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Abstract. This paper proposes a diagnosis framework based on a new
partial order logic. The purpose of this logic-based diagnosis is to recover
some information that was not observed from a set of formulae describing
the expected behaviors of a distributed system and an incomplete obser-
vation. We first propose a local partial order logic as a way to describe
distributed behaviors, and show that without restriction, satisfiability of
a set of formulae, and hence diagnosis is not decidable. We show that
we can restrict the class of distributed behaviors to models that ensure
decidability of satisfyability and of the diagnosis problem. We then show
the complexity of diagnosis and unobserved information inference.

1 Introduction

Diagnosis consists in inferring missing information (unobserved events
or states, faulty behaviors,...) from a partial observation of a system.
It is an important task in telecommunication networks, where the size
and heterogeneity of the architectures forces partial observation. When
a fault occurs, it is crucial for safety and economical reasons to discover
the cause for the failure and to correct it as fast as possible.
Model-based diagnosis brings automated solutions for this problem. Rough-
ly speaking, it consists in comparing runs of a model with the observed
behaviors, and infer the missing parts. One might be interested in dis-
covering if an unobserved fault has occurred, as in [26], or in finding all
possible runs that may have lead to the observation, as in [3]. Anoth-
er possibility is to augment observations with useful information such as
causal relationships among observed events, known local properties of the
system along the run, and events of interest missed by the observation as
in [15]. Within this setting, several models have been proposed to repre-
sent runs of distributed systems: automata [26], Petri nets [3], Message
Sequence Charts (MSCs) [17]. However, diagnosis always needs an up to
date model of the running system to be accurate. In nowaday’s architec-
tures, new services are added and modified every day, which calls for a
daily redesign of models. Clearly, this is not possible with automata or
nets, where the smallest modification implies updating many transition-
s. We propose a new logic-based approach for diagnosis. The main idea
is to collect users and designers knowledge with a logic that describes
known interactions as partial orders, and temporal relations between
these known pieces of behavior. Hence, a model for a running system is
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a conjunction of formulae, and one can expect that a modification of the
system only implies redefining a limited number of formulae.
The LPOC logic proposed in this paper is a CTL-like logic of partial
order, with past and future modalities. It is a local logic, that defines the
shape of causal chains in all executions of a system. We first show that
satisfiability of this logic is undecidable. This is not really surprising, as
similar undecidability results hold for m-LTL [23], a local temporal logic
on Lamport diagrams and for template MSCs [16] a logical framework
for MSCs. Hence, without restriction on the logic or on the shape of the
explanations (i.e. the models of the formulae that are compatible with
the observation), satisfiability of LPOC formulae is undecidable (and as
a corollary, diagnosis is also an untractable problem).
We then show a restriction on models allowed for LPOC formulae that
makes diagnosis a decidable problem, and show how to extract explana-
tions from a partial observation and a set of formulae. When the runs
of the system meet a syntactical requirement called “K-influence”, then
explanations can be computed as the intersection of an automaton repre-
senting all runs that are compatible with the observation and an automa-
ton representing all runs that are compatible with the LPOC description
of the system.
This paper is organized as follows. The LPOC logic is described in 2.
The negative satisfiability result is shown in Section 3. Section 4 shows
that assuming that all executions are K-influencing, satisfiability and
diagnosis become decidable problems, and establishes complexity results
for diagnosis. Section 5 compares our results with some related works.
Section 6 concludes this work.

2 Preliminaries

Through the rest of the paper, we fix a finite nonempty set of process
names P and let p, q range over P. We also fix a finite nonempty set A
of atomic propositions.

Definition 1. A partially ordered computation (or computation for short)
over (P,A) is a tuple (S, η,≤, V ) where:

– S is a finite set of (local) states.
– η : S → P identifies the location of each state. For each p ∈ P, we

define Sp = {s ∈ S | η(s) = p}.
– ≤ ⊆ S × S is a partial order, called the causality relation. Further-

more, for each p, ≤ restricted to Sp × Sp is a total order.
– V : S → 2A is a labeling function which assigns a set of atomic

propositions to each state. We call V (s) the valuation of s.

Intuitively, a computation (also called Lamport diagram in the literature
[22, 23]) represents the causal ordering among local states in a distributed
execution, in which states of each process are sequentially ordered. The
valuation of local state s collects the atomic propositions that hold at
s. Figure 1 shows a computation. States are designated by black dots
with associated name s1, . . . , s6. Processes P, Q, R are represented by
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vertical lines, and states located on a process line are ordered from top
to bottom. Finally, valuations of states take value in {a, b, c}, and are
represented between two brackets near the associated state. Note that
we consider only finite computations, since diagnosis is performed at a
given moment after a finite observation period. We will say that two
computations (S, η,≤, V ) and (S′, η′,≤′, V ′) are isomorphic iff there is
a bijection f : S → S′ such that η(s) = η′(f(s)) for any s ∈ S, s1 ≤ s2

iff f(s1) ≤
′ f(s2) for any s1, s2 ∈ S, and V (s) = V ′(f(s)) for any s ∈ S.

We identify isomorphic computations and write W ≡ W ′ if Wand W ′

are isomorphic.
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Fig. 1. a) A computation W b) the 1-view of s3 in W

Let (S, η,≤, V ) be a computation, and s, s′ ∈ S. As usual, we write s < s′

when s ≤ s′ and s 6= s′. For each p ∈ P, we let ≪p⊆ S × S be given
by: s ≪p s′ iff s, s′ ∈ Sp, s < s′, and there does not exist s′′ ∈ Sp with
s < s′′ < s′. That is, ≪p is the “immediate” sequential ordering of states
belonging to p. We let ⋖ ⊆ S×S be the least relation such that ≤ is the
reflexive and transitive closure of ⋖. For each p, q ∈ P with p 6= q, let us
define ≪pq⊆ S × S as follows: s ≪pq s′ iff s ∈ Sp, s′ ∈ Sq, and s ⋖ s′.
We also define ≪= (∪p∈P ≪p)

⋃
(∪p,q∈P,p 6=q ≪pq). If s ≪ s′, we say s′

is a (causal) successor of s, and call s a (causal) predecessor of s′. We
emphasize that ≪ is not equal to ⋖. A state s is minimal if it has no
predecessor. We say s is maximal if it has no successor. A causal chain
is a sequence s1s2 . . . sn of states where s1 ≪ s2 ≪ . . . ≪ sn. A causal
path is a causal chain s1s2 . . . sn such that sn is a maximal state.

We want to define a temporal logic of partial-order computations (called
“LPOC” for short) to reason about distributed behaviors. It has two ba-
sic features. First, at a state s of a computation, atomic formulae which
assert that a “pattern” occurs in a bounded past or future of s. Sec-
ondly, we consider a branching time framework with CTL-like operators
and reason along sequences of causally ordered states. In the sequel, we
precise these notions before defining the syntax and the semantics of the
logic.
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Definition 2. Let (S, η,≤, V ) be a computation, s ∈ S and m a natural
number. The m-view of s, denoted ↓m(s), is the collection of states s′ in
S such that there exists a causal chain of length at most m starting from
s′ and ending at s. More precisely, ↓m(s) = {s′ | ∃s0, . . . sn ∈ S, n ≤
m and s′ = s0 ≪ s1 ≪ . . . ≪ sn = s}. Similarly, the m-frontier of s,
denoted by ↑m(s) is the collection of states s′ in S such that there exists
a causal chain of length at most m starting from s and ending at s′.

In particular, the 0-view and 0-frontier of s are both the singleton set
{s}. Note that s has at most |P| successors, one belonging to each Sp.
Thus, inductively, the m-view of s contains at most Nm =

∑m

i=0 |P|i =
1−|P|m+1

1−|P|
states, and the same bound holds for the size of m-frontiers.

In order to reason about the “pattern” of a computation, we also need
a notion of projection.

Definition 3. Let W = (S, η,≤, V ) be a computation over (P,A), and
let A ⊆ A. The projection of W onto A is the computation W ′ =
(S′, η′,≤′, V ′) where S′ = {s ∈ S | V (s) ∩ A 6= ∅}, and η′, ≤′, V ′

are the respective restrictions of η,≤, V to S′. The restriction of W to a
subset of states S′ ⊆ S is the computation W ′ = (S′, η̂, ≤̂, V̂ ) where η̂,

≤̂, V̂ are the respective restrictions of η, ≤ and V to S′.

The atomic formulae of our logic will assert that the projection of the
computation formed from the m-view or the m-frontier of a state is
isomorphic to a given computation. We are now ready to define the logic
LPOC.

Definition 4. The set of LPOC formulae over a set of processes P and
a set of atomic propositions A, is denoted by LPOC (P,A), and is in-
ductively defined as follows:
– For each p ∈ P, the symbol locp is a formula in LPOC (P,A).
– If ϕ, ϕ′ ∈ LPOC (P,A), then ¬ϕ and ϕ∨ϕ′ are formulae in LPOC (P,A).
– Let m be a natural number, A be a subset of A, and T = (S, η,≤

, V ) be a computation such that V (s) ⊆ A for every s ∈ S. Then
↓m,A(T ), ↑m,A(T ) are formulae in LPOC (P,A).

– If ϕ, ϕ′ are formulae in LPOC (P,A), then EXϕ, EU(ϕ, ϕ′) are for-
mulae in LPOC (P,A).

