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Non-interference (NI) is a property of systems stating twatfidential actions should not cause effects observablenby-
thorized users. Several variants of NI have been studiechémy types of models, but rarely for true concurrency or un-
bounded models. This work investigates NI for High-levelddiage Sequence Charts (HMSC), a scenario language for the
description of distributed systems, based on compositfqgradial orders. We first propose a general definition of ggcu
properties in terms of equivalence among observationstwiiers. Observations are naturally captured by partidéioau-
tomata, a formalism that generalizes HMSCs and permitssenalsle partial orders. We show that equivalence or inalusio
properties for HMSCs (hence for partial order automatajuadecidable, which means in particular that NI is unded&lab
for HMSCs. We hence consider decidable subclasses of pamtier automata and HMSCs. Finally, we define weaker local
properties, describing situations where a system is atthbly a single agent, and show thatal Nl is decidable. We then
refine local NI to a finer notion afausal Nlthat emphasizes causal dependencies between confidetivalseand observa-
tions, and extend it to causal NI with (selective) declasaiion of confidential events. Checking whether a systerafigst
local and causal NI and their declassified variants are PER&fnplete problems.
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1. INTRODUCTION

Context. Non-interferenc€NI) has been introduced to characterize the absence offtimfor-
mation flow in a system. It ensures that confidential actidresgystem can not produce any effect
visible by a public observer. The original notion of noneirierence in [Goguen and Meseguer
1982] was expressed in terms of language equivalence ferrditistic Mealy machines with con-
fidential input and public output. Since then, several vasafinformation flow propertieglFP)
have extended NI to non-deterministic models (transitigsteans, process algebra, Petri nets,...)
and finer notions of observation (simple trace observatieadlock or branching detection,....) to
describe the various observational powers of an attacker Biven systens, Nl is usually defined
as:my ([S\ C]) = =v([S]) wherea denotes some behavioural system equivalence (language
equivalence, bisimulation, ...])S], the semantics aof, 7y, the projection on a subsgt of visible
actions of the system, arfth C, the modelS from which all confidential actions froy are pruned.
Intransitive non-interferenc@NI) relaxes NI to handle possiblieclassificatiorof confidential ac-
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A:2 B. Bérard et al.

tions. It ensures that confidential actions of a system dapnmoaluce any effect visible by a public
observer unless they are declassified, causing so a hanmiesration flow. This issue has been
addressed in [Rushby 1992], by comparing observationsdfleiactions in runs of a system (hence
including runs containing non-declassified confidentiibas), and observations of visible actions
in runs of the same system that only contain confidentiabastthat are declassified afterwards.
Most IFPs have been expressed as combinatiobasit security predicatgBSPs) [Mantel 2000;
2001; D’'Souza et al. 2011] or as a behavioral equivalenceoloservation contexts [Focardi and
Gorrieri 2001]. A systematic presentation of IFPs can badha.g, in [Mantel 2000; 2001; Focardi
and Gorrieri 2001].

Concurrency issuesDespite the fact that IFPs are always informally expresséerin of causality
i.e., confidential activity should not cause observable effentthe public behavior, they are almost
always formalized in terms of interleaving semantics [Barsil Gorrieri 2009; Gorrieri and Vernali
2011; Best et al. 2010; Best and Darondeau 2012] and henaeotdoonsider true concurrency
or causality. This is clearly a lack in the formalization &Pis for several reasons. First, from an
algorithmic point of view, it is usually inefficient to comfmua set of linearizations to address a
problem that can be solved on an equivalent partial ordeesemtation. Second, from a practical
point of view, an attacker of a system may gain more inforareifihe knows that some confidential
action has occurred recently in its causal past. Indeatsacions in a distributed system can leave
many traces (visited websites, cookies,...) on machinéshadre nota priori committed to protect
confidential actions of third parties. At the best of our kiexlge, [Baldan and Carraro 2014] is the
first to address NI in a true concurrency setting: they chareed NI for Petri nets as a syntactic
property of their unfoldings. However, the technique addes only safe nets.

Unbounded modelsVery few results address IFPs for unbounded models. BSPN bae: proved
undecidable for pushdown systems, but decidability waainbd for small subclasses of context-
free languages [D’'Souza et al. 2011]. Decidability of arhigiation-based strengthened version of
NI callednon-deducibility on compositiofiNDC) for unbounded Petri nets is proved in [Best et al.
2010]. A system satisfies NDC if observation of its visibléi@ts remains indistinguishable from
the observation of the system interacting wattny environment. This result was extended in [Best
and Darondeau 2012] to INI with selective declassificatibh$D).

Contribution. This work considers IFPs for an unbounded true concurrera@et namelyHigh-
level Message Sequence ChgitdvViSCs). This model, standardized by the ITU [ITU-T 201%], i
well accepted to represent executions of distributed systevhere security problems are of pri-
mary concern. We first define a class of IFPs on HMSCs, as amsiiocl relation on observations,
following [Focardi and Gorrieri 2001; D'Souza et al. 201hpgBérard and Mullins 2014]. To keep
IFPs within a true concurrency setting, observations of i %&re defined as partial orders. We
define a new model callgohrtial order automatg POA), that is powerful enough to recognize in-
finite sets of partial orders, and in particular observaiohHMSCs. Unsurprisingly, most of IFPs
and the simple NI property are undecidable for HMSCs. As aequence, inclusion of partial or-
der automata languages is undecidable. We then charactrtidable subclasses of the problem:
inclusion of sets of orders generated by POA becomes ddeiddi®en the depicted behaviors do
not allow observed processes to race each other. This isdtarice the case when a POA describes
an observation of visible events located on a single proddss also applies when the observed
HMSC islocally synchronizedneaning that within any iterated behavior, all processastsonize

at each iteration. We discuss the meaning of NI in a contexdrevicausal dependencies among
event occurrences are considered. This leads to a new roatiledcausal interferencéor HMSCs.
Causal interference detects interference as soon as akeattan observe occurrences of confiden-
tial actions from visible events, and furthermore, one &f dbserved events causally depends on
the confidential one. We finally relax causal interferencthacontext of declassification. We in-
troduceintransitive causal non-interferendbat considers observable causal dependencies among
confidential and visible events as safe, as soon as a déiciatssh occurs in between. We show that
all local variants of these problems are PSPACE-complete.
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Outline. The basic models and definitions used in this paper are ddfirigettion 2. Observations,
inclusion problems and non-interference are introducefiéntion 3 for a single scenario and in
Section 4 for HMSCs, where Nl is proved undecidable. Seatioriroduces partial order automata
as a way to recognizes observations of HMSCs. We identifglasbes of HMSCs and POAs where
inclusion problems becomes decidable in Section 5. Therowsider local variants in Section 6 and
extend this framework to declassification in Section 7 $ac8, we compare this work with some
related approaches, and draw several research direchoiesto lack of space, several proofs are
omitted or simply sketched, but can be found in an extendesioreathal . i nri a. f r/ XXXXXX.

2. PRELIMINARIES

In this section, we recall definitions of automata, partialess and High-level Message Sequence
Charts (HMSCs), with their associated languages. Messagaeéhce Charts (MSCs) are formal
representations of distributed executions, chronograms, that are frequently used to depict the
behavior of a set of asynchronous communicating proce$ses simple graphical representation
emphasizes on messages and localization of actions, witlalpder semantics (see illustration in
Figure 1 Section 3).

The model of HMSCs, standardized by the ITU [ITU-T 2011], veasposed to describe more
elaborate behaviors of distributed systems, for instamaset of communication protocols, by com-
bining MSCs. An example is given in Figure 3 of Section 6. HMS(e used to describe sets of
typical scenarios in distributed systems, and then serveqasrements. They can also be used as
input to generate code skeletons for distributed systerascél an information leak that appears in
these early requirements is likely to be a feature of the fipstlem. It is then interesting to find these
leaks at early design stages. Another interesting poirit WMSCs is their expressive power: they
define behaviors of systems with asynchronous communitgtishich are not necessarily finite
state systems and can not be captured by finite automata.arbealso uncomparable with Petri
nets. Answering interference questions for HMSCs provabesirity techniques for a whole class
of infinite systems that can not be modeled with other forsmadi.

2.1. Finite automata and partial orders

Let X be a finite alphabet. A word ovét is a sequence = ajas...a, Of letters fromX, and
* denotes the set of finite words ovEr with ¢ the empty word. Alanguageis a subsetl, of
3*. Given a relationR C E x E on some sef’, we denote byR* the transitive and reflexive
closure ofR. A partial order onE is a reflexive, transitive, and acyclic relation. Lgtand f> be
two functions over disjoint domainBom(f1) and Dom(f2). Then, f1 U f, denotes the function
defined onDom/(f1) U Dom( f2), that associateg, (x) with everyx € Dom(f1) and fa(z) with
everyz € Dom(f2).

A Finite Automatorover alphabeE is a tupled = (S, 4, sq, F'), wheresS is a finite set of states,
sg € S is the initial state’ C S is a set of accepting states, ahd- S x X x S is a transition
relation. A wordw = a;...a, € X%, is accepted by if there exists a sequence of transitions
(s0,a1,51)(s1,a2,82) ... (Sn—1,an, sn) Such thats,, € F. Itis well known that finite automata
acceptegular languages

A Labeled Partial Orde(LPO) over alphabeX is a triple(E, <, «) where(E, <) is a partially
ordered set (poset) and: £ — X is a labeling ofE' by letters ofX. The set of all LPOs over
alphabet: is denoted byt PO(X). For a subset of events’ C F, the set ofpredecessorsf E’
isl(E') ={f e E| f<eforsomee € E'} and the set ofuccessorsf E' is (E') = {f €
E | e < fforsomee € E'}. The sett is downward closedf |(E') = E’, andupward closedf
T(E") = E'. Alinear extensionf LPO (E, <, «) with n events is a sequenee= e;jes . . . e, of all
events ofE such that for every > k, e; £ ey.

LetO; = (E1,<1,a1) andOy = (E2, <, as) be two LPOs oveE. We writeO; C O if Oy is
aprefixof Oq: there exists an injective mappihg: £y — E2 such thatus(h(e)) = a1 (e) for all
e € Eq, h(F;) is downward closed, angl <; f; iff h(e1) <2 h(f1). Moreover,0; is isomorphic
to O, denoted byD; = O,, if O1 C O3 andO, C O;. A set of partial ordery” containsanother
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set of partial orders(, denoted byX C Y, if for everyxz € X, there existg € Y such thatr = y.
We willwrite X = Y if X C Y andY C X. We say thatX embeds intd@”, denotedX C Y iff for
everyx € X, there existg € Y such thatr C y. Given a LPOO = (E, <, ), thecoveringof O
is atriple(E, <, a) where< is the transitive and reflexive reduction ¢f i.e., the smallest subset
of F x F such that<*=<. Since two orders are isomorphic iff their coverings arenisghic, we
often consider covering relations instead of orders in #s¢ of the paper.

2.2. High Level Message Sequence Charts

Definition2.1 (MSC. A Message Sequence Chanter finite setdP of processes) of mes-
sages and finite alphabdt is a tupleM = (E, (<, )pep, @, 1, ¢), Where:

e F is a finite set ofevents partitioned ask = Es W Er W Ey, according to the type of event
considered: message sending, reception, or intetoahic action

e ¢ : £ — P is a mapping associating with each event the process thatieeeit. Hence, the sets
E, = ¢~ 1({p}) for p € P, also form a partition ofz;

e For eaclp € P, the relation<,C E, x I, is atotal ordering on events located on proggss

e 1 C Eg x Epg is arelation symbolizing message exchanges, such thatff) € p with e € E,
andf € E,, thenp # ¢. Furthermore, it induces a bijection frofx onto Er, so with a slight
abuse of notation(e, f) € p is also written agf = p(e). The relation<,;= (U,cp <p U p)* is
a partial order ortr;

e aisamapping fronEto X C (Px{!,7} xPxM)U(P x A) and fromu to M, associating a label
with each event, and a message, f) in M with each paire, f) € u. The labeling is consistent
with p: if f = u(e), with associated messagée, f) = m, sent by process to processg,, then
af(e) is written asplq(m) anda(f) asq?p(m). If e is an internal actiom located on process,
thena(e) is of the formp(a). The labeling is extended by morphism ovef.

The definition above implies that the tripl&, <, ) is a LPO ove, hence all notions related
to posets apply to MSCs. When clear from the context, we sinvgte < instead oK ;. We denote
by MsqP, M, A) the set of all MSCs over the sétf processedyl of messages, and alphabgt
Given a subsel’ of £, therestrictionof M to E’, denoted byM, -, is associated with the LPO

(E',<MN(E' x E'), oy ) and we denote by/ \ E’ the restriction of\/ to E \ E’.

Definition 2.2 A linearizationof MSC M is a wordw € X* such that there exists a linear
extension- of M with w = «(r). Thelanguagel (M) of M, is the set of linearizations df/ .

