
A

Non-interference in partial order models

BÉATRICE BÉRARD, Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7606,LIP6
LOÏC HÉLOUËT, INRIA Rennes
JOHN MULLINS, École Polytechnique de Montréal

Non-interference (NI) is a property of systems stating thatconfidential actions should not cause effects observable byunau-
thorized users. Several variants of NI have been studied formany types of models, but rarely for true concurrency or un-
bounded models. This work investigates NI for High-level Message Sequence Charts (HMSC), a scenario language for the
description of distributed systems, based on composition of partial orders. We first propose a general definition of security
properties in terms of equivalence among observations of behaviors. Observations are naturally captured by partial order au-
tomata, a formalism that generalizes HMSCs and permits to assemble partial orders. We show that equivalence or inclusion
properties for HMSCs (hence for partial order automata) areundecidable, which means in particular that NI is undecidable
for HMSCs. We hence consider decidable subclasses of partial order automata and HMSCs. Finally, we define weaker local
properties, describing situations where a system is attacked by a single agent, and show thatlocal NI is decidable. We then
refine local NI to a finer notion ofcausal NIthat emphasizes causal dependencies between confidential actions and observa-
tions, and extend it to causal NI with (selective) declassification of confidential events. Checking whether a system satisfies
local and causal NI and their declassified variants are PSPACE-complete problems.

CCS Concepts:rSoftware and its engineering→ Software verification;

Additional Key Words and Phrases: Security, non-interference, partial orders, verification

ACM Reference Format:
Béatrice Bérard, Loı̈c Hélouët, and John Mullins, 2016. Non-interference in partial order models.ACM Trans. Embedd.
Comput. Syst.V, N, Article A (YYYY), 31 pages.
DOI: 0000001.0000001

1. INTRODUCTION

Context. Non-interference(NI) has been introduced to characterize the absence of harmful infor-
mation flow in a system. It ensures that confidential actions of a system can not produce any effect
visible by a public observer. The original notion of non-interference in [Goguen and Meseguer
1982] was expressed in terms of language equivalence for deterministic Mealy machines with con-
fidential input and public output. Since then, several variants of information flow properties(IFP)
have extended NI to non-deterministic models (transition systems, process algebra, Petri nets,...)
and finer notions of observation (simple trace observation,deadlock or branching detection,....) to
describe the various observational powers of an attacker. For a given systemS, NI is usually defined
as:πV (JS \ CK) ≈ πV (JSK) where≈ denotes some behavioural system equivalence (language
equivalence, bisimulation,),JSK, the semantics ofS, πV , the projection on a subsetV of visible
actions of the system, andS\C, the modelS from which all confidential actions fromC are pruned.
Intransitive non-interference(INI) relaxes NI to handle possibledeclassificationof confidential ac-

This work is an extended version of [Bérard et al. 2015]. It was partially done while John Mullins was visiting the LIP6,
Université Pierre & Marie Curie. John Mullins is supportedby the NSERC Discovery Individual grant No. 13321 (Govern-
ment of Canada), the FQRNT Team grant No. 167440 (Quebec’s Government) and the CFQCU France-Quebec Cooperative
grant No. 167671 (Quebec’s Government).

Author’s addresses: B. Bérard, Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7606, LIP6, 75005, Paris, France;
L. Hélouët, INRIA Rennes Campus de Beaulieu, 35041 RennesCedex, France; J. Mullins, Dept. of Computer & Software
Eng.,École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montreal (QC) Canada, H3C 3A7.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit orcommercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, orrepublish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissionsfrom permissions@acm.org.
c© YYYY ACM. 1539-9087/YYYY/-ARTA $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:2 B. Bérard et al.

tions. It ensures that confidential actions of a system cannot produce any effect visible by a public
observer unless they are declassified, causing so a harmlessinformation flow. This issue has been
addressed in [Rushby 1992], by comparing observations of visible actions in runs of a system (hence
including runs containing non-declassified confidential actions), and observations of visible actions
in runs of the same system that only contain confidential actions that are declassified afterwards.
Most IFPs have been expressed as combinations ofbasic security predicates(BSPs) [Mantel 2000;
2001; D’Souza et al. 2011] or as a behavioral equivalence under observation contexts [Focardi and
Gorrieri 2001]. A systematic presentation of IFPs can be found,e.g., in [Mantel 2000; 2001; Focardi
and Gorrieri 2001].

Concurrency issues.Despite the fact that IFPs are always informally expressed in term of causality
i.e., confidential activity should not cause observable effectson the public behavior, they are almost
always formalized in terms of interleaving semantics [Busiand Gorrieri 2009; Gorrieri and Vernali
2011; Best et al. 2010; Best and Darondeau 2012] and hence, donot consider true concurrency
or causality. This is clearly a lack in the formalization of IFPs for several reasons. First, from an
algorithmic point of view, it is usually inefficient to compute a set of linearizations to address a
problem that can be solved on an equivalent partial order representation. Second, from a practical
point of view, an attacker of a system may gain more information if he knows that some confidential
action has occurred recently in its causal past. Indeed, transactions in a distributed system can leave
many traces (visited websites, cookies,...) on machines which are nota priori committed to protect
confidential actions of third parties. At the best of our knowledge, [Baldan and Carraro 2014] is the
first to address NI in a true concurrency setting: they characterized NI for Petri nets as a syntactic
property of their unfoldings. However, the technique addresses only safe nets.

Unbounded models.Very few results address IFPs for unbounded models. BSPs andNI are proved
undecidable for pushdown systems, but decidability was obtained for small subclasses of context-
free languages [D’Souza et al. 2011]. Decidability of a bisimulation-based strengthened version of
NI callednon-deducibility on composition(NDC) for unbounded Petri nets is proved in [Best et al.
2010]. A system satisfies NDC if observation of its visible actions remains indistinguishable from
the observation of the system interacting withanyenvironment. This result was extended in [Best
and Darondeau 2012] to INI with selective declassification (INISD).

Contribution. This work considers IFPs for an unbounded true concurrency model, namelyHigh-
level Message Sequence Charts(HMSCs). This model, standardized by the ITU [ITU-T 2011], is
well accepted to represent executions of distributed systems, where security problems are of pri-
mary concern. We first define a class of IFPs on HMSCs, as an inclusion relation on observations,
following [Focardi and Gorrieri 2001; D’Souza et al. 2011] and [Bérard and Mullins 2014]. To keep
IFPs within a true concurrency setting, observations of HMSCs are defined as partial orders. We
define a new model calledpartial order automata(POA), that is powerful enough to recognize in-
finite sets of partial orders, and in particular observations of HMSCs. Unsurprisingly, most of IFPs
and the simple NI property are undecidable for HMSCs. As a consequence, inclusion of partial or-
der automata languages is undecidable. We then characterize decidable subclasses of the problem:
inclusion of sets of orders generated by POA becomes decidable when the depicted behaviors do
not allow observed processes to race each other. This is for instance the case when a POA describes
an observation of visible events located on a single process. This also applies when the observed
HMSC is locally synchronizedmeaning that within any iterated behavior, all processes synchronize
at each iteration. We discuss the meaning of NI in a context where causal dependencies among
event occurrences are considered. This leads to a new notioncalledcausal interferencefor HMSCs.
Causal interference detects interference as soon as an attacker can observe occurrences of confiden-
tial actions from visible events, and furthermore, one of the observed events causally depends on
the confidential one. We finally relax causal interference inthe context of declassification. We in-
troduceintransitive causal non-interferencethat considers observable causal dependencies among
confidential and visible events as safe, as soon as a declassification occurs in between. We show that
all local variants of these problems are PSPACE-complete.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:3

Outline. The basic models and definitions used in this paper are definedin Section 2. Observations,
inclusion problems and non-interference are introduced inSection 3 for a single scenario and in
Section 4 for HMSCs, where NI is proved undecidable. Section4 introduces partial order automata
as a way to recognizes observations of HMSCs. We identify subclasses of HMSCs and POAs where
inclusion problems becomes decidable in Section 5. Then we consider local variants in Section 6 and
extend this framework to declassification in Section 7 Section 8, we compare this work with some
related approaches, and draw several research directions.Due to lack of space, several proofs are
omitted or simply sketched, but can be found in an extended version athal.inria.fr/XXXXXX.

2. PRELIMINARIES

In this section, we recall definitions of automata, partial orders and High-level Message Sequence
Charts (HMSCs), with their associated languages. Message Sequence Charts (MSCs) are formal
representations of distributed executions,i.e., chronograms, that are frequently used to depict the
behavior of a set of asynchronous communicating processes.This simple graphical representation
emphasizes on messages and localization of actions, with partial order semantics (see illustration in
Figure 1 Section 3).

The model of HMSCs, standardized by the ITU [ITU-T 2011], wasproposed to describe more
elaborate behaviors of distributed systems, for instance those of communication protocols, by com-
bining MSCs. An example is given in Figure 3 of Section 6. HMSCs are used to describe sets of
typical scenarios in distributed systems, and then serve asrequirements. They can also be used as
input to generate code skeletons for distributed systems. Hence, an information leak that appears in
these early requirements is likely to be a feature of the finalsystem. It is then interesting to find these
leaks at early design stages. Another interesting point with HMSCs is their expressive power: they
define behaviors of systems with asynchronous communications, which are not necessarily finite
state systems and can not be captured by finite automata. Theyare also uncomparable with Petri
nets. Answering interference questions for HMSCs providessecurity techniques for a whole class
of infinite systems that can not be modeled with other formalisms.

2.1. Finite automata and partial orders

Let Σ be a finite alphabet. A word overΣ is a sequencew = a1a2 . . . an of letters fromΣ, and
Σ∗ denotes the set of finite words overΣ, with ε the empty word. Alanguageis a subsetL of
Σ∗. Given a relationR ⊆ E × E on some setE, we denote byR∗ the transitive and reflexive
closure ofR. A partial order onE is a reflexive, transitive, and acyclic relation. Letf1 andf2 be
two functions over disjoint domainsDom(f1) andDom(f2). Then,f1 ∪ f2 denotes the function
defined onDom(f1) ∪ Dom(f2), that associatesf1(x) with everyx ∈ Dom(f1) andf2(x) with
everyx ∈ Dom(f2).

A Finite Automatonover alphabetΣ is a tupleA = (S, δ, s0, F), whereS is a finite set of states,
s0 ∈ S is the initial state,F ⊆ S is a set of accepting states, andδ ⊆ S × Σ × S is a transition
relation. A wordw = a1 . . . an ∈ Σ∗, is accepted byA if there exists a sequence of transitions
(s0, a1, s1)(s1, a2, s2) . . . (sn−1, an, sn) such thatsn ∈ F . It is well known that finite automata
acceptregular languages.

A Labeled Partial Order(LPO) over alphabetΣ is a triple(E,≤, α) where(E,≤) is a partially
ordered set (poset) andα : E → Σ is a labeling ofE by letters ofΣ. The set of all LPOs over
alphabetΣ is denoted byLPO(Σ). For a subset of eventsE′ ⊆ E, the set ofpredecessorsof E′

is ↓(E′) = {f ∈ E | f ≤ e for somee ∈ E′} and the set ofsuccessorsof E′ is ↑(E′) = {f ∈
E | e ≤ f for somee ∈ E′}. The setE′ is downward closedif ↓(E′) = E′, andupward closedif
↑(E′) = E′. A linear extensionof LPO (E,≤, α) with n events is a sequencer = e1e2 . . . en of all
events ofE such that for everyj > k, ej � ek.

LetO1 = (E1,≤1, α1) andO2 = (E2,≤2, α2) be two LPOs overΣ. We writeO1 ⊑ O2 if O1 is
a prefixof O2: there exists an injective mappingh : E1 → E2 such thatα2(h(e)) = α1(e) for all
e ∈ E1, h(E1) is downward closed, ande1 ≤1 f1 iff h(e1) ≤2 h(f1). Moreover,O1 is isomorphic
to O2, denoted byO1 ≡ O2, if O1 ⊑ O2 andO2 ⊑ O1. A set of partial ordersY containsanother

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:4 B. Bérard et al.

set of partial ordersX , denoted byX ⊆ Y , if for everyx ∈ X , there existsy ∈ Y such thatx ≡ y.
We will write X ≡ Y if X ⊆ Y andY ⊆ X . We say thatX embeds intoY , denotedX ⊑ Y iff for
everyx ∈ X , there existsy ∈ Y such thatx ⊑ y. Given a LPOO = (E,≤, α), thecoveringof O
is a triple(E,≺, α) where≺ is the transitive and reflexive reduction of≤, i.e., the smallest subset
of E × E such that≺∗=≤. Since two orders are isomorphic iff their coverings are isomorphic, we
often consider covering relations instead of orders in the rest of the paper.

2.2. High Level Message Sequence Charts

Definition2.1 (MSC). A Message Sequence Chartover finite setsP of processes,M of mes-
sages and finite alphabetA, is a tupleM = (E, (≤p)p∈P, α, µ, φ), where:

•E is a finite set ofevents, partitioned asE = ES ⊎ ER ⊎ EI , according to the type of event
considered: message sending, reception, or internalatomic action;

• φ : E → P is a mapping associating with each event the process that executes it. Hence, the sets
Ep = φ−1({p}) for p ∈ P, also form a partition ofE;

• For eachp ∈ P, the relation≤p⊆ Ep × Ep is a total ordering on events located on processp;
• µ ⊆ ES × ER is a relation symbolizing message exchanges, such that if(e, f) ∈ µ with e ∈ Ep

andf ∈ Eq, thenp 6= q. Furthermore, it induces a bijection fromES ontoER, so with a slight
abuse of notation,(e, f) ∈ µ is also written asf = µ(e). The relation≤M= (

⋃

p∈P ≤p ∪ µ)∗ is
a partial order onE;

• α is a mapping fromE toΣ ⊆ (P×{!, ?}×P×M)∪(P×A) and fromµ toM, associating a label
with each event, and a messageα(e, f) in M with each pair(e, f) ∈ µ. The labeling is consistent
with µ: if f = µ(e), with associated messageα(e, f) = m, sent by processp to processq, then
α(e) is written asp!q(m) andα(f) asq?p(m). If e is an internal actiona located on processp,
thenα(e) is of the formp(a). The labeling is extended by morphism overE∗.

The definition above implies that the triple(E,≤M , α) is a LPO overΣ, hence all notions related
to posets apply to MSCs. When clear from the context, we simply write≤ instead of≤M . We denote
byMsc(P,M, A) the set of all MSCs over the setsP of processes,M of messages, and alphabetA.
Given a subsetE′ of E, the restriction of M to E′, denoted byM|E′ , is associated with the LPO
(

E′,≤M ∩(E′ × E′), α|E′

)

and we denote byM \ E′ the restriction ofM toE \ E′.