From now on, we shall refer to formulae in LPOC (P,A) simply as for-
mulae. Their semantics is interpreted at local states of a computation.
For a computation W and a given state s of W , we write W, s |= φ when
W satisfies φ, which is defined inductively as follows:

– W, s |= locp iff the location of s is p (i.e. η(s) = p),
– W, s |=↓m,A(T ) iff the projection of ↓m(s) onto A is isomorphic to

T .
– W, s |=↑m,A(T ) iff the projection of ↑m(s) onto A is isomorphic to

T .
– W, s |= EXϕ iff there exists a state s′ in W such that s′ is a causal

successor of s and W, s′ |= ϕ.
– W, s |= EU(ϕ, ϕ′) iff there exists a causal path s1s2 . . . sn in W with

s = s1. Further, there exists an index i in {1, 2, . . . , n} with W, si |=
ϕ′, and W, sj |= ϕ for every j in {1, 2, . . . , i − 1}.
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The semantics for boolean combinations and negations of formulae is
as usual. Furthermore, we define some derived CTL temporal operators
as follows. First, we have EFϕ ≡ EU(true, ϕ) and EGϕ ≡ EU(ϕ, ϕ ∧∧
p∈P

¬EX locp). That is, EFϕ means that there exists a causal path ρ

starting from the current state such that ϕ holds at some state of ρ.
And EGϕ demands that there exists a causal path ρ starting from the
current state such that ϕ holds at every state of ρ. Secondly, we define
AXϕ ≡ ¬EX(¬ϕ); AFϕ ≡ ¬EG¬ϕ; and AGϕ ≡ ¬EF¬ϕ. We write EXp(ϕ)
for the formula EX(locp ∧ ϕ). The notations EFp, EGp, AXp, AFp, AGp

are defined in the same way. We will say that two formulae ϕ and ϕ′ are
logically equivalent iff for any computation W , any state s of W , we have
W, s |= ϕ iff W, s |= ϕ′.
In LPOC we can also assert the truth of atomic propositions at a state
of a computation. Let a ∈ A. Consider the formula ϕa = ∨p∈P

(
locp∧ ↓

0,{a}(Tp,a)
)
, where each Tp,a is the computation containing a singleton

state of location p and valuation {a}. It is clear that for any computation
W and a state s, we have W, s |= ϕa iff the valuation of s contains a.
Observations of a system do not necessarily record all causal ordering
among observed states. More precisely, if in an observation O, a state
s is causally earlier than s′, then in any explanation W of O, the state
in W corresponding to s must be causally earlier than the state in W

corresponding to s′. But the converse need not hold. For this reason,
we need to introduce the formulae ⇓ m,A(T ) and ⇑ m,A(T ), where m

is a natural number, A ⊆ A and T is a computation such that the
valuation of any state s of T is a subset of A. Let W = (SW , ηW ,≤W , VW )
be a computation and s ∈ SW . Consider the formula ⇓m,A(T ) where
T = (ST , ηT ,≤T , VT ). We say W, s |=⇓ m,A(T ) iff there exists an injective
mapping f : ST →↓m(s) satisfying:
– For every s ∈ ST , ηT (s) = ηW (f(s)) and VT (s) = VW (f(s)) ∩ A.
– For every s, s′ ∈ ST , s ≤T s′ implies f(s) ≤W f(s′). But we do not

demand the converse.
The semantics of ⇑m,A(T ) is defined in the same way, except the map-
ping f is from ST to ↑m(s). Remark that ⇓m,A(T ) and ⇑m,A(T ) can be
easily defined in LPOC. Recall that the m-view of a state s of a compu-
tation contains at most Nm states. Now it is easy to see that ⇓m,A(T )
is equivalent to the formula

∨
X∈X

↓m,A(X) where X is the collection of

computations X = (SX , ηX ,≤X , VX) containing at most Nm states and
for which there exists an injective mapping g : ST → SX satisfying:
– For every s ∈ ST , ηT (s) = ηX(g(s)) and VT (s) = VX(g(s)).
– For every s, s′ ∈ ST , s ≤T s′ implies g(s) ≤X g(s′).

Lastly, for a computation W and a LPOC formula ϕ, we say that W

satisfies ϕ, written W |= ϕ, iff there exists some minimal state smin of
W such that W, smin |= ϕ. We say that ϕ is satisfiable iff there exists a
computation W such that W |= ϕ.
For application to diagnosis, it is useful to define the notion of a compu-
tations satisfying a collection of formulae, one for each process. Formally,
for a computation W = (S, η,≤, V ) and a P-indexed family of formulae
{ϕp}p∈P , we say W satisfies {ϕp}p∈P , written W |= {ϕp}p∈P by abuse
of notation, iff the following condition holds: for each p ∈ P, Sp 6= ∅ and
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W, sp |= ϕp where sp is the minimum state in Sp (i.e. sp ≤ s for every
s ∈ Sp). Note that W |= {ϕp}p∈P iff W |=

∧
p∈P

EU(¬locp, locp ∧ ϕp).

3 Diagnosis

Our goal is to use LPOC for diagnosis, that is find explanations for an
observation from a set of formulae described in LPOC, that represents
a specification of the observed system. To this end, we fix Aob ⊆ A the
subset of observable atomic propositions, and Aex ⊆ A the subset of
explanatory atomic propositions. The sets Aob and Aex are assumed to
be disjoint. An observable atomic proposition is one whose truth value
may be “recorded” during system execution. On the other hand, atom-
ic propositions in Aex are those that may explain the cause of what
have been observed. Thus in typical applications, explanatory atomic
propositions correspond to the faults or state information that cannot
be directly accessed. On the other hand, observable atomic proposition
indicate state information that can be directly recorded, for instance,
alarms and abnormal behavior. The observable atomic propositions are
in a sense manifestations of the explanatory atomic propositions. To for-
mulate the diagnosis problem, we introduce the notions of observation
and explanation.

Definition 5. An observation is a computation with valuations in 2Aob

.
That is, (S, η,≤, V ) is an observation iff V (s) ⊆ Aob for every s ∈ S.

Let O = (SO, ηO,≤O, VO) be an observation and W = (SW , ηW ,≤W

, VW ) a computation. Then, W is an explanation for O iff there exists
an injective mapping f : SO → SW such that:

(i) ∀s ∈ SO, ηO(s) = ηW (f(s)) and VO(s) = VW (f(s)) ∩ Aob .

(ii) ∀s, s′ ∈ SO, if s ≤O s′, then f(s) ≤W f(s′).

(iii) For every s in the image of f , VW (s) ∩ Aob 6= ∅. Furthermore, for
any s′ ∈ SW , if ηW (s′) = ηW (s), s′ ≤W s and VW (s′) ∩ Aob 6= ∅,
then s′ is also in the image of f .

Intuitively, an observation describes everything that is “recorded” dur-
ing an the execution of some prefix of a computation. We assume that
the observation is produced by a monitoring mechanisms that observes
each process and transmits “recorded” observable atomic propositions to
a central diagnosis system. Only records of the same process are guar-
anteed to be received by the central diagnosis system in the order they
were sent. We emphasize that the observation may have only recorded an
initial portion of the explanation. Thus, the image of f may be a proper
subset of the states of W whose valuation contains observable atomic
propositions. However, we suppose the observer is faithful, that is, it
does not create wrong states or causalities. Note that for given O and
W , if the mapping f exists, then it is necessarily unique. Thus, for each
state s ∈ SO, it makes sense to call VW (f(s)) the W -valuation of s. Con-
dition (i) means that the location mapping should be respected by the
observation mechanism, and that in explanations, only states at which
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at least one observable atomic proposition holds may be “recorded”, and
hence appear in the observation.
Condition (ii) asserts that the recorded causality orderings must originate
from an execution. However, we do not demand the converse. That is,
some causality orderings in the explanation may not be “recorded”.
Condition (iii) states that there is no loss during recording of states: if a
state of process p is recorded, then any causally preceding states s′ of p

must be recorded in case the valuation of s′ contains observable atomic
propositions.

Definition 6. Let O be an observation, and {Φspec
p }p∈P be a set of for-

mulae. W is an {Φspec
p }p∈P -explanation for O iff W is an explanation

for O and W |= {Φspec
p }p∈P .

Now we can define the diagnosis problem associated with LPOC.

Definition 7. Let P be a set of processes, Aob be a set of observable
atomic propositions, and Aex be a set of atomic explanatory propositions.
The LPOC-diagnosis problem is defined as follows: given an observation
O = (SO, ηO,≤O, VO) and a P-indexed family of formulae {Φspec

p }p∈P

over (P,Aob∪Aex ), determine whether there exists a {Φspec
p }p∈P -explanation

for O.

In what follows, we will often omit the subscript p ∈ P. The formulae
{Φspec

p } specify the knowledge about execution of the system The ob-
jective of diagnosis is to figure out whether there exists an explanation
for what have been observed. In case such an explanation exists, we also
want to obtain more detailed information about the possible truth values
of propositions in Aex at each observed state. We define the (explana-
tory) summary of O under {Φspec

p }p∈P as the mapping g : SO → 2Aex

such that for every s ∈ SO, g(s) ⊆ Aex , and a ∈ g(s) iff there exists an
explanation W for O with W |= {Φspec

p }p∈P and a is in the W -valuation
of s. Thus, when the answer to the diagnosis problem is positive, we
would want further to compute the summary of O. Unfortunately, in the
general case, the LPOC-diagnosis problem is undecidable (and so is the
computation of summaries).

Theorem 1. The LPOC-diagnosis problem is undecidable.

proof This theorem is proved by reduction from the Post Correspon-
dence Problem (PCP). The reduction is similar to that used in decision
problems related to message sequence charts (see for instance [16]).
Consider an instance of PCP with Σ a finite alphabet such that |Σ| >

1, and (g1, h1), . . . , (gn, hn) a finite sequence of pairs of words over Σ.
A solution (if it exists) is a finite sequence of indices j1, j2, . . . , jt in
{1, 2, . . . , n} such that gj1gj2 . . . gjt = hj1hj2 . . . hjt . The reduction is as
follows. We pick P = {p, q, r}. Let Ap = {ap | a ∈ Σ} ∪ {ip | i ∈
{1, 2, . . . , n}}, Aq = {aq | a ∈ Σ} ∪ {iq | i ∈ {1, 2, . . . , n}}, and Ar =
{ipr, iqr | i ∈ {1, 2, . . . , n}}. We take Aex = Ap ∪ Aq ∪ Ar, and Aob = ∅.
Let O be the empty observation, that is, a computation with no states.
Thus, any computation is an explanation for O.
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We encode solutions to the PCP instance by computations which have
the form illustrated in Figure 2. The total ordering of states on each
process is drawn as a vertical line with the minimum state at the top.
The downward-sloping arrows represent pairs (s, s′) of states in the suc-
cessor relation such that s, s′ are on different locations. The label of each
state indicates its valuation. We can construct formulae Φp,Φq,Φr such
that {Φp, Φq, Φr} is satisfiable iff there exists a computation W with
W |= {Φp, Φq, Φr} and W represents a solution to the PCP instance. It
will then follow that the PCP instance has a solution iff there exists an
explanation for O satisfying {Φp, Φq, Φr}.
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p

i,1

g
p

i,|gi|

{i′p}

g
p

i′,1
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q
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h
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i,|hi|

h
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h
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i′,1
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{i′pr}

{ipr}

{iqr}

{i′qr}

Fig. 2. Encoding solutions to PCP with computations

In the sequel, we outline the construction of Φp, Φq and Φr. For A ⊆
Ap, we write VAL(p, A) for the formula locp∧ ↓1,Ap(T ) where T is the
computation with a singleton state of location p and valuation A. In other
words, the formula VAL(p, A) asserts that the current state has location
p and valuation A. We define the notations VAL(q, A), VAL(r, A) in the
same way. The formula Φp is the conjunction of the following formulae.