The language of an MSC is hence defined over alph&bet {pl¢(m) | p,¢g € PAm €
M} U {p?q(m) | p,qg € P, m € M} U{p(a) | p € P, a € A}. To design more elaborate behaviors,
including choices and iterations, MSCs are composed. A kggsedient is sequential composition,
that assembles MSCs processwise to form larger MSCs.

Definition 2.3. Let Ml = (El, (Sl,p)pEPa at, 11, ¢1) andM2 = (EQ, (SQ,p)pEPa Qg, U2, ¢2)
be two MSCs defined over disjoint sets of events. Shquential compositionf M; and Mo,
denoted byM; o My is the MSCM; o My = (Eq U Es, (<102,p)pep, 01 U g, 1 U pia, o1 U d2),

where<iog = (<1, U <2, U o7 ({p}) x ¢2_1({p}))*'

This (associative) operation, also called concatenatiam pe extended to MSCs. For a set1
of MSCs, we denote byM°* the set of all MSCs obtained by concatenation of (a finite nermb
of) MSCs in M. Itis used to give a semantics to higher level constructsigia HMSCs. Roughly
speaking, an HMSC is a finite automaton where transitionsadeled by MSCs. It producessat
of MSCsobtained by concatenating MSCs that appear along paths.

Definition2.4 (HMSC). A High-level MSQHMSC) is a tupleH = (N, —, M, ng, F'), where
N is a set of nodesM is a finite set of MSCs+C N x M x N is a transition relationgg € N is
the initial node, and- is a set of accepting nodes.
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As for any kind of automaton, paths and languages can be ddfinéIMSCs. Apathof H is a
sequence = titq ...t such that for each € {1,...,k}, t; = (n;, M;,n}) is a transition in—,
with n, = n,; for eachi < k — 1. The patlp is a cycle ifn), = n;. It is acceptingf it starts from
nodeny (i.e., n1 = ng), and it terminates in a node &f (n), € F).

Definition 2.5. Let p = t1t5 ...t be a path of an HMSQ@{. The MSC associated with is
M, = hi(M;) o ho(My3) --- o hi(My) where eaclh; is an isomorphism that guaranteés #
i, hi(Ei) N hy(E;) = 0.

More intuitively, the MSC associated with a path is obtaibgdoncatenating MSCs encountered
along this path after renaming the events to obtain disgetg of events. To simplify notation, we
often drop the isomorphisms used to rename events, writinglg A/, = M; o My o --- o Mj,.

With this automaton structure and the sequential composdf MSCs, an HMSCH defines a
set ofaccepting pathsdenoted byPy, a set of MSCsFy = {M,, | p € Pu}, and a linearization
languageC(H) = Uy 7, £(M).

It is well known that the linearization language of an HMS@dt necessarily regular, but rather
a closure of a regular language under partial commutatibigiwyields many undecidability results
(see for instance [Muscholl and Peled 1999; Caillaud et @D0}). This does not immediately
mean that all IFPs are undecidable for HMSCs: Indeed, skvkasses of HMSCs with decidable
properties have been identified and we later define noratavid meaningful subclasses of HMSCs
and observations for which IFPs become decidable. In peaticthelocally synchronizedHMSCs
defined below have regular linearization languages [Alul @nnakakis 1999]:

Definition 2.6. Thecommunication graplof an MSCM = (E, (<,)pep, o, i, ¢) is the graph
(P, —) where(p, q) €— if there exists a pair of events, f) € u such thatp(e) = p andeo(f) = q.
An HMSC H is saidlocally synchronizedff for every cyclep of H, the communication graph of
M, is strongly connected.

3. OBSERVATION AND NON-INTERFERENCE FOR MSCs

The power of an external observer can be described by analtiger function, mapping every
behavior of a system to some observables. In [Mantel 200t A0’'Souza et al. 2011], observation
functions are seen as some particular kind of languagedtieaperations (projection, morphism,
insertion, deletion of letters,...), and in [Bérard andllvis 2014], they are defined as combinations
of rational operations (transductions, intersectiongumof languages).

In a distributed context, visible events can originate fidifferent processes. In a distributed and
asynchronous setting, the date at which an event is obspregitles a linear ordering on observed
events. However, the linear ordering provided by eventgidagion date does not necessarily cor-
respond to an actual execution: two concurrent processg&regute events concurrently, or con-
versely, there might be some causal depndecies among arbeagyed events. This information on
actions dependencies might be available to observerse I§ybtem is equipped with vector clocks
(vectors maintained by each process to count the known nuofilegents that other processes have
executed, as proposed in [Mattern 1988]), one can alsod@earsal dependencies. Hence, the nat-
ural and realistic notion of observation for distributedngutations is a labeled partial order, where
events that are not causally dependant are consideredrcentu

3.1. Observations for MSCs

Definition 3.1 An observation function is a mapping frasqP, M, A) to LPO(B) for some
alphabetB.

From this definition, any mapping from MSCs to LPOs can besdadin observation. However,
some observation functions are natural when consideriRg.IRs proposed in [Mantel 2001] with
the notion ofviews the alphabet labeling events that occur during an execwoti@a system can be
partitioned a&2 = VwCWN with visible, confidential and internal (neutral) labelxti®dns with la-
bels inV can be observed while actions labeledirare confidential and should be hidden. Internal
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actions have labels iV and are not observabéepriori, but need not be kept secret. Subsequently,
depending on their labels, events are also called visiblefjdential, or internal events.

Various observation functions can be defined from such atipart The most natural ones are
restrictions to visible events, and pruning of confiderdigions, which are standard operations in
language based non-interference literature, but needpodogsely defined in a partial order setting.
Let M = (E,(<p)per, @, i1, ¢) be an MSC with labeling alphab&t We consider the following
observation functions:

e identity: the identityid(M) = M outputs the same LPO as the executed MSC;

e Restriction: OV (M) is the LPO obtained by restriction 8f to ENna~1 (V). Intuitively, OV (M)
represents the visible events and their causal dependahaieone may observe during the com-
plete execution of\/; Note that restriction ta.—* (V') suffices, as< is transitive.

e Pruning: O{’C(M) =OV(M\ 1 (a1(C))) is a function that prunes out the future of confiden-
tial events from\/, leaving only the visible events and their causal deperidenobserved when
no confidential event, nor their future, are executed within

e Localization: O?(M) = OV (Mg, ), for a given procesp € P, is the observation of visible
events ofM/ restricted to those events located on progedéote thatO? (M) is a total order. In a
distributed settingQD? (M) is particularly interesting, as it represents the pointiefwof a single
proces® € P, considered as the attacker of the system. We hence assumstriction on the set
of events that can be executed and observegd byd letV = ¥, = a(E,) when usingD?.

3.2. Non-interference for MSCs

As noticed by [D’Souza et al. 2011]in a language settingyrimiation flow properties of a systeph
are usually defined as compositions of atomic propositibtisaformop; (S) C op2(S). Changing
the observation functiong , ops (or the partition o) leads to a variety of such atomic properties.
Information flow properties of MSCs can be defined similarly.

Definition 3.2 Let Oy, O, be two observation functions ovarisqP, M, A). An MSC M sat-
isfiestheinclusion propertyfor Oy, O, writtenC o, 0, (M), if O1(M) C O2(M).

Very often, interference is informally described as cadsglendencies between confidential ac-
tions and observable ones, but formalized in terms of laggsi@omparison,e., with interleaved
representations that miss information on concurrency andality. For a single MS@/, the notion
of non-interference can be defined as a comparison of partiefs:

Definition 3.3,  An MSC M over labeling alphabel = C w V @ N is non-interferentif
OV(M) = (’){/C(M). Otherwise)M is saidinterferent

We now show that interference in a single MSC can be definegring of causal dependencies
from confidential events (i6") to visible ones (irl). We then show in Section 3.3 that checking ex-
istence of such dependencies can be performed via coldrsgeats. For a single MSC, comparing
observation®V and O{’C defined above suffices to highlight dependencies betwesfideotial

and visible actions. Hence, interference isilrgleMSC can be defined through causality:

PROPOSITION 3.4. Let M be an MSC oveE = C'w V W N and set of event&. Then,M is
interferent if and only if there are two eventsf such thatn(e) € C, a(f) € V, ande < f.

This result can be used to define interference in terms of pgpty of a coloring of MSCs, and
to show that this coloring is compositional.

3.3. Interference detection by coloring

The relation between causal dependencies and interfecatisefor a graphical interpretation of
interference in MSCs, represented as a propagation of & bi&ken inherited from confidential
actions along causal dependencies. Intuitively, any cenfidl action and successors of actions
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marked with a black token are also marked with a black tokehesery process containing a black
action is also marked as black. Though the black/white audoof MSCs is not essential to prove
interference, it will be used later to detect informatiomfioin HMSCs.

q r p s
—/ —/— L ] L ]
mq 0]
PN
O o ms
o my | o
\
) o ma
\
[ 1 X¢ 5 me O%a O
° ms
e o
° mz
— s
] ] ] ]
° ° o )

Fig. 1. An MSC M,,, tagged with black and white tokens

Definition3.5 (MSC and process coloring Let M be an MSC over alphab®=CwWV Wy N
and set of event&. An evente € E is blackif a(1 (e)) N C # 0, andwhite otherwise. A process
p € Pis black afterM (resp.white after M) if there exists a black event located pr{resp. no
black event o).

Intuitively, a black process can detect occurrences of denfial events, as it executes events
that are causal consequences of confidential events. laarMSC is non-interferent if and only
if it does not contain visible black events. Figure 1 showslaring of an MSCM,,, in black and
white. The alphabet of confidential actiongls= {¢(c)} and contains the label of the atomic action
¢ executed by process We attach a black token to every black event and a white toikerther
events. Similarly, we indicate with a black/white tokendselprocess lines whether a process has
met a black token during its execution. In this example, essp can detect occurrences ofit is
black afterMy,,), but process cannot.

Deciding if an MSC is interferent, or equivalently if it cairis a visible black event then consists
in finding a path from a confidential event to a visible one iraayclic graph where events are seen
as vertices and pairs of everfts f) in (Upep <,) U p as edges. Since an event has at most two
immediate successors, the graph to consider has atimestFE,,| vertices an®n edges. Hence,
coloring of MSCs and interference detection can be perfdriménear time as a graph exploration
starting from confidential events. We now show that decidirgblack/white status of a process
along a sequence of MSCs of arbitrary size can be performiacheunded memory.

PROPOSITION 3.6. Let M;, M, be two MSCs with labels i = C'w V & N. Then, process
p € Pis black afterM; o M iff it is black after M7, or it is black afterMs, or there exists a process
q black afterM; and a pair of events < f in M, such that is located ony and f is located orp.

This important property means that it is sufficient to rememhe black/white status of each
process after concatenatidd; o - -- o M}, along a path of an HMSC to compute the status of
proces after concatenatioff; o - - - o My, o My 1.

4. OBSERVATIONS ON HMSCs AS PARTIAL ORDER AUTOMATA

In this section, we first discuss extending observationtione from MSCs to HMSCs and show that
the inclusion problem as well as non-interference are uddete for HMSCs. We also remark that
some definitions of observation functions on HMSCs involsseanbling partial orders obtained
from the MSCs encountered along paths. This suggests thataefiof Partial Order Automata
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(POA) that are finite automata where transitions are lableyedPOs. To increase the expressive
power of this model, we introduce various ways of assembitlivegpartial orders appearing along
paths through composition operators and selection fumstibhe main purpose of this section is
to present the material needed in Section 5 where we provextiminterference is decidable for
the subclass of locally synchronized HMSCs. This resulthtaimed by (1) building two partial
order automatad; 0, and. Ay o, associated with a locally synchronized HMSL, respectively
accepting observatior@; (H) andO,(H) and (2) proving that in this case, the inclusion problem
O1(H) C Oy(H) is decidable. In this section, we mainly identify sufficienditions on the
observation functions to achieve point (1) above, whilddisgaility is proved in the next section.

4.1. Extending observations to HMSCs

In order to extend an observatiéhto an HMSCH, a first way consists in applyin@ to all MSCs
in Fg, definingO(H) = {O(M) | M € Fy}. In particular :0V°(H) = {OV (M) | M €
Fu}, O (H) = {OVo(M) | M € Fy}, andOP°(H) = {OP(M) | M € Fy}. Extending
Definitions 3.2 and 3.3 to HMSCs, we have:

Definition 4.1 An HMSC H satisfies thénclusionproblem forO,, Oy (written Co1,0, (H))
if O1(H) C O3(H). Itis non-interferentf O{/’CO(H) = OV'°(H).

