the location of each state. For each $p \in \mathcal{P}$, we define $S_p = \{ s \in S \mid \eta(s) = p \}$.
- $\leq \subseteq S \times S$ is a partial order, called the causality relation. Furthermore, for each p, \leq restricted to $S_p \times S_p$ is a total order.
- $V : S \rightarrow 2^\mathcal{A}$ is a labeling function which assigns a set of atomic propositions to each state. We call $V(s)$ the valuation of s.

Intuitively, a computation (also called Lamport diagram in the literature [22, 23]) represents the causal ordering among local states in a distributed execution, in which states of each process are sequentially ordered. The valuation of local state s collects the atomic propositions that hold at s. Figure 1 shows a computation. States are designated by black dots with associated name s_1, \ldots, s_6. Processes P, Q, R are represented by
vertical lines, and states located on a process line are ordered from top to bottom. Finally, valuations of states take value in \{a, b, c\}, and are represented between two brackets near the associated state. Note that we consider only finite computations, since diagnosis is performed at a given moment after a finite observation period. We will say that two computations \((S, \eta, \leq, V)\) and \((S', \eta', \leq', V')\) are isomorphic iff there is a bijection \(f : S \rightarrow S'\) such that \(\eta(s) = \eta'(f(s))\) for any \(s \in S\), \(s_1 \leq s_2\) iff \(f(s_1) \leq' f(s_2)\) for any \(s_1, s_2 \in S\), and \(V(s) = V'(f(s))\) for any \(s \in S\). We identify isomorphic computations and write \(W \equiv W'\) if \(W\) and \(W'\) are isomorphic.

![Diagram](image)

Fig. 1. a) A computation \(W\) b) the 1-view of \(s_3\) in \(W\)

Let \((S, \eta, \leq, V)\) be a computation, and \(s, s' \in S\). As usual, we write \(s < s'\) when \(s \leq s'\) and \(s \neq s'\). For each \(p \in P\), we let \(\ll_p \subseteq S \times S\) be given by: \(s \ll_p s'\) iff \(s, s' \in S_p\), \(s < s'\), and there does not exist \(s'' \in S_p\) with \(s < s'' < s'\). That is, \(\ll_p\) is the “immediate” sequential ordering of states belonging to \(p\). We let \(< \subseteq S \times S\) be the least relation such that \(\leq\) is the reflexive and transitive closure of <. For each \(p, q \in P\) with \(p \neq q\), let us define \(\ll_{pq} \subseteq S \times S\) as follows: \(s \ll_{pq} s'\) iff \(s \in S_p, s' \in S_q, s < s'\). We also define \(\ll = \bigcup_{p \in P} \ll_p \cup (\bigcup_{p, q \in P, p \neq q} \ll_{pq})\). If \(s \ll s'\), we say \(s'\) is a (causal) successor of \(s\), and call \(s\) a (causal) predecessor of \(s'\). We emphasize that \(<\) is not equal to \(\ll\). A state \(s\) is minimal if it has no predecessor. We say \(s\) is maximal if it has no successor. A causal chain is a sequence \(s_1 s_2 \ldots s_n\) of states where \(s_1 \ll s_2 \ll \ldots \ll s_n\). A causal path is a causal chain \(s_1 s_2 \ldots s_n\) such that \(s_n\) is a maximal state.

We want to define a temporal logic of partial-order computations (called “LPOC” for short) to reason about distributed behaviors. It has two basic features. First, at a state \(s\) of a computation, atomic formulae which assert that a “pattern” occurs in a bounded past or future of \(s\). Secondly, we consider a branching time framework with CTL-like operators and reason along sequences of causally ordered states. In the sequel, we precise these notions before defining the syntax and the semantics of the logic.
Definition 2. Let (S, η, \leq, V) be a computation, $s \in S$ and m a natural number. The m-view of s, denoted $\downarrow_m(s)$, is the collection of states s' in S such that there exists a causal chain of length at most m starting from s' and ending at s. More precisely, $\downarrow_m(s) = \{s' | \exists s_0, \ldots, s_n \in S, \eta \leq m \text{ and } s' = s_0 \ll s_1 \ll \ldots \ll s_n = s\}$. Similarly, the m-frontier of s, denoted by $\uparrow_m(s)$ is the collection of states s' in S such that there exists a causal chain of length at most m starting from s and ending at s'.

In particular, the 0-view and 0-frontier of s are both the singleton set $\{s\}$. Note that s has at most $|P|$ successors, one belonging to each S_p.

Thus, inductively, the m-view of s contains at most $N_m = \sum_{i=0}^{m} |P|^i = \frac{1 - |P|^{m+1}}{1 - |P|}$ states, and the same bound holds for the size of m-frontiers.

In order to reason about the “pattern” of a computation, we also need a notion of projection.

Definition 3. Let $W = (S, \eta, \leq, V)$ be a computation over (P, A), and let $A \subseteq A$. The projection of W onto A is the computation $W' = (S', \eta', \leq', V')$ where $S' = \{s \in S | V(s) \cap A \neq \emptyset\}$ and η', \leq', V' are the respective restrictions of η, \leq, V to S'. The restriction of W to a subset of states $S' \subseteq S$ is the computation $W' = (S', \eta, \leq, V)$ where η, \leq, V are the respective restrictions of η, \leq and V to S'.

The atomic formulae of our logic will assert that the projection of the computation formed from the m-view or the m-frontier of a state is isomorphic to a given computation. We are now ready to define the logic LPOC.

Definition 4. The set of LPOC formulae over a set of processes P and a set of atomic propositions A, is denoted by $\text{LPOC}(P, A)$, and is inductively defined as follows:

- For each $p \in P$, the symbol loc_p is a formula in $\text{LPOC}(P, A)$.
- If $\varphi, \varphi' \in \text{LPOC}(P, A)$, then $\neg \varphi$ and $\varphi \lor \varphi'$ are formulae in $\text{LPOC}(P, A)$.
- Let m be a natural number, A be a subset of A, and $T = (S, \eta, \leq, V)$ be a computation such that $V(s) \subseteq A$ for every $s \in S$. Then $\downarrow_m(A)(T)$ and $\uparrow_m(A)(T)$ are formulae in $\text{LPOC}(P, A)$.
- If φ, φ' are formulae in $\text{LPOC}(P, A)$, then $\text{EX}\varphi$, $\text{EU}(\varphi, \varphi')$ are formulae in $\text{LPOC}(P, A)$.

From now on, we shall refer to formulae in $\text{LPOC}(P, A)$ simply as formulae. Their semantics is interpreted at local states of a computation. For a computation W and a given state s of W, we write $W, s \models \phi$ when W satisfies ϕ, which is defined inductively as follows:

- $W, s \models \text{loc}_p$ iff the location of s is p (i.e. $\eta(s) = p$),
- $W, s \models \downarrow_m(A)(T)$ iff the projection of $\downarrow_m(s)$ onto A is isomorphic to T,
- $W, s \models \uparrow_m(A)(T)$ iff the projection of $\uparrow_m(s)$ onto A is isomorphic to T,
- $W, s \models \text{EX}\varphi$ iff there exists a state s' in W such that s' is a causal successor of s and $W, s' \models \varphi$,
- $W, s \models \text{EU}(\varphi, \varphi')$ iff there exists a causal path $s_1 s_2 \ldots s_n$ in W with $s = s_1$. Further, there exists an index i in $\{1, 2, \ldots, n\}$ with $W, s_i \models \varphi$, and $W, s_j \models \varphi$ for every j in $\{1, 2, \ldots, i - 1\}$.
The semantics for boolean combinations and negations of formulae is as follows. Furthermore, we define some derived CTL temporal operators as such. First, we have $\text{EF} \varphi \equiv \text{EU}(\text{true}, \varphi)$ and $\text{EG} \varphi \equiv \text{EU}(\varphi, \varphi \land \neg \text{EX} \text{loc}_p)$. That is, $\text{EF} \varphi$ means that there exists a causal path ρ starting from the current state such that φ holds at some state of ρ. And $\text{EG} \varphi$ demands that there exists a causal path ρ starting from the current state such that φ holds at every state of ρ. Secondly, we define $\text{AX} \varphi \equiv \neg \text{EX}(\neg \varphi)$; $\text{AF} \varphi \equiv \neg \text{EG} \neg \varphi$, and $\text{AG} \varphi \equiv \neg \text{EF} \neg \varphi$. We write $\text{EX}_p(\varphi)$ for the formula $\text{EX}(\text{loc}_p \land \varphi)$. The notations EF_p, EG_p, AX_p, AF_p, AG_p are defined in the same way. We will say that two formulae φ and φ' are logically equivalent iff for any computation W, any state s of W, we have $W, s \models \varphi$ if $W, s \models \varphi'$.

In LPOC we can also assert the truth of atomic propositions at a state of a computation. Let $a \in A$. Consider the formula $\varphi_a = \bigvee_{p \in \mathcal{P}} (\text{loc}_p \land \perp_{0, (\varphi_a)}(T_{p.a}))$, where each $T_{p.a}$ is the computation containing a singleton state of location p and valuation $\{a\}$. It is clear that for any computation W and a state s, we have $W, s \models \varphi_a$ iff the valuation of s contains a.

Observations of a system do not necessarily record all causal ordering among observed states. More precisely, if in an observation O, a state s is causally earlier than s', then in any explanation W of O, the state in W corresponding to s must be causally earlier than the state in W corresponding to s'. But the converse need not hold. For this reason, we need to introduce the formulae $\downarrow m, A(T)$ and $\uparrow m, A(T)$, where m is a natural number, $A \subseteq A$ and T is a computation such that the valuation of any state s of T is a subset of A. Let $W = (S_W, \eta_W, \leq_W, V_W)$ be a computation and $s \in S_W$. Consider the formula $\downarrow m, A(T)$ where $T = (S_T, \eta_T, \leq_T, V_T)$. We say $W, s \models \downarrow m, A(T)$ iff there exists an injective mapping $f : S_T \rightarrow \downarrow m(s)$ satisfying:

- For every $s \in S_T$, $\eta_T(s) = \eta_W(f(s))$ and $V_T(s) = V_W(f(s)) \cap A$.
- For every $s, s' \in S_T$, $s \leq_T s'$ implies $f(s) \leq_W f(s')$.

But we do not demand the converse.

The semantics of $\uparrow m, A(T)$ is defined in the same way, except the mapping f is from S_T to $\uparrow m(s)$. Remark that $\downarrow m, A(T)$ and $\uparrow m, A(T)$ can be easily defined in LPOC. Recall that the m-view of a state s of a computation contains at most N_m states. Now it is easy to see that $\downarrow m, A(T)$ is equivalent to the formula $\bigvee_{X \subseteq X^T, \downarrow m, A(X)}$ where X is the collection of computations $X = (S_X, \eta_X, \leq_X, V_X)$ containing at most N_m states and for which there exists an injective mapping $g : S_T \rightarrow S_X$ satisfying:

- For every $s \in S_T$, $\eta_T(s) = \eta_X(g(s))$ and $V_T(s) = V_X(g(s))$.
- For every $s, s' \in S_T$, $s \leq_T s'$ implies $g(s) \leq_X g(s')$.

Lastly, for a computation W and a LPOC formula φ, we say that W satisfies φ, written $W \models \varphi$, if there exists some minimal state s_{\min} of W such that $W, s_{\min} \models \varphi$. We say that φ is satisfiable iff there exists a computation W such that $W \models \varphi$.

