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Abstract—Non-interference (NI) is a property of systems stat-
ing that confidential actions should not cause effects observable
by unauthorized users. Several variants of NI have been studied
for many types of models, but rarely for true concurrency or
unbounded models. This work investigates NI for High-level
Message Sequence Charts (HMSC), a scenario language for
the description of distributed systems, based on composition of
partial orders. We first propose a general definition of security
properties in terms of equivalence among observations, andshow
that these properties, and in particular NI are undecidable for
HMSCs. We hence consider weaker local properties, describing
situations where a system is attacked by a single agent, and
show that local NI is decidable. We then refine local NI to a
finer notion of causal NI that emphasizes causal dependencies
between confidential actions and observations, and extend it to
causal NI with (selective) declassification of confidentialevents.
Checking whether a system satisfies local and causal NI and their
declassified variants are PSPACE-complete problems.

I. I NTRODUCTION

Context. Non-interference(NI) has been introduced to charac-
terize the absence of harmful information flow in a system. It
ensures that confidential actions of a system can not produce
any effect visible by a public observer. The original notionof
non-interference in [1] was expressed in terms of language
equivalence for deterministic Mealy machines with confi-
dential input and public output. Since then, several variants
of information flow properties (IFP) have extended NI to
non-deterministic models (transition systems, process algebra,
Petri nets,...) and finer notions of observation (simple trace
observation, deadlock or branching detection,....) to describe
the various observational powers of an attacker. For a given
systemS, NI is usually defined as:πV (JS \ CK) ≡ πV (JSK),
where≡ is language equivalence,JSK denotes the semantics
of S, πV is the projection on a subsetV of visible actions
of the system, andS \ C denotes the modelS from which
all confidential actions fromC are pruned.Intransitive non-
interference(INI) relaxes NI to handle possibledeclassifica-
tion of confidential actions. It ensures that confidential actions
of a system cannot produce any effect visible by a public
observer unless they are declassified, causing so a harmless
information flow. This issue has been addressed in [2], by
comparing observations of visible actions in runs of a system
(hence including runs containing non-declassified confidential
actions), and observations of visible actions in runs of the
same system that only contain confidential actions that are
declassified afterwards. Most IFPs have been expressed as

combinations ofbasic security predicates(BSPs) [3], [4] or
as a behavioral equivalence under observation contexts [5]. A
systematic presentation of IFPs can be found, e.g., in [3]–[5].

Despite the fact that IFPs are always informally expressed
in term of causalityi.e., confidential activity should not cause
observable effects on the public behaviour, they are almost
always formalized in terms of interleaving semantics [6]–
[9] and hence, do not consider true concurrency or causality.
This is clearly a lack in the formalization of IFPs for several
reasons. First, from an algorithmic point of view, it is usually
inefficient to compute a set of interleavings to address a
problem that can be solved on an equivalent partial order
representation. Second, from a practical point of view, an
attacker of a system may gain more information if he knows
that some confidential action has occurred recently in its
causal past. Indeed, transactions in a distributed system can
leave many traces (visited websites, cookies,...) on machines
which are not a priori committed to protect confidential
actions of third parties. Recently, however, [10] proposeda
characterization of NI as a syntactic property of its unfolding
in the context of true concurrency semantics for Petri nets,but
the technique addresses only safe nets.

Very few results address IFPs for unbounded models. BSPs
and NI are proved undecidable for pushdown systems, but
decidability was obtained for small subclasses of context-free
languages [11]. Decidability of a bisimulation-based strength-
ened version of NI callednon-deducibility on composition
(NDC) for unbounded Petri nets is proved in [8]. A system
satisfies NDC if observation of its visible actions remains in-
distinguishable from the observation of the system interacting
with any environment. This result was extended in [9] to INI
with selective declassification (INISD).
Contribution. This work considers IFPs for an unbounded
true concurrency model, namely High-level Message Sequence
Charts (HMSCs). This model, standardized by the ITU [12], is
well accepted to represent executions of distributed systems,
where security problems are of primary concern. We first
define a class of IFPs on HMSCs, as an inclusion relation
on observations, following [5], [11] and [13]. We prove that
observation inclusion (and hence the simple NI property and
most of IFPs) is undecidable for HMSCs. We then characterize
decidable sub-classes of the problem: inclusion becomes de-
cidable when the observation of the specified system is regular,
and in particular when visible events are located on a single



process, and even when the considered HMSC is not regular.
We then discuss the meaning of NI in a context where causal
dependencies among occurrences of events are considered.
This leads to a new notion calledcausal interferencefor
HMSCs. Causal interference detects interference as soon asan
attacker can observe occurrences of confidential actions from
visible events, and furthermore, one of the observed eventsis
a consequence of the confidential one. We finally relax causal
interference in the context of declassification. We introduce
intransitive causal non-interferencethat considers observable
causal dependencies among confidential and visible events as
safe, as soon as a declassification occurs in between. We show
that all local variants of these problems are PSPACE-complete.
Outline. Model definitions are given in Section II. In Sec-
tion III, we first introduce observations of HMSCs, then we
formally define inclusion problems and non-interference and
show their undecidability for HMSCs. In Section IV, we
characterize information flow in a single finite scenario, and
rephrase it in terms of coloring, and show in Section V that
NI in HMSCs can be solved by reusing this coloring, and is
PSPACE-complete for cases where observation is limited to a
single process. We extend this framework to declassification
and we prove the decidability of a local version of interference
with (selective) declassification in Section VI. We compareour
approach with related works, and conclude in Section VII.

II. PRELIMINARIES

This section introduces the models that will be used
throughout the paper, namely automata and High-level Mes-
sage Sequence Charts (HMSCs), with their associated lan-
guages. Message Sequence Charts (MSCs) are formal repre-
sentations of distributed executions,i.e., chronograms, that are
frequently used to depict the behavior of a set of asynchronous
communicating processes. This simple graphical representa-
tion emphasizes on messages and localization of actions, with
partial order semantics. The model of HMSCs, standardized
by the ITU [12], was proposed to describe the more elaborate
behaviors of distributed systems, for instance those of commu-
nication protocols, by combining MSCs. Illustrations of MSCs
and HMSCs are given in Figures 1 and 2 of Sections IV
and V. HMSCs are used to describe typical scenarios for the
use of distributed systems, and then serve as requirements.
They can also be used as input to generate code skeletons for
distributed systems. Hence, an information leak that appears
in these early requirement is likely to be a feature of the
final system. It is then interesting to find these leaks at
early design stages. Another interesting point with HMSCs
is their expressive power: they define behaviors of systems
with asynchronous communications, which are not necessarily
finite state systems. They are uncomparable with Petri nets,
for instance. Answering interference questions for HMSCs
provides security techniques for a whole class of infinite
systems that can not be modeled with other formalisms.

Let Σ be a finite alphabet. A word overΣ is a sequence
w = a1a2 . . . an of letters fromΣ, andΣ∗ denotes the set
of finite words overΣ, with ε the empty word. Alanguage

is a subsetL of Σ∗. A finite automatonover Σ is a tuple
A = (S, δ, s0, F ), whereS is a finite set of states,s0 ∈ S is
the initial state,F ⊆ S is a set of accepting states, andδ ⊆ S×
Σ× S is a transition relation. A wordw = a1 . . . an ∈ Σ∗, is
accepted byA if there exists a sequence of transitions labeled
by ai’s, starting froms0 and ending in an accepting state,i.e.,
∃s1, . . . sn, ∀i ∈ 1..n, (si−1, ai, si) ∈ δ with sn ∈ F . It is well
known that automata acceptregular languages.

A Labeled Partial Order(LPO) over alphabetΣ is a triple
(E,≤, α) where(E,≤) is a partially ordered set (poset) and
α : E → Σ is a labeling ofE by letters ofΣ. The set of
all LPOs over alphabetΣ is denoted byLPO(Σ). Given a
relationR ⊆ X × X on some setX , we denote byR∗ the
transitive and reflexive closure ofR.

Definition 1 (MSC):A Message Sequence Chartover finite
setsP of processes,M of messages and finite alphabetA, is
a tupleM = (E, (≤p)p∈P, α, µ, φ), where

• E is a finite set ofevents, partitioned asE = ES ⊎ER ⊎
EI , according to the type of event considered: message
sending, reception, or internal action (also calledatomic
action);

• φ : E → P is a mapping associating with each event the
process that executes it. Hence, the setsEp = φ−1({p})
for p ∈ P, also form a partition ofE;

• For every processp ∈ P, the relation≤p⊆ Ep × Ep is a
total ordering on events located on processp;

• µ ⊆ ES × ER is a relation symbolizing message ex-
changes, such that if(e, f) ∈ µ with e ∈ Ep andf ∈ Eq,
thenp 6= q. Furthermore, it induces a bijection fromES

onto ER, so with a slight abuse of notation,(e, f) ∈ µ

is also written asf = µ(e). With each pair(e, f) ∈ µ is
associated a message inM;

• α is a mapping fromE to Σ ⊆ (P×{!, ?}×P×M)∪(P×
A), associating a label with each event. The labeling is
consistent withµ: if f = µ(e), with associated message
m, sent by processp to processq, thenα(e) is written as
p!q(m) andα(f) as q?p(m). If e is an internal actiona
located on processp, thenα(e) is of the formp(a). The
labeling is extended by morphism overE∗.