Definition 2.2. A linearizationof MSC M is a wordw ∈ Σ∗ such that there exists a linear
extensionr of M with w = α(r). ThelanguageL(M) of M , is the set of linearizations ofM .

The language of an MSC is hence defined over alphabetΣ = {p!q(m) | p, q ∈ P ∧ m ∈
M} ∪ {p?q(m) | p, q ∈ P, m ∈ M} ∪ {p(a) | p ∈ P, a ∈ A}. To design more elaborate behaviors,
including choices and iterations, MSCs are composed. A key ingredient is sequential composition,
that assembles MSCs processwise to form larger MSCs.

Definition 2.3. Let M1 = (E1, (≤1,p)p∈P, α1, µ1, φ1) andM2 = (E2, (≤2,p)p∈P, α2, µ2, φ2)
be two MSCs defined over disjoint sets of events. Thesequential compositionof M1 andM2,
denoted byM1 ◦M2 is the MSCM1 ◦M2 = (E1 ∪ E2, (≤1◦2,p)p∈P, α1 ∪ α2, µ1 ∪ µ2, φ1 ∪ φ2),

where≤1◦2,p=
(

≤1,p ∪ ≤2,p ∪ φ−1
1 ({p})× φ−1

2 ({p})
)∗

.

This (associative) operation, also called concatenation,can be extended ton MSCs. For a setM
of MSCs, we denote byM◦∗ the set of all MSCs obtained by concatenation of (a finite number
of) MSCs inM. It is used to give a semantics to higher level constructs, namely HMSCs. Roughly
speaking, an HMSC is a finite automaton where transitions arelabeled by MSCs. It produces aset
of MSCsobtained by concatenating MSCs that appear along paths.

Definition2.4 (HMSC). A High-level MSC(HMSC) is a tupleH = (N,→,M, n0, F), where
N is a set of nodes,M is a finite set of MSCs,→⊆ N ×M×N is a transition relation,n0 ∈ N is
the initial node, andF is a set of accepting nodes.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:5

As for any kind of automaton, paths and languages can be defined for HMSCs. Apathof H is a
sequenceρ = t1t2 . . . tk such that for eachi ∈ {1, . . . , k}, ti = (ni,Mi, n

′
i) is a transition in→,

with n′
i = ni+1 for eachi ≤ k − 1. The pathρ is a cycle ifn′

k = n1. It is acceptingif it starts from
noden0 (i.e., n1 = n0), and it terminates in a node ofF (n′

k ∈ F).

Definition 2.5. Let ρ = t1t2 . . . tk be a path of an HMSCH . The MSC associated withρ is
Mρ = h1(M1) ◦ h2(M2) · · · ◦ hk(Mk) where eachhi is an isomorphism that guarantees∀j 6=
i, hi(Ei) ∩ hj(Ej) = ∅.

More intuitively, the MSC associated with a path is obtainedby concatenating MSCs encountered
along this path after renaming the events to obtain disjointsets of events. To simplify notation, we
often drop the isomorphisms used to rename events, writing simply Mρ = M1 ◦M2 ◦ · · · ◦Mk.

With this automaton structure and the sequential composition of MSCs, an HMSCH defines a
set ofaccepting paths, denoted byPH , a set of MSCsFH = {Mρ | ρ ∈ PH}, and a linearization
languageL(H) =

⋃

M∈FH
L(M).

It is well known that the linearization language of an HMSC isnot necessarily regular, but rather
a closure of a regular language under partial commutation, which yields many undecidability results
(see for instance [Muscholl and Peled 1999; Caillaud et al. 2000]). This does not immediately
mean that all IFPs are undecidable for HMSCs: Indeed, several classes of HMSCs with decidable
properties have been identified and we later define non-trivial and meaningful subclasses of HMSCs
and observations for which IFPs become decidable. In particular, thelocally synchronizedHMSCs
defined below have regular linearization languages [Alur and Yannakakis 1999]:

Definition 2.6. Thecommunication graphof an MSCM = (E, (≤p)p∈P, α, µ, φ) is the graph
(P,→) where(p, q) ∈→ if there exists a pair of events(e, f) ∈ µ such thatφ(e) = p andφ(f) = q.
An HMSCH is saidlocally synchronizediff for every cycleρ of H , the communication graph of
Mρ is strongly connected.

3. OBSERVATION AND NON-INTERFERENCE FOR MSCs

The power of an external observer can be described by an observation function, mapping every
behavior of a system to some observables. In [Mantel 2000; 2001; D’Souza et al. 2011], observation
functions are seen as some particular kind of language theoretic operations (projection, morphism,
insertion, deletion of letters,...), and in [Bérard and Mullins 2014], they are defined as combinations
of rational operations (transductions, intersections, unions of languages).

In a distributed context, visible events can originate fromdifferent processes. In a distributed and
asynchronous setting, the date at which an event is observedprovides a linear ordering on observed
events. However, the linear ordering provided by events observation date does not necessarily cor-
respond to an actual execution: two concurrent processes may execute events concurrently, or con-
versely, there might be some causal depndecies among among observed events. This information on
actions dependencies might be available to observers: If the system is equipped with vector clocks
(vectors maintained by each process to count the known number of events that other processes have
executed, as proposed in [Mattern 1988]), one can also record causal dependencies. Hence, the nat-
ural and realistic notion of observation for distributed computations is a labeled partial order, where
events that are not causally dependant are considered concurrent.

3.1. Observations for MSCs

Definition 3.1. An observation function is a mapping fromMsc(P,M, A) toLPO(B) for some
alphabetB.

From this definition, any mapping from MSCs to LPOs can be called an observation. However,
some observation functions are natural when considering IFPs. As proposed in [Mantel 2001] with
the notion ofviews, the alphabet labeling events that occur during an execution of a system can be
partitioned asΣ = V ⊎C⊎N with visible, confidential and internal (neutral) labels. Actions with la-
bels inV can be observed while actions labeled inC are confidential and should be hidden. Internal

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:6 B. Bérard et al.

actions have labels inN and are not observablea priori, but need not be kept secret. Subsequently,
depending on their labels, events are also called visible, confidential, or internal events.

Various observation functions can be defined from such a partition. The most natural ones are
restrictions to visible events, and pruning of confidentialactions, which are standard operations in
language based non-interference literature, but need to beprecisely defined in a partial order setting.
Let M = (E, (≤p)p∈P, α, µ, φ) be an MSC with labeling alphabetΣ. We consider the following
observation functions:

• identity: the identityid(M) = M outputs the same LPO as the executed MSC;
• Restriction: OV (M) is the LPO obtained by restriction ofM toE∩α−1(V). Intuitively,OV (M)

represents the visible events and their causal dependencies that one may observe during the com-
plete execution ofM ; Note that restriction toα−1(V) suffices, as≤ is transitive.

• Pruning: OV
\C(M) = OV (M\ ↑ (α−1(C))) is a function that prunes out the future of confiden-

tial events fromM , leaving only the visible events and their causal dependencies, observed when
no confidential event, nor their future, are executed withinM ;

• Localization: Op(M) = OV (M|Ep
), for a given processp ∈ P, is the observation of visible

events ofM restricted to those events located on processp. Note thatOp(M) is a total order. In a
distributed setting,Op(M) is particularly interesting, as it represents the point of view of a single
processp ∈ P, considered as the attacker of the system. We hence assume norestriction on the set
of events that can be executed and observed byp, and letV = Σp = α(Ep) when usingOp.

3.2. Non-interference for MSCs

As noticed by [D’Souza et al. 2011] in a language setting, information flow properties of a systemS
are usually defined as compositions of atomic propositions of the formop1(S) ⊆ op2(S). Changing
the observation functionsop1, op2 (or the partition ofΣ) leads to a variety of such atomic properties.
Information flow properties of MSCs can be defined similarly.

Definition 3.2. LetO1,O2 be two observation functions overMsc(P,M, A). An MSCM sat-
isfiesthe inclusion propertyfor O1,O2, written⊑O1,O2

(M), if O1(M) ⊑ O2(M).

Very often, interference is informally described as causaldependencies between confidential ac-
tions and observable ones, but formalized in terms of languages comparison,i.e., with interleaved
representations that miss information on concurrency and causality. For a single MSCM , the notion
of non-interference can be defined as a comparison of partialorders:

Definition 3.3. An MSC M over labeling alphabetΣ = C ⊎ V ⊎ N is non-interferentif
OV (M) ≡ OV

\C(M). OtherwiseM is saidinterferent.

We now show that interference in a single MSC can be defined in terms of causal dependencies
from confidential events (inC) to visible ones (inV). We then show in Section 3.3 that checking ex-
istence of such dependencies can be performed via coloring of events. For a single MSC, comparing
observationsOV andOV

\C defined above suffices to highlight dependencies between confidential
and visible actions. Hence, interference in asingleMSC can be defined through causality:

PROPOSITION 3.4. LetM be an MSC overΣ = C ⊎ V ⊎N and set of eventsE. Then,M is
interferent if and only if there are two eventse, f such thatα(e) ∈ C, α(f) ∈ V , ande ≤ f .

This result can be used to define interference in terms of a property of a coloring of MSCs, and
to show that this coloring is compositional.

3.3. Interference detection by coloring

The relation between causal dependencies and interferencecalls for a graphical interpretation of
interference in MSCs, represented as a propagation of a black token inherited from confidential
actions along causal dependencies. Intuitively, any confidential action and successors of actions

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:7

marked with a black token are also marked with a black token and every process containing a black
action is also marked as black. Though the black/white coloring of MSCs is not essential to prove
interference, it will be used later to detect information flows in HMSCs.

q

c

r p

a

s

m1

m2

m3

m4

m5

m6

m7

Fig. 1. An MSCMbw tagged with black and white tokens

Definition3.5 (MSC and process coloring). LetM be an MSC over alphabetΣ = C ⊎ V ⊎N
and set of eventsE. An evente ∈ E is black if α(↑ (e)) ∩ C 6= ∅, andwhiteotherwise. A process
p ∈ P is black afterM (resp.white afterM) if there exists a black event located onp (resp. no
black event onp).

Intuitively, a black process can detect occurrences of confidential events, as it executes events
that are causal consequences of confidential events. Clearly, an MSC is non-interferent if and only
if it does not contain visible black events. Figure 1 shows a coloring of an MSCMbw in black and
white. The alphabet of confidential actions isC = {q(c)} and contains the label of the atomic action
c executed by processq. We attach a black token to every black event and a white tokento other
events. Similarly, we indicate with a black/white token below process lines whether a process has
met a black token during its execution. In this example, processp can detect occurrences ofc (it is
black afterMbw), but processs cannot.

Deciding if an MSC is interferent, or equivalently if it contains a visible black event then consists
in finding a path from a confidential event to a visible one in anacyclic graph where events are seen
as vertices and pairs of events(e, f) in (∪p∈P ≤p) ∪ µ as edges. Since an event has at most two
immediate successors, the graph to consider has at mostn = |EM | vertices and2n edges. Hence,
coloring of MSCs and interference detection can be performed in linear time as a graph exploration
starting from confidential events. We now show that decidingthe black/white status of a process
along a sequence of MSCs of arbitrary size can be performed with bounded memory.

PROPOSITION 3.6. LetM1,M2 be two MSCs with labels inΣ = C ⊎ V ⊎ N . Then, process
p ∈ P is black afterM1 ◦M2 iff it is black afterM1, or it is black afterM2, or there exists a process
q black afterM1 and a pair of eventse ≤ f in M2 such thate is located onq andf is located onp.

This important property means that it is sufficient to remember the black/white status of each
process after concatenationM1 ◦ · · · ◦ Mk along a path of an HMSC to compute the status of
processp after concatenationM1 ◦ · · · ◦Mk ◦Mk+1.

4. OBSERVATIONS ON HMSCs AS PARTIAL ORDER AUTOMATA

In this section, we first discuss extending observation functions from MSCs to HMSCs and show that
the inclusion problem as well as non-interference are undecidable for HMSCs. We also remark that
some definitions of observation functions on HMSCs involve assembling partial orders obtained
from the MSCs encountered along paths. This suggests the definition of Partial Order Automata

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:8 B. Bérard et al.

(POA) that are finite automata where transitions are labeledby LPOs. To increase the expressive
power of this model, we introduce various ways of assemblingthe partial orders appearing along
paths through composition operators and selection functions. The main purpose of this section is
to present the material needed in Section 5 where we prove that non-interference is decidable for
the subclass of locally synchronized HMSCs. This result is obtained by (1) building two partial
order automataAH,O1

andAH,O2
associated with a locally synchronized HMSCH , respectively

accepting observationsO1(H) andO2(H) and (2) proving that in this case, the inclusion problem
O1(H) ⊆ O2(H) is decidable. In this section, we mainly identify sufficientconditions on the
observation functions to achieve point (1) above, while decidability is proved in the next section.

4.1. Extending observations to HMSCs

In order to extend an observationO to an HMSCH , a first way consists in applyingO to all MSCs
in FH , definingO(H) = {O(M) | M ∈ FH}. In particular :OV,◦(H) = {OV (M) | M ∈

FH}, OV,◦
\C (H) = {OV

\C(M) | M ∈ FH}, andOp,◦(H) = {Op(M) | M ∈ FH}. Extending
Definitions 3.2 and 3.3 to HMSCs, we have:

Definition 4.1. An HMSCH satisfies theinclusionproblem forO1,O2 (written⊑O1,O2
(H))

if O1(H) ⊆ O2(H). It is non-interferentif OV,◦
\C (H) ≡ OV,◦(H).

Unfortunately, the observation functions above do not takeinto account the structure of the
HMSC generatingFH , and furthermore, they are not necessarily compositional.In general, an ob-
servation functionO is not a morphism with respect to the concatenation, that is,O(M1 ◦M2) 6=
O(M1) ◦ O(M2). This drawback was already observed in [Genest et al. 2003] for projections of
MSCs: in general,OV (M1 ◦M2) 6= OV (M1) ◦ OV (M2). Hence, checking inclusion for HMSCs
may require to consider properties of complete sequences ofMSCs as a whole, raising algorithmic
difficulties, or even undecidability. Other ways to extend observations to HMSCs, are to assemble
observations of MSCs piecewise, following the automaton structure of HMSCs, or to forbid MSCs
containing confidential events:
OV,•(H) = {OV (M1) ◦ · · · ◦ OV (Mk) | M1 ◦ · · · ◦Mk ∈ FH},
OV,•

\C (H) = {OV (M1 ◦ · · · ◦Mk) | M1 ◦ · · · ◦Mk ∈ FH ∧ ∀i, α(Ei) ∩ C = ∅},
Op,•(H) = {Op(M1) ◦ · · · ◦ Op(Mk) | M1 ◦ · · · ◦Mk ∈ FH},

where concatenation of LPOs is performed processwise like for MSCs. The observationOV,•
\C (H)

is of particular interest, as it describes observations of MSCs inFH that do not contain MSCs with
confidential events. Also note that, sinceOp(M) is a total order,Op satisfies the morphism property,
which impliesOp,◦(H) = Op,•(H).