For application to diagnosis, it is useful to define the notion of a computations satisfying a collection of formulae, one for each process. Formally, for a computation $W = (S, \eta, \leq, V)$ and a P-indexed family of formulae $\{ \varphi_p \}_{p \in P}$, we say W satisfies $\{ \varphi_p \}_{p \in P}$, written $W \models \{ \varphi_p \}_{p \in P}$ by abuse of notation, iff the following condition holds: for each $p \in P$, $S_p \neq \emptyset$ and
∀ ∈ s W, s a specification of the observed system. To this end, we fix observation from a set of formulae described in LPOC, that represents a subset of observable atomic propositions. The sets explanatory and observable atomic propositions are disjoint. An observable atomic proposition is one whose truth value may be “recorded” during system execution. On the other hand, atomic propositions in A ex are those that may explain the cause of what have been observed. Thus in typical applications, explanatory atomic propositions correspond to the faults or state information that cannot be directly accessed. On the other hand, observable atomic proposition indicates state information that can be directly recorded, for instance, alarms and abnormal behavior. The observable atomic propositions are in a sense manifestations of the explanatory atomic propositions. To formulate the diagnosis problem, we introduce the notions of observation and explanation.

Definition 5. An observation is a computation with valuations in 2A ob. That is, (S, η, ≤, V) is an observation iff V(s) ⊆ A ob for every s ∈ S. Let O = (S_O, η_O, ≤_O, V_O) be an observation and W = (S_W, η_W, ≤_W, V_W) a computation. Then, W is an explanation for O iff there exists an injective mapping f: S_O → S_W such that:
(i) ∀s ∈ S_O, η_O(s) = η_W(f(s)) and V_O(s) = V_W(f(s)) ∩ A ob.
(ii) ∀s, s' ∈ S_O, if s ≤_O s', then f(s) ≤_W f(s').
(iii) For every s in the image of f, V_W(s) ∩ A ob ̸= ∅. Furthermore, for any s' ∈ S_W, if η_W(s') = η_W(s), s' ≤_W s and V_W(s') ∩ A ob ̸= ∅, then s' is also in the image of f.

Intuitively, an observation describes everything that is “recorded” during the execution of some prefix of a computation. We assume that the observation is produced by a monitoring mechanism that observes each process and transmits “recorded” observable atomic propositions to a central diagnosis system. Only records of the same process are guaranteed to be received by the central diagnosis system in the order they were sent. We emphasize that the observation may have only recorded an initial portion of the explanation. Thus, the image of f may be a proper subset of the states of W whose valuation contains observable atomic propositions. However, we suppose the observer is faithful, that is, it does not create wrong states or causalities. Note that for given O and W, if the mapping f exists, then it is necessarily unique. Thus, for each state s ∈ S_O, it makes sense to call V_W(f(s)) the W-valuation of s. Condition (i) means that the location mapping should be respected by the observation mechanism, and that in explanations, only states at which
at least one observable atomic proposition holds may be “recorded”, and hence appear in the observation. Condition (ii) asserts that the recorded causality orderings must originate from an execution. However, we do not demand the converse. That is, some causality orderings in the explanation may not be “recorded”.
Condition (iii) states that there is no loss during recording of states: if a state of process \(p \) is recorded, then any causally preceding states \(s' \) of \(p \) must be recorded in case the valuation of \(s' \) contains observable atomic propositions.

Definition 6. Let \(O \) be an observation, and \(\{ \Phi_{p}^{\text{spec}} \}_{p \in \mathcal{P}} \) be a set of formulae. \(W \) is an \(\{ \Phi_{p}^{\text{spec}} \}_{p \in \mathcal{P}} \)-explanation for \(O \) if \(W \) is an explanation for \(O \) and \(W \models \{ \Phi_{p}^{\text{spec}} \}_{p \in \mathcal{P}} \).

Now we can define the diagnosis problem associated with LPOC.

Definition 7. Let \(\mathcal{P} \) be a set of processes, \(\mathcal{A}^{\text{ab}} \) be a set of observable atomic propositions, and \(\mathcal{A}^{\text{ew}} \) be a set of atomic explanatory propositions. The LPOC-diagnosis problem is defined as follows: given an observation \(O = (S_{O}, \mathcal{P}_{O}, \leq_{O}, V_{O}) \) and a \(\mathcal{P} \)-indexed family of formulae \(\{ \Phi_{p}^{\text{spec}} \}_{p \in \mathcal{P}} \) over \((\mathcal{P}, \mathcal{A}^{\text{ab}} \cup \mathcal{A}^{\text{ew}}) \), determine whether there exists a \(\{ \Phi_{p}^{\text{spec}} \}_{p \in \mathcal{P}} \)-explanation for \(O \).

In what follows, we will often omit the subscript \(p \in \mathcal{P} \). The formulae \(\{ \Phi_{p}^{\text{spec}} \} \) specify the knowledge about execution of the system. The objective of diagnosis is to figure out whether there exists an explanation for what have been observed. In case such an explanation exists, we also want to obtain more detailed information about the possible truth values of propositions in \(\mathcal{A}^{\text{ew}} \) at each observed state. We define the (explanatory) summary of \(O \) under \(\{ \Phi_{p}^{\text{spec}} \}_{p \in \mathcal{P}} \) as the mapping \(g : S_{O} \rightarrow 2^{\mathcal{A}^{\text{ew}}} \) such that for every \(s \in S_{O} \), \(g(s) \subseteq \mathcal{A}^{\text{ew}} \), and \(a \in g(s) \) iff there exists an explanation \(W \) for \(O \) with \(W \models \{ \Phi_{p}^{\text{spec}} \}_{p \in \mathcal{P}} \) and \(a \) is in the \(W \)-valuation of \(s \). Thus, when the answer to the diagnosis problem is positive, we would want further to compute the summary of \(O \). Unfortunately, in the general case, the LPOC-diagnosis problem is undecidable (and so is the computation of summaries).

Theorem 1. The LPOC-diagnosis problem is undecidable.

Proof. This theorem is proved by reduction from the Post Correspondence Problem (PCP). The reduction is similar to that used in decision problems related to message sequence charts (see for instance [16]). Consider an instance of PCP with \(\Sigma \) a finite alphabet such that \(|\Sigma| > 1 \), and \((g_{1}, h_{1}), \ldots, (g_{n}, h_{n})\) a finite sequence of pairs of words over \(\Sigma \). A solution (if it exists) is a finite sequence of indices \(j_{1}, j_{2}, \ldots, j_{n} \) in \\{1, 2, \ldots, n\} such that \(g_{j_{1}}g_{j_{2}} \ldots g_{j_{n}} = h_{j_{1}}h_{j_{2}} \ldots h_{j_{n}} \). The reduction is as follows. We pick \(\mathcal{P} = \{p, q, r\} \). Let \(\mathcal{A}_{p} = \{a^{s} | a \in \Sigma \} \cup \{i^{s} | i \in \{1, 2, \ldots, n\}\} \), \(\mathcal{A}_{q} = \{a^{s} | a \in \Sigma \} \cup \{i^{s} | i \in \{1, 2, \ldots, n\}\} \), and \(\mathcal{A}_{r} = \{i^{w}, i^{w'} | i \in \{1, 2, \ldots, n\}\} \). We take \(\mathcal{A}^{\text{oo}} = \mathcal{A}_{p} \cup \mathcal{A}_{q} \cup \mathcal{A}_{r} \), and \(\mathcal{A}^{\text{ew}} = \emptyset \). Let \(O \) be the empty observation, that is, a computation with no states. Thus, any computation is an explanation for \(O \).
We encode solutions to the PCP instance by computations which have the form illustrated in Figure 2. The total ordering of states on each process is drawn as a vertical line with the minimum state at the top. The downward-sloping arrows represent pairs \((s, s')\) of states in the successor relation such that \(s, s'\) are on different locations. The label of each state indicates its valuation. We can construct formulae \(\Phi_p, \Phi_q, \Phi_r\) such that \(\{\Phi_p, \Phi_q, \Phi_r\}\) is satisfiable iff there exists a computation \(W\) with \(W \models \{\Phi_p, \Phi_q, \Phi_r\}\) and \(W\) represents a solution to the PCP instance. It will then follow that the PCP instance has a solution iff there exists an explanation for \(O\) satisfying \(\{\Phi_p, \Phi_q, \Phi_r\}\).

\[\text{Fig. 2. Encoding solutions to PCP with computations}\]

In the sequel, we outline the construction of \(\Phi_p, \Phi_q\) and \(\Phi_r\). For \(A \subseteq A_p\), we write \(\text{VAL}(p, A)\) for the formula \(\text{loc}_p \land \bigwedge_{1 \leq j \leq m} A_p(T)\), where \(T\) is the computation with a singleton state of location \(p\) and valuation \(A\). In other words, the formula \(\text{VAL}(p, A)\) asserts that the current state has location \(p\) and valuation \(A\). We define the notations \(\text{VAL}(q, A), \text{VAL}(r, A)\) in the same way. The formula \(\Phi_p\) is the conjunction of the following formulae.

\[(P1) \quad \bigvee_{i \in \{1, \ldots, r\}} \text{VAL}(p, \{i^p\})\]
\[(P2) \quad \text{EG}_p\left(\bigwedge_{i \in \{1, \ldots, n\}} \left(\text{VAL}(p, \{i^p\}) \rightarrow \varphi_i \right) \right)\]

where each \(\varphi_i\) is given as follows. Let \(g_{i,j}\) be the \(j\)-th letter of \(g_i\), for \(j = 1, \ldots, |g_i|\). Then \(\varphi_i\) asserts that there exist \(m\) states \(s_1, s_2, \ldots, s_{|g_i|}\) in \(S_p\) with \(s_1\) being a successor of the current state, and \(s_{j+1}\) a successor of \(s_j\) for \(j = 1, \ldots, |g_i| - 1\). Furthermore, the valuation of \(s_j\) is \(\{i^p_j\}\) for \(j = 1, 2, \ldots, |g_i|\), and either \(s_{|g_i|}\) has no successor in \(S_p\), or \(s_{|g_i|}\) has a successor in \(S_p\) whose valuation is \(\{\ell^p\}\) for some \(\ell\) in \(\{1, \ldots, n\}\).

More precisely, \(\varphi_i = \downarrow_{|g_i|+1, A_p}(T) \lor (\forall_{\ell=1,2,\ldots,n} \downarrow_{|g_i|+1, A_p}(T_{\ell})),\) where \(T\) is the computation \((\{t_1, t_2, \ldots, t_{|g_i|}\}, \eta_T, \leq_T, V_T)\) with \(\eta_T(t_1) = p\).
for every \(j = 1, 2, \ldots, |g_i|, t_1 \leq \tau \ t_2 \leq \tau \ \ldots \ \leq \tau \ t_{|g_i|}, \) and \(V_2(t_j) = \{ g''_{i,j} \} \) for every \(j = 1, 2, \ldots, |g_i| \). Similarly, for each \(\ell = 1, 2, \ldots, n, \)
\(T'_{\ell} \) is the computation \(\{ t_1, t_2, \ldots, t_{|g_i|}, t_{|g_i|+1}, \eta_{\tau'}, \leq_{\tau}, V_{T'}(t_j) \) with
\(\eta_{T'}(t_j) = p \) for every \(j = 1, 2, \ldots, |g_i| + 1, t_1 \leq_{T'} t_2 \leq_{T'} \ \ldots \ \leq_{T'} t_{|g_i|+1}, V_{T'}(t_j) = \{ g''_{i,j} \} \) for every \(j = 1, 2, \ldots, |g_i|, \) and \(V_{T'}(t_{|g_i|+1}) = \{ \rho' \}. \)

(P3) \(\Delta_{\sigma}(\bigwedge_{a \in \Sigma} (\text{VAL}(p, \{ a^p \}) \rightarrow \text{EX}_q \text{VAL}(q, \{ a^q \})))). \) Intuitively, this asserts that every state of valuation \(\{ a^p \} \) of \(p \) is “matched” by a state of \(q \) with valuation \(\{ a^q \} \). We emphasize that the matchings are guaranteed to be one-to-one and order-preserving. This is due to the fact that for every pair \(p, q \) of processes \(\ll_{pq} \) is “fifo”, that is one-to-one and order-preserving. More precisely, for each state \(s \) of \(S_p \), there is at most one state \(s' \) of \(S_q \) such that \(s \ll s' \) (and thus \(s \ll pq s' \)). Similarly, for each state \(S_q \), there is at most one state \(s' \) of \(S_q \) such that \(s' \ll s \) (and thus \(s' \ll pq s \)). Finally, for any \(s_1, s_2 \) of \(S_p \), \(s_1', s_2' \) of \(S_q \) such that \(s_1 \ll s_1', s_2 \ll s_2' \), we have that \(s_1 \leq s_2 \) if \(s_2 \). The detailed formula of this case can be constructed in the same way as case (P2) in the construction of \(\Phi_p \).