We write≤M for the relation≤M= (
⋃

p∈P ≤p ∪ µ)∗, and
require that for any MSCM , ≤M is a partial order, that is a
reflexive, transitive, and acyclic relation. When clear from the
context, we will simply write≤ instead of≤M .

We denote byMsc(P,M, A) the set of all MSCs over the
setsP of processes,M of messages, and alphabetA. The usual
terminology and definitions of partially ordered sets applyto
MSCs. For an evente ∈ E of M , the set ofpredecessorsof
e is M is ↑(e) = {f ∈ E | f ≤ e} and the set ofsuccessors
of e in M is ↓(e) = {f ∈ E | e ≤ f}. Given a subsetE′ of
E, the restriction of M to E′, denoted byM|E′, is the LPO
(

E′,≤M ∩(E′ × E′), α|E′

)

and we denote byM \ E′ the
restriction ofM to E \E′.

Definition 2: A linear extensionof an MSC withn events
M = (E, (≤p)p∈P, α, µ, φ) is a sequencer = e1e2 . . . en of all
events ofM such that for everyj > k ej � ek. A linearization
of M is a wordw ∈ Σ∗ such that there exists a linear extension



r of M with w = α(r). The languageof M , written L(M),
is the set of all linearizations ofM .

The language of a MSC is hence defined over alphabet
Σ = {p!q(m) | p, q ∈ P ∧ m ∈ M} ∪ {p?q(m) | p, q ∈
P, m ∈ M} ∪ {p(a) | p ∈ P, a ∈ A}. To design more
elaborate behaviors, including choices and iterations, MSCs
are composed. A key ingredient is sequential composition, that
assembles MSCs processwise to form larger MSCs.

Definition 3: Let M1 = (E1, (≤1,p)p∈P, α1, µ1, φ1) and
M2 = (E2, (≤2,p)p∈P, α2, µ2, φ2) be two MSCs defined over
disjoint sets of events. Thesequential compositionof M1 and
M2, denoted byM1 ◦M2 is the MSC
M1 ◦M2 = (E1∪E2, (≤1◦2,p)p∈P, α1∪α2, µ1∪µ2, φ1∪φ2),
where ≤1◦2,p=

(

≤1 ∪ ≤2 ∪ φ−1

1 ({p})× φ−1

2 ({p})
)∗

and
f1∪f2 denotes a function defined overDom(f1)∪Dom(f2),
that associatesf1(x) with everyx ∈ Dom(f1) andf2(x) with
everyx ∈ Dom(f2).

This (associative) operation, also called concatenation,can
be extended ton MSCs and is used to give a semantics to
higher level constructs, namely HMSCs. Roughly speaking,
an HMSC is a finite automaton where transitions are labeled
by MSCs. It describes aset of MSCsobtained by assembling
(using sequential composition) MSCs that appear along paths.

Definition 4 (HMSC):A High-level MSC(HMSC) is a tu-
ple H = (N,→,M, n0, F ), whereN is a set of nodes,M is
a finite set of MSCs,→⊆ N ×M×N is a transition relation,
n0 ∈ N is the initial node, andF is a set of accepting nodes.

As for any kind of automaton, paths and languages can be
defined for HMSCs. Apathρ of H is a sequence of transitions
t1t2 . . . tk such that for eachi ∈ {1, . . . , k}, ti = (ni,Mi, n

′
i)

belongs to→, with n′
i = ni+1 for eachi ≤ k − 1. A path ρ

is acceptingif it starts from noden0 (i.e., t1 = (n0,M1, n1)),
and it terminates in a node ofF (i.e., tk = (nk,Mk, n

′
k) for

somen′
k ∈ F ).

Definition 5: Let ρ = t1t2 . . . tk be a path of a HMSCH .
The MSC associated withρ is Mρ = h1(M1) ◦ h2(M2) · · · ◦
hk(Mk) where eachhi is an isomorphism that guarantees
∀j 6= i, hi(Ei) ∩ hj(Ej) = ∅.

More intuitively, the MSC associated with a path is obtained
by concatenating MSCs encountered along this path after
renaming the events to obtain disjoint sets of events. To
simplify notation, we often drop the isomorphisms used to
rename events, writing simplyMρ = M1 ◦M2 ◦ · · · ◦Mk.

With this automaton structure and the sequential composi-
tion of MSCs, an HMSCH defines a set ofaccepting paths,
denoted byPH , a set of MSCs

FH = {Mρ | ρ ∈ PH},
and a linearization languageL(H) =

⋃

M∈FH
L(M). Finally

note that a single MSCM can be seen as a particular HMSC
HM with a single transition(n0,M, n1) between two nodes,
hence a single path from initial noden0 to final noden1 and
languageL(HM ) = L(M).

It is well known that the linearization language of a HMSC
is not necessarily regular, but rather a closure of a regular
language under partial commutation, which yields many un-
decidability results (see for instance [14], [15]). This does not

immediately mean that all IFPs are undecidable for HMSCs:
indeed, we later define non-trivial and meaningful subclasses
of HMSCs and observations for which these problems become
decidable.

III. O BSERVATION AND NON-INTERFERENCE FORHMSCS

The power of an external observer can be described by an
observation function, mapping every behavior of a system to
some observables. In [3], [4], [11], observation functionsare
seen as some particular kind of language theoretic operations
(projection, morphism, insertion, deletion of letters,...), and
in [13], they are defined as combinations of rational operations
(transductions, intersections, unions of rational languages).

In a distributed context, visible events can originate from
sensors that belong to different processes, and occurrences of
such events can easily be recorded. If the system is equipped
with vectorial clocks, one can also record causal dependencies
among observed events. However, even if those visible events
happen to be observed in some particular linear order, this does
not mean that this order corresponds to the actual execution,
because the processes are not synchronized. Hence, while
weaker than a linearization, the natural and realistic notion
of observation for distributed computations is a labeled partial
order, where events that are not surely causally dependant are
considered concurrent.

Definition 6: An observation function is a mapping from
Msc(P,M, A) to LPO(B) for some alphabetB.

As proposed in [4] with the notion ofviews, the alphabet
labeling events that occur during an execution of a system can
be partitioned asΣ = V ⊎ C ⊎ N with visible, confidential
and internal (neutral) labels. Actions with labels inV can
be observed while actions labeled inC are confidential and
should be hidden. Internal actions have labels inN and
are not observablea priori, but need not be kept secret.
Subsequently, depending on their labels, events are also called
visible, confidential, or internal events.

Various observation functions can be defined from such
a partition. The most natural ones are restrictions to visible
events, and pruning of confidential actions, which are standard
operations in language based non-interference literature, but
need to be precisely defined in a partial order setting. Let
M = (E, (≤p)p∈P, α, µ, φ) be an MSC with labeling alphabet
Σ. We consider the following observation functions:

• identity: the identityid(M) = M outputs the same LPO
as the executed MSC;

• Restriction: OV (M) is the LPO obtained by restriction
of M to E ∩ α−1(V ). Intuitively, OV (M) represents
the visible events and their causal dependencies that one
may observe during the complete execution ofM ; Note
that restriction toα−1(V ) suffices, as≤ is a transitive
relation.

• Pruning: OV
\C(M) = OV (M\ ↓ (α−1(C))) is a func-

tion that prunes out the future of confidential events from
M . Intuitively,OV

\C(M) represents the visible events and
their causal dependencies, observed when no confidential
event is executed withinM ;



• Localization: Op(M) = OV (M|Ep
), for a given process

p ∈ P, is the observation of visible events ofM res-
tricted to those events located on processp. Note that
Op(M) is a total order. In a distributed setting,Op(M) is
particularly interesting, as it represents the point of view
of a single processp ∈ P, considered as the attacker of
the system. We hence assume no restriction on the set of
events that can be executed and observed byp, and let
V = Σp = α(Ep) when usingOp.

As noticed by [11] in a language setting, information flow
properties of a systemS are usually defined as compositions of
atomic propositions of the formop1(S) ⊆ op2(S). Changing
the observation functions (or the partition ofΣ) leads to a
variety of atomic properties. Information flow properties of
MSCs can be defined similarly.