Even when a projection of an HMSC is an HMSC language (i.e., a language recognizable by an
HMSC), equivalence, inclusion or emptiness of intersection are undecidable. HMSC languages are
not always regular and the observation of an HMSC needs not beregular either. In fact, due to the
close relationship between HMSCs and Mazurkiewicz traces,most properties requiring to compare
languages or partial order families are undecidable for HMSCs ([Caillaud et al. 2000; Muscholl and
Peled 1999; 2000]). So, given two HMSCsH1 andH2, one can not decide ifL(H1) ⊆ L(H2), nor
if FH1

⊆ FH2
. This yields the following result:

THEOREM 4.2. The inclusion problem⊑O1,O2
(H) is undecidable forH an HMSC andO1

andO2 two observation functions.

PROOF. The proof is a reduction from the inclusion problem for partial order families generated
by HMSCs. For two HMSCsH1 andH2, the question of whetherFH1

⊆ FH2
is undecidable.

Let H1 = (N1,→1,M1, n0,1, F1) andH2 = (N2,→2,M2, n0,2, F2) be two HMSCs, defined
over an alphabet of visible actionsV , and with a setP containing at least two processes. We build
an HMSCH , that behaves likeH1 or H2 if a confidential action can occur, and likeH2 otherwise,

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:9

and choose observation functionsO1 = OV ,O2 = OV
\C . Then inclusion⊑O1,O2

(H) holds iff
FH1

⊆ FH2
.

Letc be a new confidential action andPc 6∈ P a new process. We defineMc as the MSC containing
the single atomic actionc on processPc, as illustrated on Figure 2 (middle). The new HMSCH =
(N1 ⊎ N2,→,M, n0,2, F1 ⊎ F2) is defined over alphabetΣ′ = V ∪ C, whereC = {Pc(c)},
as follows:M = M1 ⊎ M2 ⊎ {Mc} and→=→1 ⊎ →2 ⊎{(n0,2,Mc, n0,1)}, as illustrated on
the left part of Figure 2. ChoosingO1 = OV,◦ andO2 = OV,◦

\C , we haveO2(H) = FH2
and

O1(H) = FH1
∪FH2

. Thus⊑O1,O2
(H) if and only ifFH1

⊆ FH2
, which concludes the proof.

Note that undecidability is not due to a particular choice ofobservation function: a similar proof
is obtained forO1 = OV,◦ or O1 = OV,• andO2 = OV,•

\C , by replacingMc by an MSCM ′
c in

which processPc sends a message to all other processes after performing action c, as depicted on
the right of Figure 2.

n0,2

n0,1

Mc

H1

H2

H :

Mc : Pc

c

M ′
c : Pc

c

P1 · · ·
Pn

...

Fig. 2. Non-interference in HMSCs as an inclusion problem

This result extends to non-interference properties:

COROLLARY 4.3. Non-interference for HMSCs is undecidable.

PROOF. Consider the example HMSC in Figure 2, and the proof of theorem 4.2. The chosen
partial order automata are HMSCs, and the observation functions areOV andOV

\C . If an algorithm
answers the interference question, then it can be used to check isomorphism ofFH1

andFH2
for

any pair of HMSCH1, H2. Thus, the interference problem for HMSCs is undecidable.

4.2. Partial order automata

While HMSCs assemble finite MSCs to produce larger MSCs, i.e.particular LPOs, inclusion and
interference properties do not compare MSCs butobservations of MSCs. As mentioned above, pro-
jections of HMSCs are not in general HMSCs [Genest et al. 2003], hence observations of HMSCs
are not HMSCs either. To compare the orderings (or their coverings) obtained by observation of a
set of MSCs, we need more general structures. We propose in this section a model calledPartial Or-
der Automata, that assemble partial orders (or their coverings). Partial order automata are automata
labeled by finite orders, and at each transition, the way to assemble the labeling order depends on
a glueing operator attached to this transition. This model is more general than HMSCs, where the
glueing operator is the same (sequential composition) for every transition.

Definition4.4 (Composition operator). A composition operatorfor partial orders is an operator
⊗ : LPO(Σ)×2E×LPO(Σ) → LPO(Σ), whereE is a set of events, that computes a partial order

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:10 B. Bérard et al.

from a pair of partial ordersO1, O2 and a subset of identified eventsMem1 from O1. The result is
denoted by(O1,Mem1)⊗O2. In practice, the operation is performed from coverings ofO1 andO2

and produces a covering of the result.
A selection functionis a functionΠ associating with a partial orderO = (E,≤, α) a subset of

eventsE′ ⊆ E. A selection functionΠ is monotonicif, for every pair of ordersO1 ⊑ O2, with
O1 = (E1,≤1, α1) andO2 = (h(E1) ⊎ E2,≤2, α2) for the injective mappingh between the sets
of events, thenΠ(O2) ⊆ h(Π(O1)) ⊎ E2. FunctionΠ is a finite memory function if there exists
K ∈ N such that|Π(O)| ≤ K for every LPO.

Selection functions are used to memorize events of interestduring the construction of a covering
relation by a partial order automaton. Intuitively, given two coveringsO1 = (E1,≺1, α1) andO2 =
(E2,≺2, α2), and a memorized subset of eventsMem1 in E1 thenO = (O1,Mem1) ⊗ O2 is a
covering relationO = (E,≺, α) whereE = E1 ⊎ E2, α = α1 ∪ α2, and≺ is a covering relation
that contains≺1 ∪ ≺2 and such that≺ \(≺1 ∪ ≺2) ⊆ Mem1 × E2 (the operator only glues
events from the selection and events from the newly added order). Let us consider a monotonic
selection functionΠ, and sequence of composition operations. Slightly abusingour notation, we
write O1 ⊗1 O2 instead of(O1,Π(O1)) ⊗1 O2, and similarly for sequences of compositions, we
write O = O1 ⊗1 O2 ⊗2 · · · ⊗k−1 Ok, and leave the selection process implicit. For monotonic
selection functions, remembering previously memorized events suffice to compute a new memory.
We can hence safely writeΠ(Mem⊗ O) to define the set of events memorized after concatenation
of O to an order with memoryMem.

In the rest of the paper, we consider composition operators that assemble multiple copies from a
finite set of orders,i.e., compositions of the formO = O1 ⊗1 O2 ⊗2 · · · ⊗k−1 Ok where eachOi
is a copy from a finite set of LPOsL, and⊗1, · · · ⊗k−1 are composition operators. To distinguish
multiple copies of an order and of its events, we denote byL(j) the jth occurrence of orderL =
(EL,≤L, αL) ∈ L, and bye(j) thejth occurrence of some evente ∈ EL.

Example4.5. An example of selection function is the function, denoted byMaxEvt, that selects
the last occurrence of each event of each order inL. For a sequenceO = O1⊗1O2⊗2 · · ·⊗k−1Ok
andL ∈ L, thenMaxEvt(O) = ∪L∈L{e(j) | e ∈ EL ∧ |O|L = j}, where|O|L is the number of
occurrences ofL in O. One can notice thatMaxEvtis monotonic, and returns a finite set of events
regardless of the size of the considered sequence of compositions.

Definition 4.6. A Partial Order Automaton (POA) is a tupleA = (Q,−→,L, q0, F,OPS,Λ,Π)
whereQ is a finite set of states,q0 ∈ Q is the initial state,F ⊆ Q is a set of final states,L is a
finite set of LPOs,−→⊆ Q × L × Q is a set of transitions,Λ is a mapping associating with each
transition an operator from some setOPS, andΠ is a monotonic selection function. The transition
relation is deterministic: for eachL ∈ L, and eachq ∈ Q, there is at most oneq′ ∈ Q such that
(q, L, q′) ∈−→.

For every pathρ = q0
O1−→ q1

O2−→ q2 . . . qk−1
Ok−→ qk of A, one can compute an LPOOρ

assembled asOρ = O1 Λ(q1, O2, q2)O2 . . .Λ(qk−1, Ok, qk)Ok. For readability, we often omit the
specific operators used to assemble orders, and simply writeOρ = O1⊗O2 · · ·⊗Ok. For two events
e andf , we writee ≤ρ f whene precedesf in the partial orderOρ. The partial order language
of a POAA is the set of orders obtained by assembling orders along accepting paths ofA, and is
denoted byFA. The linearization language ofA is the set of linearizations of orders inFA.

First note that deterministic finite automata are particular cases of POA where each order labeling
a transition is reduced to a single event, and the only operator involved is the standard concatena-
tion on words. As mentioned above, HMSCs can also be seen as particular cases of partial order
automata: one simply needs to relabel transitions with the partial order associated with the corre-
sponding MSCs, use as selection function a function that memorizes the last event on each process,
and as unique operator the operator that connects for each process this last event to the next occur-
rence of the minimal event on the same process. In the other way around, observation functions can

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:11

be applied to POAs in a similar way as done for HMSCs: an observation functionO can be applied
on a partial order and for a POAA, O(A) = {O(L) | L ∈ FA}. According to these remarks, the
undecidability results for HMSCs immediately extend to POA:

PROPOSITION 4.7. LetA, A1, A2 be POA, and letO1,O2 be two observation functions. Then
the inclusion problemsFA1

⊆ FA2
andO1(A) ⊆ O2(A) are undecidable.

4.3. Threaded and locally synchronized partial order automata

Most of formal properties of HMSCs are undecidable, and NI isnot an exception. However, de-
cidable subclasses of HMSCs have been identified. Locally synchronized HMSCs have regular
linearization languages [Alur and Yannakakis 1999]. Henceinclusion of a regular language, or
comparison of HMSC linearizations are decidable problems for locally synchronized HMSCs. It is
then reasonable to consider a similar approach for partial order automata and identify subclasses on
which comparison of covering relations is decidable. One ofthe factors that yields decidability in
HMSCs is very often the fact that orderings are organized as processes. We can not have similar
notions of processes in partial order automata, that only assemble occurrences of labeled events.
However, we can use the fact that orders inFA are generated as compositions from a finite set of
patterns to characterize subclasses of partial order automata.

Definition4.8 (Threaded POA). A partial order automaton isthreadedif for every pathρ of A
containing at least two occurrences of some orderO = (E,≤, α) and every evente ∈ E, we have
e(i) ≺ρ e(i+1) for any two consecutive occurrences ofO.

One can notice that the composition mechanism of HMSCs immediately grants threaded partial
order automata, as MSCs are composed processwise, and hencetwo successive occurrences of the
same event in two occurrences of an MSC are necessarily ordered.

THEOREM 4.9. Given a partial order automatonA with selection function MaxEvt, one can
decide ifA is threaded. Furthermore this problem is in co-NP.

PROOF. The proof of this theorem is obtained by showing that the property can be checked on
finite sequences. All path containing consecutive occurrences can be obtained by insertion of ele-
mentary cycles in acyclic path. We call elementary sequences the elementary cycles ofA augmented
with a transition that adds an occurrence of an order at the end of the cycle to allow considering con-
secutive occurrences of events. Then if two occurrences of an event in an elementary sequence are
ordered, then a causal chain also exists between these two occurrences of an event in the order gen-
erated for a path obtained by insertion of a cycle in this elementary sequence. Hence, it suffices to
consider elementary sequences to chech whether a POA is threaded.

Being threaded is not a sufficient condition for a POA to definea regular language. We inspire
from the class of locally synchronized HMSCs to define an appropriate syntactic class of POAs
that have regular languages. Locally synchronized HMSCs rely on properties of communication
among processes in cycles. POAs do not possess this notion ofprocess, but in threaded POAs,
ordering among events of the same kind replace this total ordering among events. We hence rely on
properties of acommutation graph(instead of communication graphs in HMSCs) to definelocally
synchronizedPOAs.

Definition 4.10. Let O = (E,≤, α) be a partial order, andρ be a path such thatO = Oρ. The
commutation graph ofρ is a graphCG(ρ) = (E,) where(e, f) ∈ iff

• e ≤ρ f (e precedesf in Oρ),
• e(1) ≤ρ.ρ f (2) (the first occurrence ofe precedes the next occurrence off).

A POA is locally synchronizediff it is threaded, and for every of its cyclesρ, CG(ρ) is strongly
connected.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:12 B. Bérard et al.

THEOREM 4.11. Let A be a threaded partial order automaton with a selection function Π
that memorizes a bounded numberK of events. Then one can effectively decide ifA is locally
synchronized.

PROOF. (Sketch) We can prove that existence of disconnected communication graphs can be
proved on cycles than contain at most one occurrence of each transition. Indeed, for a selected
pair of eventse, f in such cycles, as considered automata are threaded, then insertion of another
elementary cycles simply extends the lenght of causal chains and does not change connectedness of
e(1), f (1), e(2), f (2). It then suffices to detect these cycles, build their commutation graph and check
that these graphs are connected.

4.4. Finitely decomposable observation functions

Definition 4.12. An observation functionO is decomposablew.r.t. a set of MSCsM iff there
exists a finite set of operatorsOPS= {⊗1, . . . ,⊗k} and a functionΨ : M◦∗ → OPSsuch that for
every pair of MSCsM1,M2 in M◦∗, O(M1 ◦M2) = O(M1)⊗Ψ(M1) O(M2).

Decomposability of an observation function w.r.t. to a set of MSCs guarantees that the set of
operations needed to assemble the observations of two MSCs and obtain the observation of the
concatenation of these MSC is finite, and that the operation to apply only depends on the order
observed so far. This is a first step towards some form of compositionality for observations. This
is however not sufficient to build incrementally an observation of a HMSC, as one may still need
unbounded memory to assemble two observations.