(P4) \(\Delta_{\sigma}(\bigwedge_{i \in \{1, 2, \ldots, n\}} (\text{VAL}(p, \{ i^p \}) \rightarrow \text{EX}_r \text{VAL}(r, \{ i^r \}))). \) That is, for every state \(p \) of \(p \) with valuation \(\{ i^p \} \), there is a “matching” state of \(r \) with valuation \(\{ i^r \} \).

The formula \(\Phi_p \) asserts the conjunction of the following conditions.

(Q1) The valuation of the minimum state of \(q \) is \(\{ i^q \} \) for some \(i \) in \(\{1, 2, \ldots, n\} \). This is similar to case (P1) in the construction of \(\Phi_p \).

(Q2) For each \(i \in \{1, 2, \ldots, n\} \), if a state of \(q \) has valuation \(\{ i^q \} \), then there exist \([h_i] \) subsequent states \(s_1, s_2, \ldots, s_{|h_i|} \) of \(q \), whose valuations are, respectively, \(\{ h''_{ij} \} \), with \(h_{i,j} \) being the \(j \)-th letter of \(h_i \), for \(j = 1, 2, \ldots, |h_i| \). Further, either \(s_{|h_i|} \) has no successor of location \(q \), or \(s_{|h_i|} \) has a successor of location \(q \) and valuation \(\{ \ell \} \) for some \(\ell \) in \(\{1, 2, \ldots, n\} \). The detailed formula of this case can be constructed in the same way as case (P2) in the construction of \(\Phi_p \).

(Q3) For each \(a \in \Sigma \), if a state \(s \) of \(q \) has valuation \(\{ a^q \} \), then \(\downarrow_{1,a} (T) \) holds at \(s \), where \(T \) is the computation containing a singleton state of location \(p \) and valuation \(\{ a^p \} \). That is, every state of valuation \(\{ a^q \} \) of \(q \) is “matched” by a state of valuation \(\{ a^p \} \) of \(p \).

(Q4) For each \(i \in \{1, 2, \ldots, n\} \), if a state of \(q \) has valuation \(\{ i^q \} \), then it has a successor of location \(r \) and valuation \(\{ i^r \} \). This is similar to case (P4) of \(\Phi_p \).

Finally, \(\Phi_r \) asserts the conjunction of the following conditions.

(R1) The minimum state of \(r \) has valuation \(\{ i^r \} \) for some \(i \) in \(\{1, 2, \ldots, n\} \).

(R2) For each index \(i \in \{1, 2, \ldots, n\} \), if a state of \(r \) has valuation \(\{ i^r \} \), then it has a successor state, say, \(s \), of location \(r \) and valuation \(\{ i^r \} \). Further, either \(s \) has no successor of location \(r \), or \(s \) has a successor of location \(r \) and valuation \(\{ i^r \} \) for some \(\ell \) in \(\{1, 2, \ldots, n\} \). The detailed formula can be constructed in the same way as case (P2) of \(\Phi_r \).

(R3) For each \(i \in \{1, 2, \ldots, n\} \), if a state \(s \) of \(r \) has valuation \(\{ i^r \} \), then \(\downarrow_{1,a} (T) \) holds at \(s \), where \(T \) is the computation containing a singleton state of location \(p \) and valuation \(\{ i^p \} \).
For each \(i \in \{1, 2, \ldots, n\} \), if a state \(s \) of \(r \) has valuation \(\{i^r\} \), then \(\downarrow_{1, \mathcal{A}}(T) \) holds at \(s \), where \(T \) is the computation containing a singleton state of location \(p \) and valuation \(\{i^r\} \).

It is easy to see that the constructions of \(\Phi_p, \Phi_q, \Phi_r, \Phi_\gamma, \Phi_s \) encode a PCP instance, and that there exists an explanation for \(O \) satisfying \(\Phi_p, \Phi_q, \Phi_r, \Phi_\gamma, \Phi_s \) if and only if the corresponding instance of PCP has a solution. This completes the proof for Theorem 1. \(\square \)

4 Diagnosis with \(K \)-influencing computations

We have shown in previous section (Theorem 1) that the diagnosis problem is undecidable in general. A question that naturally arises is whether we can identify a subclass of computations for which the problem becomes tractable. For this, we identify a subclass of computations called \(K \)-influencing computations, and show that the LPOC diagnosis problem (and thus computing the summary) is decidable within this class.

Definition 8. Let \(\mathcal{P} \) be a set of processes, \(A^{\text{as}} \) be a set of observable atomic propositions, \(A^{\text{ex}} \) be a set of atomic explanatory propositions. Let \(W = (S, \eta \leq V) \) be a computation, and \(p, q \in \mathcal{P} \) with \(p \neq q \). The causal degree of \(p \) towards \(q \) in \(W \) is the maximum integer \(n \in \mathbb{N} \) for which there exist \(s_1, s_2, \ldots, s_n \) in \(S_p \), and \(s'_1, s'_2, \ldots, s'_n \) in \(S_q \) such that:

(i) \(s_1 < s_2 < \ldots < s_n \) and \(s'_1 < s'_2 < \ldots < s'_n \);

(ii) for \(i = 1, 2, \ldots, n \), \(s_i \ll s'_i \), that is, \(s_i \) is a predecessor of \(s'_i \);

(iii) \(\forall i \leq n \), \(s_i \neq s'_i \).

For \(K \in \mathbb{N} \), \(W \) is \(K \)-influencing iff for any pair of processes \(p, q \) in \(\mathcal{P} \) with \(p \neq q \), the causal degree of \(p \) towards \(q \) is at most \(K \).

Intuitively, the causal degree of \(p \) towards \(q \) is the maximal number of events that precede some event on \(q \) that \(p \) can execute without having to wait for \(q \). The general shape of \(K \)-influencing computations is illustrated in Figure 3. We now state the main result of this section.

Theorem 2. Given an observation \(O \), a \(\mathcal{P} \)-indexed family \(\{\Phi_p^{\text{spec}}\}_{p \in \mathcal{P}} \) of LPOC formulae, and an integer \(K \in \mathbb{N} \), one can effectively determine whether there exists a \(K \)-influencing computation \(W \) which is a \(\{\Phi_p^{\text{spec}}\}_{p \in \mathcal{P}} \)-explanation for \(O \).

An important consequence of the above theorem is that one can effectively compute a summary of the \(K \)-influencing explanations of \(O \). Let \(O \) be an observation and \(\{\Phi_p^{\text{spec}}\}_{p \in \mathcal{P}} \) a \(\mathcal{P} \)-indexed family of formulae. We can slightly adapt the definition of summaries in section 3 to \(K \)-influencing computations: the \(K \)-summary of \(O \) under \(\{\Phi_p^{\text{spec}}\}_{p \in \mathcal{P}} \) is the mapping \(g : S_O \rightarrow 2^{A^{\text{as}}} \) such that for every \(s \) in \(S_O \), \(g(s) \subseteq A^{\text{as}} \), and \(a \in g(s) \) iff there exists a \(K \)-influencing explanation \(W \) for \(O \) with \(W |_{\Phi_p^{\text{spec}}} = \{\Phi_p^{\text{spec}}\}_{p \in \mathcal{P}} \) and \(a \) is in the \(W \)-valuation of \(s \).

Corollary 1. Given an observation \(O \), a \(\mathcal{P} \)-indexed family \(\{\Phi_p^{\text{spec}}\}_{p \in \mathcal{P}} \) of LPOC formulae, and an integer \(K \in \mathbb{N} \), one can effectively compute the \(K \)-summary of \(O \) under \(\{\Phi_p^{\text{spec}}\}_{p \in \mathcal{P}} \).
Through the rest of this section, we prove Theorem 2 and Corollary 1. We fix the integer K, observation O and the formulae $\{\Phi_p^{\text{spec}}\}_{p \in P}$. Recall from section 2 that we can easily construct a single formula Φ^{spec} such that for any computation W, $W \models \Phi^{\text{spec}}$ iff $W \models \{\Phi_p^{\text{spec}}\}_{p \in P}$. In what follows, we fix Φ^{spec}. We will assume that the computations used hereafter are nonempty. It will be clear from the proof that this involves no loss of generality. We let W_K denote the set of K-influencing computations.

The proof for Theorem 2 consists of two steps. Firstly, we show that K-influencing computations can be identified with Mazurkiewicz traces ([7]) over a suitable trace alphabet (Σ, I). This way, we can identify K-influencing computations with equivalence classes of finite sequences in Σ^*. This encoding is in spirit the same as the of encoding of universally K-bounded message sequence charts with traces in [20]. Secondly, we construct three finite state automata Aut_K, $\text{Aut}_{\Phi^{\text{spec}}}$, Aut_O, running over linearizations of traces of (Σ, I). Aut_K checks if an input sequence represents a computation of W_K. For a sequence σ representing a computation W_σ in W_K, $\text{Aut}_{\Phi^{\text{spec}}}$ accepts σ iff $W_\sigma \models \Phi^{\text{spec}}$. And Aut_O accepts σ iff W_σ is an explanation for O. The crux is the construction of $\text{Aut}_{\Phi^{\text{spec}}}$.

We shall give $\text{Aut}_{\Phi^{\text{spec}}}$ in the form of a two-way alternating automaton, which can be transformed to a finite state automaton. The basic idea is similar to [14] and the usual translation from LTL to alternating automata [29]. The new technicality in our construction is in checking conformance with formulae of the form $\downarrow_{m,A}(T)$, $\downarrow_{m,A}(T)$. With Aut_K, Aut_O, $\text{Aut}_{\Phi^{\text{spec}}}$, it follows that there exists a sequence in Σ^* accepted by Aut_K, Aut_O, $\text{Aut}_{\Phi^{\text{spec}}}$ iff W_K contains a computation W such that $W \models \Phi^{\text{spec}}$ and W is an explanation for O. This then establishes Theorem 2.
rem 2. As for Corollary 1, we shall show that for any state s of O and any atomic proposition $a \in \mathcal{A}_e$, one can find a finite state automaton $\text{Aut}_{s,a}$ which has the following property: If a sequence σ represents a computation W_σ in \mathcal{W}_K such that $W_\sigma \models \Phi^{\text{spec}}$, and W_σ is an explanation of O, $\text{Aut}_{s,a}$ accepts σ iff a is in the W_σ-valuation of O. As a result, one can then effectively compute the K-summary of O under $\{\Phi^{\text{spec}}_p\}_{p \in \mathcal{P}}$.

4.1 Encoding K-influencing computations with Traces

We recall that a Mazurkiewicz trace ([7]) alphabet is a pair (Σ, I) where Σ is a finite alphabet, and $I \subseteq \Sigma \times \Sigma$ is an irreflexive and symmetric relation called the independence relation. The dependence relation D is given by $(\Sigma \times \Sigma) \setminus I$. A (finite) Σ-labelled poset is a pair $(E, \sqsubseteq, \lambda)$, where E is a finite set, $\sqsubseteq \subseteq E \times E$ a partial order, and $\lambda : E \to \Sigma$ a labelling function. As usual, we write $e \sqsubseteq e'$ if $e \sqsubseteq e'$ or $e' \sqsubseteq e$; (ii) for any $e, e' \in E$, $e \sqsubseteq e'$ implies $\lambda(e) \sqsubseteq \lambda(e')$. We define isomorphism of traces in the obvious way and write $tr = tr'$ if the traces tr, tr' are isomorphic.