Unfortunately, the observation functions above do not tamite account the structure of the
HMSC generatingFy, and furthermore, they are not necessarily compositidgn@eneral, an ob-
servation functior© is not a morphism with respect to the concatenation, th&{d/; o M) #
O(M;) o O(M,). This drawback was already observed in [Genest et al. 2@¥3jrbjections of
MSCs: in generalQV (M; o M) # OV (M) o OV (M>). Hence, checking inclusion for HMSCs
may require to consider properties of complete sequencetSafs as a whole, raising algorithmic
difficulties, or even undecidability. Other ways to exterbervations to HMSCs, are to assemble
observations of MSCs piecewise, following the automataucstire of HMSCs, or to forbid MSCs
containing confidential events:

OV*(H) = {0V (M) o---0 OV (M) | Myo---o M, € Fr},

O\&(H) ={OY (Myo---0My) | Myo---o0My € Fy A Vi,a(E;)nC =0},

OP*(H) = {OP(My) o0 OP(My) | My o---o My € Fy},
where concatenation of LPOs is performed processwise ¢ik&SCs. The observatio@{”c’(H)
is of particular interest, as it describes observations 8f0d inF that do not contain MSCs with
confidential events. Also note that, sin@&(M) is a total order? satisfies the morphism property,
which impliesOP-°(H) = OP*(H).

Even when a projection of an HMSC is an HMSC language @ language recognizable by an
HMSC), equivalence, inclusion or emptiness of intersectice undecidable. HMSC languages are
not always regular and the observation of an HMSC needs ndeéar either. In fact, due to the
close relationship between HMSCs and Mazurkiewicz tratest properties requiring to compare
languages or partial order families are undecidable for I@&I§Caillaud et al. 2000; Muscholl and
Peled 1999; 2000]). So, given two HMSE@E and H,, one can not decide £(H,) C L(Hs), nor
if Fr, C Fu,. This yields the following result:

THEOREM 4.2. The inclusion probleniCy, o, (H) is undecidable folH an HMSC and);
and O, two observation functions.

PrROOFE The proofis a reduction from the inclusion problem for @arder families generated
by HMSCs. For two HMSC¢g7; and H., the question of whetheFy, C Fy, is undecidable.

Let H; = (N1, —1, Mi,n0,1, F1) andHs = (N2, —2, Mo, ng 2, F2) be two HMSCs, defined
over an alphabet of visible actiof§ and with a se’ containing at least two processes. We build
an HMSCH, that behaves likéf; or H if a confidential action can occur, and li&, otherwise,
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and choose observation functiofs = OV, 0, = (’){/C. Then inclusionCp, o, (H) holds iff
Fu, € FH,-

Letc be a new confidential action aiit] ¢ P a new process. We defidd, as the MSC containing
the single atomic actionon process,, as illustrated on Figure 2 (middle). The new HM$C=
(N1 W No, —, M, no.2, F1 W F3) is defined over alphabé&l’ = V U C, whereC = {P.(c)},
as follows:M = My W My W {M.} and—=—1 W —2 W{(ng2, M., n0,1)}, as illustrated on
the left part of Figure 2. Choosing; = OV° and0, = O{/CO we haveO,(H) = Fpg, and
01(H) = Fu, UFn,. ThusCo, 0, (H) ifand only if 7, C Fg,, which concludes the proof.m

Note that undecidability is not due to a particular choicele$ervation function: a similar proof
is obtained for®; = OV° or ©; = OV* and©y = (’){/C' by replacingM. by an MSCM!. in

which proces®. sends a message to all other processes after performiiog acts depicted on
the right of Figure 2.

H :
/
@ Me:p, Me: p p P,
]\/[c — — ——3 —/—
Ceo
C e
D —
_\\

Fig. 2. Non-interference in HMSCs as an inclusion problem

This result extends to non-interference properties:
COROLLARY 4.3. Non-interference for HMSCs is undecidable.

PrROOFE Consider the example HMSC in Figure 2, and the proof of theo4.2. The chosen
partial order automata are HMSCs, and the observationifurscare0" andO{’c. If an algorithm
answers the interference question, then it can be used tk éd@morphism ofFy, andFy, for
any pair of HMSCH,, H,. Thus, the interference problem for HMSCs is undecidahte.

4.2. Partial order automata

While HMSCs assemble finite MSCs to produce larger MSCspaeticular LPOs, inclusion and
interference properties do not compare MSCsdhsgervations of MSC#s mentioned above, pro-
jections of HMSCs are not in general HMSCs [Genest et al. R0@hce observations of HMSCs
are not HMSCs either. To compare the orderings (or their iogs) obtained by observation of a
set of MSCs, we need more general structures. We proposis iseittion a model calleéartial Or-
der Automatathat assemble partial orders (or their coverings). Rantier automata are automata
labeled by finite orders, and at each transition, the way serable the labeling order depends on
a glueing operator attached to this transition. This moslehdre general than HMSCs, where the
glueing operator is the same (sequential composition)Meryetransition.

Definition4.4 (Composition operatgr A composition operatafor partial orders is an operator
® : LPO(X) x 28 x LPO(Y) — LPO(X), whereE is a set of events, that computes a partial order
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from a pair of partial order®;, O, and a subset of identified eveMtem, from O;. The result is
denoted by O;, Mem) ® O,. In practice, the operation is performed from covering®oandO,
and produces a covering of the result.

A selection functioris a functionlI associating with a partial ord&? = (E, <, «) a subset of
eventsk’ C E. A selection functiorI is monotonicif, for every pair of orders); C O, with
01 = (E1,<1,a1) andOs = (h(E1) W Eq, <5, o) for the injective mapping between the sets
of events, thedI(O2) C h(II(01)) W Es. FunctionII is a finite memory function if there exists
K € Nsuch thafII(O)| < K for every LPO.

Selection functions are used to memorize events of integstg the construction of a covering
relation by a partial order automaton. Intuitively, giverotcoveringsD, = (E1, <1, 1) andOy =
(E2, <2,a2), and a memorized subset of eveMem, in F; thenO = (O;,Mem) ® O is a
covering relatiorO = (E, <, a) whereE = Ey W Fy, o = a1 U ag, @and=< is a covering relation
that contains<; U <5 and such thak \(<; U <3) € Mem x E, (the operator only glues
events from the selection and events from the newly addeerpridet us consider a monotonic
selection functiorI, and sequence of composition operations. Slightly abusingnotation, we
write O ®1 O instead of(O1,11(01)) ®1 O, and similarly for sequences of compositions, we
write O = 07 ®1 O3 ®2 --- Qk_1 Oy, and leave the selection process implicit. For monotonic
selection functions, remembering previously memorizezhévsuffice to compute a new memory.
We can hence safely wrild(Mem® O) to define the set of events memorized after concatenation
of O to an order with memorijlem

In the rest of the paper, we consider composition operabaitsassemble multiple copies from a
finite set of ordersi.e., compositions of the forn® = O; ®; O3 ®s - - - ®k_1 O Where eaclO;
is a copy from a finite set of LPOS, and®, - - - ®_1 are composition operators. To distinguish
multiple copies of an order and of its events, we denotd.BY the j** occurrence of ordef. =
(Er,<p,ar) € £, and byeU) thej** occurrence of some evente E;.

Example4.5. An example of selection function is the function, denotedaxEvt that selects
the last occurrence of each event of each ordér. ifor a sequenc® = O ®1 O3 ®3 - - - Q1 Ok
andL € L, thenMaxEV(O) = Urec{eV) | e € Er A |O|L = j}, where|O|y, is the number of
occurrences of. in O. One can notice thaflaxEvtis monotonic, and returns a finite set of events
regardless of the size of the considered sequence of cofignssi

Definition 4.6. A Partial Order Automaton (POA) is a tupké = (Q, —, L, qo, F, OPS A, II)
where(@ is a finite set of stategy € Q is the initial state /' C @ is a set of final states( is a
finite set of LPOs—C @ x £ x @ is a set of transitions\ is a mapping associating with each
transition an operator from some €S andIl is a monotonic selection function. The transition
relation is deterministic: for each € £, and eacly € Q, there is at most on¢ € @ such that
(¢, L.q") e—.

For every pattp = qo O, Q Oz, q2 .. qr_1 O, qr of A, one can compute an LPO”
assembled a®, = O A(q1,02,¢2) Oz ... A(gi—1, Ok, qi) Ok For readability, we often omit the
specific operators used to assemble orders, and simply@yite O; ® O, - - - ® Oy, For two events
e andf, we writee <, f whene precedes in the partial ordeO,. The partial order language
of a POA A is the set of orders obtained by assembling orders alongtngepaths of4, and is
denoted byF 4. The linearization language of is the set of linearizations of orders #y.

First note that deterministic finite automata are particcdeses of POA where each order labeling
a transition is reduced to a single event, and the only opematolved is the standard concatena-
tion on words. As mentioned above, HMSCs can also be seenrtisuter cases of partial order
automata: one simply needs to relabel transitions with Hréigd order associated with the corre-
sponding MSCs, use as selection function a function that onizes the last event on each process,
and as unique operator the operator that connects for eacbg® this last event to the next occur-
rence of the minimal event on the same process. In the otheawmand, observation functions can
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be applied to POAs in a similar way as done for HMSCs: an olasienvfunction© can be applied
on a partial order and for a POA, O(A) = {O(L) | L € F4}. According to these remarks, the
undecidability results for HMSCs immediately extend to POA

PrROPOSITION 4.7. Let A, A, A; be POA, and le©,, O, be two observation functions. Then
the inclusion problem& 4, C F.4, andO;(A) C O2(A) are undecidable.

4.3. Threaded and locally synchronized partial order automata

Most of formal properties of HMSCs are undecidable, and Nidas an exception. However, de-
cidable subclasses of HMSCs have been identified. Localigtspnized HMSCs have regular
linearization languages [Alur and Yannakakis 1999]. Heimmdusion of a regular language, or
comparison of HMSC linearizations are decidable problesnsofcally synchronized HMSCs. It is
then reasonable to consider a similar approach for partir@automata and identify subclasses on
which comparison of covering relations is decidable. Ontheffactors that yields decidability in
HMSCs is very often the fact that orderings are organizedrasgsses. We can not have similar
notions of processes in partial order automata, that ordgrable occurrences of labeled events.
However, we can use the fact that ordersfin are generated as compositions from a finite set of
patterns to characterize subclasses of partial order attom

Definition4.8 (Threaded POA A partial order automaton threadedf for every pathp of A
containing at least two occurrences of some ofdet (E, <,«) and every event € F, we have

e <, el+1 for any two consecutive occurrences(of

One can notice that the composition mechanism of HMSCs inmatedyl grants threaded partial
order automata, as MSCs are composed processwise, andthensgccessive occurrences of the
same event in two occurrences of an MSC are necessarilyastder

THEOREM 4.9. Given a partial order automaton with selection function MaxEvt, one can
decide ifA is threaded. Furthermore this problem is in co-NP.

PrROOFE The proof of this theorem is obtained by showing that theprty can be checked on
finite sequences. All path containing consecutive occugeitan be obtained by insertion of ele-
mentary cycles in acyclic path. We call elementary sequetheeelementary cycles gf augmented
with a transition that adds an occurrence of an order at t@g&the cycle to allow considering con-
secutive occurrences of events. Then if two occurrencen ef/ant in an elementary sequence are
ordered, then a causal chain also exists between these tuorecces of an event in the order gen-
erated for a path obtained by insertion of a cycle in this eletary sequence. Hence, it suffices to
consider elementary sequences to chech whether a POA é&ldde O

Being threaded is not a sufficient condition for a POA to defimegular language. We inspire
from the class of locally synchronized HMSCs to define an epgate syntactic class of POAs
that have regular languages. Locally synchronized HMSGsar properties of communication
among processes in cycles. POAs do not possess this notiprocoéss, but in threaded POAs,
ordering among events of the same kind replace this totarorg among events. We hence rely on
properties of &aommutation graplfinstead of communication graphs in HMSCSs) to defoally
synchronizedOAs.

Definition 4.10 LetO = (E, <,«) be a partial order, and be a path such th&@ = O,. The
commutation graph gf is a graphCG(p) = (E, ~) where(e, f) €~ iff

ec <, f (eprecedes in O,),
eV <, f (the first occurrence aof precedes the next occurrencefof

A POA is locally synchronizedff it is threaded, and for every of its cyclgs CG(p) is strongly
connected.
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THEOREM 4.11. Let A be a threaded partial order automaton with a selection fiorctl
that memorizes a bounded numbirof events. Then one can effectively deciddl ifs locally
synchronized.

PROOFE (Sketch) We can prove that existence of disconnected corwation graphs can be
proved on cycles than contain at most one occurrence of gankition. Indeed, for a selected
pair of eventse, f in such cycles, as considered automata are threaded, tbemiam of another
elementary cycles simply extends the lenght of causal steid does not change connectedness of
e, f @ ) Itthen suffices to detect these cycles, build their comtiartgraph and check
that these graphs are connected.