Definition 4.13. An observation functionO is finitely decomposableiff it is decomposable, and

(1) there exists a boundc ∈ N such that for every sequence of MSCsM1, . . . ,Mk, and∀j ∈ 1..k,
denoting by|<i..j | the size of the covering ofO(Mi◦Mj), we have|<1..k \(<1..j ∪ <j..k | < c

(2) there exists a boundm and a selection functionΠ such that for every sequence of MSCs,
M1, . . . ,Mk, for every1 < i < j < k,
(a) Ψ is regular, i.e., there exists a deterministic finite state machineBψ that reads sequences of

MSCs and associates an operator with every state.
(b) Π(O(M1) . . .O(Mi)) is a set Memi of size at most m containing events in

O(M1) . . .O(Mi)
(c) <i,i+1⊆ Memi × Ei+1 (the memorized events are sufficient to build the ordering from

events inO1...Oi to events inOi+1,
(d) Π(O(M1) . . .O(Mj)) is a set Memj of size at mostm containing m events in

O(M1) . . .O(Mj) such thatMemj ∩O1 . . . Oi ⊆ Memi

Intuitively, for finitely decomposable observation functions with memorization functionΠ, the
memorization function recalls only a bounded number of events that need to be used later along
observation of a sequence, and the computation of the memoryis compositional, in the sense that is
removes useless events from memory at previous step, and adds new events that will be used later.

THEOREM 4.14. For every HMSCH = (N,−→,M, n0, F), and every finitely decomposable
observation functionO (w.r.t.M), one can build a POAAH,O that recognizesO(H).

PROOF. For a given HMSCH = (N,−→,M, n0, F) we build the finite partial order automaton
AH,O = (Q,−→′,O(M), q0, F

′,Λ,Π). We defineQ = {n0} ∪ N × OPS, whereOPSis the set
of operators used by the finitely decomposable observation functionO. We set−→′ as the set of
triples of the form((n, op),O(M), (n′, op′)) such that(n,M, n′) ∈−→ and there exists a path

ρ = n0
M1−→ n1 · · ·

Mk−→ n of H such thatΨ(M1 . . .Mk) = op andΨ(M1 . . .Mk.M) = op′. AsΨ
is regular,−→′ is finite and can be built inductively. Last,Λ : Q ×O(M) ×Q → OPSassociates
operatorop to every transitiont = ((n, op),O(M), (n′, op′)) ∈−→′, andΛ((n0, Oi, n

′)) = id,
that is an observation starting from the initial node of the HMSC simply copies the observation of
the first MSC recognized from the initial node ofH .

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:13

PROPOSITION 4.15. For every HMSCH , observation functionsOV ,OV
\C ,O

p are finitely de-

composable, with boundsm ≤ |P|2 andc ≤ |P|3.

PROOF. (Sketch) We build this proof on the result of [Genest et al. 2003], that show that pro-
jections of HMSCs can be recognized by finite partial order automata that recognize projections of
HMSCs. These automata memorize events that can still have a successor in the projected covering
relation (whence a finite memory), and use a single composition operator that connects the projec-
tion of a newly observed MSC to memorized events (whence finite decomposability of the function
that associates an operator to sequences of MSCs). As the setof events to memorize is always finite,
as shown in [Genest et al. 2003], one can design a POA that recognizesOV (H). The proof for
OV

\C(H) andOp(H) is similar.

A consequence of this proposition is that one can build partial order automata that generate
OV (H),OV

\C(H),Op(H). One can also notice that these automata are threaded, sincewith the

composition operators used, thenth event on a process necessarily precedes then + 1th event.
Now, this does not mean that inclusion properties are decidable. We have to consider subclasses of
partial order automata, and then check that observations fall into these subclasses.

5. INTERFERENCE DETECTION ALGORITHMS

To check an inclusion problem for an HMSCH , and subsequently check non-interference, one
needs to compare runs inAO1,H andAO2,H for two suitable observation functionsO1,O2. A run
ρ2 of AO2,H is compatiblewith a runρ1 of AO1,H if Oρ1 is a prefix ofOρ2 (i.e., one can find a
matching functionh sending events ofOρ1 ontoOρ2 , as in the definition of prefix in section 2). One
shall notice that there can be several runs ofAO2,H (possibly an infinite number of them) that are
compatible with some runρ1. However, as soon as partial order automata are threaded, wecan give
a finite representation for sets of runs that comply with a finite order.

5.1. Minimal explanations and unfoldings of POA

Definition5.1 (Minimal explanations). LetO,O′ be LPOs, letMembe a subset of events ofO′,
and letA be a threaded POA with finite memory functionΠ and letq be a state ofA. The set of
minimal explanationsof A compatible withO starting fromO′,Mem, q is the set of all shortest path
ρ = (q, O1, q1) . . . (qk−1, Ok, qk) of A, starting fromq such thatO ⊑ O′ ⊗O1 ⊗ · · · ⊗Ok.

Considering shortest path is one essential requirement to have a finite representation for the set
of paths ofA that have a particular orderO as prefix. We hence do not consider paths of the
from ρ.ρ′ but only pathρ if O is already a prefix ofOρ. This is however not sufficient to obtain
a finite representation of paths containingO: a set of minimal explanations can still be infinite.
Indeed, consider an orderO with only two eventsa ≤ a′. ThenO could be a prefix of any order
of the formO1(⊗O2)

k ⊗ O3 whereO1 containsa, O3 containsa′, andO2 only events that are
not causally related to occurrences ofa or a′. However, such iterations can be handled. We reuse
ideas from [Hélouët et al. 2014] where a finite unfolding ofan HMSC is built to perform diagnosis
from a partial order observation, and an abstraction technique introduced in [Alur and Yannakakis
1999] to represent finitely sequences of MSCs that are partially executed. Let us first build a finite
representation for this set of paths.

Starting from POAA = (Q,−→,L, q0, F,Λ,Π) and LPOO, we build inductively a POAB,
which states and transitions are obtained by unfoldingA, and remembering after each transition the
part ofO that is a prefix of a path ending in this state, and the memorized events. States are hence of
the form(q,Memq, Eq,), whereq is a state ofA, Memq is a description of memorized events (a
subset containing events fromMem - the initial memory contents- and newly generated events),Eq
is a subset of events ofEO. There is a transition from(q,Memq, Eq,) to (q′,Mem′

q, E
′
q) labeled

byOi iff there exists a transition(q, Oi, q′) in A, and

•Eq 6= EO (O was not already regognized)

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:14 B. Bérard et al.

•Mem′
q = Π(Memq ⊗Oi), where⊗ = Λ(q, Oi, q

′),
•E′

q is the maximal subset of events ofEO that containsEq and such thatO|(E′
q\Eq)∪Memq

⊑
Memq ⊗Oi.

Intuitively, appendingOi to already built paths allows to embed a larger part ofO in the recog-
nized order. We defineΛ′((q,Mem,E), Oi, (q

′,Mem′, E′)) = Λ(q, Oi, q
′) andΠ′ = Π. During

this construction, we hence consider loops that do not change the recognized part ofO, nor the
memory contents. States of the form(q,Memq, EO) have no successor (O is a prefix of orders
generated along all paths ending in this state) and are called final states. The construction can be
performed inductively and stops when no new state is discovered. If the memory selection function
of A memorizes only a finite number of events, and ifA is threaded (which guarantees that the set of
paths ofA to explore to find the next occurrence of some action is bounded), then this construction
terminates, and for everyO′ ∈ FB, O ⊑ O′.

We can then extract fromB a finite set of sequential representations for the minimal explanations
of O as follows: it is the set of acyclic path fromq0 to a final state, decorated with connected
components for which transitions do not change the memory contents nor the part ofO discovered
so far. We call these transitions silent transitions: They are labeled by orders with events that might
appear in larger orders containingO, but are not yet necessary to find a pathρ such thatO ⊑ Oρ.
Similarly, one can find minimal explanations from any stateq starting with an already recognized
orderO′ and memory contentsMem.

As A is threaded, for every transitiont = ((q,Mem,E), Oi, (q
′,Mem′, E′)), one can find

which events ofOi are used to witness embedding ofO|(E′
q\Eq)∪Memq

into Mem ⊗ Oi (i.e., are
used to build a matching fromO toO′ ⊗O1 . . . Oi). OnceB is computed, we can compute a partial
maphB() that associates with an event along each transition(q, Oi, q

′) the corresponding event in
EO to which it corresponds. We say that an evente is marked ifhB(e) is defined, and denote by
Marked(t) ⊆ EOi

the set of events marked in a transitiont = ((q,Mem,E), Oi, (q
′,Mem′, E′)).

Note that it is not always the case thatMarked(t) = EOi
: when the transition reaches a final state

of B, a suffix ofOi may not be used to witness an embedding ofO. Similarly, Oi can contain
unmatched events located on parallel threads that will never be used to witness embedding ofO
along current path. We say that transitiont is incompletely marked ifMarked(t) 6= EOi

.

5.2. Checking inclusion for POA

Now, letA1 andA2 be two partial order automata. LetO = O1⊗O2⊗ . . . On be an order generated
along a pathρ1 of A1, and letB be the minimal unfolding ofA2 starting fromq2,0 (the initial state
of A2) with empty order and memory. Letρ2,1, . . . ρ2,k be explanations provided byB ending on
final statesq1, . . . qk. These explanationsρ2,1, . . . ρ2,k are paths decorated with silent connected
components, hence they are partial order automata. Leth1, . . . , hk be the mappings associated with
transitions inρ2,1, . . . ρ2,k, that links every event along pathρ2,i to the corresponding event ofO,
and letMrk1, . . . ,Mrkk denote the set of marked events along each path and letBi denote the
partial order automaton obtained by adding toρ2,i all transitions ofA that are accessible fromqi.
Then,O ⊗ On+1 is a prefix of some order generated byA2 iff it is a prefix of an order generated
by one of theBi’s. Hence,O ⊗ On+1 is a prefix of some order generated along a pathρ2 of A2

if ρ2 can be decomposed asρ2 = α1β1α2 . . . αk.γ, whereO ⊑ Oα1...αk
, α1 . . . αk is a path of

A ending in some stateqα with memoryMemα, βi are finite sequences of transitions allowed
betweenαi andαi+1,andγ is a finite sequence of transitions obtained from an unfolding of A2

to check inclusion ofOn+1 starting from stateq with memoryMemα, and from the restriction
of orderOα1β1α2...αk

to unmarked events. However, the converse operation is moreinteresting.
Starting from a finite path embedding an orderO, and an explanationρ (a sequence of transition
with silent connected components attached to some states) as we add only a finite number of events
and asA2 is threaded, one can hence compute all possible explanations forO ⊗On+1 by choosing
adequateβis in connected components ofρ and then computing possible explanationsγ.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:15

As proposed in [Alur and Yannakakis 1999] we can go further, and memorize only subsequences
of each path that contain incomplete transitions, and the connection between these subsequences.
Let Bi be the automaton associated with an explanation as above, and suppose that it starts with a
single transitiont = (q, O1, q

′) (i.e., its initial state is not attached a silent strongly component) such
that events are all marked. ThenO⊗On+1 is a prefix of some order generated byA2 iff O⊗On+1 \
hi(EO1

) is a prefix ofBi \ {t} with initial stateq′. Hence, one can safely forget initial transitions
which are all marked. Last,O⊗On+1 is a prefix of some order generated byA2 iff On+1 is a prefix
of the projection of someOρ whereρ is a path of someBi on its unmarked events. This means
that one can simply memorize incompletely marked transitions, silent connected components, final
states of allBis and still check that appending a particular orderOn+1 preserves the inclusion proved
so far. Starting from an explanationρ2,i we denote byPrune(ρ2,i) the sequence of incompletely
marked transitions and connected components obtained fromρ2,i. As extension of an explanation
only uses connected components or appends orders at the end of the explanation, one can compute
a new explanation from a pruned explanation. For an explanation ρ proving that an orderO is a
prefix of some order ofA2, we denote bySucc(ρ,On) the set of explanations obtained this way for
O ⊗On.

This immediately gives the idea of the following algorithm to compare two partial order automata
A1 andA2. The algorithm follows paths ofA1, by remembering a set of selected events in memory
and the last state visited inA1, and on the other side, it maintains a set of pruned explanations ofA2

that are compatible with the followed paths. As at each step of the construction, when choosing a
new transitiont = (q, On, q

′) fromA1, i.e., extending some pathρ1, we ensure thatOρ1.t is a prefix
of an order for at least one explanation. Note however that pruning does not guarantee finiteness of
the memorized information in general.

As already mentioned, the set of configuration inXplore can grow arbitrarily, and nothing guar-
antees that the algorithm terminates in general. However, the class of locally synchronized partial
order automata allow only regular sets of linearizations, and describe behaviors in which one can not
iterate a behavior (or equivalently recognize a part of a prefix within a cycle) without terminating
the preceding occurrence of this cycle.

THEOREM 5.2. If A1 andA2 are locally synchronized, then the order inclusion algorithm ter-
minates.

PROOF. Suppose that at some stage, an explanationρ2 obtained when recognizing an orderOρ,1
contains more than|A| states from which some cycleβ coming from a silent connected component
can be appended. In other words,ρ2 is an explanation for paths of the formρ = ρ2,1.ρ2,2. . . . ρ2,k,
where occurrence of a cycle can be inserted between each pairρ2,i, ρ2,i+1. As it is of size greater
thatA, thenρ necessarily contains a cycle. As insertingβ is optional to explainOρ,1 we know
that all events that append the contents of this cycle resultin appending an order that is completely
concurrent withOρ. However, ifβ commutes with elements of a path of size greater than|A|, then
A is not locally synchronized. So, all possible insertion of cycles in an acyclic explanation can occur
between transitions of a path located in a suffix of this path of size at most|A|. Hence, there are less
than|A| cycles in any path ofB. Now in a given pathρ of A2, if the ith occurrence of an event in
a particular orderOj is marked, then the preceding occurrences are also marked. As we do not add
to pruned path sequences that end with unmarked order (otherwise these sequences would not be
minimal) in a path of size greater than|A|2.max where max is the size of the largest order inA2,
there is necessarily a sequence of transitions carrying only marked events. Hence, for every path
of A1 followed, there is only a finite number of corresponding shapes for subsequences describing
matching paths ofA2, and the algorithm terminates.

PROPOSITION 5.3. If H is a locally synchronized HMSC, thenAH,OV andAH,OV
\C

are locally

synchronized partial order automata.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:16 B. Bérard et al.