Let $[K] = \{0, 1, \ldots, K - 1\}$. We define the alphabets $\Gamma_{\text{pre}} = \{\text{pre}(p, i) \mid p \in \mathcal{P}, i \in [K]\}$, and $\Gamma_{\text{suc}} = \{\text{suc}(p, i) \mid p \in \mathcal{P}, i \in [K]\}$. Let $\Gamma = \mathcal{P} \times \Gamma_{\text{pre}} \times \Gamma_{\text{suc}} \times 2^A$. We define Σ as the subset of Γ satisfying: $(p, \{\text{pre}(p, i_1), \ldots, \text{pre}(p, i_g)\}, \{\text{suc}(p, i_1), \ldots, \text{suc}(p, i_h)\}, A, 1) \in \Sigma$ iff p_1, \ldots, p_g are distinct members of $\mathcal{P} \setminus \{p\}$, and p_1, \ldots, p_h are distinct members of $\mathcal{P} \setminus \{p\}$. We now define the dependence relation $D \subseteq \Sigma \times \Sigma$ via: $(p, \text{PRE}, \text{SUC}, A, D, (p', \text{PRE}', \text{SUC}', A'))$ iff one of the following conditions holds:

- $p = p'$.
- $p \neq p'$. For some $i \in [K]$, $\text{pre}(p', i) \in \text{PRE}$ and $\text{suc}(p, i) \in \text{SUC}'$.
- $p \neq p'$. For some $i \in [K]$, $\text{suc}(p', i) \in \text{SUC}$ and $\text{pre}(p, i) \in \text{PRE}'$.

We set the independence relation $I = \Sigma \times \Sigma - D$. It is trivial to verify that (Σ, I) is a trace alphabet. From now on, we fix the trace alphabet (Σ, I).

Let $W = (S, \eta, \leq, V)$ be a K-influencing computation. Let us define the Σ-labeling of W, denoted λ_W^Σ (or simply λ_W), as the following function from S to Σ: for $s \in S$, $\lambda_W(s) = (p, \text{PRE}, \text{SUC}, A)$ where:

- $p = \eta(s)$.
- $\text{pre}(q, i) \in \Gamma_{\text{pre}}$ is in PRE iff s has predecessor s' with $\eta(s') = q$ (such a s' is necessarily unique by the definition of predecessor) and $i = j \mod K$ where j is the number of states $s'' < s$ in \mathcal{P}_p satisfying $s'' < s$ and that s'' has a predecessor of location q.
- Further, $\text{suc}(q, i) \in \Gamma_{\text{suc}}$ is in SUC iff s has a successor s' with $\eta(s') = q$ (such a s' is unique) and $i = j \mod K$ where j is the number of states $s'' < s$ in \mathcal{P}_p satisfying $s'' < s$ and that s'' has a successor of location q.
- $A = V(s)$.
Note that \(PRE\) and \(SUC\) are not necessarily singletons, as a state may have one successor (reps. predecessor) on each process. Let us define \(tr(W) = (S, \leq, \lambda_W)\). The following results follow easily from the definitions.

Proposition 1. Let \(W \in W_K\). Then \(tr(W)\) is a trace over \((\Sigma, I)\). Furthermore, if \(W'\) is a \(K\)-influencing computation, then \(W = W'\) iff \(tr(W) = tr(W')\).

Figure 4 below shows an example of a 2-influencing computation with the associated labeling. For the sake of clarity, the subsets of atomic propositions that are true at each state are not explicitly given, but only described by \(A_1, \ldots, A_9\).

![Diagram](image-url)

Fig. 4. A 2-influencing computation and its \(\Sigma\)-labeling

A linearization of a trace \((E, \subseteq, \lambda)\) is a sequence \(\lambda(e_1)\lambda(e_2) \ldots \lambda(e_n)\) where \(e_1, \ldots, e_n\) are distinct members of \(E\), \(E = \{e_1, \ldots, e_n\}\), and for any \(i, j \in \{1, \ldots, n\}\), \(e_i \leq e_j\) implies \(i \leq j\). For any computation \(W \in W_K\), we will call \(\Sigma\)-linearization of \(W\) a linearization of \(tr(W)\), and denote by \(Lin_{\Sigma}(W)\) the set of \(\Sigma\)-linearizations of \(W\). Let \(Lin_{\Sigma}^K = \bigcup_{W \in W_K} Lin_{\Sigma}(W)\).

Note that computations in \(W_K\) can be uniquely constructed from sequences in \(Lin_{\Sigma}^K\). For a non-null sequence \(\sigma\) in \(\Sigma^*\), let \(last(\sigma)\) denote the last letter of \(\sigma\). For \(\sigma, \sigma'\) in \(\Sigma^*\), we write \(\sigma \preceq \sigma'\) iff \(\sigma\) is a prefix of \(\sigma'\). We define the partial order \(\preceq_{\Sigma^*} \subseteq \Sigma^* \times \Sigma^*\) via: \(\sigma \preceq_{\Sigma^*} \sigma'\) if \(\sigma, \sigma'\) are non-null, \(\sigma \preceq \sigma'\) and there exist \(\sigma_1, \sigma_2, \ldots, \sigma_h\), \(h \leq |\Sigma|\), such that \(\sigma \preceq \sigma_1 \preceq \sigma_2 \preceq \ldots \preceq \sigma_h \preceq \sigma\) and \(last(\sigma_1)Dlast(\sigma_1)Dlast(\sigma_2) \ldots Dlast(\sigma_h)Dlast(\sigma)\). For every \(\sigma \in Lin_{\Sigma}^K\), we define the computation \(poc(\sigma) = (S_\sigma, \eta_\sigma, \preceq_\sigma, V_\sigma)\), where:
\[\text{It is easy to verify that } p_{\text{oc}} \text{ is well-defined. Furthermore, we have:} \\
\text{Proposition 2. Let } \sigma \in \text{Lin}_K^2 \text{ and } W = p_{\text{oc}}(\sigma). \text{ Then } W \in \mathcal{W}_K \text{ and } \sigma \in \text{Lin}_\Sigma(W). \]

\subsection*{4.2 Automata construction}

Here we construct three finite state automata \(\text{Aut}_K, \text{Aut}_O, \text{Aut}_{\Phi_{\text{new}}} \) which have the following properties:

\begin{itemize}
 \item For \(\sigma \in \Sigma^* \), \(\sigma \) is accepted by \(\text{Aut}_K \) iff \(\sigma \in \text{Lin}_K^2 \).
 \item Suppose \(\sigma \in \Sigma^* \) is in \(\text{Lin}_K^2 \). Then \(\sigma \) is accepted by \(\text{Aut}_O \) iff \(\text{poc}(\sigma) \) is a \(K \)-influencing explanation for \(O \). Note that we will not consider sequences outside \(\text{Lin}_K^2 \). \(\text{Aut}_O \) will then be constructed from \(\text{Aut}_K \).
 \item Suppose \(\sigma \in \Sigma^* \) is in \(\text{Lin}_K^2 \). Then \(\sigma \) is accepted by \(\text{Aut}_{\Phi_{\text{new}}} \) iff \(\text{poc}(\sigma) \) satisfies \(\Phi_{\text{new}}^{\text{new}} \). Again, we will not consider sequences outside \(\text{Lin}_K^2 \).
\end{itemize}

It follows that a sequence \(\sigma \in \Sigma^* \) is accepted by the product of \(\text{Aut}_K, \text{Aut}_O, \text{Aut}_{\Phi_{\text{new}}} \) iff \(\text{poc}(\sigma) \) is a \(K \)-influencing \(\{\Phi_{\text{new}}^{\text{new}}\} \)-explanation for \(O \).

The construction of \(\text{Aut}_K \) and \(\text{Aut}_O \) is obvious from the definitions of \(K \)-influencing computations and basic properties of traces (see [7] for more details).

\text{Construction of } \text{Aut}_K: \text{ For a given } K, \text{ a set of processes } \mathcal{P}, \text{ and a set of atomic propositions } \mathcal{A}, \text{ the automaton } \text{Aut}_K = (Q, q^0, \Sigma, \delta, F) \text{ can be constructed as follows.} \text{ For a given word } \sigma = a_1 \ldots a_n, \text{ we will say that letter } a_i = (p, \text{PRE}, \text{SUC}, A) \text{ is acknowledged by } q \in \mathcal{P} \text{ in } \sigma \text{ if and only if} \text{ for every } j \in [K], \text{ suc}(q, j) \text{ is not in SUC, or} \text{ there exists } a_j, a_k, i < j < k \leq n \text{ such that in } \text{poc}(\sigma), x = a_1 \ldots a_j \in S_q \text{ and } y = a_{i+1} \ldots a_k \in S_p, \text{ and } x \leq y \leq z, a_i \text{ is acknowledged.} \text{ Note that from the definition of } K \text{--influencing computations, if } \sigma \text{ is a prefix of a linearization of some } K \text{--influencing computation, then the number of letters of } \sigma \text{ located on a process } p \text{ that are not acknowledged by } q \text{ is necessarily lower or equal to } K. \text{ We are now ready to define the components of } \text{Aut}_K: \text{ For a given word } \sigma \text{ in } \Sigma^* \text{ such that for each pair of processes } p, q \text{ the number of letters of the form } (p, \text{PRE}, \text{SUC}, A) \text{ where SUC contains } suq(q, i) \text{ for } i \in [K] \text{ is at most } K, \text{ and cnt : } \mathcal{P} \times \mathcal{P} \rightarrow 0 \ldots K \text{ is a function that associates a number in } 0 \ldots K \text{ to each pair } p, q \text{ in } \mathcal{P}. \text{ This number corresponds to the number of letters that are not yet acknowledged between two processes. The initial state of the automaton is defined by } q^0 = (\epsilon, \text{cnt}_0) \text{ where } \epsilon \text{ is the empty word and } \text{cnt}_0 \text{ associates value } 0 \text{ to each pair } p, q \text{ in } \mathcal{P}.\]
\[\delta \subseteq Q \times \Sigma \times Q \text{ and} \\
\bullet \ (\sigma, c, t), a, (\sigma', c, t')) \in \delta \text{ for any } a \text{ of the form } (p, \emptyset, \emptyset, A) \text{ with } p \in P \text{ and } A \subseteq A, \]
\[((\sigma, c, t), a, (\sigma', c, t')) \in \delta \text{ if } \sigma' \text{ is the projection of } \sigma.a \text{ on non- acknowledged events, and } a = (p, \text{PRE}, \text{SUC}, A) \text{ for some } p \in P \text{ and } A \subseteq A, \text{ and furthermore, for every } \text{pre}(p', i) \in \text{PRE}, \text{ there exists a letter } a' = (p', \text{PRE}', \text{SUC}', A') \text{ in } \sigma \text{ for which } \text{suc}(p, i) \in \text{SUC}' \text{ and } a' \text{ is the first letter that contains suc}(p, j) \text{ for some } j \in [K]. \text{ For every } \text{suc}(p', i) \in \text{SUC}, \text{ we have } c't'(p, p') = c't(p, p') + 1, \text{ and for every } \text{pre}(p', i) \in \text{PRE}, \text{ we have } c't'(p, p') = ctn(p', p) - 1. \]

\[\text{The set of accepting states is } F = Q. \text{ Any state is accepting, as } \text{Lin}^\Sigma_K \text{ is prefix-closed by definition.} \]

This construction of \(\text{Aut}_K \) immediately provide indications on the size of the model.