4.4. Finitely decomposable observation functions

Definition 4.12 An observation functior® is decomposablev.r.t. a set of MSCsM iff there
exists a finite set of operato®PS= {®1, ..., ®;} and a functionl : M°* — OPSsuch that for
every pair of MSCsV/y, My in M®*, O(M; o Ma) = O(My) @y (ar,) O(Mz).

Decomposability of an observation function w.r.t. to a seM&Cs guarantees that the set of
operations needed to assemble the observations of two MBCsl#ain the observation of the
concatenation of these MSC s finite, and that the operaticapply only depends on the order
observed so far. This is a first step towards some form of caitippality for observations. This
is however not sufficient to build incrementally an obseorabf a HMSC, as one may still need
unbounded memory to assemble two observations.

Definition 4.13 An observation functioid is finitely decomposabl it is decomposable, and

(1) there exists a bounde N such that for every sequence of MSQ5, ..., My, andVj € 1.k,
denoting byl <;_; | the size of the covering @ (M, o M;), we have <;_ \(<1.; U <. x| < ¢
(2) there exists a boungh and a selection functiofil such that for every sequence of MSCs,
My, ..., My, foreveryl < i< j <k,
(a) wisregular, i.e. there exists a deterministic finite state mactifethat reads sequences of
MSCs and associates an operator with every state.
(b) II(O(M1)...O(M;)) is a set Mem; of size at mostm containing events in
O(My)...O(M;)
() <;,i+1€ Mem; x E;1; (the memorized events are sufficient to build the orderiognfr
eventsinO;...0; to events inD; 1,
(d) II(O(M4)...O(M;)) is a set Mem; of size at mostm containing m events in
O(Ml) . O(Mj) such that]\/[emj NO1...0; C Mem;

Intuitively, for finitely decomposable observation furets with memorization functiofl, the
memorization function recalls only a bounded number of &vémat need to be used later along
observation of a sequence, and the computation of the memooynpositional, in the sense that is
removes useless events from memory at previous step, aschaddevents that will be used later.

THEOREM 4.14. For every HMSCH = (N, —, M, ng, F'), and every finitely decomposable
observation functio® (w.r.t. M), one can build a POAd o that recognize®(H).

PrROOF Foragiven HMSMH = (N, —, M, ng, F') we build the finite partial order automaton
Ago = (Q,—',0(M),qo, F', A, II). We defineQ = {no} U N x OPS whereOPSis the set
of operators used by the finitely decomposable observatination ©. We set—;' as the set of
triples of the form((n, op), O(M), (n’,0p’)) such that(n, M,n’) €— and there exists a path
p=no -2 ny - 25 pof H such thatl (M ... M) = op and W (M; ... My. M) = op'. As ¥
is regular,—' is finite and can be built inductively. Last,: @ x O(M) x Q — OPSassociates
operatorop to every transitiont = ((n, op), O(M), (n',0p’)) €—', andA((ng, O;,n')) = id,
that is an observation starting from the initial node of tHd$C simply copies the observation of
the first MSC recognized from the initial node Bf O
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PROPOSITION 4.15. For every HMSCH, observation function®", (’){/C, OP are finitely de-
composable, with bounds < |P|? andc < |P|3.

PrROOF (Sketch) We build this proof on the result of [Genest et D3, that show that pro-
jections of HMSCs can be recognized by finite partial ordéom@uata that recognize projections of
HMSCs. These automata memorize events that can still havecaessor in the projected covering
relation (whence a finite memory), and use a single compositperator that connects the projec-
tion of a newly observed MSC to memorized events (whencefitécomposability of the function
that associates an operator to sequences of MSCs). As thieeseints to memorize is always finite,
as shown in [Genest et al. 2003], one can design a POA thagmems©" (H). The proof for
O\p(H) andO?(H) is similar. O

A consequence of this proposition is that one can build gladider automata that generate
OV (H), (’){/C(H), OP(H). One can also notice that these automata are threaded,vgithcéhe

composition operators used, th&" event on a process necessarily precedesithel’” event.
Now, this does not mean that inclusion properties are dbt@d&Ve have to consider subclasses of
partial order automata, and then check that observatidinetfathese subclasses.

5. INTERFERENCE DETECTION ALGORITHMS

To check an inclusion problem for an HMSE, and subsequently check non-interference, one
needs to compare runs i, x and.Ap, g for two suitable observation functiod®;, O2. A run

p2 of Ao, m is compatiblewith a runp;, of Ao, g if O,, is a prefix ofO,, (i.e., one can find a
matching functiorh sending events ad,, ontoO,,, as in the definition of prefix in section 2). One
shall notice that there can be several runsief,  (possibly an infinite number of them) that are
compatible with some rup;. However, as soon as partial order automata are threadexhwgve

a finite representation for sets of runs that comply with adiorder.

5.1. Minimal explanations and unfoldings of POA

Definition5.1 (Minimal explanations LetO, O’ be LPOs, leMembe a subset of events ¥,
and letA be a threaded POA with finite memory functibhand letq be a state ofd. The set of
minimal explanationsf .4 compatible withO starting fromO’, Mem ¢ is the set of all shortest path
p=1(q,01,q1) ... (qr—1, Ok, qx) of A, starting fromg suchthaD C 0’ ® O; ® - - - ® Oy

Considering shortest path is one essential requiremergave & finite representation for the set
of paths of A that have a particular ord€p as prefix. We hence do not consider paths of the
from p.p’ but only pathp if O is already a prefix 0D,. This is however not sufficient to obtain
a finite representation of paths containig a set of minimal explanations can still be infinite.
Indeed, consider an ordér with only two events: < «’. ThenO could be a prefix of any order
of the form 01(®02)’C ® O3 whereO; containsa, O3 containsa’, and O, only events that are
not causally related to occurrencesaobr a’. However, such iterations can be handled. We reuse
ideas from [Hélouét et al. 2014] where a finite unfoldingaafHMSC is built to perform diagnosis
from a partial order observation, and an abstraction teglmintroduced in [Alur and Yannakakis
1999] to represent finitely sequences of MSCs that are fartigecuted. Let us first build a finite
representation for this set of paths.

Starting from POAA = (Q,—, L, qo, F, A, II) and LPOO, we build inductively a POAS,
which states and transitions are obtained by unfoldingnd remembering after each transition the
part ofO that is a prefix of a path ending in this state, and the memaegzents. States are hence of
the form(q, Memy, E,, ), whereg is a state ofd, Mem, is a description of memorized events (a
subset containing events fraldem - the initial memory contents- and newly generated evefis),
is a subset of events dfo. There is a transition frorfy, Mem,, E,,) to (¢, Mem, E;) labeled

by O; iff there exists a transitioty, O;,¢’) in A, and
e B, # Eo (O was not already regognized)

ACM Transactions on Embedded Computing Systems, Vol. V\drticle A, Publication date: YYYY.



A:14 B. Bérard et al.

o Mem; = II(Mem, ® O;), wherex = A(q, O;,q'),
e £ is the maximal subset of events &b that contains, and such thaOKEé\Eq)UMmq C
Memg ® O;.

Intuitively, appending); to already built paths allows to embed a larger pa®ah the recog-
nized order. We defind’((¢, Mem, E), O;, (¢', Mem’, E")) = A(q, O;,¢") andIl’ = II. During
this construction, we hence consider loops that do not ahaimg recognized part @, nor the
memory contents. States of the foi@ Mem,, Eo) have no successof(is a prefix of orders
generated along all paths ending in this state) and aredcfafiel states. The construction can be
performed inductively and stops when no new state is digeavdf the memory selection function
of A memorizes only a finite number of events, and ifs threaded (which guarantees that the set of
paths ofA to explore to find the next occurrence of some action is boddeen this construction
terminates, and for evey’ € F5, 0 C O'.

We can then extract froiff a finite set of sequential representations for the minimplanations
of O as follows: it is the set of acyclic path frog to a final state, decorated with connected
components for which transitions do not change the memamets nor the part ab discovered
so far. We call these transitions silent transitions: Theylabeled by orders with events that might
appear in larger orders containing but are not yet necessary to find a patsuch thatO T O,,.
Similarly, one can find minimal explanations from any statgarting with an already recognized
orderO’ and memory contenfdem

As A is threaded, for every transition = ((¢, Mem, E),O;, (¢', Mem/, E")), one can find
which events ofD; are used to witness embedding@p‘(E;\Eq)UMmq into Mem ® O; (i.e., are

used to build a matching frod to O’ ® O, ... O;). OnceB is computed, we can compute a partial
maphz() that associates with an event along each trans{ijo®;, ¢’) the corresponding event in
Eo to which it corresponds. We say that an eveid marked ifhz(e) is defined, and denote by
Markedt) C Eo, the set of events marked in a transitios: ((¢, Mem, E), O;, (¢, Mem/, E")).
Note that it is not always the case tiMarkedt) = Eo,: when the transition reaches a final state
of B, a suffix of O; may not be used to withess an embeddingJofSimilarly, O; can contain
unmatched events located on parallel threads that will mlegaused to withess embedding @f
along current path. We say that transitiois incompletely marked iMarkedt) # Eo,.

5.2. Checking inclusion for POA

Now, let.A; andA; be two partial order automata. L&t= O; 2 02 ®. .. O, be an order generated
along a patlp; of A, and let3 be the minimal unfolding of4, starting fromgs o (the initial state

of Ay) with empty order and memory. Leb 1, . .. p2 1 be explanations provided Hy ending on
final statesys, ...qx. These explanations; i, ... p2; are paths decorated with silent connected
components, hence they are partial order automata:Let . , h; be the mappings associated with
transitions inp2 1, . . . p2., that links every event along pagh ; to the corresponding event 6f,
and letMrky, ..., Mrk; denote the set of marked events along each path an8; ldenote the
partial order automaton obtained by adding#g all transitions ofA that are accessible from.
Then,O ® 0,41 is a prefix of some order generated Hy iff it is a prefix of an order generated
by one of theB;’s. Hence,O ® O, is a prefix of some order generated along a patlof A,

if p2 can be decomposed as = ;1512 ... a7y, whereO T Og, .. .qap, @1 ... 04 iS @ path of

A ending in some state, with memory Mem,, (; are finite sequences of transitions allowed
betweena; anda;1,and~y is a finite sequence of transitions obtained from an unfgldih.A,

to check inclusion o0, starting from state; with memory Mem,, and from the restriction
of order Oq, g, a,...o,, 10 UnmMarked events. However, the converse operation is mteeesting.
Starting from a finite path embedding an ord&rand an explanatiop (a sequence of transition
with silent connected components attached to some stat@# add only a finite number of events
and asA, is threaded, one can hence compute all possible explasdto® ® O,,.1 by choosing
adequates; s in connected components pfind then computing possible explanatigns
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As proposed in [Alur and Yannakakis 1999] we can go furthed, memorize only subsequences
of each path that contain incomplete transitions, and tm@mection between these subsequences.
Let B; be the automaton associated with an explanation as abayesugpose that it starts with a
single transitiort = (¢, 01, ¢’) (i.e, its initial state is not attached a silent strongly compuahpsuch
that events are all marked. Thé&w O, is a prefix of some order generated Ay iff O® O, 41\
hi(Fo,) is a prefix of B; \ {t} with initial stateq’. Hence, one can safely forget initial transitions
which are all marked. Lasf) ® O,,+1 is a prefix of some order generated My iff O,,, is a prefix
of the projection of somé, wherep is a path of somés; on its unmarked events. This means
that one can simply memorize incompletely marked transstigilent connected components, final
states of alB; s and still check that appending a particular or@gr., preserves the inclusion proved
so far. Starting from an explanatign ; we denote byPrune(p2 ;) the sequence of incompletely
marked transitions and connected components obtained AggmAs extension of an explanation
only uses connected components or appends orders at thé #medexplanation, one can compute
a new explanation from a pruned explanation. For an exglamatproving that an orde€ is a
prefix of some order afl,, we denote bysucc(p, O,,) the set of explanations obtained this way for
0 ® O,.

This immediately gives the idea of the following algorithorcompare two partial order automata
A, and A;. The algorithm follows paths ofl;, by remembering a set of selected events in memory
and the last state visited id;, and on the other side, it maintains a set of pruned explamatf.A,
that are compatible with the followed paths. As at each staheoconstruction, when choosing a
new transitiont = (¢, O, ¢') from A, i.e., extending some paft, we ensure thad,,, . is a prefix
of an order for at least one explanation. Note however thatipg does not guarantee finiteness of
the memorized information in general.

As already mentioned, the set of configuratiotXiplore can grow arbitrarily, and nothing guar-
antees that the algorithm terminates in general. Howelverckass of locally synchronized partial
order automata allow only regular sets of linearizationd,@escribe behaviors in which one can not
iterate a behavior (or equivalently recognize a part of dixpreithin a cycle ) without terminating
the preceding occurrence of this cycle.

THEOREM 5.2. If A; and. A, are locally synchronized, then the order inclusion algwmit ter-
minates.