Definition 7: Let O1,O2 be two observation functions over
Msc(P,M, A). An MSCM satisfiestheinclusion propertyfor
O1,O2, written ⊑O1,O2

(M), if L(O1(M)) ⊆ L(O2(M)).
For a single MSC M , the classical notion of non-

interference by language equivalence translates as follows:
Definition 8: An MSC M is non-interferent if

L(OV (M)) = L(OV
\C(M)). OtherwiseM is saidinterferent.

In order to extend an observationO to an HMSCH , a
first way consists in applyingO to all MSC in FH , defining
O(H) = {O(M) | M ∈ FH}. In particular:

OV,◦(H) = {OV (M) | M ∈ FH},

OV,◦
\C (H) = {OV

\C(M) | M ∈ FH}, and
Op,◦(H) = {Op(M) | M ∈ FH}

Observation functionsOV,◦,OV,◦
\C and Op,◦, however, do

not take in account the structure of the HMSC generating
FH , and furthermore, they are not necessarily compositional.
In general, an observation functionO is not a morphism
with respect to the concatenation, that is,O(M1 ◦ M2) 6=
O(M1)◦O(M2). This drawback was already observed in [16]
for projections of MSCs: in general,OV (M1 ◦ M2) 6=
OV (M1) ◦ OV (M2). Hence, checking inclusion for HMSCs
may require to consider properties of complete sequences of
MSCs as a whole, raising algorithmic difficulties, or even
undecidability. Other, more interesting ways to extend obser-
vations to HMSCs, are to assemble observations of MSCs
piecewise, following the automaton structure of HMSCs, or
to forbid MSCs containing confidential events:
OV,•(H) = {OV (M1)◦· · ·◦OV (Mk) | M1◦· · ·◦Mk ∈ FH},

OV,•
\C (H) = {OV (M1 ◦ · · · ◦Mk) | M1 ◦ · · · ◦Mk ∈ FH

∧ ∀i, α(Ei) ∩C = ∅},

Op,•(H) = {Op(M1) ◦ · · · ◦O
p(Mk) | M1 ◦ · · · ◦Mk ∈ FH},

where concatenation of LPOs is performed processwise like
for MSCs. The observationOV,•

\C (H) is of particular interest,
as it describes observations of MSCs inFH that do not contain
confidential events. Moreover, sinceOp(M) is a total order,
Op satisfies the morphism property, which impliesOp,◦(H) =
Op,•(H). The definitions of inclusion and non-interference
can now be extended to HMSCs:

Definition 9: An HMSC H satisfies theinclusionproblem
for O1,O2 (written ⊑O1,O2

(H)) if L(O1(H)) ⊆ L(O2(H)).
It is non-interferentif L(OV,◦

\C (H)) = L(OV,◦(H)).

We say that an observation functionO for a set of HMSCs
H is regular if L(O(H)) is regular for everyH ∈ H and that
O is effectively regularif for everyH ∈ H, one can compute a
finite automaton recognizingL(O(H)). Observation function
Op is an example of effectively regular observation function.
Defining (effective) regularity for sets of HMSCs leads to
characterize observation functions that have good properties
for infinite classes of HMSCs. For instance, for the class of
locally-synchronized HMSCs defined in [14], that have regular
linearization languages,OV,◦ is effectively regular.

HMSC languages are not always regular and the observation
of an HMSC needs not be regular either. It was proved
in [16] that HMSC projections are close to Compositional
Message Sequence Charts. Even when a projection of an
HMSC is an HMSC language (i.e., a language recognizable by
an HMSC), equivalence, inclusion or emptiness of intersection
are undecidable. In fact, due to the close relationship between
HMSCs and Mazurkiewicz traces, most properties requiring
to compare languages or partial order families are undecidable
for HMSCs ( [14], [15], [17]). So, given two HMSCsH1 and
H2, one can not decide ifL(H1) ⊆ L(H2), nor if FH1

⊆ FH2
.

We hence have the following result:

Proposition 10: Let H be an HMSC. The inclusion prob-
lem ⊑O1,O2

(H) is undecidable in general, even ifO1 or O2

is an effective regular observation function. It isdecidableif
O1 and O2 are both effective regular functions.

Proof Sketch. The proof is a reduction from the inclusion
problemL(H1) ⊆ L(H2) for two HMSCsH1 andH2. We
build an HMSCH , that behaves likeH1 or H2 if a confi-
dential action can occur, and likeH2 otherwise, and choose
observation functionsO1 = id,O2 = OV

\C . Then inclusion
⊑O1,O2

(H) holds iff L(H1) ⊆ L(H2). The construction of
this HMSCH is detailed in Appendix. The decidability part
is an immediate consequence of decidability of inclusion for
regular languages. �

Note that the exact complexity of inclusion problems in
the decidable cases depends on the size of the automata
recognizingL(O1(H)) and L(O2(H)), and hence does not
immediately fall into a determined complexity class holding
for any pair of effectively regular observation functions.From
Proposition 10, we obtain the following undecidability result:

Corollary 11: Non-interference for HMSCs is undecidable.

In the rest of the paper, we propose to weaken the require-
ments of NI, by choosing appropriate observation functions
which will be shown effectively regular for any setH of
HMSCs. This restriction is necessary, due to the fact that
effective regularity of an observation function is undecidable
(see proof of Theorem 12 in Appendix).

Theorem 12:Let O be an observation function on alphabet
Σ = C ⊎ V ⊎N and letH be a set of HMSCs. One cannot
decide in general ifO is effectively regular forH.



IV. MSCS COLORING

Interference is frequently described as causal dependencies
between confidential actions and observable ones. The prob-
lem, however, is often defined in terms of languages, with
interleaved representation, even for true concurrency models.
In this section, we first show that interference in a single
MSC can be defined in terms of causal dependencies from
confidential events (inC) to visible ones (inV ). We then
show that checking existence of such dependencies can be
performed via a coloring of events.

For a single MSC, comparing observationsOV and OV
\C

defined in Section III suffices to highlight dependencies be-
tween confidential and visible actions. Hence, interference in
a singleMSC can be defined through causality:

Proposition 13: Let M be an MSC with labeling alphabet
Σ = C ⊎ V ⊎N and set of eventsE. Then,M is interferent
if and only if there are two eventse, f such thatα(e) ∈ C,
α(f) ∈ V , ande ≤ f .

The proof of this proposition is given in Appendix. The
result shows that even if interference in a MSCM was
defined in terms of languages equivalence (Def. 8), it can
also be equivalently characterized as a property of its causal
dependencies,i.e., without computing the whole interleaved
representation ofM . This relation between causal dependen-
cies and interference calls for a graphical interpretationof
interference in MSCs, represented as a propagation of a black
token inherited from confidential actions along causal depen-
dencies. Intuitively, any confidential action and successors of
actions marked with a black token are also marked with a
black token and every process containing a black action is also
marked as black. Though the black/white coloring of MSCs
is not essential to prove interference, it will be used laterto
detect information flows in HMSCs.

q

c

r p

a

s

m1

m2

m3

m4

m5

m6

m7

Fig. 1. An MSCMbw tagged with black and white tokens

Definition 14 (MSC and process coloring):Let M be an
MSC. An evente is black if α(↑ e) ∩ C 6= ∅, and white
otherwise. A processp ∈ P is black afterM (resp. white after
M ) if there exists a black event located onp (resp. no black
event onp).

Intuitively, a black process can detect occurrences of con-
fidential events, as it executes events that are causal con-

sequences of confidential events. Clearly, an MSC is non-
interferent if and only if it does not contain visible black
events. Figure 1 shows a coloring of an MSC in black and
white. The alphabet of confidential actions isC = {q(c)} and
contains the label of the atomic actionc executed by processq.
We attach a black token to every black event and a white token
to other events. Similarly, we indicate with a black/white token
below process lines whether a process has met a black token
during its execution. In this example, processp can detect
occurrences ofc (it is black afterMbw), but processs cannot.

Deciding if an MSC is interferent, or equivalently if it
contains a visible black event then consists in finding a path
from a confidential event to a visible one in an acyclic graph
where events are seen as vertices and pairs of events(e, f)
in (∪p∈P ≤p) ∪ µ as edges. Since an event has at most
two immediate successors, the graph to consider has at most
n = |EM | vertices and2n edges. Hence, coloring of MSCs
and interference detection can be performed in linear time as
a graph exploration starting from confidential events.

We now show that deciding the black/white status of a
process along a sequence of MSCs of arbitrary size can be
performed with bounded memory.