(P1)
∨

i∈{1...n}

VAL(p, {ip}). It asserts that the valuation of the minimum state

of Sp is {ip}, for some i in {1 . . . n}.
(P2) EGp(

∧
i∈{1...n}

(VAL(p, {ip}) → ϕi)) where each ϕi is given as follows. Let

gi,j be the j-th letter of gi, for j = 1, . . . , |gi|. Then ϕi asserts that
there exist m states s1, s2, . . ., s|gi| in Sp with s1 being a successor
of the current state, and sj+1 a successor of sj for j = 1, . . . , |gi|−1.
Furthermore, the valuation of sj is {gp

i,j} for j = 1, 2, . . . , |gi|, and
either s|gi| has no successor in Sp, or s|gi| has a successor in Sp whose
valuation is {ℓp} for some ℓ in {1, . . . , n}.
More precisely, ϕi =↓ |gi|+1,Ap

(T )∨(∨ℓ=1,2,...,n ↓ |gi|+1,Ap
(T ′

ℓ)), where
T is the computation ({t1, t2, . . . , t|gi|}, ηT ,≤T , VT ) with ηT (tj) = p
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for every j = 1, 2, . . . , |gi|, t1 ≤T t2 ≤T . . . ≤T t|gi|, and VT (tj) =
{gp

i,j} for every j = 1, 2, . . . , |gi|. Similarly, for each ℓ = 1, 2, . . . , n,
T ′

ℓ is the computation ({t1, t2, . . . , t|gi|, t|gi|+1}, ηT ′ ,≤T ′ , VT ′
ℓ
) with

ηT ′
ℓ
(tj) = p for every j = 1, 2, . . . , |gi| + 1, t1 ≤T ′

ℓ
t2 ≤T ′ . . . ≤T ′

t|gi|+1, VT ′
ℓ
(tj) = {gp

i,j} for every j = 1, 2, . . . , |gi|, and VT ′
ℓ
(t|gi|+1) =

{ℓp}.
(P3) EGp(

∧
a∈Σ

(VAL(p, {ap}) → EXqVAL(q, {aq}))). Intuitively, this as-

serts that every state of valuation {ap} of p is “matched” by a s-
tate of q with valuation {aq}. We emphasize that the matchings are
guaranteed to be one-to-one and order-preserving. This is due to
the fact that for every pair p, q of processes <<pq is “fifo”, that is
one-to-one and order-preserving. More precisely, for each state s of
Sp, there is at most one state s′ of Sq such that s << s′ (and thus
s << pqs′). Similarly, for each state s of Sq, there is at most one
state s′ of Sp such that s′ << s ( and thus s′ << pqs). Finally, for
any s1,s2 of Sp, s′1, s′2 of Sq such that s1 << s′1, s2 << s′2, we have
that s1 ≤ s2iffs′1 ≤ s′2.

(P4) EGp(
∧

i∈{1,2,...,n}

(VAL(p, {ip}) → EXrVAL(r, {ipr}))). That is, for every

state of p with valuation {ip}, there is a “matching” state of r with
valuation {ipr}.

The formula Φq asserts the conjunction of the following conditions.

(Q1) The valuation of the minimum state of q is {iq} for some i in
{1, 2, . . . , n}. This is similar to case (P1) in the construction of Φp.

(Q2) For each i ∈ {1, 2, . . . , n}, if a state of q has valuation {iq}, then there
exist |hi| subsequent states s1, s2, . . ., s|hi| of q, whose valuations
are, respectively, {hq

i,j}, with hi,j being the j-th letter of hi, for
j = 1, 2, . . . , |hi|. Further, either s|hi| has no successor of location q,
or s|hi| has a successor of location q and valuation {ℓq} for some ℓ

in {1, 2, . . . , n}. The detailed formula of this case can be constructed
in the same way as case (P2) in the construction of Φp.

(Q3) For each a ∈ Σ, if a state s of q has valuation {aq}, then ↓1,Ap(T )
holds at s, where T is the computation containing a singleton state
of location p and valuation {ap}. That is, every state of valuation
{aq} of q is “matched” by a state of valuation {ap} of p.

(Q4) For each i ∈ {1, 2, . . . , n}, if a state of q has valuation {iq}, then it
has a successor of location r and valuation {iqr}. This is similar to
case (P4) of Φp.

Finally, Φr asserts the conjunction of the following conditions.

(R1) The minimum state of r has valuation {ipr} for some i in {1, 2, . . . , n}.
(R2) For each index i ∈ {1, 2, . . . , n}, if a state of r has valuation {ipr},

then it has a successor state, say, s, of location r and valuation {iqr}.
Further, either s has no successor of location r, or s has a successor
of location r and valuation {ℓpr} for some ℓ ∈ {1, 2, . . . , n}. The
detailed formula can be constructed in the same way as case (P2) of
Φp.

(R3) For each i ∈ {1, 2, . . . , n}, if a state s of r has valuation {ipr}, then ↓

1,Ap(T ) holds at s, where T is the computation containing a singleton
state of location p and valuation {ip}.
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(R4) For each i ∈ {1, 2, . . . , n}, if a state s of r has valuation {iqr}, then ↓

1,Aq (T ) holds at s, where T is the computation containing a singleton
state of location p and valuation {iq}.

It is easy to see that the constructions of Φp, Φq, Φr encode a PCP
instance, and that there exists an explanation for O satisfying Φp, Φq,
Φr if and only if the corresponding instance of PCP has a solution. This
completes the proof for Theorem 1. ¤

4 Diagnosis with K-influencing computations

We have shown in previous section (Theorem 1) that the diagnosis prob-
lem is undecidable in general. A question that naturally arises is whether
we can identify a subclass of computations for which the problem be-
comes tractable. For this, we identify a subclass of computations called
K-influencing computations, and show that the LPOC diagnosis problem
(and thus computing the summary) is decidable within this class.

Definition 8. Let P be a set of processes, Aob be a set of observable
atomic propositions, Aex be a set of atomic explanatory propositions..
Let W = (S, η,≤, V ) be a computation, and p, q ∈ P with p 6= q. The
causal degree of p towards q in W is the maximum integer n ∈ N for
which there exist s1, s2, . . ., sn in Sp, and s′1, s′2, . . ., s′n in Sq such that:

(i) s1 < s2 < . . . < sn and s′1 < s2 < . . . < s′n;
(ii) for i = 1, 2, . . . , n, si ≪ s′i, that is, si is a predecessor of s′i.
(iii) (iv) s′1 ≮ sn.

For K ∈ N, W is K-influencing iff for any pair of processes p, q in P
with p 6= q, the causal degree of p towards q is at most K.

Intuitively, the causal degree of p towards q is the maximal number of
events that precede some event on q that p can execute without hav-
ing to wait for q. The general shape of K−influencing computations is
illustrated in Figure 3. We now state the main result of this section.

Theorem 2. Given an observation O, a P-indexed family {Φspec
p }p∈P

of LPOC formulae, and an integer K ∈ N, one can effectively deter-
mine whether there exists a K-influencing computation W which is a
{Φspec

p }p∈P -explanation for O.

An important consequence of the above theorem is that one can effective-
ly compute a summary of the K-influencing explanations of O. Let O be
an observation and {Φspec

p }p∈P a P-indexed family of formulae. We can
slightly adapt the definition of summaries in section 3 to K− influencing
computations: the K-summary of O under {Φspec

p }p∈P is the mapping

g : SO → 2Aex

such that for every s in SO, g(s) ⊆ Aex , and a ∈ g(s) iff
there exists a K-influencing explanation W for O with W |= {Φspec

p }p∈P

and a is in the W -valuation of s.

Corollary 1. Given an observation O, a P-indexed family {Φspec
p }p∈P

of LPOC formulae, and an integer K ∈ N, one can effectively compute
the K-summary of O under {Φspec

p }p∈P .
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s1

s2

s3

sn

sn+1

s′1

s′2

s′3

s′
n

RQP

r1

r2

n ≤ K

Fig. 3. K-influencing computations

Through the rest of this section, we prove Theorem 2 and Corollary 1.
We fix the integer K, observation O and the formulae {Φspec

p }p∈P . Recall
from section 2 that we can easily construct a single formula Φspec such
that for any computation W , W |= Φspec iff W |= {Φspec

p }p∈P . In what
follows, we fix Φspec . We will assume that the computations used hereafter
are nonempty. It will be clear from the proof that this involves no loss
of generality. We let WK denote the set of K-influencing computations.