ALGORITHM 1: Checking inclusion

Input : Two partial order automata,A1, A2

Output : true ifFA1
⊆ FA2

, false otherwise
Visited=∅;
// Configurations remember a path of A1 and several compatible paths
// of A2 with information on how events of A2 are used for embedding
X0 :=

(

(q10 , ε), ∅
)

; // We start from the initial node of each automaton.
Xplore := {X0};
while XPlore 6= ∅ do

SelectX = ((q1,Mem1), Exp = {E1, . . . , Ek})) in Xplore ;
// choose a particular configuration : a node of A1, and a partial

description of all paths of A2 compatible with the chosen run of A1

V isited := V isited ∪X;
Xplore := Xplore \ {X};
for (q1, O1, q

′
1) ∈−→1 do

// for every transition leaving q1 in A1

Mem′
1 := Π(Mem1, O1);

Exp′ := {Succ(Ei, O1) | Ei ∈ Exp} ;
// keep pruned explanations that embed the previously recognized

order plus O1

if Exp′ = ∅ or q′1 final state andǫ 6∈ Exp′ then
// Trying to append order O1 and showing it is still a prefix
// of some path of A2 failed. So, we found path of A1 that
// generates an order that is not a prefix of an order of FA2

return false;
end
else

// Continue exploration from (q1′,Mem′
1) and explanations found

Xplore = Xplore ∪ {((q′1,Mem′
1)× Prune(Exp′))};

end
end

end
return true ;

PROOF. If H is locally synchronized, then for any cycleρ, and pair of eventse, f in Mρ, we
havee(1) ≤ f (2) andf (1) ≤ e(2) in Mρ ◦Mρ. AsOV is simply a projection, for any pair of events
with labels inV , e(1), f (1), e(2), f (2) are ordered similarly. HenceAH,OV is locally synchronized.
Not every cycle ofH becomes a cycle ofAH,OV

\C
, asOV

\C may force to remove more events on

transitions than a simple projection. However, cycles ofAH,OV
\C

are also obtained from cycles of

H and labeled by projections, henceAH,OV
\C

is also locally synchronized.

We then have the obvious following corollary:

COROLLARY 5.4. Non-interference is decidable for locally synchronized HMSCs.

6. LOCAL AND CAUSAL NON INTERFERENCE

We now turn to other types of decidable classes, related to regularity. Indeed, inclusion problems
become decidable as soon as one can recast the order comparison problem in a regular setting. It
is however undecidable whether an HMSC or a partial order automaton has a regular behavior, and
one has to rely on syntactic subclasses of the models such as locally-synchronized HMSCs/POAs
as above to obtain decidability. We show in this section thatseveral HMSC observation functions
describing the discriminating power of asingle processalways define sets of orders that can be rec-

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:17

ognized by finite automata, that form a subclass of partial order automata. In this restricted setting,
it is then possible to decide whether a processp ∈ P can detect occurrences of confidential actions.
As HMSCs explicitly specify distribution of actions on processes, exhibiting the behavior of a fixed
process within an HMSC specification is an easy task. In this section, we show that thislocal setting
allows for the definition of two decidable notions of non-interference.

6.1. Local interference

Considering the attacker of a system as a single processp ∈ P, with action labels in some alphabet
Σp = α(Ep), we should assume that processp does not execute confidential actions, that isC ∩
Σp = ∅. In a similar way, the observation power of a single process should be restricted to its own
events, hence we can safely setV = Σp. The definition of non-interference (Def. 3.3) proposed in
section 3 can accommodate this particular partition of the alphabet. From now on, we consider this
restricted form of non-interference, and call itlocal non-interference.

For a single MSC, it is then defined as satisfaction of two inclusion problems, withOV
\C andOp

as observation functions. This property can be verified by checking whether↑ (α−1(C)) ∩ Ep = ∅
that is checking if no causal consequence of a confidential action is located on processp. Recast in
the setting of MSC coloring, this amounts to checking thatp is not marked with a black token. As
explained in Section 3.3, this can be performed in linear time. We can now look at local interference
for HMSCs:

Definition 6.1. Let H be an HMSC over a set of processesP, with alphabetΣ = V ⊎ C ⊎N ,
such thatΣ = ⊎p∈PΣp with V = Σp. ThenH is locally non-interferentw.r.t. processp ∈ P if
OV,•

\C (H) ≡ OV,◦(H).

Intuitively, local interference holds when an observer cannot distinguish inFH behaviors that
are concatenations of MSCs containing no confidential event, and other behaviors.

PROPOSITION 6.2. For every HMSCH , one can build a (partial order) automatonAH,Op that
recognizesOp(H). If V = Σp, then one can build (partial order) automataA

H,OV,•
\C

andAH,OV,◦

that recognize respectivelyOV,•
\C (H) andOV,◦(H).

PROOF. (Sketch) For anyH , we can build a finite automatonAp(H) that recognizes (lineariza-
tions of) projections of all MSCs inFH on p. As concatenation of MSCs imposes a total order on
events of the same process, these projections are concatenations of finite sequences of events (local
projections of MSCs along transitions ofH). HenceAp(H) has transitions using labels of events
located on processp, and just needs to remember the transition ofH that is recognized (the current
MSC under execution), and a bounded integer symbolizing thelast event of the current MSC exe-
cuted byp. Similarly, we can design an HMSCH\C where transitions are labeled by MSCs that do
not contain confidential events, and hence an automatonA′

p(H) that accepts only projections onp

of sequences of MSCs with only visible (white) events. HenceA′
p(H) recognizesOV,•

\C (H). Last,

if V = Σp, thenOV,◦(H) = Op(H).

It should be noted thatAH,Op = Ap(H) andA
H,OV,•

\C
= A′

p(H) (and hence alsoAH,OV,◦) are

finite automata. Recast in the context of partial order automata, they are locally synchronized, have
finite memory functions (that remember only the last event appended), and a unique composition
operator◦ based on the concatenation of sequences of events on processp.

COROLLARY 6.3. The problem of deciding local interference of an HMSCH with respect to a
given processp ∈ P is PSPACE-complete.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:18 B. Bérard et al.

PROOF. (Sketch) With the results of proposition 6.2, it remains tothe languages of two automata
(whence the complexity in PSPACE). For the hardness part, wecan also show that any regular
language inclusion problem can be encoded as a local interference problem.

Local interference is decidable, and describes a situationwhere a process can discover that the
running execution of the system containsor will containa confidential action. However, local inter-
ference does not distinguish between a situation where an observation is a causal consequence of
some confidential action and a situation where observation and confidential action highlighted by
the interference are concurrent. This drawback also occursin standard language-based interference
settings, where causality is represented as interleaving,and one can not decide whether in a word
c.v actionsc (confidential) andv (visible) are concurrent or not.

6.2. Causal interference

We first give a concrete example showing that interference ismuch more dangerous when the con-
fidential event that is detected lays within the causal past of some observation. Nowadays, a lot of
attention is devoted to privacy. However, it is well known that users spread a lot of information
to visited sites when browsing the web. This information is not always local information (cookies,
cache, etc.) that can be erased by users if needed. It can alsobe information stored elsewhere on
the web: logs, forms, etc.. When observation of a causal consequence of a confidential action (Mr
X has bought a book on commercial siteY) by an attacker indicates that a confidential operation
has occurred, this may also mean that classified informationmight be available at some vulnera-
ble site (the credit card details ofX are stored somewhere onY ’s website). Hence, characterizing
interference where confidential actions and observations are causally related, is important.

H :

n0

n2 n1

M2 M1

M3

M3 : q

a

r p

m

no

M1 : q

c

r p

m

M2 : r p

n

Fig. 3. An interferent HMSC

Example6.4. On the HMSC depicted in Figure 3, the projection of MSCs recognized byH onp
is the language(?n)∗.(?m+?n), and every MSC with projection onp in (?n)∗.?m is the projection
of a concatenation of several occurrences ofM3, followed by one occurrence ofM1, which contains
a confidential event. According to definition 6.1, this HMSC is locally interferent. However, when
observing arrival of messagem, processp can deduce that it is currently executinga behavior in
which a confidential action occurs, but not that this actionhas already occurred.

This means in particular that NI does not always characterize a cause to effect relation among
hidden actions and observation. To overcome this weakness of language-based information flow
characterizations, the notion of NDC (Non-Deducibility onComposition) was proposed to detect
when confidential actionscauseobservable effects. Formally, NDC says that a systemS composed
with any processR (that enables/forbids confidential events) is observationally equivalent toS.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:19

In the rest of this section, we propose a decidable notion ofcausal interference(still with respect
to a fixed attackerp ∈ P). It emphasizes on causal dependencies between confidential and visible
actions of the system. Bearing in mind that a black event located on processp is a consequence of a
confidential event, we show that causal dependencies can be highlighted in terms of an observation
function built using the black/white tokens attached to events and processes within an MSC. We
want to check if a processp can detect whether some confidential action has occurred in the causal
past of its observed events. In other words, we have to check whether all projection onp of an
execution ofH that contains a black event, only have equivalent projections that do not contain
black events.

Definition 6.5. For an HMSCH and a processp ∈ P,H is causally non-interferentwith respect
to p if for every MSCM in FH such thatM contains a black event on processp, there exists another
MSCM ′ in FH such that:

•M ′ contains no black event on processp, and
• Op(M) = Op(M ′)

Causal non-interference is weaker that NDC: it compares theobservations of an HMSC with
the observations that are still possible whitout confidential events. NDC compares a behavior of a
specification with a specification controlled by a processR, in which some confidential events can
be allowed.

THEOREM 6.6. For a fixed set of processesP, deciding causal non-interference of an HMSC
H with respect to a processp ∈ P is PSPACE-complete.

We prove this theorem in several steps. We first use the resultof Proposition 3.6,i.e., the fact
that black/white coloring of processes at the end of a sequence of concatenated MSCs can be done
by remembering the status of processes after each MSC. This property holds for MSCs built along
paths of HMSCs, and is used (in Proposition 6.7) to build HMSCs that recognize MSCs that belong
toFH and after which a fixed process is black (or similarly remainswhite). These HMSCs contain
nodes ofH , but remember for each noden whether processes are black or white after an MSC built
along a path ending inn. Then causal interference will then be reduced to an inclusion problem of
finite automata that recognize sequences of actions along a process.

PROPOSITION 6.7. LetH be an HMSC,p ∈ P, andΣ = C ⊎ V ⊎N . Then, one can build:

• an HMSCHB,p that recognizes MSCs fromFH after whichp is a black process.
• an HMSCHW,p that recognizes MSCs fromFH after whichp is a white process.

of sizes inO(|H |.2|P|).

PROOF. (Sketch) The nodes of the HMSCs built in the proof memorize anode of the original
HMSC, to which is added information on the color of each process: according to Proposition 3.6,
this is the only information needed to remember the color of all processes in an MSCMρ assembled
along a pathρ of H . Accepting nodes requirep to be black inHB,p, and white inHW,p.

We are now ready to prove theorem 6.6:

PROOF. (of theorem 6.6) Following the construction ofHB,p or HW,p, we can define automata
AB,p
p andAW,p

p that recognize the projections ofHB,p or HW,p on processp. Let us denote by
OB,p(H) = {Op(M) | M ∈ FH ∧ p is black afterM} the observation function that returns
the projection and byOW,p(H) = {Op(M) | M ∈ FH ∧ p is white afterM}. Clearly, we have
L(AB,p

p) = Op(HB,p) = OB,p(H) andL(AW,p
p) = Op(HW,p) = OW,p(H), soOB,p(H) and

OW,p(H) are recognized by finite automata.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:20 B. Bérard et al.

Deciding causal interference ofH with respect top ∈ P consists in deciding the inclusion prob-
lem⊑OB,p,OW,p for H , that is checking whetherL(AB,p

p) ⊆ L(AW,p
p). Clearly, ifH is of sizen,

thenHB,p andHW,p are of size inO(n.2|P|), and so areAB,p
p andAW,p

p . Then, checking inclusion

of L(AB,p) intoL(AB,p
p) is equivalent to checkingL(AB,p

p)∩L(AB,p) = ∅. Emptiness of regular
language is an NLOGSPACE problem, but the size of the automaton that recognizes the intersection
is in O(n.2|P|.2n.2

|P|

), that is inclusion can be performed with space inO(log(n) + |P| + n.2|P|).
For a fixed set of processes, the space needed to check causal interferences is hence polynomial in
the size of the input HMSC.

Like for local non-interference, the hardness result can beproved by polynomial encoding of
a regular language inclusion problem. Given two regular languagesL1, L2, one first designs two
HMSCsH1, H2 with initial nodesn1

0, n
2
0 such thatOp(Hi) = Li, for i∈{1, 2}. Then, using again

the construction illustrated in Figure 2, we consider MSCM ′
c that contains one confidential event

on some fresh processPc 6∈ P, followed by messages fromPc to all processes inP, and at last,
an HMSCH that contains all transitions and accepting nodes ofH1, H2, an initial noden0 and an
additional transitiont1 = (n0,M

′
c, n

1
0). Any path ofH starting with transitiont1 generates an MSC

in whichp is black, and whose projection onp is inL1. Other paths that do not start witht1 generate
MSCs fromFH2

, and in particular MSCs in whichp is white and whose projection onp is in L2.
Hence,H is causally interferent with respect top if and only ifL1 ⊆ L2.

Causal interference can be checked inO(log(|H |) + |P| + |H |.2|P|). It is polynomial in space
in the size of the HMSC, and exponential in the number of processes, but HMSC specifications are
usually defined for small sets of processes. Also remark thatreusing the construction ofHW,p, we
can easily design an automaton recognizingOV,◦

\C (H) as soon asV = Σp.

7. DECLASSIFICATION

Non-interference considers confidential information as secrets that should remain undisclosed along
all runs of a system. This point of view is too strict to be of practical interest: In many cases, con-
fidentiality of a secret action has a limited duration and secrets can be downgraded. Consider the
following example: a user wants to buy an item online, and pays by sending his credit card informa-
tion. Everything from this transaction between the online shop and the buyer (even if encryption is
used) should remain secret. Within this setting, all payment steps should be considered confidential,
and flow from these actions to observable events should be prevented. However, if a buyer uses a
one time credit card (i.e. a virtual credit card number generated on request that can be used only
once for a transaction), then all information on the card is valueless as soon as the payment is com-
pleted. Hence, after completing the transaction, learningthat a payment occurred is harmless and
the sequence of interactions implementing a secured onlinepayment need not be kept secret. This
declassification possibility was first proposed asconditional interferenceby [Goguen and Meseguer
1982] and later defined in [Rushby 1992] as intransitive interference. Intransitive non interference
(INI) can be formulated as follows: for any run of the system containing a confidential action that
is not downgraded subsequently, there is a run with no classified action (all confidential actions are
downgraded) which is equivalent from the observer’s point of view.

Usually, INI is defined using a pruning function that removesfrom a run all confidential actions
that are not declassified, and compares observations of pruned and normal runs (see [Gorrieri and
Vernali 2011] for a definition of INI for transition systems). From now on, we assume that the
alphabetΣ = C ⊎ V ⊎ N contains a particular subsetD ⊆ V ⊎ N of declassification events.
Intuitively, declassification events downgrade all their confidential causal predecessors.