Proposition 15: Let M1,M2 be two MSCs with labels in
Σ = C ⊎ V ⊎N . Then, processp ∈ P is black afterM1 ◦M2

iff it is black afterM1, or it is black afterM2, or there exists
a processq black afterM1 and a pair of eventse ≤ f in M2

such thate is located onq andf is located onp.
This important property means that it is sufficient to remem-

ber the black/white status of each process after concatenation
M1 ◦ · · ·◦Mk along a path of an HMSC to compute the status
of processp after concatenationM1 ◦ · · · ◦Mk ◦Mk+1.

V. L OCAL AND CAUSAL NON INTERFERENCE

Despite general undecidability of the inclusion problem and
non-interference (Proposition 10), the problem becomes decid-
able with regular observation functions. As effective regularity
of an observation function is undecidable (Thm. 12), we must
rely on subclasses of observations for which this property is
guaranteed. We show in this section that observation functions
describing the discriminating power of asingle processare
effectively regular. In this restricted setting, it is thenpossible
to decide whether a processp ∈ P can detect occurrences of
confidential actions. As HMSCs explicitly specify distribution
of actions on processes, exhibiting the behavior of a fixed
process within an HMSC specification is an easy task. In this
section, we show that thislocal setting allows for the definition
of two decidable notions of non-interference.

A. Local interference

Considering the attacker of a system as a single process
p ∈ P, with action labels in some alphabetΣp = α(Ep), we
should assume that processp does not execute confidential
actions, that isC ∩Σp = ∅. In a similar way, the observation
power of a single process should be restricted to its own events,
hence we can safely setV = Σp. The definition of non-
interference (Def. 8) proposed in section III can accommodate



this particular partition of the alphabet. From now on, we
consider this restricted form of non-interference, and call it
local non-interference.

For a single MSC, it is then defined as satisfaction of
two inclusion problems, withOV

\C and Op as observation
functions. This property can be verified by checking whether
↓ (α−1(C))∩Ep = ∅ that is checking if no causal consequence
of a confidential action is located on processp. In other words,
one need to check thatp is not marked with a black token. As
explained in section IV, this can be performed in linear time.
We can now look at local interference for HMSCs.

Definition 16: Let H be an HMSC over a set of processes
P, with labeling alphabetΣ = V ⊎ C ⊎ N , such thatΣ =
⊎p∈PΣp with V = Σp. Then HMSCH is said locally non-
interferent(w.r.t. processp) if L(OV,•

\C (H)) = L(OV,◦(H)).

Intuitively, local interference holds when an observer can
not distinguish inFH behaviors that are concatenations of
MSCs containing no confidential event, and other behaviors.

Proposition 17:Op is effectively regular, and ifV = Σp,
thenOV,•

\C andOV,◦ are effectively regular.

Proof Sketch.For anyH , we can build an automatonAp(H)
that recognizes the projection of all MSCs inFH on p.
As concatenation of MSCs imposes a total order on events
of the same process, these projection are concatenations of
finite sequences of events (local projections of MSCs along
transitions ofH). HenceAp(H) has transitions using labels
of event located on processp, and just needs to remember
the transition ofH that is recognized (the current MSC under
execution), and an integer symbolizing the last event of the
current MSC executed byp. Similarly, we can design an
HMSCH\C where transitions are labeled by MSC that do not
contain confidential events, and hence an automatonA′

p(H)
that accepts only projections onp of sequences of MSCs with
only white events. HenceA′

p(H) recognizesOV,•
\C (H). Last,

if V = Σp, thenOV,◦(H) = Op(H). �

Corollary 18: The problem of deciding local interference
of an HMSC H with respect to a given processp ∈ P is
PSPACE-complete.

Proof Sketch.Using the results of proposition 17, the problem
consists in comparing the languages of two automata (whence
the complexity in PSPACE). For the hardness part, we can
also show that any regular language inclusion problem can be
encoded as a local interference problem. �

Local interference is decidable, and describes a situation
where a process can discover that the running execution of
the system containsor will contain a confidential action.
However, local interference does not distinguish between a
situation where an observation is a causal consequence of
some confidential action and a situation where observation and
confidential action highlighted by the interference are concur-
rent. Language-based comparison of observations (and alsoin
general most of language-based non-interference settings) only
characterize the possibility for an attacker to reveal occurrence
of confidential actions during a run of a system.

B. Causal interference

We first give a concrete example showing that interference
is much more dangerous when the confidential event that
is detected lays within the causal past of some observation.
Nowadays, a lot of attention is devoted to privacy. However,
it is well known that users spread a lot of information to visited
sites when browsing the web. This information is not always
local information (cookies, cache, etc.) that can be erasedby
users if needed. It can also be information stored elsewhere
on the web: logs, forms, etc.. When observation of a causal
consequence of a confidential action (MrX has bought a
book on commercial siteY ) by an attacker indicates that a
confidential operation has occurred, this may also mean that
classified information might be available at some vulnerable
site (the credit card details ofX are stored somewhere onY ’s
website). Hence, characterizing interference where confidential
actions and observations are causally related, is important.
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Fig. 2. An interferent HMSC

On the HMSC depicted in Figure 2, the projection of MSCs
recognized byH on p is the language(?n)∗.(?m+?n), and
every MSC with projection onp in (?n)∗.?m is the projection
of a concatenation of several occurrences ofM3, followed by
one occurrence ofM1, which contains a confidential event.
According to definition 16, this HMSC is locally interferent.
However, when observing arrival of messagem, processp
can deduce that it is currently executing a behaviorin which a
confidential action occurs, but not that this actionhas already
occurred. This means in particular that NI does not always
characterize a cause to effect relation among hidden actions
and observation. To overcome this weakness of language-
based information flow characterizations, the notion of NDC
(Non-Deducibility on Composition) has been proposed to
detect when confidential actionscauseobservable effects. For-
mally, NDC says that a systemS composed with any process
R (that enables/forbids confidential events) is observationally
equivalent toS.

In the rest of this section, we propose a decidable notion
of causal interference(still with respect to a fixed attacker
p ∈ P). It emphasizes on causal dependencies between
confidential and visible actions of the system. Bearing in mind



that a black event located on processp is a consequence of a
confidential event, we show that causal dependencies can be
highlighted in terms of an observation function built usingthe
black/white tokens attached to events and processes withinan
MSC. We want to check if a processp can detect whether
some confidential action has occurred in the causal past of its
observed events. In other words, this means that the projection
on p of an execution ofH contains a black event, and that
equivalent projections also contain black events.

Definition 19: For an HMSCH and a processp ∈ P, H is
causally non-interferent(with respect top) if for every MSC
M in FH such thatM contains a black event on processp,
there exists another MSCM ′ in FH such that

• M ′ contains no black event on processp, and
• L(Op(M)) = L(Op(M ′))
Causal non-interference is weaker that NDC: it compares

the observations of an HMSC with the observations that are
still possible whitout confidential events. NDC compares a
behavior of a specification with a specification controlled by a
processR, in which some confidential events can be allowed.

Theorem 20:For a fixed set of processesP, deciding causal
non-interference of an HMSCH with respect to a process
p ∈ P is PSPACE-complete.

We prove this theorem in several steps. We use the result
of Proposition 15,i.e., the fact that black/white coloring of
processes at the end of a sequence of concatenated MSCs
can be done by remembering the status of processes after
each MSC. This property holds for MSCs built along paths
of HMSCs, and is used (in Proposition 21) to build HMSCs
that recognize MSCs that belong toFH and after which a fixed
process is black (or similarly remains white). These HMSCs
contain nodes ofH , but remember for each noden whether
processes are black or white after an MSC built along a path
ending inn. Then causal interference will be reduced to an
inclusion problem of effectively regular observation functions.

Proposition 21: Let H be an HMSC,p ∈ P, and Σ =
C ⊎ V ⊎N . Then, one can build:

• an HMSCHB,p that recognizes MSCs fromFH after
which p is a black process.