PROOF Suppose that at some stage, an explanatiabtained when recognizing an ordey ;
contains more thap4| states from which some cyclecoming from a silent connected component
can be appended. In other worgs,is an explanation for paths of the form= p2 1.p22. ... p2.k,
where occurrence of a cycle can be inserted between eacppaip, ;11. As it is of size greater
that A, thenp necessarily contains a cycle. As insertifigs optional to explair0,; we know
that all events that append the contents of this cycle r@saippending an order that is completely
concurrent withD,,. However, if 3 commutes with elements of a path of size greater ttinthen
A is not locally synchronized. So, all possible insertionyafles in an acyclic explanation can occur
between transitions of a path located in a suffix of this p&ize at most.A|. Hence, there are less
than|A| cycles in any path oB. Now in a given pathp of As,, if the i*” occurrence of an event in
a particular orde©); is marked, then the preceding occurrences are also markedeAlo not add
to pruned path sequences that end with unmarked order Yatiegethese sequences would not be
minimal) in a path of size greater thad|?.maz where max is the size of the largest orderAp,
there is necessarily a sequence of transitions carrying marked events. Hence, for every path
of A; followed, there is only a finite number of corresponding gfsfor subsequences describing
matching paths ofd,, and the algorithm terminatest

ProPOsITION 5.3. If H is alocally synchronized HMSC, thety; ov andAH,O\VC are locally
synchronized partial order automata.
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ALGORITHM 1: Checking inclusion

Input: Two partial order automatay,, .As

Output: true if F4, C F.a,, false otherwise

Visited=);

/] Configurations renenber a path of A; and several conpatible paths

/] of A; with information on how events of A; are used for enbeddi ng

Xo = ((g0,¢),0);// W start fromthe initial node of each automaton.

Xplore := {Xo};

while X Plore # () do

SelectX = ((¢q1, Mem1), Exp = {En, ..., Ex})) in Xplore ;

/1 choose a particular configuration : a node of A;, and a partial
description of all paths of A; conpatible with the chosen run of A;

Visited := Visited U X;

Xplore := Xplore \ {X};

for (q1,01,4¢1) €—1do

/] for every transition leaving ¢1 in A

Mem) :=TI(Memi,O1);

Exp’ = {Succ(E;,01) | E; € Exp};

/'l keep pruned expl anations that enbed the previously recognized
order plus O

if Exp’ = () or ¢ final state andt ¢ Exp’ then

/1 Trying to append order O; and showing it is still a prefix

/1 of sone path of A, failed. So, we found path of A; that

/'l generates an order that is not a prefix of an order of Foa,

return false;

end
else
/1 Continue exploration from (¢q1', Mem)) and expl anati ons found
Xplore = Xplore U {((¢1, Mem}) x Prune(Ezp'))};
end
end

end
return true ;

PROOF If H is locally synchronized, then for any cycle and pair of events, f in M,, we
havee® < 2 andf®) < e® in M, o M,. AsOV is simply a projection, for any pair of events
with labels inV, e, 1) e, () are ordered similarly. Hencd; (v is locally synchronized.
Not every cycle ofH becomes a cycle O/ﬂH7(/){/C, as(’){/C may force to remove more events on
transitions than a simple projection. However, cycles¢t<,?la‘7(9\vC are also obtained from cycles of
H and labeled by projections, hen@%,oyc is also locally synchronized.o

We then have the obvious following corollary:

COROLLARY 5.4. Non-interference is decidable for locally synchronized $B4.

6. LOCAL AND CAUSAL NON INTERFERENCE

We now turn to other types of decidable classes, relatedgulagty. Indeed, inclusion problems
become decidable as soon as one can recast the order cangandblem in a regular setting. It
is however undecidable whether an HMSC or a partial ordemaaton has a regular behavior, and
one has to rely on syntactic subclasses of the models sudtatytsynchronized HMSCs/POAs
as above to obtain decidability. We show in this section fleaeral HMSC observation functions
describing the discriminating power osingle procesalways define sets of orders that can be rec-

ACM Transactions on Embedded Computing Systems, Vol. VN\Ndrticle A, Publication date: YYYY.



Non-interference in partial order models A:17

ognized by finite automata, that form a subclass of part@d¢ioautomata. In this restricted setting,
it is then possible to decide whether a progessP can detect occurrences of confidential actions.
As HMSCs explicitly specify distribution of actions on pesses, exhibiting the behavior of a fixed
process within an HMSC specification is an easy task. In #dan, we show that thiscal setting
allows for the definition of two decidable notions of noneirierence.

6.1. Local interference

Considering the attacker of a system as a single prqcesB, with action labels in some alphabet
¥, = a(E,), we should assume that procgsdoes not execute confidential actions, that'is)
¥, = 0. In a similar way, the observation power of a single procéssikl be restricted to its own
events, hence we can safely $ét= ¥,,. The definition of non-interference (Def. 3.3) proposed in
section 3 can accommodate this particular partition of thhabet. From now on, we consider this
restricted form of non-interference, and calkital non-interference

For a single MSC, it is then defined as satisfaction of twousicn problems, witl@{/c andOr

as observation functions. This property can be verified Bcking whethet (a«=(C)) N E, =0
that is checking if no causal consequence of a confidenti@rais located on procegs Recast in
the setting of MSC coloring, this amounts to checking that not marked with a black token. As
explained in Section 3.3, this can be performed in lineaetiide can now look at local interference
for HMSCs:

Definition 6.1 Let H be an HMSC over a set of procesdgswith alphabet: = VW C W N,
such thaty = w,cp¥, with V' = X,. ThenH is locally non-interfereniv.r.t. procesy € P if

O\ (H) = OV°(H).

Intuitively, local interference holds when an observer nahdistinguish inFy behaviors that
are concatenations of MSCs containing no confidential eaet other behaviors.

PROPOSITION 6.2. For every HMSCH, one can build a (partial order) automato#y, o» that
recognizeO? (H). If V' = %,, then one can build (partial order) automai,, ovs and Ay ov.o
M\ C

that recognize respective{y{/*c‘(H) andOV-°(H).

PROOF. (Sketch) For anyd, we can build a finite automatao#, (H) that recognizes (lineariza-
tions of) projections of all MSCs itF; onp. As concatenation of MSCs imposes a total order on
events of the same process, these projections are conttatenat finite sequences of events (local
projections of MSCs along transitions &f). HenceA,(H) has transitions using labels of events
located on procegs and just needs to remember the transitioft/othat is recognized (the current
MSC under execution), and a bounded integer symbolizindgstecvent of the current MSC exe-
cuted byp. Similarly, we can design an HMSf, o where transitions are labeled by MSCs that do
not contain confidential events, and hence an automaf@#/) that accepts only projections gn

of sequences of MSCs with only visible (white) events. HeAGeH ) recognizei?{/’c'(H). Last,
if V =3%,, thenOY:°(H) = OP(H). O

It should be noted thatly o» = A,(H) and Ay oVs = Aj,(H) (and hence alsgly ov.) are
[agNe]

finite automata. Recast in the context of partial order aatanthey are locally synchronized, have
finite memory functions (that remember only the last evepeapled), and a unique composition
operator based on the concatenation of sequences of events on pgocess

COROLLARY 6.3. The problem of deciding local interference of an HMBQvith respect to a
given procesp € P is PSPACE-complete.
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PROOF (Sketch) With the results of proposition 6.2, it remainthi®languages of two automata
(whence the complexity in PSPACE). For the hardness partcamealso show that any regular
language inclusion problem can be encoded as a local irkade problem. O

Local interference is decidable, and describes a situatlogre a process can discover that the
running execution of the system contagrawill containa confidential action. However, local inter-
ference does not distinguish between a situation where saredtion is a causal consequence of
some confidential action and a situation where observatidncanfidential action highlighted by
the interference are concurrent. This drawback also odowtaindard language-based interference
settings, where causality is represented as interleagimgjone can not decide whether in a word
c.v actionsc (confidential) and (visible) are concurrent or not.

6.2. Causal interference

We first give a concrete example showing that interferenoguish more dangerous when the con-
fidential event that is detected lays within the causal phsbme observation. Nowadays, a lot of
attention is devoted to privacy. However, it is well knowmitthusers spread a lot of information
to visited sites when browsing the web. This informationas always local information (cookies,
cache, etc.) that can be erased by users if needed. It cabalisdormation stored elsewhere on
the web: logs, forms, etc.. When observation of a causalezprence of a confidential action (Mr
X has bought a book on commercial sig by an attacker indicates that a confidential operation
has occurred, this may also mean that classified informatiigit be available at some vulnera-
ble site (the credit card details &f are stored somewhere afis website). Hence, characterizing
interference where confidential actions and observatimnsausally related, is important.

Ms :
5g r p
o
‘0/}~
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] ] ]
T p Mg r 2
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Fig. 3. Aninterferent HMSC

Example6.4. Onthe HMSC depicted in Figure 3, the projection of MSCs reized byH onp
is the languagé’n)*.(?m-+7n), and every MSC with projection gnin (?n)*.?m is the projection
of a concatenation of several occurrences®f followed by one occurrence @f;, which contains
a confidential event. According to definition 6.1, this HMSOdcally interferent. However, when
observing arrival of message, procesg can deduce that it is currently executiadehavior in
which a confidential action occurbut not that this actiohas already occurred

This means in particular that NI does not always charaaegizause to effect relation among
hidden actions and observation. To overcome this weakrfelsmguage-based information flow
characterizations, the notion of NDC (Non-Deducibility Gomposition) was proposed to detect
when confidential actionsauseobservable effects. Formally, NDC says that a systecomposed
with any process (that enables/forbids confidential events) is observatlgrquivalent taS.
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In the rest of this section, we propose a decidable notia@aaosal interferencéstill with respect
to a fixed attackep € PP). It emphasizes on causal dependencies between confidamdizisible
actions of the system. Bearing in mind that a black eventémtan procesg is a consequence of a
confidential event, we show that causal dependencies caiglléghted in terms of an observation
function built using the black/white tokens attached tonéseand processes within an MSC. We
want to check if a procegscan detect whether some confidential action has occurrégkinausal
past of its observed events. In other words, we have to chéakher all projection op of an
execution ofH that contains a black event, only have equivalent projastihat do not contain
black events.

Definition 6.5. Foran HMSCH and a process € P, H is causally non-interferenwith respect
top if for every MSCM in Fy such thatM contains a black event on processhere exists another
MSC M’ in Fg such that:

e )M’ contains no black event on processand
e OP(M) = OP(M’)

Causal non-interference is weaker that NDC: it compareobservations of an HMSC with
the observations that are still possible whitout confiddmvents. NDC compares a behavior of a
specification with a specification controlled by a procBsén which some confidential events can
be allowed.

THEOREM 6.6. For a fixed set of process@s deciding causal non-interference of an HMSC
H with respect to a procegs< P is PSPACE-complete.

We prove this theorem in several steps. We first use the res&toposition 3.6j.e., the fact
that black/white coloring of processes at the end of a sexpiehconcatenated MSCs can be done
by remembering the status of processes after each MSC. fidpenty holds for MSCs built along
paths of HMSCs, and is used (in Proposition 6.7) to build H8@t recognize MSCs that belong
to Fg and after which a fixed process is black (or similarly remavhgte). These HMSCs contain
nodes ofH, but remember for each nodewvhether processes are black or white after an MSC built
along a path ending in. Then causal interference will then be reduced to an inatugroblem of
finite automata that recognize sequences of actions alonucass.

PROPOSITION 6.7. Let H be an HMSCp € P, andX = C' & V W N. Then, one can build:

e an HMSCH 2°? that recognizes MSCs froifi after whichp is a black process.
e an HMSCH"» that recognizes MSCs froffiy after whichp is a white process.

of sizes inO(|H|.2/F).

PROOF (Sketch) The nodes of the HMSCs built in the proof memoriz@de of the original
HMSC, to which is added information on the color of each psscaccording to Proposition 3.6,
this is the only information needed to remember the colollg@racesses in an MS@/,, assembled
along a pattp of H. Accepting nodes requireto be black inf2-», and white inf"-r. O

We are now ready to prove theorem 6.6:

PrROOF. (of theorem 6.6) Following the construction B:» or H"*», we can define automata
Afv” and AZ"P that recognize the projections &fZ» or H"'? on proces®. Let us denote by

OBP(H) = {OP(M) | M € Fg A pis black afterM } the observation function that returns
the projection and bp"'?(H) = {OP(M) | M € Fg A pis white afterM }. Clearly, we have
E(A5=P) = OP(HB.,p) = (/)B.,p(H) andE(AZ"vp) = @p(HW-,p) — OW,p(H), SOOB,p(H) and
OW:»(H) are recognized by finite automata.
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Deciding causal interference &f with respect t@ € P consists in deciding the inclusion prob-
lem Cp5.0 ow. for H, that is checking whethef (A7) C L(A})?). Clearly, if H is of sizen,

thenH?»? andH'» are of size inD(n.2/*1), and so are4”» and.A}¥?. Then, checking inclusion

of L(AP?) into L(AP?) is equivalent to checking(AZ*) N L(AF») = (. Emptiness of regular
language is an NLOGSPACE problem, but the size of the autmmrihtit recognizes the intersection

is in O(n.2/F1.272") that is inclusion can be performed with space&ifiog(n) + [P| + n.2/F!).
For a fixed set of processes, the space needed to check aatesi@rences is hence polynomial in
the size of the input HMSC.