Definition 7.1. Let M be an MSC. An evente ∈ EM is classifiedif it is a confidential event
(α(e) ∈ C), it has an observable successorv ∈ V and it is not declassified beforev, i.e. there exists
nod such thate ≤ d ≤ v andα(d) ∈ D. We denote byClas(M) the set of classified events ofM .

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:21

The observation functionOV
\C,D is defined byOV

\C,D(M) = OV (M \ Clas(M)). An MSCM is

intransitively non-interferent(INI) iff OV
\C,D(M) = OV (M).

We can characterize INI in a single MSCM as a property depending on the causal order inM
and on the sets of confidential, declassification, and observable events.

PROPOSITION 7.2. An MSCM is intransitively non-interferent w.r.t. an alphabetΣ = C⊎V ⊎
N and a set of declassification lettersD iff for every pair of eventsc ≤ v such thatα(c) ∈ C and
α(v) ∈ V , we have(↑ (c)∩ ↓ (v)) ∩ α−1(D) 6= ∅.

This proposition means that a declassification must occur between every confidential event and a
causally related visible event. We now define observation functions for HMSCs and propose a defi-
nition of intransitive non interference for HMSCs. We defineOV

II ,D(H) = {OV (M) | M is notINI}
andOV

INI,D(H) = {OV (M) | M is INI}. We follow the definition of [Gorrieri and Vernali 2011]
to define INI for HMSCs. An HMSC is INI if for every intransitively interferent (II for short)
MSC M in FH , there exists another MSCM ′ in FH such thatM ′ that is INI and such that
OV (M ′) = OV (M).

Definition 7.3. An HMSC is intransitively non-interferent w.r.t. a declassification alphabetD if
OV

INI,D(H) = OV (H).

Obviously,OV
INI,D(H) ⊆ OV (H), so proving INI boils down to provingOV (H) ⊆ OV

INI,D(H).
Note that all II MSCs are also interferent, and that checkingnon-interference amounts to checking
INI with D = ∅. This remark extends to HMSCs: all intransitively interferent HMSCs are also
causally interferent, and checking causal interference amount to checking INI withD = ∅. We then
establish the following result:

THEOREM 7.4. INI for HMSCs is undecidable. For a fixed set of processes, ifV ⊆ Σp, then
INI is PSPACE-complete.

We prove the decidability part of this theorem in three stepsdetailed below. We first show that INI
can be decided for a sequence of MSCs by remembering only the shape of causal chains originating
from confidential events instead of the whole sequence. We then show that one can design an HMSC
HII that recognizes II MSCs ofFH , and similarly an HMSCHINI that recognizes INI MSCs
of FH . An immediate consequence is thatOV

INI,D(H) can be recognized by a finite automaton if
V ⊆ Σp. A second consequence is that checking INI is PSPACE-complete. Let us first show that
INI can be decided in a compositional way.

PROPOSITION 7.5. LetM1, M2 be two MSCs. Then,M1 ◦M2 is INI if and only ifM1 andM2

are INI, and for each pair of eventsc ∈ M1, v ∈ M2 such thatα(c) ∈ C, α(v) ∈ V , andc ≤1◦2 v,
there exists a processq, with

—c ≤ f , wheref is the maximal event on processq in M1,
—f ′ ≤ v, wheref ′ is the minimal event onq in M2,
and an eventd such thatα(d) ∈ D, andc ≤ d ≤ f or f ′ ≤ d ≤ v.

This proposition can be intuitively seen as a property of causal chains. A causal chain fromc to
v is a sequence of eventsc ≤ e1 ≤ . . . en ≤ v. We say that a chain fromc to v is declassified if
α(ei) ∈ D for somei ∈ 1..n. Then an MSC is INI if for any pair(c, v) of confidential/visible events
such thatc ≤ v there exists at least one declassified causal chain fromc to v. If so, the confidential
eventc is guaranteed to be declassified by the occurrence of some declassifying actionbefore the
execution ofv occurs.

A causal chain fromc to v in M1 ◦ M2 can be decomposed into a chain fromc to the maximal
eventf on a processq in M1, a causal ordering fromf to a minimal eventf ′ located on process
q in M2 coming from the sequential composition ofM1 andM2, and then a causal chain from the
minimal eventf ′ on q to v. However, one does not need to know precisely the contents ofM1 to

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:22 B. Bérard et al.

decide whetherM1 ◦M2 is INI. It suffices to remember for each processp the confidential events
of M1 that are not yet declassified and are predecessors of the maximal event executed by process
p in M1.

M1 :
q

c1

c2

r p

d

s

c3

M2 :
q r

v1

p

v2

d

v3

s

Fig. 4. An example of non INI sequence of MSCs

On the example depicted in Figure 4, MSCM1 (left) contains three confidential actionsc1, c2, c3,
and a declassification operationd. On the right, MSCM2 contains three visible actionsv1, v2, v3,
and a declassification operationd. All other events belong toα−1(N). Both MSCs are INI, since
no observation depends on a confidential action inM1 or in M2. However, in the concatenation
M1 ◦ M2, execution ofv1 or v2 reveals the occurrence ofc2. Also note thatc1 is declassified by
the first occurrence ofd in M1. This example is particularly interesting, as it shows thatin order
to abstract an arbitrarily long execution, it is not sufficient to remember a boolean value indicating
whether there exists a not yet declassified action on a process, as two confidential events can be
declassified via different ways. Indeed, some confidential actions could be declassified for a process
while some others could not, even when located on the same process.

We can characterize II MSCs in a setFH by remembering finite sets of shapes of causal chains.
In order to define these shapes, letM be an MSC, letc be a confidential event inM . We define a
function cl(c,M) : P −→ {⊥,+,⊤} such thatcl(c,M)(p) = ⊥ if there exists no causal chain
from c to an event located onp, cl(c,M)(p) = + if there exists a causal chain fromc to a maximal
eventf located onp, and(↑ c ∩ ↓ f) ∩ α−1(D) = ∅, andcl(c,M)(p) = ⊤ otherwise. This
function classifies processes according to the existence and classification degree (declassified or
not) of causal chains between the confidential eventc and the last event seen on each process. For a
setP of processes, any such mapcl(c,M) can have at most3|P| distinct values. LetCl = {⊥,+,⊤}P

denote the set of all maps. By proposition 7.5,M1 ◦M2 is not INI if M1 orM2 is not INI, or if there
existsc ∈ M1 andv ∈ M2 such that:

• there exists a processp such thatcl(c,M1)(p) = +, and an eventf located onp in M2, such that
no causal chain fromf to v is declassified.

• for every processq such thatcl(c,M1)(q) = ⊤ there exists no eventf ≤ v located onq in M2,
andv is not located onq.

One can furthermore computecl(c,M1 ◦M2 ◦ · · · ◦Mk)(p) incrementally with finite memory:
cl(c,M1 ◦M2)(p) = ⊥ if cl(c,M1)(p) = ⊥, and if there exists no pair of eventse ≤ f in M2

with f is located ofp, andcl(c,M1)(φ(e)) 6= ⊥.
cl(c,M1 ◦M2)(p) = + if cl(c,M1)(p) ∈ {⊥,+}, there exists a processq such that
cl(c,M1)(q) = +, and a pair of eventse ≤ f in M2 such thate is minimal onq, f is maximal
on processp, and furthermore, no causal chain frome to f is declassified, and for every process
q′ 6= q, if cl(c,M1)(q

′) = +, then no declassified causal chain from an event onq′ to f exists in
M2, if cl(c,M1)(q

′) = ⊤ then no causal chain from an event onq′ to f exists inM2.

cl(c,M1 ◦M2)(p) = ⊤ if cl(c,M1)(p) = ⊤, or
• there exist a processq such thatcl(c,M1)(q) = + and a declassified chain from an evente located

on processq to an eventf located on processp, or

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:23

• there exist a processq such thatcl(c,M1)(q) = ⊤, and a causal chain from an evente located on
processq to an eventf located on processp.

Last,cl(c,M1 ◦M2)(p) = ⊥ if cl(c,M1)(p) = ⊥ andM2 does not contain a pair of eventse ≤ f
such thate is located onq with cl(c,M1)(q) 6= ⊥, andf is located onp.

Now, if M1 contains two confidential eventsc1, c2 such thatcl(c1,M1) = cl(c2,M1), then
cl(c1,M1 ◦ M2) = cl(c2,M1 ◦ M2). It means that to detect interferences, one does not have to
remember events, but only the shape of causal relations (existing, declassified or not) from con-
fidential events to their successors on each process. Furthermore, at most3|P| distinct shapes can
appear in an MSC, so one can check INI along arbitrarily long sequences of MSCs with finite
memory.

PROPOSITION 7.6. LetH be an HMSC, with labeling alphabetΣ and setD of declassification
letters. Then, one can build an HMSCH II generating all II MSCs inFH and an HMSCH INI

generating all INI MSCs inFH , with sizes at most2.|H |.23
|P|

PROOF. (Sketch) We build HMSCH II as follows: a state(n, b,X) of H II memorizes a noden of
H , a booleanb indicating whether an interference has been detected, and asetX = {cl1, . . . clℓ) ⊆
Cl, where eachcli is a function fromP to {⊥,+,⊤} that memorizes the shape of causal chains from
a confidential event to maximal events on processes.H II follows transitions ofH , and updatescli’s.
For each new confidential eventc occurring in a transition labeled by an MSCM , a new function
cl(c,M) is added to memorized shapes inX . As soon as an interference is detected,b is set to true.
Accepting states ofH II are of the form(n, b,X) wheren is accepting inH , andb is true.H INI is
built similarly, but with accepting states of the form(n, b,X) with n accepting inH andb false.

We are now ready to prove Theorem 7.4:

PROOF. (of Theorem 7.4) Undecidability is easily obtained from undecidability of causal inter-
ference, and by settingD = ∅. Let us now consider the decidability part, withV ⊆ Σp. Following

the proof of proposition 7.6, one can build an automatonAp(H
INI) of size at most2.|H |.23

|P|

that
recognizesOV (H INI). One can easily prove that whenV ⊆ Σp, we haveOV (H INI) = OV

INI,D(H),
and henceL(Ap(H

INI)) = OV
INI,D(H), i.e.OV

INI,D(H) is recognized by a finite automaton.
From proposition 6.2, we can build an automatonAp(H) of size inO(k.H), wherek is the

maximal number of events in an MSC ofH , that recognizesOV (H). Then it is sufficient to check
whetherL(Ap(H)) ⊆ L(Ap(H

INI)) to decide ifH is intransitively interferent, which is again an

inclusion problem that can be checked in space inO(2.|H |.23
|P|

). Hardness is proved by showing a
polynomial reduction from a language inclusion problem to an INI problem withD = ∅.

The declassification setting can be refined to consider selective declassification. Following the
definition of [Best and Darondeau 2012], in addition to the declassification alphabetD, we define a
maph : D → 2C , whereh(αd) defines the labels of confidential events that an action with labelαd
declassifies. Definition 7.1 easily adapts to this setting, simply by requiring that a causal chain from
a confidential eventc to a visible eventv is declassified by an eventd such thatα(c) ∈ h(α(d)).
We then say that an eventc is classified if it is a confidential event (α(c) ∈ C), it has an observable
successorv, and it is not declassified by one of the actions that can declassify it, that is,α(c) 6∈
h (α(↑ (c)∩ ↓ (v)) ∩D). INI with selective declassification (INISD) adapts the definitions of INI
to consider declassification without changing observations. Like for standard declassification, we
can build an HMSC that recognizes INISD MSCs ofFH . The only change w.r.t. INI is that one has
to remember in the HMSC construction the label of confidential events from which chains originate,
yielding automata of sizes in2.|H |.2|C|.3|P|. If V ⊆ Σp, thenOV

II ,D andOV
INI,D are recognized by

finite automata. We hence have:

COROLLARY 7.7. INISD is undecidable for HMSCs. For a fixed set of processes, it is PSPACE-
complete whenV ⊆Σp.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:24 B. Bérard et al.

8. RELATED WORK AND CONCLUSION

Related work. Non-interference was seldom studied for scenario formalisms. A former work con-
siders non-interference for Triggered Message Sequence Charts [Ray et al. 2004]. The interference
property is defined in terms of comparison of ready sets (setsof actions that are fireable after a given
sequence of actionsw). However, this work mainly considers finite scenarios, anddoes not address
decidability and complexity issues.

A first work considering non-interference for true concurrency models appears in [Busi and Gor-
rieri 2009]. The authors consider interference for elementary nets (i.e., nets where firing rules al-
low places to contain at most one token). They characterizecausal places, where firing a high-
level transition causally precedes the firing of a low-levelone andconflict places, where firing a
high-level transition inhibits the firing of a low-level one. Reachability of causal or conflict places
is shown equivalent to BNDC (Bisimulation-based NDC, the variant of Non-Interference using
bisimulation instead of language equality). In [Gorrieri and Vernali 2011], the notion of intransitive
non-interference from [Rushby 1992] is revisited for transition systems, and non-interference with
downgraders is considered for elementary nets. A structural characterization is given in terms of
reachable causal and conflict places. As in [Busi and Gorrieri 2009], causal and conflict places are
characterized in terms of possible fireable sequences of transitions, hence considering the interleav-
ing semantics of the net.

Darondeauet al. [Best et al. 2010] study (B)NDC and INI forunbounded labeled Petri nets,
and extend their results to selective declassification in [Best and Darondeau 2012]. They obtain
decidability of these properties for injectively labeled nets by a very clever exploitation of specific
decidability results for language inclusion, which is undecidable for general Petri nets languages.
The characterization relies on sequences of transitions, and not on causal properties of nets.

A contrario, Baldan et al [Baldan and Carraro 2014] emphasize the fact that characterizing BNDC
in terms of structural conditions expressing causality or conflict between high and low-level tran-
sitions, is a way to provide efficient algorithms to check interference. They propose a definition
of complete unfolding w.r.t. non-interference, and reduceBNDC for safe nets to checking that a
complete unfolding is weak-conflict and weak-causal place free. Weak causal places characterize
dependencies and conflicts between high and low transitions. Their results show that interference
can be detected in concurrent models without relying on interleaving semantics. They only hold for
safe nets,i.e., for finite state systems.