• an HMSCHW,p that recognizes MSCs fromFH after
which p is a white process.

of sizes inO(|H |.2|P|).
Proof Sketch. The nodes of the HMSCs built in the proof
memorize a node of the original HMSC, plus information on
the color of each process (according to Proposition 15, this
is the only information needed to remember the color of a
process along a path ofH). Accepting nodes requirep to be
black inHB,p, and white inHW,p. �

We are now ready to prove theorem 20:
Proof of theorem 20.Following the construction ofHB,p or
HW,p, we can defineAB,p

p and AW,p
p as the automata that

recognize the projections ofHB,p or HW,p. Let us denote
by OB,p(H) = {Op(M) | M ∈ FH ∧ p is black afterM}
the observation function that returns the projection and by
OW,p(H) = {Op(M) | M ∈ FH ∧ p is white afterM}.
Clearly, we haveL(AB,p

p ) = L(Op(HB,p)) = L(OB,p(H))

andL(AW,p
p ) = L(Op(HW,p)) = L(OW,p(H)), soOB,p and

OW,p are effectively regular.
Deciding causal interference ofH with respect top ∈ P

consists in deciding the inclusion problem⊑OB,p,OW,p for H ,
that is checking whetherL(AB,p

p ) ⊆ L(AW,p
p ). Clearly, ifH is

of sizen, thenHB,p andHW,p are of size inO(n.2|P|), and so
areAB,p

p andAW,p
p . Then, checking inclusion ofL(AB,p) into

L(AB,p
p ) is equivalent to checkingL(AB,p

p ) ∩ L(AB,p) = ∅.
Emptiness of regular language is an NLOGSPACE problem,
but the size of the automaton that recognizes the intersection
is in O(n.2|P|.2n.2

|P|

), that is inclusion can be performed
with space inO(log(n) + |P| + n.2|P|). For a fixed set of
processes, the space needed to check causal interferences is
hence polynomial in the size of the input HMSC.

As for local non-interference, the hardness result can be
proved by polynomial encoding of a regular language inclusion
problem. Consider two regular languagesL1, L2. Then one can
design two HMSCsH1, H2 with initial nodesn1

0, n
2
0 such that

L(Op(Hi)) = Li, for i ∈ {1, 2}. Then using the MSCM ′
c of

Figure 4 (in Appendix), one can design a new HMSCH that
contains all transitions and accepting nodes ofH1, H2, with
initial noden2

0 and an additional transitiont1 = (n0,M
′
c, n

1
0).

The MSCM ′
c contains one confidential event on some process

Pc, followed by messages fromPc to all processes inP. This
way, any path ofH that starts with transitiont1 generates an
MSC in whichp is black, and whose projection is inL1. Other
paths that do not start witht1 generate MSCs fromFH2

, and
in particular MSCs in whichp is white and whose projection
on p is in L2. Clearly,H is causally interferent with respect
to p if and only if L1 ⊆ L2. �

Causal interference can be checked inO(log(|H |) + |P|+
|H |.2|P|). It is polynomial in space in the size of the HMSC,
and exponential in the number of processes, but HMSC
specifications are usually defined for small sets of processes.
Also remark that reusing the construction ofHW,p, we can
easily design an automaton recognizingOV,◦

\C (H) as soon as

V = Σp. Hence,OV,◦
\C (H) is effectively regular ifV = Σp.

VI. D ECLASSIFICATION

Non-interference considers confidential information as se-
crets that should remain undisclosed along all runs of a
system. This point of view is too strict to be of practical
interest: In many cases, confidentiality of a secret action has
a limited duration and secrets can be downgraded. Consider
the following example: a user wants to buy an item online,
and pays by sending his credit card information. Everything
from this transaction between the online shop and the buyer
(even if encryption is used) should remain secret. Within this
setting, all payment steps should be considered confidential,
and flow from these actions to observable events should be
prevented. However, if a buyer uses a one time credit card
(i.e. a virtual credit card number generated on request that
can be used only once for a transaction), then all information
on the card is valueless as soon as the payment is completed.
Hence, after completing the transaction, learning that a pay-
ment occurred is harmless and the sequence of interactions



implementing a secured online payment need not be kept
secret. This declassification possibility was first proposed as
conditional interferenceby [1] and later defined in [2] as
intransitive interference. Intransitive non interference (INI) can
be formulated as follows: any run of the system that containsa
confidential action that is not declassified has an equivalent run
from the observer’s point of view. Usually, INI is defined using
a pruning function that removes from a run all confidential
actions that are not declassified, and compares observations
of pruned and normal runs (see [7] for a definition of INI for
transition systems).

From now on, we assume that the alphabetΣ = C ⊎V ⊎N

contains a particular subsetD ⊆ V ⊎ N of declassification
events. Intuitively, declassification events downgrade all their
confidential causal predecessors.

Definition 22: Let M be an MSC. An evente ∈ EM is
classified if it is a confidential event (α(e) ∈ C), it has
an observable successorv ∈ V and it is not declassified
before v, i.e. there exists nod such thate ≤ d ≤ v and
α(d) ∈ D. We denote byClas(M) the set of classified
events ofM . The observation functionOV

\C,D
is defined by

OV
\C,D

(M) = OV (M \ Clas(M)). An MSC M is intransi-
tively non-interferent(INI) iff L(OV

\C,D
(M)) = L(OV (M)).

We can characterize INI in a single MSCM as a property
depending on the causal order inM and on the sets of
confidential, declassification, and observable events.

Proposition 23: An MSC M is intransitively non-
interferent w.r.t. an alphabetΣ = C ⊎ V ⊎ N and a set
of declassification lettersD iff for every pair of events
c ≤ v such thatα(c) ∈ C and α(v) ∈ V , we have
(↓ (c)∩ ↑ (v)) ∩ α−1(D) 6= ∅.

This proposition means that a declassification must occur
between every confidential event and a causally related visible
event. We now define observation functions for HMSCs and
propose a definition of intransitive non interference for HM-
SCs. We defineOV

II ,D(H) = {OV (M) | M is not INI} and
OV

INI,D(H) = {OV (M) | M is INI}. We follow the definition
of [7] to define INI for HMSCs. An HMSC is INI if for every
intransitively interferent (II for short) MSCM in FH , there
exists another MSCM ′ in FH such thatM ′ that is INI and
such thatL(OV (M ′)) = L(OV (M)).

Definition 24: An HMSC is intransitively non-interferent
w.r.t. a declassification alphabetD if L(OV

INI,D(H)) =

L(OV (H)).
Obviously, OV

INI,D(H) ⊆ OV (H), so proving INI boils
down to provingL(OV (H)) ⊆ L(OV

INI,D(H)). Note that
all II MSCs are also interferent, and that checking non-
interference amounts to checking INI withD = ∅. This remark
extends to HMSCs: all intransitively interferent HMSCs are
also causally interferent, and checking causal interference
amount to checking INI withD = ∅. We then establish the
following result:

Theorem 25:INI for HMSCs is undecidable. For a fixed
set of processes, ifV ⊆ Σp, then INI is PSPACE-complete.

We prove the decidability part of this theorem in three steps

detailed below. We first show that INI can be decided for a
sequence of MSCs without remembering the whole sequence.
We then show that HMSCs can be designed to recognize
respectively II MSCs ofFH , and INI MSCs ofFH . An
immediate consequence is thatOV

INI,D(H) is effectively regular
if V ⊆ Σp. A second consequence is that checking INI is
PSPACE-complete. Let us first show that INI can be decided
in a compositional way.

Proposition 26: Let M1, M2 be two MSCs. Then,M1◦M2

is INI if and only if M1 andM2 are INI, and for each pair of
eventsc ∈ M1, v ∈ M2 such thatα(c) ∈ C, α(v) ∈ V , and
c ≤1◦2 v, there exists a processq, with

• c ≤ f , wheref is the maximal event on processq in M1,
• f ′ ≤ v, wheref ′ is the minimal event onq in M2,

and an eventd such thatα(d) ∈ D, and c ≤ d ≤ f or
f ′ ≤ d ≤ v.

This proposition can be intuitively seen as a property of
causal chains. A causal chain fromc to v is a sequence of
eventsc ≤ e1 ≤ . . . en ≤ v. We say that a chain fromc to
v is declassified ifα(ei) ∈ D for somei ∈ 1..n. Then an
MSC is INI if for any pair(c, v) of confidential/visible events
such thatc ≤ v there exists at least one declassified causal
chain from c to v. If so, the confidential eventc must be
declassified by the occurrence of some declassifying action
before the execution ofv occurs.

A causal chain fromc to v in M1 ◦M2 can be decomposed
into a chain fromc to the maximal eventf on a processq in
M1, a causal ordering fromf to a minimal eventf ′ located
on processq in M2 coming from the sequential composition
of M1 and M2, and then a causal chain from the minimal
event f ′ on q to v. However, one does not need to know
precisely the contents ofM1 to decide whetherM1 ◦ M2 is
INI. It suffices to remember for each processp the confidential
events ofM1 that are not yet declassified and are predecessors
of the maximal event executed by processp in M1.
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Fig. 3. An example of non INI sequence of MSCs

On the example depicted in Figure 3, MSCM1 (left) con-
tains three confidential actionsc1, c2, c3, and a declassification
operationd. On the right, MSCM2 contains three visible
actionsv1, v2, v3, and a declassification operationd. All other
events belong toα−1(N). Both MSCs are INI, since no
observation depends on a confidential action inM1 or in M2.
However, in the concatenationM1 ◦M2, execution ofv1 or v2
reveals the occurrence ofc2. Also note thatc1 is declassified
by the first occurrence ofd in M1. This example is particularly
interesting, as it shows that in order to abstract an arbitrarily
long execution, it is not sufficient to remember a boolean value
indicating whether there exists a not yet declassified action
on a process, as two confidential events can be declassified



via different ways. Indeed, some confidential actions couldbe
declassified for a process while some others could not, even
when located on the same process.