The proof for Theorem 2 consists of two steps. Firstly, we show that
K-influencing computations can be identified with Mazurkiewicz traces
([7]) over a suitable trace alphabet (Σ, I). This way, we can identify K-
influencing computations with equivalence classes of finite sequences in
Σ⋆. This encoding is in spirit the same as the of encoding of univer-
sally K-bounded message sequence charts with traces in [20]. Secondly,
we construct three finite state automata AutK , AutΦspec , AutO, running
over linearizations of traces of (Σ, I). AutK checks if an input sequence
represents a computation of WK . For a sequence σ representing a compu-
tation Wσ in WK , AutΦspec accepts σ iff Wσ |= Φspec . And AutO accepts σ

iff Wσ is an explanation for O. The crux is the construction of AutΦspec .
We shall give AutΦspec in the form of a two-way alternating automa-
ton, which can be transformed to a finite state automaton. The basic
idea is similar to [14] and the usual translation from LTL to alternating
automata [29]. The new technicality in our construction is in checking
conformance with formulae of the form ↓m,A(T ), ↑m,A(T ). With AutK ,
AutO, AutΦspec , it follows that there exists a sequence in Σ⋆ accepted
by AutK , AutO, AutΦspec iff WK contains a computation W such that
W |= Φspec and W is an explanation for O. This then establishes Theo-
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rem 2. As for Corollary 1, we shall show that for any state s of O and any
atomic proposition a ∈ Aex , one can find a finite state automaton Auts,a

which has the following property: If a sequence σ represents a computa-
tion Wσ in WK such that Wσ |= Φspec , and Wσ is an explanation of O,
Auts,a accepts σ iff a is in the Wσ-valuation of O. As a result, one can
then effectively compute the K-summary of O under {Φspec

p }p∈P .

4.1 Encoding K-influencing computations with Traces

We recall that a Mazurkiewicz trace ([7]) alphabet is a pair (Σ, I) where
Σ is a finite alphabet, and I ⊆ Σ × Σ is an irreflexive and symmetric
relation called the independence relation. The dependence relation D is
given by (Σ × Σ) \ I. A (finite) Σ-labelled poset is a pair (E,⊑, λ),
where E is a finite set, ⊑ ⊆ E × E a partial order, and λ : E → Σ

a labeling function. As usual, we write e < e′ if e⊑e′ and e 6= e′. We
let <̂ ⊆ E × E denote the least relation whose reflexive and transitive
closure is equal to ⊑. A (Mazurkiewicz) trace over (Σ, I) is a Σ-labelled
poset tr = (E,⊑, λ) satisfying: (i) for any e, e′ ∈ E, λ(e)Dλ(e′) implies
e⊑e′ or e′⊑e; (ii) for any e, e′ ∈ E, e<̂e′ implies λ(e)Dλ(e′). We define
isomorphism of traces in the obvious way and write tr = tr ′ if the traces
tr , tr ′ are isomorphic.

Let [K] = {0, 1, . . . , K − 1}. We define the alphabets Γpre = {pre(p, i) |
p ∈ P, i ∈ [K]}, and Γsuc = {suc(p, i) | p ∈ P, i ∈ [K]}. Let Γ = P ×
Γpre × Γsuc × 2A. We define Σ as the subset of Γ satisfying:(
p, {pre(p1, i1), . . . , pre(pg, ig)}, {suc(p′

1, i
′
1), . . . , suc(p′

h, i′h)}, A
)
∈ Σ iff

p1, . . . , pg are distinct members of P \ {p}, and p′
1, . . . , p

′
h are distinct

members of P\{p}. We now define the dependence relation D ⊆ Σ×Σ vi-
a: (p,PRE ,SUC , A) D (p′,PRE ′,SUC ′, A′) iff one of the following con-
ditions holds:

– p = p′.

– p 6= p′. For some i ∈ [K], pre(p′, i) ∈ PRE and suc(p, i) ∈ SUC ′.

– p 6= p′. For some i ∈ [K], suc(p′, i) ∈ SUC and pre(p, i) ∈ PRE ′.

We set the independence relation I = Σ × Σ − D. It is trivial to verify
that (Σ, I) is a trace alphabet. From now on, we fix the trace alphabet
(Σ, I).

Let W = (S, η,≤, V ) be a K-influencing computation. Let us define the
Σ-labeling of W , denoted λΣ

W (or simply λW ), as the following function
from S to Σ: for s ∈ S, λW (s) = (p,PRE ,SUC , A) where:

– p = η(s).

– pre(q, i) ∈ Γpre is in PRE iff s has predecessor s′ with η(s′) = q

(such a s′ is necessarily unique by the definition of predecessor) and
i = j mod K where j is the number of states s′′ in Sp satisfying
s′′ < s and that s′′ has a predecessor of location q.

– Further, suc(q̂, î) ∈ Γsuc is in SUC iff s has a successor ŝ′ with η(ŝ′) =
q̂ (such a ŝ′ is unique) and î = ĵ mod K where ĵ is the number of
states ŝ′′ in Sp satisfying s′′ < s and that s′′ has a successor of
location q.

– A = V (s).
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Note that PRE and SUC are not necessarily singletons, as a state may
have one successor (reps. predecessor) on each process. Let us define
tr(W ) = (S,≤, λW ). The following results follow easily from the defini-
tions.

Proposition 1. Let W ∈ WK . Then tr(W ) is a trace over (Σ, I).
Furthermore, if W ′ is a K-influencing computation, then W = W ′ iff
tr(W ) = tr(W ′).

Figure 4 below shows an example of a 2-influencing computation with
the associated labeling. For the sake of clarity, the subsets of atomic
propositions that are true at each state are not explicitly given, but only
described by A1, . . . A9.

p

(p, ∅, {suc(q, 0)}, A1)

(p, ∅, {suc(q, 1)}, A2)

(p, {pre(q, 0)}, ∅, A3)

q r

(r, {pre(q, 0)}, {suc(q, 0)}, A8)

(r, {pre(q, 1)}, ∅, A9)

(q, {pre(p, 0)}, ∅, A5)

(q, ∅, {suc(p, 0); suc(r, 0)}, A4)

(q, ∅, {suc(r, 1)}, A6)

(q, {pre(p, 1); pre(r, 0}, ∅, A7)

Fig. 4. A 2-influencing computation and its Σ-labeling

A linearization of a trace (E,⊑, λ) is a sequence λ(e1)λ(e2) . . . λ(en)
where e1, . . . , en are distinct members of E, E = {e1, . . . , en}, and for any
i, j ∈ {1, . . . , n}, ei ≤ ej implies i ≤ j. For any computation W ∈ WK ,
we will call Σ-linearization of W a linearization of tr(W ), and denote by
LinΣ(W ) the set of Σ-linearizations of W . Let
LinΣ

K =
⋃

W∈WK
LinΣ(W ).

Note that computations in WK can be uniquely constructed from se-
quences in LinΣ

K . For a non-null sequence σ in Σ⋆, let last(σ) denote the
last letter of σ. For σ, σ′ in Σ⋆, we write σ 4 σ′ iff σ is a prefix of σ′. We
define the partial order ⊑Σ⋆ ⊆ Σ⋆ × Σ⋆ via: σ⊑Σ⋆σ′ iff σ, σ′ are non-
null, σ 4 σ′ and there exist σ1, σ2, . . . , σh, h ≤ |Σ|, such that σ 4 σ1 4

σ2 . . . 4 σh 4 σ and last(σ)Dlast(σ1)Dlast(σ2) . . . last(σh)Dlast(σ). For
every σ ∈ LinΣ

K , we define the computation poc(σ) = (Sσ, ησ,≤σ, Vσ),
where:
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– Sσ is the set of non-empty prefixes of σ.
– For τ ∈ Sσ, ησ(τ) = p iff last(τ) = (p,PRE ,SUC , A) for some

PRE ,SUC , A.
– ≤σ is the restriction of ⊑Σ⋆ to Sσ.
– For τ ∈ Sσ, Vσ(τ) = A iff last(τ) = (p,PRE ,SUC , A) for some

p,PRE ,SUC .
It is easy to verify that poc(σ) is well-defined. Furthermore, we have:

Proposition 2. Let σ ∈ LinΣ
K and W = poc(σ). Then W ∈ WK and

σ ∈ LinΣ(W ).

4.2 Automata construction

Here we construct three finite state automata AutK , AutO, AutΦspec

which have the following properties:
– For σ ∈ Σ⋆, σ is accepted by AutK iff σ ∈ LinΣ

K .
– Suppose σ ∈ Σ⋆ is in LinΣ

K . Then σ is accepted by AutO iff poc(σ)
is a K-influencing explanation for O. Note that we will not consider
sequences outside LinΣ

K . AutO will then be constructed from AutK .
– Suppose σ ∈ Σ⋆ is in LinΣ

K . Then σ is accepted by AutΦspec iff poc(σ)
satisfies Φspec . Again, we will not consider sequences outside LinΣ

K .
It follows that a sequence σ ∈ Σ⋆ is accepted by the product of AutK ,
AutO, AutΦspec iff poc(σ) is a K-influencing {Φspec

p }-explanation for O.
The construction of AutK and AutO is obvious from the definitions of
K-influencing computations and basic properties of traces (see [7] for
more details).

Construction of AutK : For a given K, a set of processes P, and a set
of atomic propositions A, the automaton AutK = (Q, qi, Σ, δ, F ) can be
constructed as follows.
For a given word σ = a1 . . . an we will say that letter ai = (p, PRE, SUC, A)
is acknowledged by q ∈ P in σ if and only if
– for every j ∈ [K], suc(q, j) is not in SUC, or
– there exists aj , ak, i < j < k ≤ n such that in poc(σ), x = a1..aj ∈ Sq

y = a1..ai ∈ Sp z = a1..ai ∈ Sp, and x ≤ y ≤ z. ai

When a letter of σ is acknowledged for every q ∈ P, we will say that it is
acknowledged. Note that from the definition of K−influencing computa-
tions, if σ is a prefix of a linearization of some K−influencing computa-
tion, then the number of letters of σ located on a process p that are not
acknowledged by q is necessarily lower or equal to K. We are now ready
to define the components of AutK :

– Σ is defined as before
– elements of Q are a tuples of the form (σ, cnt) where σ is a word

in Σ∗ such that for each pair of processes p, q the number of letters
of the form (p, PRE, SUC, A) where SUC contains suq(q, i) for i ∈
[K] is at most K, and cnt : P × P → 0 . . . K is a function that
associates a number in 0 . . . K to each pair p, q in P. This number
corresponds to the number of letters that are not yet acknowledged
between two processes. The initial state of the automaton is defined
by qi = (ǫ, cnt0) where ǫ is the empty word and cnt0 associates value
0 to each pair p, q ∈ P.
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– δ ⊆ Q × Σ × Q and
•

(
σ, cnt), a, (σ′, cnt)

)
∈ δ for any a of the form (p, ∅, ∅, A) with

p ∈ P and A ⊆ A.
•

(
(σ, cnt), a, (σ′, cnt′)

)
∈ δ if σ′ is the projection of σ.a on non-

acknowledged events, and a = (p, PRE, SUC, A) for some p ∈
P and A ⊆ A, and furthermore, for every pre(p′, i) ∈ PRE,
there exists a letter a′ = (p′, PRE′, SUC′, A′) in σ for which
suc(p, i) ∈ SUC′ and a′ is the first letter that contains suc(p, j)
for some j ∈ [K]. For every suc(p′, i) ∈ SUC, we have cnt′(p, p′) =
cnt(p, p′)+1, and for every pre(p′, i) ∈ PRE, we have cnt′(p′, p) =
cnt(p′, p) − 1.