Like for local non-interference, the hardness result caphoged by polynomial encoding of
a regular language inclusion problem. Given two regulaglewesl, Lo, one first designs two
HMSCs H;, H with initial nodesn}, nZ such thatO? (H;) = L, fori e {1,2}. Then, using again
the construction illustrated in Figure 2, we consider MBC that contains one confidential event
on some fresh proceds. ¢ P, followed by messages from,. to all processes ii?, and at last,
an HMSCH that contains all transitions and accepting nodeF of H», an initial nodeny and an
additional transitiort; = (ng, M/, n}). Any path ofH starting with transitiort; generates an MSC
in whichp is black, and whose projection gns in L,. Other paths that do not start withgenerate
MSCs fromFp,, and in particular MSCs in which is white and whose projection gnis in Ls.
Hence,H is causally interferent with respectjpdf and only if ; C Lo. O

Causal interference can be checkeditiog(|H|) + |P| + |H|.2/P]). It is polynomial in space
in the size of the HMSC, and exponential in the number of pgses, but HMSC specifications are
usually defined for small sets of processes. Also remarkréheging the construction afV-», we

can easily design an automaton recognizﬂi@"(H) as soon a¥ = %,,.

7. DECLASSIFICATION

Non-interference considers confidential information asets that should remain undisclosed along
all runs of a system. This point of view is too strict to be odgtical interest: In many cases, con-
fidentiality of a secret action has a limited duration andetsccan be downgraded. Consider the
following example: a user wants to buy an item online, andpmysending his credit card informa-
tion. Everything from this transaction between the onlinegsand the buyer (even if encryption is
used) should remain secret. Within this setting, all payrataps should be considered confidential,
and flow from these actions to observable events should wempied. However, if a buyer uses a
one time credit card (i.e. a virtual credit card number gategt on request that can be used only
once for a transaction), then all information on the cardhisi®less as soon as the payment is com-
pleted. Hence, after completing the transaction, learttiatja payment occurred is harmless and
the sequence of interactions implementing a secured opéigment need not be kept secret. This
declassification possibility was first proposeatanditional interferencéy [Goguen and Meseguer
1982] and later defined in [Rushby 1992] as intransitiverfetence. Intransitive non interference
(INI) can be formulated as follows: for any run of the systeomtaining a confidential action that
is not downgraded subsequently, there is a run with no €ikedsiction (all confidential actions are
downgraded) which is equivalent from the observer’s poini@w.

Usually, INI is defined using a pruning function that remofresn a run all confidential actions
that are not declassified, and compares observations oégramd normal runs (see [Gorrieri and
Vernali 2011] for a definition of INI for transition systemdjrom now on, we assume that the
alphabet = C WV W N contains a particular subsé& C V W N of declassification events.
Intuitively, declassification events downgrade all th@infidential causal predecessors.

Definition 7.1. Let M be an MSC. An event € F), is classifiedif it is a confidential event
(a(e) € C), it has an observable successar V and it is not declassified beforei.e. there exists
nod such that < d < v anda(d) € D. We denote by’las(M) the set of classified events 8f.
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The observation functio®\;, ,, is defined byO\, ,(M) = OV (M \ Clas(M)). AnMSC M is
intransitively non-interferentiNI) iff O\C p(M) =0V (M).

We can characterize INI in a single MS@ as a property depending on the causal orde¥/in
and on the sets of confidential, declassification, and obbéevents.

PROPOSITION 7.2. An MSCM is intransitively non-interferent w.r.t. an alphabgét= CuV ¢
N and a set of declassification letteBsiff for every pair of events < v such thatn(c) € C and

a(v) € V, we havet (c)n | (v)) Na~ (D) # 0.

This proposition means that a declassification must ocawd®n every confidential event and a
causally related visible event. We now define observatiostions for HMSCs and propose a defi-
nition of intransitive non interference for HMSCs. We def@\éD = {OY(M) | M is notINI}

andO,N, p(H) = {OV(M) | M isINI}. We follow the definition of [Gorrieri and Vernali 2011]
to define INI for HMSCs. An HMSC is INI if for every intransitaly interferent (Il for short)
MSC M in Fpg, there exists another MS®/’ in Fx such thatM’ that is INI and such that
oV(M') = OV (M).

Definition 7.3, An HMSC is intransitively non-interferent w.r.t. a decldigsition alphabeD if
OIKII,D(H) = OV(H)-

Obviously,OF, ,(H) C OV (H), so proving INI boils down to provin®@" (H) C Oy, p(H).
Note that all Il MSCs are also interferent, and that checkiag-interference amounts to checking
INI with D = (). This remark extends to HMSCs: all intransitively integiet HMSCs are also
causally interferent, and checking causal interferencguantto checking INI withD = (). We then
establish the following result:

THEOREM 7.4. INI for HMSCs is undecidable. For a fixed set of processeg, {f X, then
INI is PSPACE-complete.

We prove the decidability part of this theorem in three stigtailed below. We first show that INI
can be decided for a sequence of MSCs by remembering onlh#peof causal chains originating
from confidential events instead of the whole sequence. feghow that one can design an HMSC
H' that recognizes Il MSCs aFy, and similarly an HMSCH N that recognizes INI MSCs
of 7. An immediate consequence is thdy, ,(H) can be recognized by a finite automaton if
V C ¥,. A second consequence is that checking INI is PSPACE-camplet us first show that
INI can be decided in a compositional way.

PROPOSITION 7.5. Let M;, Ms be two MSCs. Ther/; o M is INI if and only if M; and My
are INI, and for each pair of eventse M, v € M; such thain(c) € C, a(v) € V, ande <102 v,
there exists a procesgs with

—-c < f, wheref is the maximal event on proceg M,
— f" < v, wheref’ is the minimal event oqin Ms,

and an evend such thain(d) € D,ande < d < for f' <d <w.

This proposition can be intuitively seen as a property okahahains. A causal chain froato
v is a sequence of events< e; < ...e, < v. We say that a chain fromto v is declassified if
a(e;) € D forsomei € 1..n. Then an MSC is INI if for any paifc, v) of confidential/visible events
such that < v there exists at least one declassified causal chain érimm. If so, the confidential
eventc is guaranteed to be declassified by the occurrence of sonfesdifging actiorbefore the
execution ofv occurs.

A causal chain from to v in M; o M> can be decomposed into a chain frerto the maximal
eventf on a procesg in M;, a causal ordering fronfi to a minimal eventf’ located on process
q in M coming from the sequential composition &f; and M5, and then a causal chain from the
minimal eventf’ on ¢ to v. However, one does not need to know precisely the contentg,afo
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decide whethed/; o M5 is INI. It suffices to remember for each procesthe confidential events
of M, that are not yet declassified and are predecessors of themaleewent executed by process
p in M.

ML P 5 N, P 5
C1e L
I vy V2
Cog ~] ¢ I d
~— l—] ~
\d.' U3

Fig. 4. Anexample of non INI sequence of MSCs

On the example depicted in Figure 4, M3G (left) contains three confidential actions co, c3,
and a declassification operatidnOn the right, MSCM, contains three visible actions, vs, vs,
and a declassification operatidnAll other events belong ta—!(N). Both MSCs are INI, since
no observation depends on a confidential actiod/nor in M. However, in the concatenation
M; o Ms, execution ofv; or v, reveals the occurrence of. Also note that; is declassified by
the first occurrence of in M;. This example is particularly interesting, as it shows thatdrder
to abstract an arbitrarily long execution, it is not suffitieo remember a boolean value indicating
whether there exists a not yet declassified action on a ppesstwo confidential events can be
declassified via different ways. Indeed, some confidentiéas could be declassified for a process
while some others could not, even when located on the sancegso

We can characterize 1l MSCs in a sEf; by remembering finite sets of shapes of causal chains.
In order to define these shapes, Adtbe an MSC, let be a confidential event in/. We define a
functioncl(c, M) : P — {L,+, T} such thatcl(c, M)(p) = L if there exists no causal chain
from ¢ to an event located om cl(c, M) (p) = + if there exists a causal chain franto a maximal
event f located onp, and (t ¢n | f) Na~Y(D) = 0, andcl(c, M)(p) = T otherwise. This
function classifies processes according to the existendeckassification degree (declassified or
not) of causal chains between the confidential evemtd the last event seen on each process. For a
setP of processes, any such mdgc, M) can have at most”! distinct values. Le€l = {1, 4, T}¥
denote the set of all maps. By proposition 7V, o M, is not INI if M7 or M5 is not INI, or if there
existsc € M7 andv € M, such that:

o there exists a procegssuch thatl(c, M;)(p) = +, and an evenf located orp in Ma, such that
no causal chain fronf to v is declassified.

o for every procesg such thatl(c, M1)(q) = T there exists no event < v located ong in Mo,
andv is not located om.

One can furthermore computgc, M; o Ms o - - - o My)(p) incrementally with finite memory:
cl(c,M; o My)(p) = L if cl(c, M;)(p) = L, and if there exists no pair of everts< f in M,
with f is located oy, andci(c, M1)(¢(e)) # L.
cl(c,MyoMz)(p) =+ if cl(c, M1)(p) € {L,+}, there exists a procesg such that
cl(e, M1)(q) = 4+, and a pair of events < f in M, such thate is minimal ong, f is maximal
on proces®, and furthermore, no causal chain frento f is declassified, and for every process
q # q, if cl(c, M1)(¢") = +, then no declassified causal chain from an evenf'do f exists in
Mo, if cl(e, M71)(q") = T then no causal chain from an eventgrio f exists inMs.

cl(c,M; o Mu)(p) = T if cl(c, M1)(p) = T, or
o there exist a procegssuch thati(c, M;)(q) = + and a declassified chain from an eveidcated
on procesg to an evenif located on procegs or
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e there exist a procegssuch thatl(c, M;)(q) = T, and a causal chain from an everibcated on
procesg; to an evenff located on process

Last,cl(c, M1 o M3)(p) = L if cl(e, M;)(p) = L and M, does not contain a pair of everts< f
such thak is located ory with cl(c, M1)(q) # L, andf is located orp.

Now, if M; contains two confidential events, co such thatcl(ci, M1) = cl(ce, M7), then
cl(c1, My o Ma) = cl(ce, M7 o Ms). It means that to detect interferences, one does not have to
remember events, but only the shape of causal relationstifexi declassified or not) from con-
fidential events to their successors on each process. Fmthe, at moss!”! distinct shapes can
appear in an MSC, so one can check INI along arbitrarily loeguences of MSCs with finite
memory.

PROPOSITION 7.6. Let H be an HMSC, with labeling alphabEtand setD of declassification
letters. Then, one can build an HMSE" generating all Il MSCs inFy and an HMSCH™!

generating all INI MSCs i, with sizes at mo§.|H|.23‘P‘

PROOF. (Sketch) We build HMSQ1" as follows: a statén, b, X ) of H" memorizes a node of
H, a boolearb indicating whether an interference has been detected, sedfa= {cl;,...cl;) C
Cl, where each; is a function fromP to { L, +, T } that memorizes the shape of causal chains from
a confidential event to maximal events on procesiésfollows transitions off, and updatesl;’s.
For each new confidential evenbccurring in a transition labeled by an MSZ, a new function
cl(c, M) is added to memorized shapesin As soon as an interference is detecteid,set to true.
Accepting states off" are of the form(n, b, X') wheren is accepting inf, andb is true. ™' is
built similarly, but with accepting states of the fofm, b, X') with » accepting inH andb false. O

We are now ready to prove Theorem 7.4:

PrROOFE (of Theorem 7.4) Undecidability is easily obtained frondanidability of causal inter-
ference, and by settin® = (). Let us now consider the decidability part, withC X,,. Following

the proof of proposition 7.6, one can build an automatgiiH™') of size at mos®.|H|.23"" that

recognize®" (H™'). One can easily prove that wh&éhC %, we haveOV (H™') = OF, ,,(H),

and hencel(A,(H™)) = O, p(H), i.e.Oy, p(H) is recognized by a finite automaton.
From proposition 6.2, we can build an automatdp(H) of size inO(k.H), wherek is the

maximal number of events in an MSC &, that recognize®" (H). Then it is sufficient to check
whetherL(A,(H)) € L(A,(H™")) to decide ifH is intransitively interferent, which is again an

inclusion problem that can be checked in spao@@ﬂ.|H|.23m ). Hardness is proved by showing a
polynomial reduction from a language inclusion problemridhdl problem withD = 0. O

The declassification setting can be refined to consider tsededeclassification. Following the
definition of [Best and Darondeau 2012], in addition to theldssification alphabd?, we define a
maph : D — 2¢, whereh(a,) defines the labels of confidential events that an action il
declassifies. Definition 7.1 easily adapts to this settimgply by requiring that a causal chain from
a confidential event to a visible event is declassified by an evertsuch thaix(c) € h(a(d)).
We then say that an events classified if it is a confidential eveni(c) € C), it has an observable
successop, and it is not declassified by one of the actions that can delait, that is,«a(c) ¢
h(a(t (e)n ] (v)) N D). INI with selective declassification (INISD) adapts the digfdns of INI
to consider declassification without changing observatidike for standard declassification, we
can build an HMSC that recognizes INISD MSCs/#f. The only change w.r.t. INI is that one has
to remember in the HMSC construction the label of confidértiants from which chains originate,
yielding automata of sizes | H|.2/€3" If V C %, thenO) ,, and O}, ,, are recognized by
finite automata. We hence have: 7 7

COROLLARY 7.7. INISD is undecidable for HMSCs. For a fixed set of processesPISPACE-
complete whefly CX,,.
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8. RELATED WORK AND CONCLUSION

Related work. Non-interference was seldom studied for scenario formmedisA former work con-
siders non-interference for Triggered Message Sequenad<JiRay et al. 2004]. The interference
property is defined in terms of comparison of ready sets (detstions that are fireable after a given
sequence of actions). However, this work mainly considers finite scenarios, dods not address
decidability and complexity issues.