Proposition 3. Let \(P \) be a set of processes, \(A \) be a set of atomic proposition, \(K \) be an integer, and \(\Sigma \) be Mazurkiewicz trace alphabet computed from \(P, A \) and \(K \). Then, the size of the automaton \(\text{Aut}_K \) that recognizes linearizations of \(K \)–influencing computations over \(\Sigma \) with valuations in \(A \) is in \(O(|\Sigma|^K|P|^2) \).

proof: Note that in any state \((\sigma, c, t) \) the function \(\text{cnt}(p, p') \) count the letters of \(\sigma \) located on process \(p \) that are not acknowledged by \(p' \). That is, function \(\text{cnt} \) does not add new information that can not be computed directly from \(\sigma \), and is just introduced for convenience. As there can be at most \(K \) letters per pair of processes that are not acknowledged in a word labeling a state of \(\text{Aut}_K \) the size of such word is bounded by \(K|P|^2 \). The size of \(\text{Aut}_K \) is then not greater than \(|\Sigma|^K|P|^2. \square \]

Construction of \(\text{Aut}_O \): We can reuse the construction of \(\text{Aut}_K \) to build \(\text{Aut}_O \), the automaton that recognizes \(K \)-influencing explanations of \(O \). At each state of this automaton, one must recall a state of \(\text{Aut}_K \) reached (ie, the current \(K \)-influencing linearization explored), the part of \(O \) that is embedded in this explanation, and some additional information about the causalities that may appear in the future. Note that it is not sufficient to memorize only the subset of states of \(O \) that have been recognized so far, as we must also ensure that two states ordered in \(O \) are also ordered in \(\text{pre}(\sigma) \), for every linearization \(\sigma \) accepted by \(\text{Aut}_O \). Hence, \(\text{Aut}_O \) can not be built as a product between \(\text{Aut}_K \) and an automaton that recognizes linearizations of \(O \) (and where states are cuts of \(O \), as this product allows for computations that are not explanations of \(O \). At the same time as we play a linearization accepted by \(\text{Aut}_K \), we need to memorize states of the observation that have already been seen, their respective ordering, but also the ordering imposed by unobserved states and causalities. Let \(W \) be a computation, and let \(s \) be a state of \(W \) such that \(V(s) \cap A^{ob} \neq \emptyset \), that is if \(O_W \) is the restriction of \(W \) to observed states corresponding to computation \(W \), then \(s \) appears in \(O_W \). The future processes of \(s \) (or simply future of \(s \)) is the set of processes where a causal successor of \(s \) appears. It is defined as

\[F(s) = \{ p \in P \mid \exists s', s \leq s' \land \eta(s') = p \} \]
Then, if a new observable state s occurs after W, and if $\eta(s') \in F(s)$, we necessarily have $s \leq s'$. Computing $F(s)$ for each observed state on a complete computation is easy, but we need to do it on the fly for arbitrary long computations. This information will be sufficient to ensure that the ordering in an observation is preserved by a K–influencing computation. For this, we define a new data structure that abstracts most of the computation and recalls causal dependencies. Recall that relation \ll_{p0} behaves as a FIFO channel. For each state s of S, and every run σ we define a function $\text{SINCE}_{\sigma}(s, p, q)$ that recalls actions of σ located on process p that must have an immediate successor on process q, that have been played after p has appeared in the future of s but have not yet been acknowledged by q. By construction, as we are only considering linearizations of K–influenced computations, $\text{SINCE}_{\sigma}(s, p, q)$ is of size at most K. It can be inductively defined as follows:

- $\text{SINCE}_{\sigma}(s, p, q) = \epsilon$ for every s, p, q
- $\text{SINCE}_{\sigma}(s, p, q) = \text{SINCE}_{\sigma}(s, p, q)$ if p is not in $F(s)$.
- $\text{SINCE}_{\sigma}(s, p, q) = \text{SINCE}_{\sigma}(s, p, q).\text{suc}(i, p)$ if p is in $F(s)$ and $a = (p, \text{SUC}, \text{PRE}, A)$, with $\text{suc}(q, i) \in \text{SUC}$ (intuitively, add a reference to an unmatched event that has no direct causal successor in the word $\sigma.a$).
- $\text{suc}(i, p).\text{SINCE}_{\sigma}(s, p, q) = \text{SINCE}_{\sigma}(s, p, q)$ if p is in $F(\epsilon)$ and $a = (q, \text{SUC}, \text{PRE}, A)$, with $\text{pre}(p, i) \in \text{PRE}$ (intuitively, remove the first letter of the word when a matching event on process q is found).

When a new observed action of Aut_K is played, leading to the creation of a new observed state s in the associated computation, we set $F(s) = \{p\}$ and $\text{SINCE}(\epsilon, q, q') = \emptyset$ for every $q \neq p$. If we call $Z_q = \{\text{suc}(q, i), i \in [K]\}$, $\text{SINCE}(\epsilon, p, q)$ associates a word in Z_q^*, to each pair of state and process of S. Note that due to K-influence, this word is of size at most K.

Lemma 1. Let $\sigma = a_1...a_k$ be a run of Aut_K, $b = (p, \text{SUC}, \text{PRE}, A)$ be a letter of Σ such that $\sigma.b$ is also accepted by Aut_K. Let $a_i = (q, \text{SUC}_i, \text{PRE}_i, A_i)$ be an observable letter of σ such that $q \neq p$ and $p \notin F(a_1...a_{i-1})$ in $\text{poc}(\sigma)$. Then, $p \in F(a_1...a_i)$ in $\text{poc}(\sigma.b)$, if and only if there exists $q' \in \Pi$, such that $q' \in F(a_1...a_i)$, $\text{SINCE}(a_i, q', p) = \text{suc}(p, i).w$ for some w, and $\text{pre}(q', i) \in \text{PRE}$.

proof: first of all, as $p \notin F(a_1...a_i)$ in $\text{poc}(\sigma)$, we know that there is no causal chain from q to p in $\text{poc}(\sigma)$. Hence, if $p \in F(a_1...a_i)$ in $\text{poc}(\sigma.b)$, then b is located on process p, and adding b to σ creates a new causal dependency from a process $q' \neq p$ to p (otherwise, for every observed event e of sigma, $F(e)$ remains unchanged. Note also that we necessarily have, $q' \in F(a_1...a_i)$, b is of the form $(p, \text{SUC}, \text{PRE}, A)$. Now let us suppose that $\text{pre}(q', i) \in \text{PRE}$ and $\text{SINCE}(a_i, q', p) = \text{suc}(p, i).w$. Then, it means that there exists a letter $a_j = (q', \text{SUC}_j, \text{PRE}_j, A_j)$ such that state $a_1...a_j$ is a causal successor of $a_1...a_i$ in $\text{poc}(\sigma)$, and such that $\text{suc}(p, i) \in \text{SUC}_j$. According to the dependence relation on Σ, we have that $a_1...b$ is a causal successor of $a_1...a_j$ in $\text{poc}(\sigma.b)$. Then there is a
causal chain from \(a_i\) to \(b\), and \(p \in F(a_i)\) in \(\text{poc}(\sigma.b)\). Now let us suppose that \(\text{SINCE}(a_i, q', p) = \text{suc}(p, i).w\) and that for every \(\text{pre}(x, j) \in \text{PRE}\), either \(x \neq q'\) or \(i \neq j\). Then, \(b\) and every action played since \(q' \in F(a_i)\) are independent, and \(p \notin F(a_1 \ldots a_i)\). □

The intuition behind this lemma is simple. To memorize future processes along a potentially infinite computation, we only need to maintain a finite set of words (one for each pair \(p, q \in \mathcal{P}\) per observed event) and a function that recalls for each \(p\) and each observed event \(s\) if \(p \in F(s)\). This finite information is sufficient to update \(F(\varepsilon)\) at each step of a \(K\)–influencing computation, and then decide whether the ordering among states of the observations \(O\) is respected in current computation.

Figure 5 illustrates the online construction of \(F\) and \(\text{SINCE}\). In this figure, we suppose that we study a system composed of processes \(\mathcal{P}\), and black crosses represent unobserved states. In this computation, we have \(p \in F(o_1), F(o_2), F(o_3)\) and \(F(o_4), Q \in F(o_1), F(o_2), F(o_4)\) and \(F(o_5), R \in F(o_1), F(o_4), F(o_5)\). Let us suppose that \(\lambda(u_0) = (Q, \text{SUC}_0, \text{PRE}_0, A_0)\), with \(\text{suc}(R, i) \notin \text{SUC}\) for every \(i \in [K]\). Suppose that \(\lambda(u_7) = (Q, \text{SUC}_7, \text{PRE}_7, A)\), with \(\text{suc}(R, 0) \in \text{SUC}_7\). We have \(\text{SINCE}(o_2, Q, R) = \text{suc}(R, 0)\). Let us append a new unobserved event \(u_{10}\) to the computation, such that \(\lambda(u_{10}) = (R, \text{SUC}_{10}, \text{PRE}_{10}, A_{10})\), with \(\text{pre}(q, 0) \in \text{PRE}_{10}\). Then, a new causal dependency between \(u_7\) and \(u_{10}\) exists, and \(R \in F(\varepsilon)\) in \(\text{poc}(\sigma.a_{10})\).

We are now ready to build \(\text{Auto}_O\), the automaton that recognizes all linearizations of \(K\)–influencing explanations of an observation \(O = (S_O, \eta_O, \leq_O, V_O)\). Let us denote by \(SLO\) the set of function that associate to each triple \(s, p, q \in S_O \times \mathcal{P} \times \mathcal{P}\) a word in \(Z^*_K\) of size at most \(K\), and by \(\mathcal{F}_O\) the set of functions that associate to each observed state of \(O\) a subset of \(\mathcal{P}\). We define \(\text{Auto}_O = (Q_O, q'_O, \Sigma, \delta_O, F_O)\), where:

- \(\Sigma\) is defined as usual
- \(Q_O \subseteq Q \times 2^{S_O} \times \mathcal{F}_O \times SLO\)
- \(F_O = Q \times \{S_O\} \times \mathcal{F}_O, \mathcal{P} \times \mathcal{S}\) that is a linearization is accepted if and only if all states of \(S\) have been observed
- \(q'_O = (q', \emptyset, f', \text{SINCE}')\), where \(f'\) is the function that associates \(\emptyset\) to any state of \(S_O\), and \(\text{SINCE}'\) the function that associates an empty word to every state of \(S_O\) and every pair of processes of \(\mathcal{P}\).
- \((\{q, S, 1, \text{SINCE}\}, a, (q', S, 2, \text{SINCE}2)) \in \delta_O\) if and only if \((q, a, q')\) is a transition of \(\text{Auto}_K\), with \(a = (p, \text{PRE}, \text{SUC}, A)\) and either
 - \(S1 = S2 = S_O\) (any transition allowed by \(\text{Auto}_K\) is allowed when the observation \(O\) is completely embedded in the explanation that was built), or
 - \(A \cap A^{\text{ahi}} = \emptyset, S1 = S2 \subset S_O, \) and for every \(s \in S1, F2(s) = F1(s) \cup \{p\}\) if \(\exists q \in F1(s)\) and \(\text{SINCE}\) \((s, q, p) = \text{suc}(p, i).w\) for some \(w\) and \(\text{pre}(q, i) \in \text{PRE}\). Furthermore, \(\text{SINCE}(s, q, p) = w\), and for every \(q' \in F2(s)\), if \(\text{suc}(q', i) \in \text{SUC}\) then \(\text{SINCE}(s, p, q') = \text{SINCE}(s, p, q').\text{suc}(q', i)\). Other components of \(\text{SINCE}\) remain unchanged, or
• $A \cap A^\text{ab} \neq \emptyset$, and there exists s' minimal in the restriction of O to $S_O \setminus S_1$ such that $V(s') = A \cap A^\text{ab}$, and for every $s \leq O s'$, we have that either $p \in F(s)$, or there exists a process $q \in P$ such that $\text{SINCE}1(s, q, p) = \text{suc}(p, i).w$ and $\text{pre}(q, i) \in \text{PRE}$. We also set $F2(s') = \{p\}$, and other components of $f1, \text{SINCE}1$ are updated as in previous rule. We also set $S2 = S1 \cup \{s'\}$.