– The set of accepting states is F = Q. Any state is accepting, as LinΣ
K

is prefix-closed by definition.
This construction of AutK immediately provide indications on the size
of the model.

Proposition 3. Let P be a set of processes, A be a set of atomic propo-
sition, K be an integer, and Σ be Mazurkiewicz trace alphabet computed
from P,A and K. Then, the size of the automaton AutK that recognizes
linearizations of K−influencing computations over P with valuations in

A is in O(|Σ|K.|P|2).

proof: Note that in any state (σ, cnt) the function cnt(p, p′) count the
letters of σ located on process p that are not acknowledged by p′. That
is, function cnt does not add new information that can not be computed
directly from σ, and is just introduced for convenience. As there can be
at most K letters per pair of processes that are not acknowledged in
a word labeling a state of AutK the size of such word is bounded by

K.|P|2. The size of AutK is then not greater than |Σ|K.|P|2 .¤

Construction of AutO: We can reuse the construction of AutK to build
AutO, the automaton that recognizes K-influencing explanations of O.
At each state of this automaton, one must recall a state of AutK reached
(ie, the current K−influencing linearization explored), the part of O that
is embedded in this explanation, and some additional information about
the causalities that may appear in the future. Note that it is not sufficient
to memorize only the subset of states of O that have been recognized
so far, as we must also ensure that two states ordered in O are also
ordered in poc(σ), for every linearization σ accepted by AutO. Hence,
AutO can not be built as a product between AutK and an automaton
that recognizes linearizations of O (and where states are cuts of O), as
this product allows for computations that are not explanations of O.
At the same time as we play a linearization accepted by AutK , we need
to memorize states of the observation that have already been seen, their
respective ordering, but also the ordering imposed by unobserved states
and causalities. Let W be a computation, and let s be a sate of W such
that V (s) ∩ Aob 6= ∅, that is if OW is the restriction of W to observed
states corresponding to computation W , then s appears in OW . The
future processes of s (or simply future of s) is the set of processes where
a causal successor of s appears. It is defined as

F (s) = {p ∈ P | ∃s
′
, s ≤ s

′ ∧ η(s′) = p}
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Then, if a new observable state s occurs after W , and if η(s′) ∈ F (s), we
necessarily have s ≤ s′.
Computing F (s) for each observed state on a complete computation is
easy, but we need to do it on the fly for arbitrary long computations. This
information will be sufficient to ensure that the ordering in an observation
is preserved by a K−influencing computation. For this, we define a new
data structure that abstracts most of the computation and recalls causal
dependencies. Recall that relation <<pq behaves as a FIFO channel. For
each state s of S, and every run σ we define a function SINCEσ(s, p, q)
that recalls actions of σ located on process p that must have an immediate
successor on process q, that have been played after p has appeared in the
future of s but have not yet been acknowledged by q. By construction,
as we are only considering linearizations of K−influenced computations,
SINCEσ(s, p, q) is of size at most K. It can be inductively defined as
follows:

– SINCEǫ(s, p, q) = ǫ for every s, p, q

– SINCEσ.a(s, p, q) = SINCEσ(s, p, q) if p is not in F (s).
– SINCEσ.a(s, p, q) = SINCEσ(s, p, q).succ(i, p) if p is in F (s) and

a = (p, SUC, PRE, A), with suc(q, i) ∈ SUC (intuitively, add a
reference to an unmatched event that has no direct causal successor
in the word σ.a)

– succ(i, p).SINCEσ.a(s, p, q) = SINCEσ(s, p, q) if p is in F (e) and
a = (q, SUC, PRE, A), with pre(p, i) ∈ PRE (intuitively, remove
the first letter of the word when a matching event on process q is
found).

When a new observed action of AutK is played, leading to the creation of
a new observed state s in the associated computation, we set F (s) = {p}
and SINCE(e, q, q′) = ∅ for every q 6= p. If we call Zq = {suc(q, i), i ∈
[K]}, SINCE(e, p, q) associates a word in Z∗

q , to each pair of state and
process of S. Note that due to K-influence, this word is of size at most
K.

Lemma 1. Let σ = a1...ak be a run of AutK , b = (p, SUC, PRE, A) be
a letter of Σ such that σ.b is also accepted by AutK . Let ai = (q, SUCi, PREi, Ai)
be an observable letter of σ such that q 6= p and p 6∈ F (a1 . . . ai) in poc(σ).
Then, p ∈ F (a1 . . . ai) in poc(σ.b), if and only if there exists q′ ∈ P, such
that q′ ∈ F (a1 . . . ai), SINCE(ai, q

′, p) = suc(p, i).w for some w, and
pre(q′, i) ∈ PRE.

proof : first of all, as p 6∈ F (a1 . . . ai) in poc(σ), we know that there is no
causal chain from q to p in poc(σ). Hence, if p ∈ F (a1 . . . ai) in poc(σ.b),
then b is located on process p, and adding b to σ creates a new causal de-
pendency from a process q′ 6= p to p (otherwise, for every observed event
e of sigma, F (e) remains unchanged. Note also that we necessarily have,
q′ ∈ F (a1 . . . ai). b is of the form (p, SUC, PRE, A). Now let us sup-
pose that pre(q′, i) ∈ PRE and SINCE(ai, q

′, p) = suc(p, i).w. Then,
it means that there exists a letter aj = (q′, SUCj , PREj , Aj) such that
state a1 . . . aj is a causal successor of a1 . . . ai in poc(σ), and such that
suc(p, i) ∈ SUCj . According to the dependence relation on Σ, we have
that a1 . . . b is a causal successor of a1 . . . aj in poc(σ.b). Then there is a
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causal chain from ai to b, and p ∈ F (ai) in poc(σ.b). Now let us suppose
that SINCE(ai, q

′, p) = suc(p, i).w and that for every pre(x, j) ∈ PRE,
either x 6= q′ or i 6= j. Then, b and every action played since q′ ∈ F (ai)
are independent, and p 6∈ F (a1 . . . ai). ¤

The intuition behind this lemma is simple. To memorize future processes
along a potentially infinite computation, we only need to maintain a finite
set of words (one for each pair p, q ∈ P per observed event) and a function
that recalls for each p and each observed event s if p ∈ F (s). This finite
information is sufficient to update F (e) at each step of a K−influencing
computation, and then decide whether the ordering among states of the
observations O is respected in current computation.

Figure 5 illustrates the online construction of F and SINCE. In this
figure, we suppose that we study a system composed of processes P =
{P, Q, R}, and that a word σ of Autk have been played. Figure 5 de-
picts the computation poc(σ): black circles represent observed states,
and black crosses represent unobserved states. In this computation, we
have P ∈ F (o1), F (o2), F (o3) and F (o4), Q ∈ F (o1), F (02), F (o4) and
F (o5), R ∈ F (o1), F (o4), F (o5) and F (o6). Let us suppose that λ(u6) =
(Q, SUC6, PRE6, A6), with suc(R, i) 6∈ SUC for every i ∈ [K]. Suppose
that λ(u7) = (Q, SUC7, PRE7, A), with suc(R, 0) ∈ SUC7. We have
SINCE(o2, Q, R) = suc(R, 0). Let us append a new unobserved even-
t u10 to the computation, such that λ(u10) = (R, SUC10, PRE10, A10),
with pre(q, 0) ∈ PRE10. Then, a new causal dependency between u7 and
u10 exists, and R ∈ F (e) in poc(σ.u10).

We are now ready to build AutO, the automaton that recognizes al-
l linearizations of K−influencing explanations of an observation O =
(SO, ηO,≤O, VO). Let us denote by SIO the set of function that asso-
ciate to each triple s, p, q in SO ×P ×P a word in Z∗

q of size at most K,
and by FO the set of functions that associate to each observed state of
O a subset of P. We define AutO = (QO, qi

O, Σ, δO, FO), where:

– Σ is defined as usual

– QO ⊆ Q × 2S0 ×FO × SIO

– FO = Q × {SO} × FO,P × S that is a linearization is accepted if an
only if all states of S have been observed

– qi
O = (qi, ∅, f i, SINCEi), where f i is the function that associates
∅ to any state of SO, and SINCEi the function that associates an
empty word to every state of SO and every pair of processes of P.

–
(
(q, S1, f1, SINCE1), a, (q′, S2, f2, SINCE2)

)
∈ δO if and only if

(q, a, q′) is a transition of AutK , with a = (p, PRE, SUC, A) and
either

• S1 = S2 = SO (any transition allowed by Autk is allowed when
the observation O is completely embedded in the explanation
that was built), or

• A ∩ Aob = ∅, S1 = S2 ⊂ SO, and for every s in S1, F2(s) =
F1(s)∪{p} if ∃q ∈ F1(s) and SINCE1(s, q, p) = suc(p, i).w for
some w and pre(q, i) ∈ PRE. Furthermore, SINCE2(s, q, p) =
w, and for every q′ ∈ f2(s), if suc(q′, i) ∈ SUC then
SINCE2(s, p, q′) = SINCE1(s, p, q′).suc(q′, i) . Other compo-
nents of SINCE1 remain unchanged, or
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Fig. 5. Construction of SINCE() and F()

• A ∩Aob 6= ∅, and there exists s′ minimal in the restriction of O

to SO \S1 such that V (s′) = A∩Aob , and for every s ≤O s′, we
have that either p ∈ F (s), or there exists a process q ∈ P such
that SINCE1(s, q, p) = suc(p, i).w and pre(q, i) ∈ PRE. We
also set F2(s′) = {p}, and other components of f1, SINCE1
are updated as in previous rule. We also set S2 = S1 ∪ {s′}.