A first work considering non-interference for true concaagmodels appears in [Busi and Gor-
rieri 2009]. The authors consider interference for elermagnbets i.e., nets where firing rules al-
low places to contain at most one token). They charactedzesal placeswhere firing a high-
level transition causally precedes the firing of a low-lemeé andconflict placeswhere firing a
high-level transition inhibits the firing of a low-level onReachability of causal or conflict places
is shown equivalent to BNDC (Bisimulation-based NDC, theiar of Non-Interference using
bisimulation instead of language equality). In [Gorrierdad/ernali 2011], the notion of intransitive
non-interference from [Rushby 1992] is revisited for tiios systems, and non-interference with
downgraders is considered for elementary nets. A structinaacterization is given in terms of
reachable causal and conflict places. As in [Busi and Go@&@#9], causal and conflict places are
characterized in terms of possible fireable sequencesriitians, hence considering the interleav-
ing semantics of the net.

Darondeatet al. [Best et al. 2010] study (B)NDC and INI farnbounded labeled Petri nets,
and extend their results to selective declassification esfBand Darondeau 2012]. They obtain
decidability of these properties for injectively labelestsiby a very clever exploitation of specific
decidability results for language inclusion, which is ucidable for general Petri nets languages.
The characterization relies on sequences of transitiorisnat on causal properties of nets.

A contrario, Baldan et al [Baldan and Carraro 2014] emplegtsie fact that characterizing BNDC
in terms of structural conditions expressing causalityanflict between high and low-level tran-
sitions, is a way to provide efficient algorithms to checlemférence. They propose a definition
of complete unfolding w.r.t. non-interference, and redB&NDC for safe nets to checking that a
complete unfolding is weak-conflict and weak-causal plaee.fWeak causal places characterize
dependencies and conflicts between high and low transitidmsir results show that interference
can be detected in concurrent models without relying onlesiging semantics. They only hold for
safe netsi.e,, for finite state systems.

Conclusion.We proposed a partial order framework for information flowperties analysis, that
relies on comparisons of sets of partial orders depictirgeolations of execution of systems. We
proved that inclusion of observed orders and non-intenfegés undecidable in general. To alleviate
this problem, we proposed partial order automata, as a ntodetognize observations of execu-
tions. We then identified subclasses of partial order autarfta which inclusion of languages is
decidable. Non-interference of locally synchronized H\MS@lls into this decidable setting, and
is hence decidable. A different approach to obtain declityalbi this partial order framework is to
restrict the kind of observation functions that can be u$éik is a sensible approach, as it amounts
to restrict the power of attackers. If one considers thabldsvents are observed by a single pro-
cess of the system, most of observation functions appli¢tM&Cs define regular languages. As
a consequence, several notions of local non-interferemd¢teir extensions with declassification,
are decidable. We show that local versions of non-inteniggeare PSPACE-complete problems, and
give decision procedures that never compute the interlgaémantics of the original HMSC.

So far, partial order automata are mainly used as an intaatesgchnicality to prove decidabil-
ity of non-interference for locally-synchronized HMSCs evhseveral processes can observe the
system. However, this model is more general than HMSCs. Aiplesrefinement of the landscape
is to consider decidability of interference for partial eréuutomata that generate sets of orders with
non-regular linearization languages. We conjecture thaidébility of inclusion can be generalized
to some subclasses of non-regular partial order autonwtee slasses of graph grammars, or more
generally to subclasses of models with bounded-split witltkwarya et al. 2014].
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Another line of research is to consider security issues vemesittacker can interact with the sys-
tem in order to gain information (active interference), dvem he can get information on the current
configuration of the system (state-based interferencdprieting definitions of information flows
in HMSCs to quantify the amount of information disclosurerbgan of measures (e.g. probability
measure, average number of bits leaked per action,.. Jdésaathallenging task.
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A. APPENDIX: PROOFS

This appendix details missing proofs for propositions ie text. Proofs for propositions 3.6, 7.2
and 7.5 are straightforward consequences of definitionar®d/.1, and are not provided.

A.l. Proof of Proposition 3.4

Proposition 3.4.Let M be an MSC with labeling alphab&t = C & V & N and set of event#.
Then, M is interferentif and only if there are two events f such thatx(e) € C, a(f) € V, and
e < f.

Proof. We prove this lemma by showing the two directions of the icgtion.

First, let us suppose that there exists no pair of eventin M such that(e ) eC,a(f) eV,
ande < f. If there is no event € E such that ina(e) € C, thenM\ T (o~ 1)) = M, and
henceO" (M) = O} (M). If some confidential events existi, i.e.,a™"(C) # 0, then for each
ee€a }(C), as there is no visiblg causally dependent form we haveT (e)Nat(V)=10.In
this caseM\ 1 (a~'(C)) = M \ o~ '(C). This means thad" (M) = OV, (M), which yields the
result.

1) Let us now prove the converse direction. Suppose that thxéstse pair of events < f such
thate is a confidential event, anflis a visible one. Therg is not maximal, and hencf@{/C(M)
does not contairf. As OV (M) contains all observable events bf we can not have" (M) C
O\ (M). This immediately implies thad\, (M) # O (M). O

A.2. Proof of Theorem 4.9

Theorem 4.9.Given a partial order automatofiwith selection functioMaxEvt one can decide if
A is threaded. Furthermore this problem is in co-NP.

Proof. A path satisfying the property of Def. 4.8 is said to be theshd\Ne first show that is it
sufficient to consider elementary cycles4gxtended by one transition to decide whether a POA is
threaded. Consider an accessible cycte ¢ O q - - N q of A and the path’ = p.(¢,01,¢1)
that extend® with one single transition. We call such a path an elemergaguence. Obviously, if
there is an eventin O; such thae™) £ ¢(2), then any path ofd that ends withp’ is not threaded,
and henced is not threaded.

Conversely, suppose that all elementary sequenced afe threaded, but that one can find
a pathp of A that is not threaded. That i is of the form p;.(q,01,¢).p2.(¢, 01, ¢ )ps,
and is such that some occurrend® in the i*" occurrence of0; does not precede the +
1)!" occurrence ofe in the (i + 1) occurrence ofO;. Clearly, the sequence of transitions
(¢,01,q").p2.(q, 01, ¢') is not an elementary sequence, otherwise one would Have< (1),
However, (¢, 01,q').p2.(q,01,¢’) is obtained by insertion of elementary cycles in an elemgnta
sequence.; = (¢,01,¢').p,;.(¢,01,q") starting and ending with transitiofg, O, ¢’). In p, we
havee( < e(? that is, there exists a causal chaly) < fi < ... fx < g1 < -+ < gw <
hi < -+ < hyr < e, wherefy, ..., f, are events 0b\", g1, ..., g are events 0D, , and
hi,...,hg are events oO§2). Consider insertion of an elementary sequence by replacngi-
tion (gs, O2, ¢s+1) by an elementary sequenge= (gs, O2, gs+1) - - - (¢s, O2, ¢s+1) in pl,. Then if

there exists no event @, in the causal chain from?) to ¢(?), then the causal chain is preserved
by replacement of one transition by this elementary sequedow, supposing thad, contains a

set of event@t . g of the causal chain, we still havé) < g(l) in O, . Similarly, we have

g§1> < gt( and due to properties of elementary sequences, Wedﬁé\/e( g(2) Now, as the se-
lection functlon recalls last occurrences of events, amrd tise same operators that depend only on

chosen transitions, we will ha\geé,g) < hy <...e?. Similar reasoning holds when inserting sev-
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eral occurrences of elementary sequences between tworencas o0, . As all paths containing
two consecutive occurrences of some order can only be @utdip such insertions, this allows to
conclude thap is threaded, which contradicts our starting hypothesisidded is threaded iff all
its elementary sequences are threaded.

Now, let us consider the complexity part. Finding an acyphthp containing twice transitions
(g1, 0, g2) can be done non-deterministically in polynomial time, bpasing non-deterministically
a path starting frong2, and stopping as soon as some transition was already ercednbr when
reaching the second occurrence of transifipn O, ¢2). Followed path are of length at mdst— |.
Appending an order to an existing one and maintaining a seelgfcted events can be done in
polynomial time, as it suffices to add a bounded number of efgaevents and covering relation).
Denoting bym the maximal size of an order id, each step hence adds at mestevents and
|£| x m? elements to the covering relation built so far. For a chosemte, one can maintain
during construction of the order a sgtof at most|£|.m events that are both in the set of events
kept by the selection function, and successors. dfhen, if one ends with a second occurrence of
(q1,0, q2), it is easy to check thaf?) is a successor of some event®f O

A.3. Proof of Theorem 4.11

Theorem 4.11Let A be a threaded partial order automaton with a selection iimtl that memo-
rizes a bounded numbéf of events. Then one can effectively decidedifs locally synchronized.

Proof. Let us consider a paify .p» such thap, is a cycle, and let, f be a pair of events i®),,. The
commutation graph aD,,, is strongly connected iff for every pair of evenrtsf in O, there exists
a chain frome™ to () or frome™ to £, and another chain froni") to (™) or from £ to
e(?), Following the same argumentation as in the proof of thed®@@ras.A is threaded, insertion of
new occurrences of existing orders in a path can only extembtbhgth of existing causal chains, but
cannot "break” causal chains:df< fin ps.p2".p2.p2", thene < fin pa.p3.p2".p2.p3.p2" for any
cycleps. Itis hence sufficient to consider occurrences of cyclesdbatain at most one occurrence
of each transition to check existence of disconnected camgation graphs.

The algorithm follows a path afl. At some point, it non-deterministically chooses an acycli
path and checks if its communication graph is strongly cotete O

ALGORITHM 2: Checking local synchronization

Input : Partial Order Automatomt
Output: Non-deterministically return true ifl is locally synchronized, stops otherwise
randomly pick up a numbet between 1 angid|.2%
/1 By considering runs on this length, we have visited all possible
menory configurations and transitions
Mem= {;
cs = Mo,
/'l current state
while d > 0 do
randomly select a transitiofes, O, n) and computdl(Mem®x cs,0,n/) O);
cs=n;
d=d-1;
end
randomly select aacyclic sequence of transition= (cs, O;,n1) ... (ng, Ok, n);
Compute the communication grapsof O,
if G is not strongly connectetthen
| return A is not locally synchronized
end
STOP;
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A.4. Proof of Proposition 4.15
Proposition 4.15.For every HMSCH, observation function®", (’){/C, OP are finitely decompos-
able, with boundsn < |P|? andc < |P)3.