Proposition 4. Let O be an observation over a set of processes P, with valuations in and alphabet A^ab. Let K be an integer and $A \supseteq A^\text{ab}$ be a set of atomic propositions. The size of Aut_O is at most in $O(|\text{Aut}_K|2^{|O|}2^{|P|}(|O|.|P|)^2(|P|.|K|+1)^K)$

proof: Considering that we can encode any word of size at most K in Σ^* as a word of size exactly K using an additional filling symbol, we obtain that function $\text{SINCE}1()$ can be encoded as a relation of size $|O|.|P|^2(|I_{\text{suc}}|+1)^K$ with $|I_{\text{suc}}| = |P|.|K|$. The rest is obvious from the description of the construction of Aut_O. □

Construction of $\text{Aut}_{\Phi^{pre}}$.
We next give the description of $\text{Alt}_{\Phi^{pre}}$, a two-way alternating automaton ([21]) that recognizes linearizations of K–influencing computations satisfying Φ^{pre}. This automaton can then be transformed into a standard finite state automaton $\text{Aut}_{\Phi^{pre}}$.
We introduce some new atomic formulae in order to simplify the structure of Φ^{pec}. We introduce formulæ of the form $\downarrow_m(T)$, where $m \in \mathbb{N}$ and T a computation containing at most N_m states. Let $W = (S, \eta, \leq, V)$ be a computation and $s \in S$. Then $W, s \models \downarrow_m(T)$ iff the m-view of s is equal (i.e. isomorphic) to T. We note that a formula $\downarrow_m(T)$ is equivalent to $\forall T' \in T \downarrow_m(T')$, where T is the collection of computation T' such that T' contains at most N_m states and the projection of T' onto A is equal to T. Similarly, we can write $\uparrow_m(T)$ as a disjunction of formulæ $\uparrow_m(T)$ with an analogous semantics.

Let $W = (S, \eta, \leq, V)$ be a computation and $s \in S$. Let $s' \in S$ and $\tau = a_1a_2 \ldots a_n$ be a non-null sequence in Σ^*. If there exist $s_1, \ldots , s_n \in S$ such that $s' = s_n, s_n \ll s_{n-1} \ll \ldots s_1 \ll s$ and $\lambda_W(s_i) = a_i$ for $i = 1, \ldots , n$, then we say s' is an τ-ancestor of s. Recall that each state in W has at most $|P|$ predecessors, one belonging to each S_p. Thus, we can in fact say s' is the τ-ancestor of s. We introduce formulæ of the form $\downarrow (\tau, \tau')$ where τ, τ' are non-null sequences in Σ^*. We define $W, s \models \downarrow (\tau, \tau')$ iff there exist states \hat{s}, \hat{s}' such that \hat{s} is the τ-ancestor of s, \hat{s}' is the τ'-ancestor of s, and $\hat{s} \leq \hat{s}'$.

We argue that a formula $\downarrow_m(T)$ can be equivalently written as a boolean combination of formulæ of the form $\downarrow (\tau, \tau')$. Assume without loss of generality of T contains a maximum state s_{max}. Thus, every state in T is the τ-ancestor of s_{max}. For some τ of length at most the number of states of T. Hence, $\downarrow_m(T)$ is equivalent to asserting for each pair of states s, s' in T, whether $\downarrow (\tau, \tau')$, $\downarrow (\tau', \tau)$, or $\neg (\tau, \tau') \land \neg (\tau', \tau)$, where s, s' are the respectively the τ-ancestor and τ'-ancestor of s_{max}.

Analogously, we define τ-descendants and introduce formulæ of the form $\uparrow (\tau, \tau')$ where τ, τ' are non-null sequences in Σ^*. It follows that a formula $\uparrow_m(T)$ is equivalent to a boolean combination of formulæ of the form $\uparrow (\tau, \tau')$.

With the new formulæ introduced above, we can assume without loss of generality that Φ^{pec} is formed from \neg, \land, \lor and the atomic formulæ $\text{loc}_p, \downarrow (\tau, \tau'), \uparrow (\tau, \tau'), \text{EX}\varphi, \text{EU}(\varphi, \varphi')$. Furthermore, negations in Φ^{pec} only apply to atomic formulæ.

Now we are ready to describe the two-way alternating automaton $\text{Alt}_{\Phi^{pec}}$. The basic elements of $\text{Alt}_{\Phi^{pec}}$ are similar as in usual translations of temporal logics to alternating automata (see e.g. [29]). The main difficulty is to deal with atomic formulæ of the form $\downarrow (\tau, \tau')$, $\uparrow (\tau, \tau')$.

For the sake of clarity, we informally recall some basics of two-way alternating automata ([6, 21]) before presenting their precise definitions. Let Alt be a two-way alternating automaton. An input word is delimited on the left by a left marker and on the right by a right marker. Initially, Alt is at the initial state with the head at the first letter of the input word. Upon reading the letter of the current head position, Alt can span several copies where each copy can move the head left or right and go to a new control state. Which combination of copies can be spanned are pre-determined by a transition relation. A run of Alt over an input word σ is a (finite) tree, where each branch terminates upon reaching the left or the right marker. And Alt accepts σ iff there exists a run over σ such that every leaf contains an accepting state.
Formally, a **two-way alternating automaton** ([6, 21]) is a structure \(\text{Alt} = (Z, Z_{fi}, Z_{fl}, \text{Alph}, \delta) \), where \(Z \) is a finite set of states, \(Z_{fi} \in Z \) the initial state, \(Z_{fl} \subseteq Z \) the set of final states, \(\text{Alph} \) a finite alphabet, and \(\delta \) is a function from \(Z \times (\text{Alph} \cup \{z_{fl}, z_{fr}\}) \) to \(B^+ \) where \((lft, rgt) \times Z \). Here, the special symbols \(z_{fl}, z_{fr} \) are the left and the right marker. The letters \(lft, rgt \) are to indicate whether the head should move left or right. The notation \(B^+(X) \) denote the set of positive boolean combination of elements from a finite set \(X \). Namely, \(B^+(X) \) consists of formulas formed \(X \) and \(\wedge, \vee \), where logically equivalent members of \(B^+(X) \) are identified in the obvious way. Thus, \(B^+(X) \) is also a finite set. We assume tacitly that \(B^+(X) \) also contains the special formulas \(\text{true} \) and \(\text{false} \). For \(\theta \in B^+(X) \) and \(X' \subseteq X \), we say that \(X' \) satisfies \(\theta \) iff \(\theta \) evaluates to true under the truth assignment \(f \) mapping members of \(X' \) to true and members of \(X - X' \) to false. Thus, we can associate each formula \(\theta \) in \(B^+(X) \) by the collection of subsets \(X' \subseteq X \) such that \(X' \) satisfies \(\theta \).

A run \(\rho \) of \(\text{Alt} \) over \(\sigma = a_1a_2 \ldots a_n \) in \(\Sigma^* \) is finite tree whose nodes are labelled with \(Z \times \{0, 1, 2, \ldots, n, n+1\} \) and the labelling inductively satisfies the following:

- The root of \(\rho \) is labelled \((z_{in}, 1) \).
- Suppose a node \(\text{Nod} \) of \(\rho \) is labelled \((z, j) \) with \(1 \leq j \leq n \). If \(\delta(z, a_j) \neq \text{true} \), then there exists some \(\{ (d_1, z_1), \ldots, (d_h, z_h) \} \), \(h \geq 1 \), satisfying \(\delta(z, a_j) \) and \(\text{Nod} \) has exactly \(h \) child nodes whose labellings are \((z_1, j_1), \ldots, (z_h, j_h) \). Further, for \(i = 1, \ldots, h \), if \(d_i = \text{lft} \), then \(j_i = j - 1 \); otherwise \((d_i = \text{rgt}), j_i = j + 1 \).
- If \(\delta(z, j) = \text{true} \), then there is no need to expand further the node \(\text{Nod} \). That is, \(\text{Nod} \) should become a leaf node (and the path from the root to node \(\text{Nod} \) is considered accepting).

In the run \(\rho \), a path from the root to a leaf node \(\text{Nod} \) is accepting iff \(\text{Nod} \) is labelled \((z, j) \) where either \(\delta(z, a_j) = \text{true} \), or \(z \in Z_{fl} \) and \(j \in \{0, n+1\} \). The run \(\rho \) is accepting iff every path from the root to a leaf node is accepting. We say \(\sigma \) is accepted by \(\text{Alt} \) iff there exists some accepting run over \(\sigma \).

We are now ready to describe the two-way alternating automaton \(\text{Alt}_{\Phi^{\text{pre}}} \). Let \(SF(\Phi^{\text{pre}}) \) be the set of subformulae of \(\Phi^{\text{pre}} \) and their negations, where \(\neg \phi \) is identified with \(\phi \). As indicated earlier, \(\text{Alt}_{\Phi^{\text{pre}}} \) runs over sequences in \(\Sigma^* \). The set of states of \(\text{Alt}_{\Phi^{\text{pre}}} \) is the union of the following pairwise disjoint sets:

- \(\{ z_{out} \} \), where \(z_{out} \) is the initial state of \(\text{Alt}_{\Phi^{\text{pre}}} \).
- \(Z_1 = \{ \text{Min}_a \mid a \in \Sigma \} \). These states are auxiliary states needed to search for a position (corresponding to a minimal state) at which \(\Phi^{\text{pre}} \) holds.
- \(Z_2 = \{ \text{Hold}_\phi \mid \phi \in SF(\Phi^{\text{pre}}) \} \), where intuitively \(z_\phi \) is the state which expects to verify that \(\phi \) holds at the current head position.
- \(Z_3 = \bigcup AUX_\phi \), where \(\phi \) ranges over formulas in \(SF(\Phi^{\text{pre}}) \). For each such \(\phi \), the states in \(AUX_\phi \) are auxiliary states needed during the process of verifying that \(\phi \) holds at some position.

In what follows, we describe the transition function \(\delta \) of \(\text{Alt}_{\Phi^{\text{pre}}} \) and give the details of the sets in \(Z_3 \) as we go along. It will turn out that \(\text{Alt}_{\Phi^{\text{pre}}} \) needs no final states. That is, for a sequence \(\sigma = a_1a_2 \ldots a_n \) in \(\Sigma^* \), if \(\rho \)
is an accepting run over \(\sigma \), then every leaf node is labelled \((z,j)\) with
\[\delta(z,a_j) = true. \]

To clarify the intuition behind the transitions of Alt\(_{\Phi^{\text{spec}}}{/}\), we shall fix a sequence \(\sigma = a_1 a_2 \ldots a_n \in \Sigma^* \) and often informally describe the operation of Alt\(_{\Phi^{\text{spec}}}{/}\) before stating the precise transitions of Alt\(_{\Phi^{\text{spec}}}{/}\).