Proposition 4. Let O be an observation over a set of processes P,
with valuations in and alphabet Aob . Let K be an integer and A ⊇
Aob be a set of atomic propositions. The size of AutO is at most in
O(|AutK |.2|O|.2|P|.(|O|.|P|)2.(|P|.K + 1)K)

proof: Considering that we can encode any word of size at most K

in Σ∗ as a word of size exactly K using an additional filling symbol,
we obtain that function SINCE() can be encoded as a relation of size
|O|.|P|2.(|Γsuc| + 1)K with |Γsuc| = |P|.K. The rest is obvious from the
description of the construction of AutO. ¤

Construction of AutΦspec .

We next give the description of AltΦspec , a two-way alternating automa-
ton ([21]) that recognizes linearizations of K−influencing computations
satisfying Φspec . This automaton can then be transformed into a standard
finite state automaton AutΦspec .
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We introduce some new atomic formulae in order to simplify the structure
of Φspec . We introduce formulae of the form ↓m(T ), where m ∈ N and T

a computation containing at most Nm states. Let W = (S, η,≤, V ) be a
computation and s ∈ S. Then W, s |=↓m(T ) iff the m-view of s is equal
(i.e. isomorphic) to T . We note that a formula ↓m,A(T ) is equivalent to
∨T ′∈T ↓m(T ′), where T is the collection of computation T ′ such that T ′

contains at most Nm states and the projection of T ′ onto A is equal to
T . Similarly, we can write ↑m,A(T ) as a disjunction of formulae ↑m(T )
with an analogous semantics.

Let W = (S, η,≤, V ) be a computation and s ∈ S. Let s′ ∈ S and
τ = a1a2 . . . an be a non-null sequence in Σ⋆. If there exist s1, . . . , sn ∈ S

such that s′ = sn, sn ≪ sn−1 ≪ . . . s1 ≪ s and λW (si) = ai for
i = 1, . . . , n, then we say s′ is an τ -ancestor of s. Recall that each state
in W has at most |P| predecessors, one belonging to each Sp. Thus,
we can in fact say s′ is the τ -ancestor of s. We introduce formulae of
the form ↓ (τ, τ ′) where τ , τ ′ are non-null sequences in Σ⋆. We define
W, s |=↓(τ, τ ′) iff there exist states ŝ, ŝ′ such that ŝ is the τ -ancestor of
s, ŝ′ is the τ ′-ancestor of s, and ŝ ≤ ŝ′.

We argue that a formula ↓m(T ) can be equivalently written as a boolean
combination of formulae of the form ↓ (τ, τ ′). Assume without loss of
generality of T contains a maximum state smax . Thus, every state in T is
the τ -ancestor of smax for some τ of length at most the number of states
of T . Hence, ↓m(T ) is equivalent to asserting for each pair of states s, s′

in T , whether ↓(τ, τ ′), ↓(τ ′, τ), or ¬(τ, τ ′) ∧ ¬(τ ′, τ), where s, s′ are the
respectively the τ -ancestor and τ ′-ancestor of smax .

Analogously, we define τ -descendants and introduce formulae of the form
↑ (τ, τ ′) where τ, τ ′ are non-null sequences in Σ⋆. It follows that a formula
↑m(T ) is equivalent to a boolean combination of formulae of the form
↑(τ, τ ′).

With the new formulae introduced above, we can assume without loss
of generality that Φspec is formed from ¬,∧,∨ and the atomic formulae
locp, ↓(τ, τ ′), ↑(τ, τ ′), EXϕ, EU(ϕ, ϕ′). Furthermore, negations in Φspec

only apply to atomic formulae.

Now we are ready to describe the two-way alternating automaton AltΦspec .
The basic elements of AltΦspec are similar as in usual translations of tem-
poral logics to alternating automata (see e.g. [29]). The main difficulty
is to deal with atomic formulae of the form ↓(τ, τ ′), ↑(τ, τ ′).

For the sake of clarity, we informally recall some basics of two-way alter-
nating automata ([6, 21]) before presenting their precise definitions. Let
Alt be a two-way alternating automaton. An input word is delimited on
the left by a left marker and on the right by a right marker. Initially,
Alt is at the initial state with the head at the first letter of the input
word. Upon reading the letter of the current head position, Alt can span
several copies where each copy can move the head left or right and go
to a new control state. Which combination of copies can be spanned are
pre-determined by a transition relation. A run of Alt over an input word
σ is a (finite) tree, where each branch terminates upon reaching the left
or the right marker. And Alt accepts σ iff there exists a run over σ such
that every leaf contains an accepting state.
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Formally, a two-way alternating automaton ([6, 21]) is a structure Alt =
(Z, zin , Zfi ,Alph, δ), where Z is a finite set of states, zin ∈ Z the initial
state, Zfi ⊆ Z the set of final states, Alph a finite alphabet, and δ is
a function from Z × (Alph ∪ {♯lft , ♯rgt}) to B+({lft , rgt} × Z). Here, the
special symbols ♯lft , ♯rgt are the left and the right marker. The letters
lft , rgt are to indicate whether the head should move left or right. The
notation B+(X) denote the set of positive boolean combination of ele-
ments from a finite set X. Namely, B+(X) consists of formulas formed X

and ∧,∨, where logically equivalent members of B+(X) are identified in
the obvious way. Thus, B+(X) is also a finite set. We assume tacitly that
B+(X) also contains the special formulas true and false. For θ ∈ B+(X)
and X ′ ⊆ X, we say that X ′ satisfies θ iff θ evaluates to true under
the truth assignment f mapping members of X ′ to true and members of
X −X ′ to false. Thus, we can associate each formula θ in B+(X) by the
collection of subsets X ′ ⊆ X such that X ′ satisfies θ.

A run ρ of Alt over σ = a1a2 . . . an in Σ⋆ is finite tree whose nodes
are labelled with Z × {0, 1, 2, . . . , n, n + 1} and the labelling inductively
satisfies the following:

– The root of ρ is labelled (zin , 1).

– Suppose a node Nod of ρ is labelled (z, j) with 1 ≤ j ≤ n. If
δ(z, aj) 6= true, then there exists some {(d1, z1), . . . , (dh, zh)}, h ≥ 1,
satisfying δ(z, aj) and Nod has exactly h child nodes whose labellings
are (z1, j1), . . . , (zh, jh). Further, for i = 1, . . . , h, if di = lft , then
ji = j − 1; otherwise (di = rgt), ji = j + 1.

If δ(z, j) = true, then there is no need to expand further the node
Nod . That is, Nod should become a leaf node (and the path from
the root to node Nod is considered accepting).

In the run ρ, a path from the root to a leaf node Nod is accepting iff Nod is
labelled (z, j) where either δ(z, aj) = true, or z ∈ Zfi and j ∈ {0, n + 1}.
The run ρ is accepting iff every path from the root to a leaf node is
accepting. We say σ is accepted by Alt iff there exists some accepting
run over σ.

We are now ready to describe the two-way alternating automaton AltΦspec .
Let SF (Φspec) be the set of subformulae of Φspec and their negations,
where ¬¬ϕ is identified with ϕ. As indicated earlier, AltΦspec runs over
sequences in Σ⋆. The set of states of AltΦspec is the union of the following
pairwise disjoint sets:

– {zinit}, where zinit is the initial state of AltΦspec .

– Z1 = {Mina | a ∈ Σ}. These states are auxiliary states needed to
search for a position (corresponding to a minimal state) at which
Φspec holds.

– Z2 = {Holdϕ | ϕ ∈ SF (Φspec)}, where intuitively zϕ is the state
which expects to verify that ϕ holds at the current head position.

– Z3 =
⋃

AUX ϕ, where ϕ ranges over formulas in SF (Φspec). For each
such ϕ, the states in AUX ϕ are auxiliary states needed during the
process of verifying that ϕ holds at some position.

In what follows, we describe the transition function δ of AltΦspec and give
the details of the sets in Z3 as we go along. It will turn out that AltΦspec

needs no final states. That is, for a sequence σ = a1a2 . . . an in Σ⋆, if ρ
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is an accepting run over σ, then every leaf node is labelled (z, j) with
δ(z, aj) = true.
To clarify the intuition behind the transitions of AltΦspec , we shall fix a se-
quence σ = a1a2 . . . an ∈ Σ⋆ and often informally describe the operation
of AltΦspec before stating the precise transitions of AltΦspec .
Firstly, note that poc(σ) |= Φspec iff σ, h |= Φspec where a1a2 . . . ah is a
minimal state in poc(σ). Thus, at the initial state, AltΦspec searches for
position h such that aj I ah for j = 1, . . . , h − 1, and upon reaching
position h, it verifies that Φspec holds at h. Intuitively, we designate a
state za, a ∈ Σ, to indicate the search for a position h with ah = a and
a1a2 . . . ah being a minimal state. Thus, for a ∈ Σ, we have, δ(zinit , a) =
∨b∈Σδ(Minb, a). And for a, b ∈ Σ, we have

δ(Minb, a) =






δ(HoldΦspec , a) if a = b

(rgt ,Minb) if a I b

false if a D b and a 6= b .

Next, we explain how AltΦspec verifies that a formula in SF (Φspec) holds
at the current head position. We proceed inductively to describe how
AltΦspec verifies a formula of forms locp, ↓ (τ, τ ′), ↑ (τ, τ ′), EXϕ, EU(ϕ, ϕ′).
We then study negation, conjunction and disjunction of formulas.