Proof. Let us first conside®" . For every pair of MSC3\/,, M, we know that the set of events
in O = OV (M; o M) = (Eo, =<0, o) is exactly the union of the the set of events/¥ (M)
and OV (M;). We can reuse the result in [Genest et al. 2003] on projextidrHMSCs. For an
event ine in O(My), letus callF'(e) = {¢(f) | 3f,e <1 f} the set of processes that contain a
successor event for. Let us defineDead(e) = |J F(e'), andLiveF'(e) = F(e) \ Dead(e).

e<ope’
Intuitively, LiveF'(e) represents the set of processes that may contain an obleesvaisessor of
e appended afted/;. We call ToCheck(M;) = \26 € O(M,) | LiveF(e) # 0} the events of
M, that can still have a immediate successo©inh(M; o M) for an arbitraryMs. It was shown
in [Genest et al. 2003] that for sequences of M$QH arbitrary size it is sufficient to remember
ToCheck(M,) and LiveF (e) for everye in ToCheck(M),) to be able to builctOV(M,, o My)
for any M. This work also shows that for evepy ToCheck(M,) is of size smaller thafiP|2.
Then, from this information, buildin®" (M, o M>) simply consists in assemblir@" (M,,) and
OV (M) as a union of both coverings, to which causalities from eessnte in Tocheck(M?)
to minimal events of0V (M,) located onLiveF(e). We refer readers to [Genest et al. 2003] for
details and proof of correctness of the construction. Omesese that the composition operation
used to assemble observations of MSCs is the same, and ndgds memorize a finite number of
eventsey, ..., ex With k < |P|2. However, there is an additional information carriedlyeF(e),
that is used to decide whether pairs of event®iC heck(M,,) x OV (M>) should be in<: One
needs only to remember a set of processes attached to eattle gog mapLiveF'(). This can be
encoded by amap : 1..|P|? — 2, and there is only a finite number of such maps. Let us denote
by # the set of such maps, and for a particular map, let us denatg, lifie operator that glues two
observations, considering thbtveF'(e;) = h(e;). For a given patlp let us denote byLiveF),() the
mapLiveF () computed from\/,. We can associate with every sequence of MBESM; ... M},
the finite memoryl'ocheck(M,) and the composition operatar, whereh = LiveF,(), which
immediately defines the functions andIl. As T'ocheck(M,) is finite, each concatenation adds
only a bounded number of causal dependencies, hé¥ces finitely decomposable. The bounds
for m andc come from the size dfocheck(M,).

The proof easily extends 16 as no assumption is done on the set of observable events. We wi
however prove later that one does not need the whole poweartibporder automata to consider
or,

Now, for observatiori?{”c, we can build a similar proof. However, at concatenatioretimne
can only append events that are not causal consequencesfafertial events to already built
observations. Using the notion of black/white processelsesments, this means that concatenation
operators can only add observable events that are whiteamegses that are also white. We have
shown that maintaining the status of processes along a segué MSCs is memoryless 3.6. We
can hence relay on a set of operators of the f@RS= {®; gw } whereh is the set of functions
defined forOY and BV is the black/white status of processes, and biiildndII accordingly. O

A.5. Proof of Proposition 6.2

Proposition 6.2.For every HMSCH, one can build a (partial order) automatdiy o» that recog-
nizesO?(H). If O = %, then one can build a (partial order) automAtg_’O\v,c. and Ay ov.. that
recognize respective@{”c'(H) andOV-°(H).

Proof Let H = (N, —, M, ng, F), and let us build a finite state automatdn(H) recognizing
OP(H) or equivalentlyOV-°(H) whenO = %,

ACM Transactions on Embedded Computing Systems, Vol. VN\Ndrticle A, Publication date: YYYY.



Non-interference in partial order models A:29

Let & be the maximal size of a projection of a MSCM. The automatomd,,(H ) is defined by
A, = (N x{0,...,k—1},9,(no,0), F x {0}, A, II). We letA(n, O,n") = o, i.e. we use standard
sequential composition for every transition. WelBO; ... Oy) = max(Oy) (Il remembers the
last eventin the last order appended. LetM, n’) be a transition inff. The observatio®? (M) is
a possibly empty partial order ovEy,. If OP (M) is an empty order, theficontains the transition
((n,0),e,(n',0)). If OP(M) = a1...aq (With ¢ < k), thend contains the transition§n, i —
1),a;, (n,1)) foreachi € {1,..,q — 1}, and((n, ¢ — 1), aq, (n’,0)).

An easy induction shows that for every paity, M1,n1) ... (n¢—1, My, ng), such that the pro-

ai,1 ay,2

jection of each)M; onp is a wordw; = a;1 ...a;, there exists a pattng,0) — (no,1) —
-t (n¢,0), and conversely. Furthermore,rif is an accepting state df, then(n,,0) is an
accepting state ofl,,. Hence, A, recognize®)? (H). The size o4, (H) is in O(|N|.k).

Let us now show that one can design an automaton that rec&njﬁl%‘(H) forany HMSCH.
Let us first recall the definition cﬁ){/’c'(H). We have(?{/’c'(H) = {0V (Myo---0oMy) | Mjo---o
My € Fg AVi,a(E;) N C = (}. Let us now design a new HMSE, ¢ = (N, —\¢, M, ng, F)
such that(n, M,n') €—\¢ iff (n, M,n’") €= anda(Ey) N C = 0. Clearly, g, . is the set
of MSCs generated byl that do not contain actions froif¥, and H\ ¢ is also an HMSC. We
haveO? (H\¢) = O{/’C'(H), and hence we can apply the technique above to design an ataiom

A (H) = A, (H\¢) of size InO(|N|.k) that recognizeé){/’c'(H). HenceOP (H) and(’){/’c' can be
recognized by partial order automatonJ

A.6. Proof of Corollary 6.3

Corollary 6.3. The problem of deciding local interference of an HM&with respect to a given
procesy € P is PSPACE-complete.

Proof From proposition 6.2, for any HMSE and any procesg, we can design an automaton
A,(H) that recognize®? ((H), and an automatod’, (/) that recognizeé?{/’c'(H). One can no-
tice thatA, (H) and A, (H) are standard finite state automata that recognize sequeheesnts.

Hence inclusion o©?((H) in O{/’C'(H) with these automata is a regular language inclusion prob-
lem.

Note that these automata are of size linear in the siz& .oDne can notice thaf(A),(H)) C
L(A,(H)). So, checking local non-interference of an HMECGamounts to a single inclusion prob-
lemC,, oV for HMSC H, i.e checking that’(A, (H)) C L(A}(H)). Language inclusion for

"\C

finite automata is a well-known PSPACE-complete problemchechecking local non-interference
is in PSPACE.

For the hardness part, let = (Q 4,04, 904, Fa) andB = (@5, 5, 95, F'5) be two automata
over alphabeE, with disjoint set of states. Similarly to Figure 2, we des@yHMSCH = (Q4 W
@B, —,q08,Fa W Fp) over a set of process¢p:, p2, P.} and alphabel U {c}, with V' = ¥ and
C = {c}, such that» contains:

—a transition(qos, M, goa) in which M, is an MSC with a single atomic confidential action lo-
cated on procesB, (like in Figure 2),

—for each(q,a,q’) € 64 U dp, a transition(q, M,, q') whereM, is a MSC containing a single
messagen,, from p, to p;.

Then the language inclusion problein4) C £(B) can be reduced in polynomial time to local non-
interference off with respect to procegs . Hence, local non-interference is PSPACE-complete.
|

A.7. Proof of Proposition 6.7
Proposition 6.7.Let H be an HMSCp € P, andX = C'w V' @& N. Then, one can build:
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—an HMSCH B+ that recognizes MSCs froth;; after whichp is a black process.
—an HMSCH™? that recognizes MSCs frotiy after whichp is a white process.

of size inO(| H|.2!"1).
Proof. We build H?» = (NB», B» M, ng P, FB?) as follows:

— NB» C N x 2% is a set of nodes. In a pain, P), n denotes a node a¥, andP a subset of black
processes. We sef" = (ny, ().

— the set of transitions and nodesiéf’ * is built inductively as follows: from a node:, P), if there
exists a transitiorin, M, n’) in H, we add(n’, P’) to NB», with P’ = PU{p € P | Je <u
fASf)=pAdle) e PLU{peP|3e< f,ale) € C A¢d(f) = p}, and we add transition
((n, P), M, (n/, P')) to —»Bp

—FBP = F x {P €2 | p € P} is the set of accepting nodes. A pathif’? is accepting if it
ends after recognizing an MSUW € Fy such thap is black after .

Building HW-» = (NW» W2 M, n)"? FWP) can be done in a similar way, but setting
FWp=Fx{Pe2’|p¢gP}.

The status of a process is built progressively along trimmsiin a path. Following proposition 3.6,
the process part of a node H”? or HW» faithfully encodes the status of a process in the MSCs
generated by sequences of transitions ending in this noelecédd 2P (resp. H"'P) recognize
MSCs of Fy after whichp is black (resp. white).

As the nodes of these HMSCs belong\Xox 27, the size off 2-» or HW'?isin O(|H|.2*1). O

A.8. Proof of Proposition 7.6

Proposition 7.6.Let H be an HMSCY. an alphabet and be a set of declassification letters. Then,
one can build

—an HMSCH" that generates the set of || MSCs;.
—an HMSCH™' that generates the set of INI MSCsHy;.

that are of sizes at mogt|[7].23"

Proof. We first show howd" = (N" =" M, nl}, F") is computed, then we show th&t' recog-
nizes intransitively interferent MSC generatedtdyWe first define the following functions. A map
c : P — {4+, L, T} represents existing causal dependencies from a confitlemiat to maximal
event of processes, plus gives information on whether aat@hsin ending on a process declas-
sifies this confidential event. We denote GY.(M) the set of functions that are computed starting
from all confidential events. Note thatiif contains no confidential event, théfl. (M) = (). Given
two MSCsM;, M, we have seen thadtl; o M, is intransitively interferent if\/; is Il, or Ms is Il,

or there existgl € CL(M;) such thati(p) = + and M contains a chain from an event located
on process to an observable evertich that there exists no chain from an event on progtss
with ¢l(q) = T. Hence, knowing if\M; is Il or not, and” L(M;), one can decide whethéf; o M>

is . We denote byl (CL, M) the predicate that is true when a set of méfisrepresenting causal
chains and declassification in an MSZ’ allows to prove thaf\/’ o M contains an intransitive
interference.

The crux is then to be able to maintait.(M; o - - - o M},) and the Il information along path of
H. For a given map! and an MSCM, we define the map' pdate(cl, M) as follows:

We haveUpdate(cl, M)(p) = L if cl(p) = L, and if there exists no pair of everts< f in Mo
with f is located ofp, andcl(¢(e)) # L.

We haveUpdate(cl, M)(p) = + if cl(p) € {L,+}, and there exists a procegssuch that
cl(q) = +, and pair of events < f in M, such thak is minimal ong, f is maximal on process
p, and furthermore, no causal chain freno f is declassified, and for every procegs# ¢, if
cl(¢") = +, then no declassified causal chain from an evenf'do f exists inM, if cl(¢') = T
then no causal chain from an eventgro f exists inMs.
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We havelUpdate(cl, M)(p) = T if

—cd(p)=T,or

—there exist a procesgsuch thatl(¢) = + and a declassified chain from an everbcated on
procesg; to an evenif located on procesgs or

— there exist a procegssuch thatl(q) = T, and a causal chain from an everibcated on process
g to an eventff located on procegs

The map updating function extends to sets of maps the obwiays: Update(X, M) =
U Update(cl, M).
cleX

We are now ready to defind" = (N, =" M, nll, F''). We have:

— N" C N x {tt,ff} x 2¢! is a set of nodes that are reachable fréffn Each node ofN" is hence a
triple of the form(n, b, X'), wheren is a node ofH, b is a boolean that indicateslif has already
been discovered, anll is a set of maps depicting (declassified) causal chains fianfidential
events in the sequende; o ... M; read so far along transitions &f and ending at node. We
setnl! = (no, ff, 0).

— We define the transitions relation as follows. We héve b, X), M, (n', b, X")) €= iff
— (n, M, n') €— (the transition exists itif),

—v =bv V ll(cd,M)ANMisll, thatis ifll was detected before, then the concatenated MSCs

cle X

remainll, and otherwise becomeé if M is Il, or one of the maps depicting chains starting
from a confidential events in the formerly assembled MBCo - - - o M}, witnesses ail in
Mio---oMpobM.

— " = F x {tt} x 2¢

— X' = Update(X, M) U CL(M). The representation of chains originating from confidéntia
events is updated to consider chaind6find their declassifications, and new observable events
may occur inM, starting new chains and potential new witnesse$l f{SCs.

Obviously, all MSCs generated @y belong toFy, as—" always agrees withs. Furthermore,
due to compositionality ofl computation, updating of a chaith can be done incrementally while
concatenating MSCs without remembering the whole sequé&me, it suffices to remember once
the shape of causal chains from observables actions to magirants on processes (the mafgo
detect Il. One needs not differentiate similar occurrerxdanaps computed for chains originating
from distinct observable events. Hence, updating of setao$al chains representation suffices to
represent all classified chains in a sequence of MSCs repegbetween, and the current node,
and hence to detect all occurrences of intransitive intenfees. we can conclude that all MSCs
recognized by" contain an intransitive interference.

The HMSCH™! = (NN N AL N FIND) can be built with the same nodes and transition
functions, but with final sateg™' = F x {ff} x 2¢. The sizes ofH" and H'N' are at most
2.|H|.23".

|
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