Firstly, note that poc\((\sigma) = \Phi^{\text{spec}} \) iff \(\sigma, h \models \Phi^{\text{spec}} \) where \(a_1 a_2 \ldots a_h \) is a minimal state in poc\((\sigma)\). Thus, at the initial state, Alt\(_{\Phi^{\text{spec}}}{/}\) searches for position \(h \) such that \(a_j I a_0 \) for \(j = 1, \ldots, h - 1 \), and upon reaching position \(h \), it verifies that \(\Phi^{\text{spec}} \) holds at \(h \). Intuitively, we designate a state \(z_o, a \in \Sigma \), to indicate the search for a position \(h \) with \(a_n = a \) and \(a_1 a_2 \ldots a_h \) being a minimal state. Thus, for \(a \in \Sigma \), we have, \(\delta(z_{\text{init}}, a) = \lor_{b \in \Sigma} \delta(Min_b, a) \). And for \(a, b \in \Sigma \), we have
\[\delta(Min_b, a) = \begin{cases} \delta(\text{Hold}_{\Phi^{\text{spec}}}, a) & \text{if } a = b \\ \text{rgt, Min}_b & \text{if } a I b \\ \text{false} & \text{if } a D b \text{ and } a \neq b. \end{cases} \]

Next, we explain how Alt\(_{\Phi^{\text{spec}}}{/}\) verifies that a formula in SF\((\Phi^{\text{spec}})\) holds at the current head position. We proceed inductively to describe how Alt\(_{\Phi^{\text{spec}}}{/}\) verifies a formula of forms loc\(_p\), ↓\((\tau, \tau')\), ↑\((\tau, \tau')\), EX\(\varphi\), EU\(\varphi, \varphi'\).

We then study negation, conjunction and disjunction of formulas.

Formulas of form loc\(_p\)
Clearly Alt\(_{\Phi^{\text{spec}}}{/}\) can easily check if loc\(_p\) holds at the current head position, simply from the letter at the head position. Thus, we have \(\delta(\text{loc}_p, a) = true \) if \(a = (p, \text{PRE}, \text{SUC}, A) \) with \(p = p \), and \(\delta(\text{loc}_p, a) = false \) if otherwise.

Formulas of forms ↓\((\tau, \tau')\), ↑\((\tau, \tau')\)
For the input sequence \(\sigma \), we let \(a_i = (p_i, \text{PRE}_i, \text{SUC}_i, A_i) \) for each \(i = 1, 2, \ldots, n \). Recall that poc\((\sigma) = (S_\sigma, \eta_\sigma, \leq_\sigma, V_\sigma) \) where \(S_\sigma \) is the set of prefixes of \(\sigma \). For \(s, s' \in S_\sigma \), we write \(s \ll_\sigma s' \) iff \(s \) is a predecessor of \(s' \) in poc\((\sigma)\). Consider \(g, h \in \{1, 2, \ldots, n\} \), it is easy to see that \(a_1 a_2 \ldots a_h \) iff \(g < h \) and one of the following conditions holds:
- \(p_i = p \) and for each index \(t \) with \(g < i < h \), \(p_t \neq p_t \).
- \(p_g = p_h \) and \(a_g \neq a_h \).

Further, there do not exist indices \(i_1, i_2, \ldots, i_t \), \(t \leq |\Sigma| \), such that \(g < i_1 < i_2 < \ldots < i_t < h \), and \(a_g D a_{i_1} D a_{i_2} \ldots D a_{i_t} D a_h \).

With this, we explain how Alt\(_{\Phi^{\text{spec}}}{/}\) can verify that \(a_1 a_2 \ldots a_h \ll_\sigma a_1 a_2 \ldots a_n \).
This utility will used subsequently to verify formulas ↓\((\tau, \tau')\), ↑\((\tau, \tau')\). If \(a_g = a_h \) and \(p = p_g = p_h \), then Alt\(_{\Phi^{\text{spec}}}{/}\) just need to ensure that between positions \(g \) and \(h \) (excluding \(g \), \(h \)), there are no letters \((p, \text{PRE}, \text{SUC}, A)\) with \(p = p \). Now suppose \(a_g \neq a_h \). Let Seq be the collection of sequences \(b_1 b_2 \ldots b_t \) over \(\Sigma \) with \(t \leq |\Sigma| - 2 \), \(a_g D b_1 D b_2 \ldots D b_t \neq a_h \). Then Alt\(_{\Phi^{\text{spec}}}{/}\) checks that \(a_g D a_h \) and furthermore for every sequence \(b_1 b_2 \ldots b_t \) in Seq, there do not exist indices \(i_1, i_2, \ldots, i_t \) with \(g < i_1 < i_2 < \ldots < i_t < h \) and \(a_g = b_1, a_{i_2} = b_2, \ldots, a_{i_t} = b_t \).

For convenience, we describe how Alt\(_{\Phi^{\text{spec}}}{/}\) verifies a formula ↑\((\tau, \tau')\). Formulas ↑\((\tau, \tau')\) can be similarly handled. Fix a formula ↑\((\tau, \tau')\). Let \(\tau = b_1 b_2 \ldots b_{|\tau'|} \), \(\tau' = b_1' b_2' \ldots b_{|\tau'|}' \). We note that for a position \(\ell, \sigma, \ell \models ↑ \)(\(\tau, \tau'\)) iff there exist indices \(\ell_1, \ell_1', \ldots, \ell_{|\tau'|}, \) in \(\{\ell + 1, \ell + 2, \ldots, n\} \) satisfying the following conditions:
We describe subsequently the auxiliary states in AUX. We note that the indices each
conditions (i)(ii)(iii) above. Further, the states in AUX are causally
and $a_{\ell+1} = b_{\ell+1}$ for $i = 1, 2, \ldots, m$. This asserts that the τ-descendant of $a_1a_2 \ldots a_i$ exists.

Similarly, the indices $\tau_{j} (= 1)$, $\tau_{j} = 2$, \ldots, $\tau_{j} = m$ satisfy the above conditions. We stop at the position $\ell'_{m'}$ if these indices are successfully verified, or when some position violating the above conditions are found, or when we hit the right end marker before verifying all the indices. In the first case, $\vartheta(\tau, \tau')$ indeed holds at position ℓ and in the latter two cases, the formula $\vartheta(\tau, \tau')$ does not hold at position ℓ.

We describe subsequently the auxiliary states in $\mathrm{AUX}_{\zeta, \tau'}$ that aid in the process of verifying $\vartheta(\tau, \tau')$ holds at position ℓ.

We note that the indices $\ell_1, \ell_2, \ldots, \ell_m$ are uniquely determined by a_{ℓ} and (the letters of) τ. In particular, $a_{\ell_1} = b_1, a_{\ell_2} = b_2, \ldots, a_{\ell_m} = b_m$. Similarly, the indices $\ell'_1, \ell'_2, \ldots, \ell'_{m'}$ are uniquely determined by $a_{\ell'}$ and (the letters of) τ'. In particular, $a_{\ell'_{1}} = b_1, a_{\ell'_{2}} = b_2, \ldots, a_{\ell'_{m'}} = b_m$. We recall from above the description of how Alt^τ can verify $a_1a_2 \ldots a_g \leq_{\sigma} a_{1} \ldots a_h$ for two positions g, h. Let Seq be the collection of sequences over Σ of the form $a_0a_1\xi a_2\xi_2 \ldots \xi_m \lambda a_{\ell_m}^{\ell_1} \lambda'$, where $\xi_1 \xi_2 \ldots \xi_m \lambda$ are sequences over Σ of length at most $|\Sigma| - 2$. Each ξ sequence will aid in verifying that $a_1a_2 \ldots a_i \leq_{\sigma} a_{1} \ldots a_{\ell_i+1}$ (cf. Condition (i) above). The sequence λ will help verify Condition (iii) above. Let Seq' be the collection of sequences over Σ of the form $\lambda_{m-1} a_{\ell_m}^{\ell_1} \lambda'$, where each $\xi_1, \xi_2, \ldots, \xi_{m-1}$ are sequences over Σ of length at most $|\Sigma| - 2$. Sequences in Seq' will be used to help verifying Condition (ii) above.

We have that $\mathrm{AUX}_{\zeta, \tau'} = \mathrm{AUX}_{1, \tau', \tau'} \cup \mathrm{AUX}_{2, \tau', \tau'}$, where a state in $\mathrm{AUX}_{1, \tau', \tau'}$ consists of two sequences over Σ, one from Seq and one from Seq'. Using states in $\mathrm{AUX}_{1, \tau', \tau'}$, we can then verify $\vartheta(\tau, \tau')$ by checking Conditions (i)(ii)(iii) above. Further, the states in $\mathrm{AUX}_{2, \tau', \tau'}$ are auxiliary states needed to implement the transitions associated with states in $\mathrm{AUX}_{1, \tau', \tau'}$. It is now easy, though tedious, to write the exact transitions of Alt^τ associated with state $\mathrm{Hold}_{\zeta, \tau'}$.

Formulas of forms $\mathrm{EX} \varphi$, $\mathrm{EU}(\varphi, \varphi')$

Here we consider formulas of forms $\mathrm{EX} \varphi$, $\mathrm{EU}(\varphi, \varphi')$. Note that $\sigma, i \models \mathrm{EX} \varphi$ iff there exists an index j in $\{i + 1, \ldots, n\}$ such that $a_1a_2 \ldots a_i \leq_{\sigma} a_{j+1} \ldots a_n$ and $\sigma, j \models \varphi$. Thus, to verify that $\mathrm{EX} \varphi$ holds at position i, Alt^τ moves to the right searching for such a j. Similarly, we note that $\sigma, i \models \mathrm{EU}(\varphi, \varphi')$ iff one of the following conditions holds:

- $\sigma, i \models \varphi'$.
- $\sigma, i \models \varphi$. And there exists an index j satisfying $a_1a_2 \ldots a_i \leq_{\sigma} a_{j+1} \ldots a_n$ and $\sigma, j \models \mathrm{EU}(\varphi, \varphi')$.

With this, it is clear how $\text{Alt}_{\Phi^{\text{ex}}}$ can verify the formula $\text{EU}(\varphi, \varphi')$ holds at the current head position. Again, it is straightforward, though tedious, to provide the exact transitions of $\text{Alt}_{\Phi^{\text{ex}}}$ associated with states $\text{Hold}_{\text{EX}, \varphi}$, $\text{Hold}_{\text{EU}, (\varphi, \varphi')}$.

—Negation, conjunction, disjunction of formulas

Finally, negation, conjunction and disjunction of formulas are handled as in usual translations of temporal logics to alternating automata (see e.g. [29]). Namely, for $a \in \Sigma$, $\varphi, \varphi' \in SF(\Phi^{\text{ex}})$, we have $\delta(\text{Hold}_{\varphi}, a) = \neg \delta(\text{Hold}_{\varphi}, a)$, $\delta(\text{Hold}_{\varphi \land \varphi'}, a) = \delta(\varphi, a) \land \delta(\varphi', a)$ and $\delta(\text{Hold}_{\varphi \lor \varphi'}, a) = \delta(\varphi, a) \lor \delta(\varphi', a)$.