We can characterize II MSCs in a setFH by remembering
finite sets of shapes of causal chains. In order to define these
shapes, letM be a MSC, letc be a confidential event in
M . We define a functioncl(c,M) : P −→ {⊥,+,⊤} such
that cl(c,M)(p) = ⊥ if there exists no causal chain fromc
to an event located onp, cl(c,M)(p) = + if there exists a
causal chain fromc to a maximal eventf located onp, and
(↓ c ∩ ↑ f) ∩ α−1(D) = ∅, andcl(c,M)(p) = ⊤ otherwise.
This function classifies processes according to the existence
and classification degree (declassified or not) of causal chains
between the confidential eventc and the last event seen on
each process. For a setP of processes, any such mapcl(c,M)
can have at most3|P| distinct values. LetCl = {⊥,+,⊤}P

denote the set of all maps.
By proposition 26,M1 ◦M2 is not INI if M1 or M2 is not

INI, or if there existsc ∈ M1 andv ∈ M2 such that:
• there exists a processp such thatcl(c,M1)(p) = +, and

an eventf located onp in M2, such that no causal chain
from f to v is declassified.

• for every processq such thatcl(c,M1)(q) = ⊤ there
exists no eventf ≤ v located onq, andv is not located
on q.

One can furthermore computecl(c,M1◦M2◦· · ·◦Mk)(p) in-
crementally with finite memory. We havecl(c,M1◦M2)(p) =
⊥ if cl(c,M1)(p) = ⊥, and if there exists no pair of events
e ≤ f in M2 with f is located ofp, andcl(c,M1)(φ(e)) 6= ⊥.

We havecl(c,M1 ◦M2)(p) = + if cl(c,M1)(p) ∈ {⊥,+},
there exists a processq such thatcl(c,M1)(q) = +, and a
pair of eventse ≤ f in M2 such thate is minimal on q, f
is maximal on processp, and furthermore, no causal chain
from e to f is declassified, and for every processq′ 6= q, if
cl(c,M1)(q

′) = +, then no declassified causal chain from an
event onq′ to f exists inM2, if cl(c,M1)(q

′) = ⊤ then no
causal chain from an event onq′ to f exists inM2.

We havecl(c,M1 ◦M2)(p) = ⊤ if cl(c,M1)(p) = ⊤, or
• there exist a processq such thatcl(c,M1)(q) = + and a

declassified chain from an evente located on processq
to an eventf located on processp, or

• there exist a processq such thatcl(c,M1)(q) = ⊤, and
a causal chain from an evente located on processq to
an eventf located on processp.

Last, cl(c,M1 ◦ M2)(p) = ⊥ if cl(c,M1)(p) = ⊥ and M2

does not contain a pair of eventse ≤ f such thate is located
on q with cl(c,M1)(q) 6= ⊥, andf is located onp.

Now, if M1 contains two confidential eventsc1, c2 such that
cl(c1,M1) = cl(c2,M1), thencl(c1,M1 ◦M2) = cl(c2,M1 ◦
M2). It means that to detect interferences, one does not have
to remember events, but only the shape of causal relations
(existing, declassified or not) from confidential events to their
successors on each process. There are at most3|P| such distinct
shapes in a MSC, so one can check INI along arbitrarily long
sequences of MSCs with finite memory.

Proposition 27: LetH be an HMSC, with labeling alphabet
Σ and setD of declassification letters. Then, one can build an

HMSCH II generating all II MSCs inFH and an HMSCH INI

generating all INI MSCs inFH , with sizes at most2.|H |.23
|P|

Proof Sketch. We build HMSC H II as follows: a state
(n, b,X) of H II memorizes a noden of H , a booleanb
indicating whether an interference has been detected, and a
setX = {cl1, . . . clℓ), where eachcli is a function fromP to
{⊥,+,⊤} that memorizes the shape of causal chains from a
confidential event to maximal events on processes.H II follows
transitions ofH , and updatescli’s. For each new confidential
eventc occurring in a transition labeled by an MSCM , a new
functioncl(c,M) is appended to the current state. As soon as
an interference is detected,b is set to true. Accepting states of
H II are states wheren is accepting inH , andb is true.H INI

can be designed with a similar construction where accepting
states are states withn accepting andb false. �

We are now ready to prove Theorem 25:
Proof (of Theorem 25). Undecidability is easily obtained
from undecidability of causal interference, and by setting
D = ∅. Let us now consider the decidability part, with
V ⊆ Σp. Following the proof of proposition 27, one can
build an automatonAp(H

INI) of size at most2.|H |.23
|P|

that recognizesOV (H INI). One can easily prove that when
V ⊆ Σp, we haveOV (H INI) = OV

INI,D(H), and hence
L(Ap(H

INI)) = L(OV
INI,D(H)), andOV

INI,D(H) is effectively
regular.

From proposition 17, we can build an automatonAp(H) of
size inO(k.H), wherek is the maximal number of events in
an MSC ofH , that recognizesOV (H). Then it is sufficient to
check whetherL(Ap(H)) ⊆ L(Ap(H

INI)) to decide ifH is
intransitively interferent, which is again an inclusion problem
that can be checked in space inO(2.|H |.23

|P|

). Hardness is
proved by showing a polynomial reduction from a language
inclusion problem to an INI problem withD = ∅. �

The declassification setting can be refined to consider
selective declassification. Following the definition of [9], in
addition to the declassification alphabetD, we define a map
h : D → 2C , whereh(αd) defines the labels of confidential
events that an action with labelαd declassifies. Definition 22
easily adapts to this setting, simply by requiring that a causal
chain from a confidential eventc to a visible eventv is
declassified by an eventd such thatα(c) ∈ h(α(d)). We
then say that an eventc is classified if it is a confidential
event (α(c) ∈ C), it has an observable successorv, and it
is not declassified by one of the actions that can declassify
it, that is, α(c) 6∈ h (α(↓ (c)∩ ↑ (v)) ∩D). INI with selec-
tive declassification (INISD) adapts the definitions of INI to
consider declassification without changing observations.Like
for standard declassification, we can build an HMSC that
recognizes INISD MSCs ofFH . The only change w.r.t. INI is
that one has to remember in the HMSC construction the label
of confidential events from which chains originate, yielding
automata of sizes in2.|H |.2|C|.3|P| . If V ⊆ Σp, thenOV

II ,D

andOV
INI,D are effectively regular. We hence have:

Corollary 28: INISD is undecidable for HMSCs. For a
fixed set of processes, it is PSPACE-complete whenV ⊆Σp.



VII. R ELATED WORK AND CONCLUSION

Related work. Non-interference was seldom studied for sce-
nario formalisms. A former work considers non-interference
for Triggered Message Sequence Charts [18]. The interference
property is defined in terms of comparison of ready sets (sets
of actions that are fireable after a given sequence of actions
w). However, this work mainly considers finite scenarios, and
does not address decidability and complexity issues.

A first work considering non-interference for true con-
currency models appears in [6]. The authors consider in-
terference for elementary nets (i.e., nets where firing rules
allow places to contain at most one token). They characterize
causal places, where firing a high-level transition causally
precedes the firing of a low-level one andconflict places,
where firing a high-level transition inhibits the firing of a low-
level one. Reachability of causal or conflict places is shown
equivalent to BNDC (Bisimulation-based NDC, the variant
using bisimulation instead of language equality). In [7], the
notion of intransitive non-interference from [2] is revisited for
transition systems, and non-interference with downgraders is
considered for elementary nets. A structural characterization
is given in terms of reachable causal and conflict places. As
in [6], causal and conflict places are characterized in termsof
possible fireable sequences of transitions, hence considering
the interleaving semantics of the net.

Darondeauet al. [8] study (B)NDC and INI forunbounded
labeled Petri nets, and extend their results to selective de-
classification in [9]. The authors obtain decidability results
of these properties for injectively labeled nets by a very
clever exploitation of decidability/undecidability results for
language inclusion. The characterization relies on sequences
of transitions, and not on causal properties of nets.