Conclusion.We proposed a partial order framework for information flow properties analysis, that
relies on comparisons of sets of partial orders depicting observations of execution of systems. We
proved that inclusion of observed orders and non-interference is undecidable in general. To alleviate
this problem, we proposed partial order automata, as a modelto recognize observations of execu-
tions. We then identified subclasses of partial order automata for which inclusion of languages is
decidable. Non-interference of locally synchronized HMSCs falls into this decidable setting, and
is hence decidable. A different approach to obtain decidability in this partial order framework is to
restrict the kind of observation functions that can be used.This is a sensible approach, as it amounts
to restrict the power of attackers. If one considers that visible events are observed by a single pro-
cess of the system, most of observation functions applied toHMSCs define regular languages. As
a consequence, several notions of local non-interference and their extensions with declassification,
are decidable. We show that local versions of non-interference are PSPACE-complete problems, and
give decision procedures that never compute the interleaving semantics of the original HMSC.

So far, partial order automata are mainly used as an intermediate technicality to prove decidabil-
ity of non-interference for locally-synchronized HMSCs when several processes can observe the
system. However, this model is more general than HMSCs. A possible refinement of the landscape
is to consider decidability of interference for partial order automata that generate sets of orders with
non-regular linearization languages. We conjecture that decidability of inclusion can be generalized
to some subclasses of non-regular partial order automata, some classes of graph grammars, or more
generally to subclasses of models with bounded-split width[Aiswarya et al. 2014].

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:25

Another line of research is to consider security issues whenan attacker can interact with the sys-
tem in order to gain information (active interference), or when he can get information on the current
configuration of the system (state-based interference). Extending definitions of information flows
in HMSCs to quantify the amount of information disclosure bymean of measures (e.g. probability
measure, average number of bits leaked per action,...) is also a challenging task.

REFERENCES

C. Aiswarya, P. Gastin, and K. Narayan Kumar. 2014. Verifying Communicating Multi-pushdown Systems via Split-Width.
In Proc. of 12th Int. Symp. on Automated Technology for Verification and Analysis, ATVA 2014 (LNCS), F. Cassez and
J.-F. Raskin (Eds.), Vol. 8837. Springer, 1–17.

R. Alur and M. Yannakakis. 1999. Model Checking of Message Sequence Charts. InProc. of 10th Int. Conf. on Concurrency
Theory, CONCUR ’99 (LNCS), J. C. M. Baeten and S. Mauw (Eds.), Vol. 1664. Springer, 114–129.

P. Baldan and A. Carraro. 2014. Non-interference by Unfolding. In35th Int. Conf. on Application and Theory of Petri Nets
and Concurrency, PETRI NETS (LNCS), G. Ciardo and E. Kindler (Eds.), Vol. 8489. Springer, 190–209.

B. Bérard, L. Hélouët, and J. Mullins. 2015. Non-interference in Partial Order Models. InProc. of 15th Int. Conf. on Appli-
cation of Concurrency to System Design, ACSD 2015. IEEE Computer Society, 80–89.

E. Best and P. Darondeau. 2012. Deciding Selective Declassification of Petri Nets. InProc. of 1st Int. Cong. on Principles of
Security and Trust, POST 2012 (LNCS), P. Degano and J. D. Guttman (Eds.), Vol. 7215. Springer, 290–308.

E. Best, P. Darondeau, and R. Gorrieri. 2010. On the Decidability of Non Interference over Unbounded Petri Nets. InProc.
of SecCo (EPTCS), Vol. 51. 16–33.

B. Bérard and J. Mullins. 2014. Verification of InformationFlow Properties under Rational Observation. InProc. of AVOCS
2014, ECEASST 70.

N. Busi and R. Gorrieri. 2009. Structural non-interferencein elementary and trace nets.Mathematical Structures in Computer
Science19, 6 (2009), 1065–1090.

B. Caillaud, P. Darondeau, L. Hélouët, and G. Lesventes. 2000. HMSCs en tant que spécifications partielles et leurs
complétions dans les réseaux de Petri. RR-3970. INRIA.

D. D’Souza, R. Holla, K.R. Raghavendra, and B. Sprick. 2011.Model-checking trace-based information flow properties.
Journal of Computer Security19, 1 (2011), 101–138.

R. Focardi and R. Gorrieri. 2001. Classification of SecurityProperties (Part I: Information Flow). InFoundations of Security
Analysis and Design (LNCS), Vol. 2171. Springer-Vale, 331–396.

B. Genest, L. Hélouët, and A. Muscholl. 2003. High-Level Message Sequence Charts and Projections. InProc. of 14th
Int. Conf. on Concurrency Theory, CONCUR’03 (LNCS), R. M. Amadio and D. Lugiez (Eds.), Vol. 2761. Springer,
308–322.

J.A. Goguen and J. Meseguer. 1982. Security policies and security Models. InProc. of IEEE Symposium on Security and
Privacy. 11–20.

R. Gorrieri and M. Vernali. 2011. On Intransitive Non-interference in Some Models of Concurrency. InFOSAD VI Tutorial
Lectures (LNCS), Vol. 6858. 125–151.

L. Hélouët, H. Marchand, B. Genest, and T. Gazagnaire. 2014. Diagnosis from scenarios.Discrete Event Dynamic Systems
24, 4 (2014), 353–415.

ITU-T. 2011.Z.120 : Message Sequence Charts (MSC). Technical Report. International Telecommunication Union.
H. Mantel. 2000. Possibilistic Definitions of Security - An Assembly Kit. InProc. of the 13th IEEE Computer Security

Foundations Workshop, (CSFW’00). 185–199.
H. Mantel. 2001. Information Flow Control and Applications- Bridging a Gap. InProc. of FME 2001 (LNCS), Vol. 2021.

153–172.
F. Mattern. 1988. Time and global states of distributed systems.in Proc. Int. Workshop on Parallel and Distributed Algo-

rithms, Bonas, France, North Holland(1988), 215–226.
A. Muscholl and D. Peled. 1999. Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces. InProc. of

24th Int. Conf. on Mathematical Foundations of Computer Science, MFCS (LNCS), M. Kutylowski, L. Pacholski, and
T. Wierzbicki (Eds.), Vol. 1672. Springer, 81–91.

A. Muscholl and D. Peled. 2000. Analyzing Message Sequence Charts. InProc. of 2nd Workshop on SDL and MSC, SAM
2000, E. Sherratt (Ed.). VERIMAG, IRISA, SDL Forum, 3–17.

A. Ray, B. Sengupta, and R. Cleaveland. 2004. Secure Requirements Elicitation Through Triggered Message Sequence
Charts. InProc. of 1st Int. Conf. on Distributed Computing and Internet Technology, ICDCIT 2004 (LNCS), R. K.
Ghosh and H. Mohanty (Eds.), Vol. 3347. Springer, 273–282.

J. Rushby. 1992.Noninterference, Transitivity, and Channel-control Security Policies. Technical Report CSL-92-02. SRI
International.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:26 B. Bérard et al.

Received XX ; revised YY ; accepted ZZ

A. APPENDIX: PROOFS

This appendix details missing proofs for propositions in the text. Proofs for propositions 3.6, 7.2
and 7.5 are straightforward consequences of definitions 3.5and 7.1, and are not provided.

A.1. Proof of Proposition 3.4

Proposition 3.4.Let M be an MSC with labeling alphabetΣ = C ⊎ V ⊎ N and set of eventsE.
Then,M is interferentif and only if there are two eventse, f such thatα(e) ∈ C, α(f) ∈ V , and
e ≤ f .
Proof. We prove this lemma by showing the two directions of the implication.

First, let us suppose that there exists no pair of eventse, f in M such thatα(e) ∈ C, α(f) ∈ V ,
ande ≤ f . If there is no evente ∈ E such that inα(e) ∈ C, thenM\ ↑ (α−1(C)) = M , and
henceOV (M) ≡ OV

\C(M). If some confidential events exist inM , i.e.,α−1(C) 6= ∅, then for each

e ∈ α−1(C), as there is no visiblef causally dependent forme, we have↑ (e) ∩ α−1(V) = ∅. In
this case,M\ ↑ (α−1(C)) = M \α−1(C). This means thatOV (M) ≡ OV

\C(M), which yields the
result.
ii) Let us now prove the converse direction. Suppose that there exists a pair of eventse ≤ f such

thate is a confidential event, andf is a visible one. Then,e is not maximal, and henceOV
\C(M)

does not containf . As OV (M) contains all observable events ofM we can not haveOV (M) ⊑
OV

\C(M). This immediately implies thatOV
\C(M) 6≡ OV (M).

A.2. Proof of Theorem 4.9

Theorem 4.9.Given a partial order automatonA with selection functionMaxEvt, one can decide if
A is threaded. Furthermore this problem is in co-NP.

Proof. A path satisfying the property of Def. 4.8 is said to be threaded. We first show that is it
sufficient to consider elementary cycles ofA extended by one transition to decide whether a POA is

threaded. Consider an accessible cycleρ = q
O1−→ q1 . . .

Ok−→ q of A and the pathρ′ = ρ.(q, O1, q1)
that extendsρ with one single transition. We call such a path an elementarysequence. Obviously, if
there is an evente in O1 such thate(1) � e(2), then any path ofA that ends withρ′ is not threaded,
and henceA is not threaded.

Conversely, suppose that all elementary sequences ofA are threaded, but that one can find
a path ρ of A that is not threaded. That is,ρ is of the form ρ1.(q, O1, q

′).ρ2.(q, O1, q
′)ρ3,

and is such that some occurrencee(i) in the ith occurrence ofO1 does not precede the(i +
1)th occurrence ofe in the (i + 1)th occurrence ofO1. Clearly, the sequence of transitions
(q, O1, q

′).ρ2.(q, O1, q
′) is not an elementary sequence, otherwise one would havee(i) ≤ e(i+1).

However,(q, O1, q
′).ρ2.(q, O1, q

′) is obtained by insertion of elementary cycles in an elementary
sequenceρel = (q, O1, q

′).ρ′el.(q, O1, q
′) starting and ending with transition(q, O1, q

′). In ρ, we
havee(1) ≤ e(2), that is, there exists a causal chaine(1) ≺ f1 ≺ . . . fk ≺ g1 ≺ · · · ≺ gk′ ≺

h1 ≺ · · · ≺ hk′′ ≺ e(2), wheref1, . . . , fk are events ofO(1)
1 , g1, . . . , gk′ are events ofOρ′

el
, and

h1, . . . , hk′′ are events ofO(2)
1 . Consider insertion of an elementary sequence by replacingtransi-

tion (qs, O2, qs+1) by an elementary sequenceρs = (qs, O2, qs+1) . . . (qs, O2, qs+1) in ρ′el. Then if
there exists no event ofO2 in the causal chain frome(1) to e(2), then the causal chain is preserved
by replacement of one transition by this elementary sequence. Now, supposing thatO2 contains a
set of eventsgt ≺ . . . gt′ of the causal chain, we still havee(1) ≤ g

(1)
t in Oρs . Similarly, we have

g
(1)
t ≤ g

(1)
t′ , and due to properties of elementary sequences, we haveg

(1)
t′ ≤ g

(2)
t′ . Now, as the se-

lection function recalls last occurrences of events, and uses the same operators that depend only on
chosen transitions, we will haveg(2)t′ ≤ h1 ≤ . . . e(2). Similar reasoning holds when inserting sev-

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:27

eral occurrences of elementary sequences between two occurrences ofO1. As all paths containing
two consecutive occurrences of some order can only be obtained by such insertions, this allows to
conclude thatρ is threaded, which contradicts our starting hypothesis. HenceA is threaded iff all
its elementary sequences are threaded.

Now, let us consider the complexity part. Finding an acyclicpathρ containing twice transitions
(q1, O, q2) can be done non-deterministically in polynomial time, by choosing non-deterministically
a path starting fromq2, and stopping as soon as some transition was already encountered, or when
reaching the second occurrence of transition(q1, O, q2). Followed path are of length at most| −→ |.
Appending an order to an existing one and maintaining a set ofselected events can be done in
polynomial time, as it suffices to add a bounded number of elements (events and covering relation).
Denoting bym the maximal size of an order inL, each step hence adds at mostm events and
|L| × m2 elements to the covering relation built so far. For a chosen event e, one can maintain
during construction of the order a setS of at most|L|.m events that are both in the set of events
kept by the selection function, and successors ofe. Then, if one ends with a second occurrence of
(q1, O, q2), it is easy to check thate(2) is a successor of some event ofS.

A.3. Proof of Theorem 4.11

Theorem 4.11LetA be a threaded partial order automaton with a selection functionΠ that memo-
rizes a bounded numberK of events. Then one can effectively decide ifA is locally synchronized.

Proof. Let us consider a pathρ1.ρ2 such thatρ2 is a cycle, and lete, f be a pair of events inOρ2 . The
commutation graph ofOρ2 is strongly connected iff for every pair of eventse, f in Oρ2 there exists
a chain frome(1) to f (1) or from e(1) to f (2), and another chain fromf (1) to e(1) or from f (1) to
e(2). Following the same argumentation as in the proof of theorem??, asA is threaded, insertion of
new occurrences of existing orders in a path can only extend the length of existing causal chains, but
cannot ”break” causal chains: ife ≤ f in ρ2.ρ2

′.ρ2.ρ2
′, thene ≤ f in ρ2.ρ3.ρ2

′.ρ2.ρ3.ρ2
′ for any

cycleρ3. It is hence sufficient to consider occurrences of cycles that contain at most one occurrence
of each transition to check existence of disconnected communication graphs.

The algorithm follows a path ofA. At some point, it non-deterministically chooses an acyclic
path and checks if its communication graph is strongly connected.

ALGORITHM 2: Checking local synchronization

Input : Partial Order AutomatonA
Output : Non-deterministically return true ifA is locally synchronized, stops otherwise
randomly pick up a numberd between 1 and|A|.2K

// By considering runs on this length, we have visited all possible
memory configurations and transitions

Mem= ∅;
cs = n0;
// current state
while d > 0 do

randomly select a transition(cs,O, n) and computeΠ(Mem⊗Λ(cs,O,n′) O);
cs=n;
d=d-1;

end
randomly select anacyclic sequence of transitionρ = (cs,Oi, n1) . . . (nk, Ok, n);
Compute the communication graphsG of Oρ

if G is not strongly connectedthen
return A is not locally synchronized

end
STOP;

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:28 B. Bérard et al.

A.4. Proof of Proposition 4.15

Proposition 4.15.For every HMSCH , observation functionsOV ,OV
\C ,O

p are finitely decompos-

able, with boundsm ≤ |P|2 andc ≤ |P|3.

Proof. Let us first considerOV . For every pair of MSCsM1,M2, we know that the set of events
in O = OV (M1 ◦ M2) = (EO,≺O, λO) is exactly the union of the the set of events inOV (M1)
andOV (M2). We can reuse the result in [Genest et al. 2003] on projections of HMSCs. For an
event ine in O(M1), let us callF (e) = {φ(f) | ∃f, e ≤1 f} the set of processes that contain a
successor event fore. Let us defineDead(e) =

⋃

e≺Oe′
F (e′), andLiveF (e) = F (e) \ Dead(e).

Intuitively, LiveF (e) represents the set of processes that may contain an observable successor of
e appended afterM1. We callToCheck(M1) = {e ∈ O(M1) | LiveF (e) 6= ∅} the events of
M1 that can still have a immediate successor inOV (M1 ◦M2) for an arbitraryM2. It was shown
in [Genest et al. 2003] that for sequences of MSCsρ of arbitrary size it is sufficient to remember
ToCheck(Mρ) andLiveF (e) for everye in ToCheck(Mρ) to be able to buildOV (Mρ ◦ M2)
for anyM2. This work also shows that for everyρ, ToCheck(Mρ) is of size smaller than|P|2.
Then, from this information, buildingOV (Mρ ◦M2) simply consists in assemblingOV (Mρ) and
OV (M2) as a union of both coverings, to which causalities from everyevente in Tocheck(Mρ)
to minimal events ofOV (M2) located onLiveF (e). We refer readers to [Genest et al. 2003] for
details and proof of correctness of the construction. One can see that the composition operation
used to assemble observations of MSCs is the same, and needs only to memorize a finite number of
eventse1, . . . , ek with k ≤ |P|2. However, there is an additional information carried byLiveF (e),
that is used to decide whether pairs of events inToCheck(Mρ) × OV (M2) should be in≺: One
needs only to remember a set of processes attached to each event ei by mapLiveF (). This can be
encoded by a maph : 1..|P|2 → 2P , and there is only a finite number of such maps. Let us denote
byH the set of such maps, and for a particular map, let us denote by⊗h the operator that glues two
observations, considering thatLiveF (ei) = h(ei). For a given pathρ let us denote byLiveFρ() the
mapLiveF () computed fromMρ. We can associate with every sequence of MSCsρ = M1 . . .Mk

the finite memoryTocheck(Mρ) and the composition operator⊗h whereh = LiveFρ(), which
immediately defines the functionsΨ andΠ. As Tocheck(Mρ) is finite, each concatenation adds
only a bounded number of causal dependencies, henceOV is finitely decomposable. The bounds
for m andc come from the size ofTocheck(Mρ).

The proof easily extends toOp as no assumption is done on the set of observable events. We will
however prove later that one does not need the whole power of partial order automata to consider
Op.

Now, for observationOV
\C , we can build a similar proof. However, at concatenation time, one

can only append events that are not causal consequences of confidential events to already built
observations. Using the notion of black/white processes and events, this means that concatenation
operators can only add observable events that are white on processes that are also white. We have
shown that maintaining the status of processes along a sequence of MSCs is memoryless 3.6. We
can hence relay on a set of operators of the formOPS= {⊗h,BW} whereh is the set of functions
defined forOV andBW is the black/white status of processes, and buildΨ andΠ accordingly.

A.5. Proof of Proposition 6.2

Proposition 6.2.For every HMSCH , one can build a (partial order) automatonAH,Op that recog-
nizesOp(H). If O = Σp, then one can build a (partial order) automataA

H,OV,•
\C

andAH,OV,◦ that

recognize respectivelyOV,•
\C (H) andOV,◦(H).

Proof Let H = (N,→,M, n0, F), and let us build a finite state automatonAp(H) recognizing
Op(H) or equivalentlyOV,◦(H) whenO = Σp.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:29

Let k be the maximal size of a projection of a MSC inM. The automatonAp(H) is defined by
Ap = (N ×{0, . . . , k− 1}, δ, (n0, 0), F ×{0},Λ,Π). We letΛ(n,O, n′) = ◦, i.e. we use standard
sequential composition for every transition. We letΠ(O1 . . . Ok) = max(Ok) (Π remembers the
last event in the last order appended. Let(n,M, n′) be a transition inH . The observationOp(M) is
a possibly empty partial order overΣp. If Op(M) is an empty order, thenδ contains the transition
((n, 0), ε, (n′, 0)). If Op(M) = a1 . . . aq (with q ≤ k), thenδ contains the transitions((n, i −
1), ai, (n, i)) for eachi ∈ {1, .., q − 1}, and((n, q − 1), aq, (n

′, 0)).
An easy induction shows that for every path(n0,M1, n1) . . . (nℓ−1,Mℓ, nℓ), such that the pro-

jection of eachMi on p is a wordwi = ai,1 . . . ai,qi there exists a path(n0, 0)
a1,1
−→ (n0, 1)

a1,2
−→

. . .
aℓ,qℓ−→ (nℓ, 0), and conversely. Furthermore, ifnℓ is an accepting state ofH , then(nℓ, 0) is an

accepting state ofAp. Hence,Ap recognizesOp(H). The size ofAp(H) is in O(|N |.k).
Let us now show that one can design an automaton that recognizesOV,•

\C (H) for any HMSCH .

Let us first recall the definition ofOV,•
\C (H). We haveOV,•

\C (H) = {OV (M1 ◦ · · · ◦Mk) | M1 ◦ · · · ◦

Mk ∈ FH ∧ ∀i, α(Ei) ∩ C = ∅}. Let us now design a new HMSCH\C = (N,→\C ,M, n0, F)
such that(n,M, n′) ∈→\C iff (n,M, n′) ∈→ andα(EM) ∩ C = ∅. Clearly,FH\C

is the set
of MSCs generated byH that do not contain actions fromC, andH\C is also an HMSC. We

haveOp(H\C) = OV,•
\C (H), and hence we can apply the technique above to design an automaton

A′
p(H) = Ap(H\C) of size inO(|N |.k) that recognizesOV,•

\C (H). HenceOp(H) andOV,•
\C can be

recognized by partial order automaton.

A.6. Proof of Corollary 6.3

Corollary 6.3. The problem of deciding local interference of an HMSCH with respect to a given
processp ∈ P is PSPACE-complete.
Proof From proposition 6.2, for any HMSCH and any processp, we can design an automaton
Ap(H) that recognizesOp((H), and an automatonA′

p(H) that recognizesOV,•
\C (H). One can no-

tice thatAp(H) andA′
p(H) are standard finite state automata that recognize sequencesof events.

Hence inclusion ofOp((H) in OV,•
\C (H) with these automata is a regular language inclusion prob-

lem.
Note that these automata are of size linear in the size ofH . One can notice thatL(A′

p(H)) ⊆
L(Ap(H)). So, checking local non-interference of an HMSCH amounts to a single inclusion prob-
lem ⊑Op,OV,•

\C
for HMSC H , i.e checking thatL(Ap(H)) ⊆ L(A′

p(H)). Language inclusion for

finite automata is a well-known PSPACE-complete problem, hence checking local non-interference
is in PSPACE.

For the hardness part, letA = (QA, δA, q0A, FA) andB = (QB, δB, q0B, FB) be two automata
over alphabetΣ, with disjoint set of states. Similarly to Figure 2, we design a HMSCH = (QA ⊎
QB,→, q0B, FA ⊎ FB) over a set of processes{p1, p2, Pc} and alphabetΣ ∪ {c}, with V = Σ and
C = {c}, such that→ contains:

— a transition(q0B ,Mh, q0A) in whichMc is an MSC with a single atomic confidential action lo-
cated on processPc (like in Figure 2),

— for each(q, a, q′) ∈ δA ∪ δB, a transition(q,Ma, q
′) whereMa is a MSC containing a single

messagema from p2 to p1.

Then the language inclusion problemL(A) ⊆ L(B) can be reduced in polynomial time to local non-
interference ofH with respect to processp1. Hence, local non-interference is PSPACE-complete.

A.7. Proof of Proposition 6.7

Proposition 6.7.Let H be an HMSC,p ∈ P, andΣ = C ⊎ V ⊎N . Then, one can build:

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

A:30 B. Bérard et al.

— an HMSCHB,p that recognizes MSCs fromFH after whichp is a black process.
— an HMSCHW,p that recognizes MSCs fromFH after whichp is a white process.

of size inO(|H |.2|P|).
Proof. We buildHB,p = (NB,p,→B,p,M, n

B,p
0 , FB,p) as follows:

—NB,p ⊆ N × 2P is a set of nodes. In a pair(n, P), n denotes a node ofH , andP a subset of black
processes. We setnBW0 = (n0, ∅).

— the set of transitions and nodes ofHB,p is built inductively as follows: from a node(n, P), if there
exists a transition(n,M, n′) in H , we add(n′, P ′) to NB,p, with P ′ = P ∪ {p ∈ P | ∃e ≤M
f ∧ φ(f) = p ∧ φ(e) ∈ P} ∪ {p ∈ P | ∃e ≤ f, α(e) ∈ C ∧ φ(f) = p}, and we add transition
(

(n, P),M, (n′, P ′)
)

to →B,p

—FB,p = F × {P ∈ 2P | p ∈ P} is the set of accepting nodes. A path ofHB,p is accepting if it
ends after recognizing an MSCM ∈ FH such thatp is black afterM .

Building HW,p = (NW,p,→W,p,M, n
W,p
0 , FW,p) can be done in a similar way, but setting

FW,p = F × {P ∈ 2P | p 6∈ P}.
The status of a process is built progressively along transitions in a path. Following proposition 3.6,

the process part of a node inHB,p or HW,p faithfully encodes the status of a process in the MSCs
generated by sequences of transitions ending in this node. Hence,HB,p (resp.HW,p) recognize
MSCs ofFH after whichp is black (resp. white).

As the nodes of these HMSCs belong toN × 2P, the size ofHB,p orHW,p is inO(|H |.2|P|).

A.8. Proof of Proposition 7.6

Proposition 7.6.LetH be an HMSC,Σ an alphabet andD be a set of declassification letters. Then,
one can build

— an HMSCH II that generates the set of II MSCs inFH .
— an HMSCH INI that generates the set of INI MSCs inFH .

that are of sizes at most2.|H |.23
|P|

Proof. We first show howH II = (N II ,→II ,M, nII
0 , F

II) is computed, then we show thatH II recog-
nizes intransitively interferent MSC generated byH . We first define the following functions. A map
cl : P → {+,⊥,⊤} represents existing causal dependencies from a confidential event to maximal
event of processes, plus gives information on whether a causal chain ending on a process declas-
sifies this confidential event. We denote byCL(M) the set of functions that are computed starting
from all confidential events. Note that ifM contains no confidential event, thenCL(M) = ∅. Given
two MSCsM1, M2, we have seen thatM1 ◦M2 is intransitively interferent ifM1 is II, or M2 is II,
or there existscl ∈ CL(M1) such thatcl(p) = + andM2 contains a chain from an event located
on process to an observable eventv such that there exists no chain from an event on processq to v
with cl(q) = ⊤. Hence, knowing ifM1 is II or not, andCL(M1), one can decide whetherM1 ◦M2

is II . We denote byII(CL,M) the predicate that is true when a set of mapsCL representing causal
chains and declassification in an MSCM ′ allows to prove thatM ′ ◦ M contains an intransitive
interference.

The crux is then to be able to maintainCL(M1 ◦ · · · ◦Mk) and the II information along path of
H . For a given mapcl and an MSCM , we define the mapUpdate(cl,M) as follows:

We haveUpdate(cl,M)(p) = ⊥ if cl(p) = ⊥, and if there exists no pair of eventse ≤ f in M2

with f is located ofp, andcl(φ(e)) 6= ⊥.
We haveUpdate(cl,M)(p) = + if cl(p) ∈ {⊥,+}, and there exists a processq such that

cl(q) = +, and pair of eventse ≤ f in M2 such thate is minimal onq, f is maximal on process
p, and furthermore, no causal chain frome to f is declassified, and for every processq′ 6= q, if
cl(q′) = +, then no declassified causal chain from an event onq′ to f exists inM2, if cl(q′) = ⊤
then no causal chain from an event onq′ to f exists inM2.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

Non-interference in partial order models A:31

We haveUpdate(cl,M)(p) = ⊤ if

— cl(p) = ⊤, or
— there exist a processq such thatcl(q) = + and a declassified chain from an evente located on

processq to an eventf located on processp, or
— there exist a processq such thatcl(q) = ⊤, and a causal chain from an evente located on process

q to an eventf located on processp.

The map updating function extends to sets of maps the obviousway : Update(X,M) =
⋃

cl∈X

Update(cl,M).

We are now ready to defineH II = (N II ,→II ,M, nII
0 , F

II). We have:

— N II ⊆ N ×{tt, ff}× 2Cl is a set of nodes that are reachable fromnII
0 . Each node ofN II is hence a

triple of the form(n, b,X), wheren is a node ofH , b is a boolean that indicates ifII has already
been discovered, andX is a set of maps depicting (declassified) causal chains from confidential
events in the sequenceM1 ◦ . . .Mk read so far along transitions ofH and ending at noden. We
setnII

0 = (n0, ff, ∅).
— We define the transitions relation as follows. We have((n, b,X),M, (n′, b′, X ′)) ∈→II iff

— (n,M, n′) ∈→ (the transition exists inH),
— b′ = b∨

∨

cl∈X

II(cl,M)∧M is II , that is if II was detected before, then the concatenated MSCs

remainII , and otherwise becomeII if M is II , or one of the maps depicting chains starting
from a confidential events in the formerly assembled MSCM1 ◦ · · · ◦ Mk witnesses anII in
M1 ◦ · · · ◦Mk ◦M .

— F II = F × {tt} × 2Cl

— X ′ = Update(X,M) ∪ CL(M). The representation of chains originating from confidential
events is updated to consider chains ofM and their declassifications, and new observable events
may occur inM , starting new chains and potential new witnesses forII MSCs.

Obviously, all MSCs generated byH II belong toFH , as→II always agrees with→. Furthermore,
due to compositionality ofcl computation, updating of a chaincl can be done incrementally while
concatenating MSCs without remembering the whole sequence. Now, it suffices to remember once
the shape of causal chains from observables actions to maximal events on processes (the mapscl) to
detect II. One needs not differentiate similar occurrencesof maps computed for chains originating
from distinct observable events. Hence, updating of sets ofcausal chains representation suffices to
represent all classified chains in a sequence of MSCs recognizes betweenn0 and the current node,
and hence to detect all occurrences of intransitive interferences. we can conclude that all MSCs
recognized byH II contain an intransitive interference.

The HMSCH INI = (N INI ,→INI ,M, nINI
0 , F INI) can be built with the same nodes and transition

functions, but with final satesF INI = F × {ff} × 2Cl. The sizes ofH II andH INI are at most
2.|H |.23

|P|

.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Article A, Publication date: YYYY.