We have now completed the description of $\text{Alt}_{\Phi^{\text{ex}}}$. It is not difficult to see that the number of states of $\text{Alt}_{\Phi^{\text{ex}}}$ is of complexity $O(2^{2^{m}\cdot |\Sigma|\cdot m})$, where m is the maximum length of τ, τ' for all atomic formulae of the form $\uparrow (\tau, \tau')$, $\downarrow (\tau, \tau')$. It follows from [21] that $\text{Alt}_{\Phi^{\text{ex}}}$ can be transformed to a finite state automaton $\text{Aut}_{\Phi^{\text{ex}}}$ with $2^{N \cdot 2^N}$ states where N is the number of states of $\text{Alt}_{\Phi^{\text{ex}}}$. The proof of Theorem 2 is now completed. □

To prove Corollary 1, we first recall that if W is an explanation for O, then the injective mapping from the states of O to the states of W dictated in the definition of explanation is unique. Thus, it is easy to see that for any state s of O and any atomic proposition $a \in A_c$, one can construct a finite state automaton $\text{Aut}_{s,a}$ which has the following property: If σ a sequence σ representing a computation W_s in W_K where $W_s \models \Phi^{\text{ex}}$ and W_s is an explanation of O, $\text{Aut}_{s,a}$ accepts σ iff a is in the W_s-valuation of s. $\text{Aut}_{s,a}$ can be easily constructed from Aut_{O} by requiring that transitions that add s to the subset of observed states of O are labelled by letters with valuations that contain a. As a result, one can then effectively compute the K-summary of O under $\{\Phi^{\text{ex}}_p\}_{p \in P}$, by testing for each state s of O, each $a \in A_c$, the non-emptiness of the product of $\text{Aut}_{\Phi^{\text{ex}}}$ and $\text{Aut}_{s,a}$. □

Theorem 3. Let O be an observation of a system composed of a set P of processes, $A = A^p \cup A^c$ be the set of observable and explanatory atomic propositions, $\phiLeq = \{\Phi^{\text{ex}}_p\}_{p \in P}$ be a P-indexed family of LPOC formulae such that all frontiers and views used in ϕLeq are at most m-frontiers or m-views. Let K be an integer, and Σ be the Mazurkiewicz trace alphabet computed from A and K. Then one can determine whether there exists a K-influencing explanation $W_1 W_2 W_3$ for O with complexity $O(W_1 2^{W_2} 2^{W_3})$, where:

- $W_1 = |\Sigma|^K |P|^2 2^{O(|P|)} 2^{P} |O| P K + 1)^K$; and
- $W_2 = 2^{\sum_{i \in \Sigma; N_m} N_m 2^{i+n(1)} 2^{A^c}} |\Sigma|^m$;
- $N_m = \frac{1-|P|^m+1}{1-|P|}$.

proof: First every sub-formula of the form $\uparrow_{m,A} (T)$ must be translated into a disjunction of formulae of the form $\uparrow_m (T)$. Then every sub-formula of the form $\uparrow_m (T)$ is translated into conjunction of formulae of the form $\uparrow (\sigma, \sigma')$. Then a 2-way alternating automaton over a set of formulae of the form $\uparrow (\sigma, \sigma')$, $EX \phi, AX \phi, ...$ is built and transformed into an equivalent (but exponentially larger) standard automaton.
The first step means computing all partial orders of size up to $N m$. Recall that according to Kleitman & Rotschild [19], the number of partial orders of size n is in $O(2^{2^n})$. Hence, a formula of the form $\uparrow_{m,A}(T)$ can be translated as a disjunction of up to $\sum_{i \in 1..N m} 2^{2^n \ln(i)} \cdot 2^{A^{ex}}$ formulae of the form $\uparrow_{m}(T_{ij})$, where each T_{ij} is a template of size lower than $N m$ that allows an embedding of T into T_{ij}.

Then, each template of the form $\uparrow_{m}(T_{ij})$, where each T_{ij} is a template of size lower than $N m$ that allows an embedding of T into T_{ij}.

Then, each template of the form $\uparrow_{m}(T_{ij})$, can be defined by a conjunction of up to $\sum_{i \in 1..N m} 2^{2^n \ln(i)} \cdot 2^{A^{ex}}$. So, ϕ is equivalent to a formula ϕ'' that is formed from \neg, \land, \lor and the atomic formulae loc_p, \downarrow_ϕ, \uparrow_ϕ, EX_ϕ, EU_ϕ, of size at most $|\phi| \cdot N m^2 \sum_{i \in 1..N m} 2^{2^n \ln(i)} \cdot 2^{A^{ex}}$. So, the size of the 2-way alternating automaton Alt_ϕ computed for the formula ϕ is in $
abla_2 = 2^{|\phi| \cdot N m^2} \sum_{i \in 1..N m} 2^{2^n \ln(i)} \cdot 2^{A^{ex}}$. Then, from [21], a two-way alternating automaton with N states can be simulated by a deterministic (one-way) automaton with 2^N states.

The size W_1 of Aut_O has been computed in proposition 4. Once the automaton Aut_ϕ that recognizes K-influencing computations satisfying ϕ has been computed, then the diagnosis problem can be reduced to the vacuity of intersection of Aut_O and Aut_ϕ. The diagnosis problem can hence be solved in $O(W_1 \cdot 2^{W_2} \cdot 2^{W_2})$.

Corollary 2. Let O be an observation, and ϕ be a formula describing a distributed system. Computing a summary for O can be done in $O(|O| \cdot |A^{ex}| \cdot W_1 \cdot 2^{W_2} \cdot 2^{W_2})$

proof: Computing a summary is equivalent to labeling each state s of O with each single unobserved proposition p of A^{ex} in addition to the observed propositions, and running diagnosis. If the obtained product computed is empty, then there is no computation is the set of explanations provided by ϕ such that s is labelled by p, and p should not appear in the summary labeling of s. This operation is repeated for every $p \in A^{ex}$ and every $s \in O$. □

5 Related work

Several logical formalisms have been proposed for traces or partial orders. Among them, we can distinguish local logics, where the truth of formulae are evaluated at local states, and global logics, where properties are evaluated at configurations (i.e collections of local states of processes) of the models. For global logics, [28] has shown that LTrL, an LTL-like logic over traces with a past operator is equal in expressive power to the first order theory of traces. This result is generalized for pure future LTL on traces by [8, 10]. TrPTL, proposed by [27] is a logic with a next and a special until operator restricted to events of a process. Its expressive power is included in FO logic [13], and satisfiability of TrPTL formulae
Diagnosis with a Logic of Partial Order Computations

is decidable [27]. Note that for traces, satisfiability and model-checking of LTL-like logics with “universal until” is non elementary [30] (see [5] for an automaton-based proof of this result) and are undecidable with “existential until” [25]. In local logics, formulae are interpreted over local states of a partial order. Without being exhaustive, one can cite several results: TLC, proposed by [1] (a local logic over partial orders with local next, existential until, and similar past operators, plus a parallel operator) has the same expressive power as FO [9], and local logics with strict universal until and universal until have the same expressive power as FO on traces [11]. Model-checking and satisfiability of MSO-definable local logics over traces is in PSPACE [12]. Moreover, for traces every MSO-definable local logics is complete for FO, and uniform satisfiability for MSO-definable local logics is in PSPACE [13].

The LPOC logic proposed in this paper is a local logic over partial orders. Clearly, it is not FO definable, as the existential until can not be defined with FO. However, it can be easily translated to MSO formulae. To keep decidability of the diagnosis problem, some restrictions are imposed on the models. It is frequent with partial order models, as defining a model checking as the intersection of two automata, one representing a formula, and the other one representing the model often allows for an encoding of the PCP.

In [24], D.Peled proposes an algorithm to model check formulae in TLC—a subset of TLC on High-level Message Sequence charts (HMSCs). Model checking HMSCs with global logics such as LTL or CTL is reputed undecidable, except for restricted classes of the language [2]. TLC-formulae describe the shape of causal chains in all the partial orders generated by a HMSC, i.e. they express properties on sequences of events that are ordered by $<$, the covering relation of a partial order. The model-checking algorithm for TLC transforms a formula ϕ and a HMSC H into Buchi automata and verify the emptiness of the intersection of both automata. If the intersection of both models is not empty, then $H \models \phi$. More precisely, the Buchi automaton computed from H selects one representant linearization for each MSC generated by H, and the automaton computed from ϕ describes linearization that satisfy $\neg \phi$. Due to communications in MSCs, the automata computed comport two transition relations. Emptiness of the intersection of automata with two transition relations is in general undecidable, but for the specific case of HMSCs, the second transition relation, that represents messages, is contained in the transitive closure of the first one, and emptiness becomes decidable. As TLC^- only contains next and until temporal operators it is clearly less expressive than LPOCH.

Bollig proposes a propositional dynamic logic (PDL) for message passing systems see [4], extending the Henriksen and Thiagarajan’s dynamic LTL for traces [18], and show that model checking HMSCs wit PDL properties is PSPACE complete.

[22, 23] proposes several temporal logics over Lamport diagrams, with future and past modalities, and show that in the general case, these logics are undecidable. However, these logics become decidable when considering models of bounded size, and for communication closed layered b-bounded diagrams, that is partial orders that can be organized as suc-
cessive layers of finite message exchanges among fixed sets of processes. LD0 only describes chains of causally related events occurring in the future or in the past of a local state, while the template matching in LPOC allow to describe a complete partial order in a bounded future or past of a local state. The LPOC logic is then slightly more discriminating than for instance the LD0 logic proposed by [23], as shown in Figure 6. It is possible to say that a computation starts with template T_1 with the LPOC formula $\phi_P = \downarrow \delta_{\{a,b,c\}} (T_1)$, but LD0 formulae describing such computations also allow computations starting with T_2.

Note however that for all the local logics described above, partial orders are seen as models of formulae, but not as elements of the logic itself. The closest approach mixing logic and partial orders is called "Template Message Sequence Charts" [16]. A Message Sequence Chart is a partial order where locality of events and messages are explicitly represented. A template MSC is an incomplete MSC, i.e a MSC with some “holes” and that may also comport incomplete messages. Roughly speaking, models for a template MSC are obtained by filling the holes with new partial orders, and matching sendings and receptions of messages. The authors increase the power of template MSCs with pre/post condition operator of the form $M a \rightarrow M b$, and $M a \rightarrow \neg M b$ where $M a$ and $M b$ are template MSCs, and conjunctions of templates of the form $\land_i (M a^i \rightarrow (\lor_j M^{j^i}))$. The models of these formulae are MSCs. This logic is very expressive, but satisfiability is undecidable when no bound is assumed on the set of models considered. However, a restricted fragment of the logic is proposed to model check existentially bounded Communicating Finite State Machines. Note however that models for template

Fig. 6. LPOC is more discriminating than LD0
MSC formulae are MSCs, while models for LPOC formulae are arbitrary Lamport diagrams. Hence, in LPOC, causal precedence is not restricted to local ordering on processes and message relation, and a state might have up to \(|P|\) predecessors, even in K-influenced computations. Even if we only consider LPOC formulae over MSCs, LPOC and template MSCs remain uncomparable. On one hand, holes in template MSCs are not necessarily descriptions of what happens in the future or in the past of an event. By filling hole, one may add concurrent events, i.e. it is possible to say with template MSCs that whenever an action \(a\) occurs on process \(p\), then a concurrent action \(b\) occurs on process \(q\). Clearly, this kind of formula can not be expressed with LPOC. On the other hand, some LPOC formulae do not find their equivalent in template MSC. Even if we impose models of LPOC formulae to be MSCs, there is no way to encode the until operator of LPOC with template MSCs. Both logics are hence uncomparable.

Note also that the works in [24] and [16] rely on the existentially bounded nature of models to ensure decidability of model checking (that is, there is a bound \(b\) such that every MSC considered possess a linearization where the size of communication channel never exceeds \(b\)). This is not sufficient in our case to obtain decidability of diagnosis, as the PCP encoding of section 3 is existentially bounded. The \(K\)--influencing restriction is then closer to the universal bound on MSCs (the contents of communication channels in all linearization of every MSC considered is bounded buy some integer \(b\) that is needed by [2] to model check High level Message Sequence Charts. It might be interesting to see whether the restriction of [22, 23] that imposes layered computations is sufficient to make diagnosis with LPOC formulae a decidable problem.

6 Conclusion

We have proposed a diagnosis framework based on partial order logic. Like most of powerful logics such as Template MSCs, satisfiability of formulae and hence diagnosis turns to be undecidable problems without restrictions on the kind of models considered. By imposing computations to be K-influenced, diagnosis finds a solution. Even within this setting, diagnosis turns out to be very expensive (exponential in the size of the formula and in the size of the observed behavior). Some complexity gains can be expected by restricting the size and the number of partial order templates considered, but also the modalities of the formulae.

References