—Formulas of form locp

Clearly AltΦspec can easily check if locp holds at the current head position,
simply from the letter at the head position. Thus, we have δ(locp, a) =
true if a = (p̂,PRE ,SUC , A) with p̂ = p; and δ(locp, a) = false if other-
wise.

—Formulas of forms ↓(τ, τ ′), ↑(τ, τ ′)
For the input sequence σ, we let ai = (pi,PRE i,SUC i, Ai) for each
i = 1, 2, . . . , n. Recall that poc(σ) = (Sσ, ησ,≤σ, Vσ) where Sσ is the set
of prefixes of σ. For s, s′ ∈ Sσ, we write s ≪σ s′ iff s is a predecessor of s′

in poc(σ). Consider g, h ∈ {1, 2, . . . , n}, it is easy to see that a1 . . . ag ≪σ

a1 . . . ah iff g < h and one of the following conditions holds:
– pg = ph. And for each index i with g < i < h, pi 6= pg.
– pg 6= ph and ag D ah. Further, there do not exist indices i1, i2, . . . , it,

t ≤ |Σ|, such that g < i1 < i2 < . . . < it < h, and ag D ai1 D ai2 . . . ait

D ah.
With this, we explain how AltΦspec can verify that a1 . . . ag ≪σ a1 . . . ah.
This utility will used subsequently to verify formulas ↓ (τ, τ ′), ↑ (τ, τ ′). If
ag = ah and p = pg = ph, then AltΦspec just need to ensure that between
positions g and h (excluding g, h), there are no letters (p̂,PRE ,SUC , A)
with p̂ = p. Now suppose ag 6= ah. Let Seq be the collection of sequences
b1b2 . . . bt over Σ with t ≤ |Σ|−2, ag D b1 D b2 . . . D bt ah. Then AltΦspec

checks that ag D ah and furthermore for every sequence b1b2 . . . bt in Seq ,
there do not exist positions i1, i2, . . . , it with g < i1 < i2 < . . . < it < h

and ai1 = b1, ai2 = b2, . . ., ait = bt.
For convenience, we describe how AltΦspec verifies a formula ↑ (τ, τ ′).
Formulas ↓ (τ, τ ′) can be similarly handled. Fix a formula ↑ (τ, τ ′). Let
τ = b1b2 . . . bm, τ ′ = b′1b

′
2 . . . b′m′ . We note that for a position ℓ, σ, ℓ |=↑

(τ, τ ′) iff there exist indices ℓ1, . . . , ℓm, ℓ′1, . . . , ℓ
′
m′ , in {ℓ+1, ℓ+2, . . . , n}

satisfying the following conditions:
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Condition (i) a1a2 . . . aℓ ≪σ ρ1 ≪σ ρ2 ≪σ . . . ≪σ ρm, where ρi =
a1a2 . . . aℓi

for i = 1, 2, . . . , m. And aℓi
= bi for i = 1, 2, . . . , m. This

asserts that the τ -descendant of a1a2 . . . al exists.
Condition (ii) a1a2 . . . aℓ ≪σ ρ′

1 ≪σ ρ′
2 ≪σ . . . ≪σ ρ′

m′ , where ρ′
i =

a1a2 . . . aℓ′
i

for i = 1, 2, . . . , m′. And aℓ′
i

= b′i for i = 1, 2, . . . , m′.

This asserts that the τ ′-descendant of a1a2 . . . al exists.
Condition (iii) a1a2 . . . aℓm ≤σ a1a2 . . . aℓ′

m′
, that is,

a1a2 . . . aℓm⊑Σ⋆a1a2 . . . aℓ′
m′

. This asserts that the τ -descendant of

a1a2 . . . al causally precedes the τ ′-descendant of a1a2 . . . al.

Thus, to verify that a formula ↑ (τ, τ ′) holds at position ℓ, we move
towards the right and verifying the existence of indices ℓ1, ℓ2, . . ., ℓm, ℓ′1,
ℓ′2, . . ., ℓ′m′ satisfying the above conditions. We stop at the position ℓ′m′

if these indices are successfully verified, or when some position violating
the above conditions are found, or when we hit the right end marker
before verifying all the indices. In the first case, ↑(τ, τ ′) indeed holds at
position ℓ and in the latter two cases, the formula ↑(τ, τ ′) does not hold
at position ℓ.
We describe subsequently the auxiliary states in AUX ↑(τ,τ ′) that aid in
the process of verifying ↑(τ, τ ′) holds at position ℓ.
We note that the indices ℓ1, ℓ2, . . ., ℓm are uniquely determined by aℓ

and (the letters of) τ . In particular, aℓ1 = b1, aℓ2 = b2, . . ., aℓm = bm.
Similarly, the indices ℓ′1, ℓ′2, . . ., ℓ′m′ are uniquely determined by aℓ and
(the letters of) τ ′. In particular, aℓ1 = b1, aℓ2 = b2, . . ., aℓm = bm. We
recall from above the description of how AltΦspec can verify a1a2 . . . ag ≪σ

a1a2 . . . ah for two positions g, h. Let Seq be the collection of sequences
over Σ of the form aℓ1ξ1aℓ2ξ2 . . . ξm−1aℓmλaℓ′

m′
, where ξ1,ξ2,. . ., ξm−1,λ

are sequences over Σ of length at most |Σ|−2. Each ξt sequence will aid
in verifying that a1a2 . . . aℓt ≪σ a1a2 . . . aℓt+1 (cf. Condition (i) above).
The sequence λ will help verify Condition (iii) above. Let Seq ′ be the
collection of sequences over Σ of the form aℓ′1

ξ′1aℓ′2
ξ′2 . . . ξ′m′−1aℓ′

m′
where

each ξ′1, ξ′2, . . ., ξ′m′−1 are sequences over Σ of length at most |Σ| − 2.
Sequences in Seq ′ will be used to help verifying Condition (ii) above.
We have that AUX ↑(τ,τ ′) = AUX 1

↑(τ,τ ′) ∪ AUX 2
↑(τ,τ ′), where a state in

AUX 1
↑(τ,τ ′) consists of two sequences over Σ, one from Seq and one from

Seq ′. Using states in AUX 1
↑(τ,τ ′), we can then verify ↑(τ, τ ′) by checking

Conditions (i)(ii)(iii) above. Further, the states in AUX 2
↑(τ,τ ′) are auxil-

iary states needed to implement the transitions associated with states in
AUX 1

↑(τ,τ ′). It is now easy, though tedious, to write the exact transitions
of AltΦspec associated with state Hold↑(τ,τ ′).

—Formulas of forms EXϕ, EU(ϕ, ϕ′)
Here we consider formuls of forms EXϕ, EU(ϕ, ϕ′). Note that σ, i |= EXϕ

iff there exists an index j in {i + 1, . . . , n} such that a1a2 . . . ai ≪σ

a1a2 . . . aj and σ, j |= ϕ. Thus, to verify that EXϕ holds at position i,
AltΦspec moves to the right searching for such a j. Similarly, we note that
σ, i |= EU(ϕ, ϕ′) iff one of the following conditions holds:

– σ, i |= ϕ′.
– σ, i |= ϕ. And there exists an index j satisfying a1a2 . . . ai ≪σ

a1a2 . . . aj and σ, j |= EU(ϕ, ϕ′).
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With this, it is clear how AltΦspec can verify the formula EU(ϕ, ϕ′) holds at
the current head position. Again, it is straightforward, though tedious, to
provide the exact transitions of AltΦspec associated with states HoldEXϕ,
HoldEU(ϕ,ϕ′).

—Negation, conjunction, disjunction of formulas
Finally, negation, conjunction and disjunction of formulas are handled
as in usual translations of temporal logics to alternating automata (see
e.g. [29]). Namely, for a ∈ Σ, ϕ, ϕ′ ∈ SF (Φspec), we have δ(Hold¬ϕ, a) =
¬δ(Holdϕ, a), δ(Holdϕ∧ϕ′ , a) = δ(ϕ, a) ∧ δ(ϕ′, a) and δ(Holdϕ∨ϕ′ , a) =
δ(ϕ, a) ∨ δ(ϕ′, a).
We have now completed the description of AltΦspec . It is not difficult
to see that the number of states of AltΦspec is of complexity O(2|Φspec | ·
|Σ||Σ|·m), where m is the maximum length of τ, τ ′ for all atomic formulae
of the form ↑ (τ, τ ′), ↓ (τ, τ ′). It follows from [21] that AltΦspec can be

transformed to a finite state automaton AutΦspec with 2N·2N

states where
N is the number of states of AltΦspec . The proof of Theorem 2 is now
completed. ¤

To prove Corollary 1, we first recall that if W is an explanation for
O, then the injective mapping from the states of O to the states of W

dictated in the definition of explanation is unique. Thus, it is easy to
see that for any state s of O and any atomic proposition a ∈ Aex , one
can construct a finite state automaton Auts,a which has the following
property: If σ a sequence σ representing a computation Wσ in WK where
Wσ |= Φspec and Wσ is an explanation of O, Auts,a accepts σ iff a is in
the Wσ-valuation of s. Auts,a can be easily constructed from AutO by
requiring that transitions that add s to the subset of observed states of
O are labelled by letters with valuations that contain a. As a result, one
can then effectively compute the K-summary of O under {Φspec

p }p∈P , by
testing for each state s of O, each a in Aex , the non-emptiness of the
product of AutΦspec and Auts,a. ¤

Theorem 3. Let O be an observation of a system composed of a set P of
processes, A = Aob ∪Aex be the set of observable and explanatory atomic
propositions, φ = {Φspec

p }p∈P be a P-indexed family of LPOC formulae
such that all frontiers and views used in φ are at most m-frontiers or
m-views. Let K be an integer, and Σ be the Mazurkiewicz trace alphabet
computed from A and K. Then one can determine whether there exists

a K-influencing explanation W for O with complexity O(W1.2
W2.2W2

),
where:
– W1 = |Σ|K.|P|2 .2|O|.2|P|.(|O|.|P|)2.(|P|.K + 1)K , and

– W2 = 2
|φ|.Nm2 Σ

i∈1..Nm
2

i2

4
. 3i

2
.ln(i)

.i.2A
ex

.|Σ||Σ|·m.