A contrario, Baldan et al [10] emphasize the fact that char-
acterizing BNDC in terms of structural conditions expressing
causality or conflict between high and low-level transitions,
is a way to provide efficient algorithms to check interference.
They propose a definition of complete unfolding w.r.t. non-
interference, and reduce BNDC for safe nets to checking
that a complete unfolding is weak-conflict and weak causal
place free. Weak causal places characterize dependencies and
conflicts between high and low transitions. Their results show
that one can identify interferences in concurrency models
without relying on interleaving semantics. The characterization
of BNDC via weak conflict and causal places holds only for
safe nets,i.e., for finite state systems.

Conclusion. We have proposed a partial order framework
for information flow properties analysis, and shown that non-
interference is undecidable. However, as soon as observations
are effectively regular, information flow properties become
decidable. This can be enforced for instance by considering
observation performed by a single process in the system, which
leads to the notions of local non-interference and its extensions
with declassification, that are all decidable. These problems
are PSPACE-complete, with procedures that never compute
the interleaving semantics of the original HMSC.

A possible refinement of the landscape is to consider suffi-
cient conditions for decidability of interference when several
processes can observe the system. We would also like to extend
the current definitions to use the full dicriminating power
of partial orders, i.e. consider non-interference properties of
the formO1(H) ≡ O2(H), where≡ denotes isomorphism.
For observations localized on a single process, the current
results suffice. When observations are effectively regular, but
contain events located on more than one process, showing
isomorphism could require other tools such as graph gram-
mars to compare observations, and decidability of interference
problems may require additional conditions.

Another line of research is to consider security issues
when an attacker can interact with the system in order to
gain information (active interference), or when he can get
information on the current configuration of the system (state-
based interference). Extending definitions of informationflows
in HMSCs to quantify the amount of information disclosure by
mean of measures (e.g. probability measure, average number
of bits leaked per action,...) is also a challenging task.
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tant que spécifications partielles et leurs complétions dans les réseaux
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APPENDIX

This appendix details missing proofs for propositions in the
text. Proofs for propositions 15, 23 and 26 are straightforward
consequences of definitions 14 and 22, and are not provided.

A. Proof of Proposition 10

Proposition 10. Let H be a HMSC. The inclusion problem
⊑O1,O2

(H) is undecidable in general, even ifO1 or O2 is
an effective regular observation function. It isdecidableif O1

and O2 are both effective regular functions.
Proof. The proof is a reduction from the language inclusion
problem for HMSCs (which is known undecidable). LetH1 =
(N1,→1,M1, n0,1, F1) andH2 = (N2,→2,M2, n0,2, F2) be
two HMSCs, defined over an alphabet of visible actionsV , and
with at least two processes. We design an inclusion problem
such that⊑O1,O2

(H) iff L(H1) ⊆ L(H2).
LetPc 6∈ P be a new process andc a new confidential action.

We defineMc as the MSC containing the single atomic action
c on processPc, as illustrated on Figure 4 bottom left. A new
HMSC H = (N1 ⊎N2,→,M, n0,2, F1 ⊎ F2) is defined over
alphabetΣ′ = V ∪ C, whereC = {Pc(c)}, as follows:M =
M1 ⊎ M2 ⊎ {Mc} and→=→1 ⊎ →2 ⊎{(n0,2,Mc, n0,1)},
as illustrated on the upper part of Figure 4.

ChoosingO1 = OV,◦ and O2 = OV,◦
\C , we clearly have

O2(H) = L(H2) andO1(H) = L(H1)∪L(H2). Thus⊑O1,O2

(H) if and only if L(H1) ⊆ L(H2), which concludes the
proof.

Note that undecidability is not due to a particular choice
of observation function: a similar proof is obtained forO1 =
OV,◦ or O1 = OV,• andO2 = OV,•

\C , by replacingMc by an
MSC M ′

c in which processPc sends a message to all other
processes after performing actionc, as depicted on the bottom
right of Figure 4.

Similarly, if O1 is an effective regular function, that is
if O1(H) is a regular languageL, the inclusion problem is
brought back to testing whetherL ⊆ L(H1), which is also
known to be an undecidable property.

The decidability result of the theorem is an immediate
consequence of decidability for regular languages inclusion.
�

B. Proof of Theorem 12

Theorem 12.Let O be an observation function on alphabet
Σ = C ⊎ V ⊎N and letH be a set of HMSCs. One cannot
decide in general ifO is effectively regular forH.
Proof. It was proved in [15] that one cannot decide whether
L(H) is regular, i.e., if it can be recognized by a finite
automaton. Undecidability comes from the fact that HMSCs
can be used to encode rational traces, for which regularity
is undecidable. Let us setΣ = V . Then, checking whether
O = OV,◦ is effectively regular for a partition of alphabetΣ
amounts to checking regularity ofL(H), for everyH ∈ H.
However, this is already an undecidable problem for a single
HMSC, obtained if we setH = {H}. �

n0,2

n0,1

Mc

H1

H2

H :

Mc : Pc

c

M ′
c : Pc

c

P1 · · ·
Pn

...

Fig. 4. Non-interference in HMSCs as a language problem

C. Proof of Proposition 13

Proposition 13. Let M be an MSC with labeling alphabet
Σ = C ⊎ V ⊎N and set of eventsE. Then,M is interferent
if and only if there are two eventse, f such thatα(e) ∈ C,
α(f) ∈ V , ande ≤ f .
Proof. We prove this lemma by showing the two directions of
the implication.

First, let us suppose that there exists no pair of eventse, f in
M such thatα(e) ∈ C, α(f) ∈ V . If there is no evente ∈ E

such that inα(e) ∈ C, thenM\ ↓ (α−1(C)) = M , which
gives the required equality. Ifα−1(C) 6= ∅, then for eache ∈
α−1(C), ↓ (e)∩α−1(V ) = ∅. In this case,M\ ↓ (α−1(C)) =
M \ α−1(C). This means thatOV (M) = OV

\C(M), which
yields the result.
ii) Let us now prove the converse direction. Suppose that

there exists a pair of eventse ≤ f such thate is a confidential
event, andf is a visible one. Then, all linear extensions ofM

are of the formu = v.e.v′.f.v′′. For each of them, the largest
common prefix betweenπV (u) and any word inπV (M\ ↓
(α−1(C))) is a prefix ofπV (v). This implies thatOV

\C(M) 6=

OV (M). �

D. Proof of Proposition 17

Proposition 17. Op is effectively regular, and ifV = Σp,
thenOV,•

\C andOV,◦ are effectively regular.



Proof Let us show that for any HMSCH = (N,→,M, n0, F )
one can effectively build a finite state automatonAp(H)
recognizingL(OV,◦(H)) or equivalentlyOp.

Let k be the maximal size of a projection of a MSC inM.
The automatonAp(H) is defined byAp = (N × {0, . . . , k −
1}, δ, (n0, 0), F × {0}). Let (n,M, n′) be a transition in
H . The observationL(Op(M) is a possibly empty word
of Σp. If πp(L(M)) = ε, then δ contains the transition
((n, 0), ε, (n′, 0)). If πp(M) = a1 . . . aq (with q ≤ k),
then δ contains the transitions((n, i − 1), ai, (n, i)) for each
i ∈ {1, .., q − 1}, and((n, q − 1), aq, (n

′, 0)).
An easy induction shows that for every path

(n0,M1, n1) . . . (nℓ−1,Mℓ, nℓ), such that the projection
of eachMi on p is a wordwi = ai,1 . . . ai,qi there exists a

path (n0, 0)
a1,1

−→ (n0, 1)
a1,2

−→ . . .
aℓ,qℓ−→ (nℓ, 0), and conversely.

Furthermore, ifnℓ is an accepting state ofH , then(nℓ, 0) is
an accepting state ofAp. Hence,Ap recognizesL(Op(H)).
The size ofAp(H) is in O(|N |.k).

Let us now show that one can design an automaton that
recognizesL(OV,•

\C (H) for any HMSCH . Let us first recall

the definition ofOV,•
\C (H). We haveOV,•

\C (H) = {OV (M1 ◦
· · · ◦Mk) | M1 ◦ · · · ◦Mk ∈ FH ∧∀i, α(Ei)∩C = ∅}. Let us
now design a new HMSCH\C = (N,→\C ,M, n0, F ) such
that(n,M, n′) ∈→\C iff (n,M, n′) ∈→ andα(EM )∩C = ∅.
Clearly,FH\C

is the set of MSCs generated byH that do not
contain actions fromC, andH\C is also an HMSC. We have
Op(H\C) = OV,•

\C (H), and hence we can apply the technique
above to design an automatonA′

p(H) = Ap(H\C) of size in
O(|N |.k) that recognizesL(OV,•

\C (H)). HenceOp andOV,•
\C

are effectively regular. �

E. Proof of Corollary 18

Corollary 18. The problem of deciding local interference of
an HMSCH with respect to a given processp ∈ P is PSPACE-
complete.
Proof From proposition 17, for any HMSCH and any
processp, we can design an automatonAp(H) that recog-
nizesL(Op((H)), and an automatonA′

p(H) that recognizes
L(OV,•

\C (H)).
Note that these automata are of size linear in the size

of H . One can notice thatL(A′
p(H)) ⊆ L(Ap(H)). So,

checking local non-interference of an HMSCH amounts to a
single inclusion problem⊑Op,OV,•

\C
for HMSCH , i.e checking

that L(Ap(H)) ⊆ L(A′
p(H)). Language inclusion for finite

automata is a well-known PSPACE-complete problem, hence
checking local non-interference is in PSPACE.