– Nm = 1−|P|m+1

1−|P|

proof: First every sub-formula of the form ↑m,A (T ) must be translated
into a disjunction of formulae of the form ↑m (T ). Then every sub-formula
of the form ↑m (T ) is translated into conjunction of formulae of the form
↑ (σ, σ′). Then a 2-way alternating automaton over a set of formulae
of the form ↑ (σ, σ′), EXφ, AXφ, ... is built and transformed into an
equivalent (but exponentially larger) standard automaton.
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The first step means computing all partial orders of size up to Nm. Recall
that according to Kleitman & Rotschild [19], the number of partial orders

of size n is in O(2
n2

4
. 3n

2
.ln(n)). Hence, a formula of the form ↑m,A (T ) can

be translated as a disjunction of up to Σ
i∈1..Nm

2
i2

4
. 3i

2
.ln(i).i.2Aex

formulae

of the form ↑m (Tij), where each Tij is a template of size lower than Nm

that allows an embedding of T into Tij .
Then, each template of the form ↑m (Tij), can be defined by a conjunc-
tion of up to Nm2 formulae of the form ↑ (σ, σ′). So, φ is equivalent
to a formula φ′′ that is formed from ¬,∧,∨ and the atomic formulae
locp, ↓ (σ, σ′), ↑ (σ, σ′), EXϕ, EU(ϕ, ϕ′), and of size at most

|φ|.Nm2 Σ
i∈1..Nm

2
i2

4
. 3i

2
.ln(i).i.2Aex

. So, the size of the 2-way alternating

automaton Altφ computed for the formula φ is in

W2 = 2
|φ|.Nm2 Σ

i∈1..Nm
2

i2

4
. 3i

2
.ln(i)

.i.2A
ex

.|Σ||Σ|·m Then, from [21], a two-
way alternating automaton with N states can be simulated by a deter-

ministic (one-way) automaton with 2N·2N

states.
The size W1 of AutO has been computed in proposition 4. Once the
automaton Autφ that recognizes K−influencing computations satisfying
φ has been computed, then the diagnosis problem can be reduced to the
vacuity of intersection of AutO and Autφ. The diagnosis problem can

hence be solved in O(W1.2
W2.2W2

).
¤

Corollary 2. Let O be an observation, and φ be a formula describ-
ing a distributed system. Computing a summary for O can be done in

O(|O|.|Aex|.W1.2
W2.2W2

)

proof: Computing a summary is equivalent to labeling each state s of
O with each single unobserved proposition p of Aex in addition to the
observed propositions, and running diagnosis. If the obtained product
computed is empty, then there is no computation is the set of explana-
tions provided by φ such that s is labelled by p, and p should not appear
in the summary labeling of s. This operation is repeated for every p ∈ Aex

and every s ∈ O. ¤

5 Related work

Several logical formalisms have been proposed for traces or partial or-
ders. Among them, we can distinguish local logics, where the truth of
formulae are evaluated at local states, and global logics, where properties
are evaluated at configurations (i.e collections of local states of processes)
of the models. For global logics, [28] has shown that LTrL, an LTL-like
logic over traces with a past operator is equal in expressive power to the
first order theory of traces. This result is generalized for pure future LTL
on traces by [8, 10]. TrPTL, proposed by [27] is a logic with a next and
a special until operator restricted to events of a process. Its expressive
power is included in FO logic [13], and satisfiability of TrPTL formulae
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is decidable [27]. Note that for traces, satisfiability and model-checking
of LTL-like logics with “universal until” is non elementary [30] (see [5]
for an automaton-based proof of this result) and are undecidable with
“existential until” [25]. In local logics, formulae are interpreted over local
states of a partial order. Without being exhaustive, one can cite sever-
al results: TLC, proposed by [1] (a local logic over partial orders with
local next, existential until, and similar past operators, plus a parallel
operator ) has the same expressive power as FO [9], and local logics with
strict universal until and universal until have the same expressive power
as FO on traces [11]. Model-checking and satisfiability of MSO-definable
local logics over traces is in PSPACE [12]. Moreover, for traces every
MSO-definable local logics is complete for FO, and uniform satisfiability
for MSO-definable local logics is in PSPACE [13].
The LPOC logic proposed in this paper is a local logic over partial orders.
Clearly, it is not FO definable, as the existential until can not be defined
with FO. However, it can be easily translated to MSO formulae. To keep
decidability of the diagnosis problem, some restrictions are imposed on
the models. It is frequent with partial order models, as defining a model
checking as the intersection of two automata, one representing a formula,
and the other one representing the model often allows for an encoding
of the PCP.
In [24], D.Peled proposes an algorithm to model check formulae in TLC−

(a subset of TLC) on High-level Message Sequence charts (HMSCs).
Model checking HMSCs with global logics such as LTL or CTL is reput-
ed undecidable, except for restricted classes of the language [2]. TLC−

formulae describe the shape of causal chains in all the partial order-
s generated by a HMSC, i.e. they express properties on sequences of
events that are ordered by <, the covering relation of a partial order.
The model-checking algorithm for TLC− transforms a formula φ and a
HMSC H into Buchi automata and verify the emptiness of the intersec-
tion of both automata. If the intersection of both models is not empty,
then H |= φ. More precisely, the Buchi automaton computed from H

selects one representant linearization for each MSC generated by H, and
the automaton computed from φ describes linearization that satisfy ¬φ.
Due to communications in MSCs, the automata computed comport two
transition relations. Emptiness of the intersection of automata with two
transition relations is in general undecidable, but for the specific case of
HMSCs, the second transition relation, that represents messages, is con-
tained in the transitive closure of the first one, and emptiness becomes
decidable. As TLC− only contains next and until temporal operators it
is clearly less expressive than LPOC. it .
Bollig proposes a propositional dynamic logic (PDL) for message passing
systems see [4], extending the Henriksen and Thiagarajan’s dynamic LTL
for traces [18], and show that model checking HMSCs wit PDL properties
is PSPACE complete.
[22, 23] proposes several temporal logics over Lamport diagrams, with
future and past modalities, and show that in the general case, these log-
ics are undecidable. However, these logics become decidable when con-
sidering models of bounded size, and for communication closed layered
b-bounded diagrams, that is partial orders that can be organized as suc-
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cessive layers of finite message exchanges among fixed sets of processes.
LD0 only describes chains of causally related events occurring in the fu-
ture or in the past of a local state, while the template matching in LPOC
allow to describe a complete partial order in a bounded future or past of
a local state. The LPOC logic is then slightly more discriminating than
for instance the LD0 logic proposed by [23], as shown in Figure 6. It
is possible to say that a computation starts with template T1 with the
LPOC formula φP =↓3,{a,b,c} (T1), but LD0 formulae describing such
computations also allow computations starting with T2.

T1 T2

{a}

{b}

{c}

{a}

{b}

{b}

P Q

{b}

{c}

{a}

{b}

P Q

{a}

Fig. 6. LPOC is more discriminating than LD0

Note however that for all the local logics described above, partial orders
are seen as models of formulae, but not as elements of the logic itself.
The closest approach mixing logic and partial orders is called ”Tem-
plate Message Sequence Charts” [16]. A Message Sequence Chart is a
partial order where locality of events and messages are explicitly repre-
sented. A template MSC is an incomplete MSC, i.e a MSC with some
“holes” and that may also comport incomplete messages. Roughly speak-
ing, models for a template MSC are obtained by filling the holes with
new partial orders, and matching sendings and receptions of messages.
The authors increase the power of template MSCs with pre/post con-
dition operator of the form Ma −→ Mb,and Ma −→ ¬Mb where Ma

and Mb are template MSCs, and conjunctions of templates of the form
∧i(Mai −→ (∨j ± M ij)). The models of these formulae are MSCs. This
logic is very expressive, but satisfiability is undecidable when no bound is
assumed on the set of models considered. However, a restricted fragment
of the logic is proposed to model check existentially bounded Commu-
nicating Finite State Machines. Note however that models for template
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MSC formulae are MSCs, while models for LPOC formulae are arbitrary
Lamport diagrams. Hence, in LPOC, causal precedence is not restricted
to local ordering on processes and message relation, and a state might
have up to |P| predecessors, even in K-influenced computations. Even if
we only consider LPOC formulae over MSCs, LPOC and template MSC-
s remain uncomparable. On one hand, holes in template MSCs are not
necessarily descriptions of what happens in the future or in the past of
an event. By filling hole, one may add concurrent events, i.e. it is possible
to say with template MSCs that whenever an action a occurs on pro-
cess p, then a concurrent action b occurs on process q. Clearly, this kind
of formula can not be expressed with LPOC. On the other hand, some
LPOC formulae do not find their equivalent in template MSC. Even if
we impose models of LPOC formulae to be MSCs, there is no way to
encode the until operator of LPOC with template MSCs. Both logics are
hence uncomparable.
Note also that the works in [24] and [16] rely on the existentially bounded
nature of models to ensure decidability of model checking (that is, there is
a bound b such that every MSC considered possess a linearization where
the size of communication channel never exceeds b). This is not sufficient
in our case to obtain decidability of diagnosis, as the PCP encoding of
section 3 is existentially bounded. The K−influencing restriction is then
closer to the universal bound on MSCs (the contents of communication
channels in all linearization of every MSC considered is bounded buy
some integer b) that is needed by [2] to model check High level Message
Sequence Charts. It might be interesting to see whether the restriction of
[22, 23] that imposes layered computations is sufficient to make diagnosis
with LPOC formulae a decidable problem.

6 Conclusion

We have proposed a diagnosis framework based on partial order logic.
Like most of powerful logics such as Template MSCs, satisfiability of
formulae and hence diagnosis turns to be undecidable problems without
restrictions on the kind of models considered. By imposing computations
to be K-influenced, diagnosis finds a solution. Even within this setting,
diagnosis turns out to be very expensive (exponential in the size of the
formula and in the size of the observed behavior). Some complexity gains
can be expected by restricting the size and the number of partial order
templates considered, but also the modalities of the formulae.
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