For the hardness part, letA = (QA, δA, q0A, FA) and
B = (QB , δB, q0B , FB) be two automata over alphabetΣ,
with disjoint set of states. Similarly to Figure 4, we design
a HMSC H = (QA ⊎ QB,→, q0B, FA ⊎ FB) over a set of
processes{p1, p2, Pc} and alphabetΣ∪{c}, with V = Σ and
C = {c}, such that→ contains:

• a transition(q0B,Mh, q0A) in whichMc is an MSC with
a single atomic confidential action located on processPc

(like in Figure 4),

• for each (q, a, q′) ∈ δA ∪ δB, a transition(q,Ma, q
′)

whereMa is a MSC containing a single messagema

from p2 to p1.

Then the language inclusion problemL(A) ⊆ L(B) can be
reduced in polynomial time to local non-interference ofH

with respect to processp1. Hence, local non-interference is
PSPACE-complete. �

F. Proof of Proposition 21

Proposition 21. Let H be an HMSC,p ∈ P, andΣ = C ⊎
V ⊎N . Then, one can build:

• an HMSCHB,p that recognizes MSCs fromFH after
which p is a black process.

• an HMSCHW,p that recognizes MSCs fromFH after
which p is a white process.

of size inO(|H |.2|P|).
Proof. We build HB,p = (NB,p,→B,p,M, n

B,p
0 , FB,p) as

follows:

• NB,p ⊆ N × 2P is a set of nodes. In a pair(n, P ), n
denotes a node ofH , andP a subset of black processes.
We setnBW

0 = (n0, ∅).
• the set of transitions and nodes ofHB,p is built induc-

tively as follows: from a node(n, P ), if there exists a
transition(n,M, n′) in H , we add(n′, P ′) to NB,p, with
P ′ = P ∪ {p ∈ P | ∃e ≤M f ∧ φ(f) = p ∧ φ(e) ∈
P} ∪ {p ∈ P | ∃e ≤ f, α(e) ∈ C ∧ φ(f) = p}, and we
add transition

(

(n, P ),M, (n′, P ′)
)

to →B,p

• FB,p = F × {P ∈ 2P | p ∈ P} is the set of accepting
nodes. A path ofHB,p is accepting if it ends after
recognizing an MSCM ∈ FH such thatp is black after
M .

Building HW,p = (NW,p,→W,p,M, n
W,p
0 , FW,p) can be

done in a similar way, but settingFW,p = F ×{P ∈ 2P | p 6∈
P}.

The status of a process is built progressively along transi-
tions in a path. Following proposition 15, the process part of
a node inHB,p or HW,p faithfully encodes the status of a
process in the MSCs generated by sequences of transitions
ending in this node. Hence,HB,p (resp. HW,p) recognize
MSCs ofFH after whichp is black (resp. white).

As the nodes of these HMSCs belong toN × 2P, the size
of HB,p or HW,p is in O(|H |.2|P|). �

G. Proof of Proposition 27

Proposition 27. Let H be an HMSC,Σ an alphabet andD
be a set of declassification letters. Then, one can build

• an HMSCH II that generates the set of II MSCs inFH .
• an HMSCH INI that generates the set of INI MSCs in

FH .

that are of sizes at most2.|H |.23
|P|

Proof. We first show howH II = (N II ,→II ,M, nII
0 , F

II ) is
computed, then we show thatH II recognizes intransitively
interferent MSC generated byH . We first define the following
functions. A mapcl : P → {+,⊥,⊤} represents existing
causal dependencies from a confidential event to maximal



event of processes, plus gives information on whether a causal
chain ending on a process declassifies this confidential event.
We denote byCL(M) the set of functions that are computed
starting from all confidential events. Note that ifM contains
no confidential event, thenCL(M) = ∅. Given two MSCsM1,
M2, we have seen thatM1 ◦M2 is intransitively interferent if
M1 is II, or M2 is II, or there existscl ∈ CL(M1) such that
cl(p) = + and M2 contains a chain from an event located
on process to an observable eventv such that there exists
no chain from an event on processq to v with cl(q) = ⊤.
Hence, knowing ifM1 is II or not, andCL(M1), one can
decide whetherM1 ◦M2 is II . We denote byII(CL,M) the
predicate that is true when a set of mapsCL representing
causal chains and declassification in an MSCM ′ allows to
prove thatM ′ ◦M contains an intransitive interference.

The crux is then to be able to maintainCL(M1 ◦ · · · ◦Mk)
and the II information along path ofH . For a given mapcl and
an MSCM , we define the mapUpdate(cl,M) as follows:

We haveUpdate(cl,M)(p) = ⊥ if cl(p) = ⊥, and if there
exists no pair of eventse ≤ f in M2 with f is located ofp,
andcl(φ(e)) 6= ⊥.

We haveUpdate(cl,M)(p) = + if cl(p) ∈ {⊥,+}, and
there exists a processq such thatcl(q) = +, and pair of
eventse ≤ f in M2 such thate is minimal onq, f is maximal
on processp, and furthermore, no causal chain frome to f is
declassified, and for every processq′ 6= q, if cl(q′) = +, then
no declassified causal chain from an event onq′ to f exists in
M2, if cl(q′) = ⊤ then no causal chain from an event onq′

to f exists inM2.
We haveUpdate(cl,M)(p) = ⊤ if

• cl(p) = ⊤, or
• there exist a processq such that cl(q) = + and a

declassified chain from an evente located on processq
to an eventf located on processp, or

• there exist a processq such thatcl(q) = ⊤, and a causal
chain from an evente located on processq to an event
f located on processp.

The map updating function extends to sets of maps the
obvious way :Update(X,M) =

⋃

cl∈X

Update(cl,M).

We are now ready to defineH II = (N II ,→II ,M, nII
0 , F

II ).
We have:

• N II ⊆ N×{tt, ff}×2Cl is a set of nodes that are reachable
from nII

0 . Each node ofN II is hence a triple of the form
(n, b,X), wheren is a node ofH , b is a boolean that
indicates if II has already been discovered, andX is a
set of maps depicting (declassified) causal chains from
confidential events in the sequenceM1 ◦ . . .Mk read so
far along transitions ofH and ending at noden. We set
nII
0 = (n0, ff, ∅).

• We define the transitions relation as follows. We have
((n, b,X),M, (n′, b′, X ′)) ∈→II iff

– (n,M, n′) ∈→ (the transition exists inH),
– b′ = b ∨

∨

cl∈X

II(cl,M) ∧ M is II , that is if II was

detected before, then the concatenated MSCs remain

II , and otherwise becomeII if M is II , or one of the
maps depicting chains starting from a confidential
events in the formerly assembled MSCM1◦· · ·◦Mk

witnesses anII in M1 ◦ · · · ◦Mk ◦M .
– F II = F × {tt} × 2Cl

– X ′ = Update(X,M)∪CL(M). The representation
of chains originating from confidential events is
updated to consider chains ofM and their declas-
sifications, and new observable events may occur in
M , starting new chains and potential new witnesses
for II MSCs.

Obviously, all MSCs generated byH II belong toFH , as→II

always agrees with→. Furthermore, due to compositionality
of cl computation, updating of a chaincl can be done in-
crementally while concatenating MSCs without remembering
the whole sequence. Now, it suffices to remember once the
shape of causal chains from observables actions to maximal
events on processes (the mapscl) to detect II. One needs not
differentiate similar occurrences of maps computed for chains
originating from distinct observable events. Hence, updating
of sets of causal chains representation suffices to represent all
classified chains in a sequence of MSCs recognizes between
n0 and the current node, and hence to detect all occurrences
of intransitive interferences. we can conclude that all MSCs
recognized byH II contain an intransitive interference.

The HMSCH INI = (N INI ,→INI ,M, nINI
0 , F INI) can be built

with the same nodes and transition functions, but with final
satesF INI = F ×{ff}× 2Cl. The sizes ofH II andH INI are at
most2.|H |.23

|P|

.
�


