
Symbolic Unfolding of Parametric Stopwatch
Petri Nets

L.M. Traonouez1, B. Grabiec2 , C. Jard2, D. Lime3 and O.H. Roux3?

1 Università di Firenze, Dipartimento di Sistemi e Informatica, Italy

2 ENS Cachan & INRIA, IRISA, Rennes, France
Université européenne de Bretagne

3 École Centrale de Nantes & Université de Nantes, IRCCyN, Nantes, France

Abstract. This paper proposes a new method to compute symbolic
unfoldings for safe Stopwatch Petri Nets (SwPNs) extended with time
parameters, which symbolically handles both the timings and the pa-
rameters.
We propose a concurrent semantics for (parametric) SwPNs in terms of
timed processes à la Aura and Lilius. We then show how to compute a
symbolic unfolding for such nets, as well as, for the subclass of safe time
Petri nets, how to compute a finite complete prefix of this unfolding.
Our contribution is threefold: unfolding in the presence of stopwatches
or parameters has never been addressed before. Also in the case of time
Petri nets, the proposed unfolding has no duplication of transitions and
does not require read arcs and as such its computation is more local.
Finally the unfolding method is implemented (for time Petri nets) in the
tool Romeo.

Keywords: unfolding, time Petri nets, stopwatches, parameters, sym-
bolic methods

1 Introduction

The analysis of concurrent systems is one of the most challenging practical prob-
lems in computer science. Formal specification using Petri nets has the advantage
to focus on the tricky part of such systems, that is parallelism, synchronization,
conflicts and timing aspects. Among the different analysis techniques, we chose
to develop the work on unfoldings [9].

Unfoldings were introduced in the early 1980s as a mathematical model of
causality and became popular in the domain of computer aided verification. The
main reason was to speed up the standard model-checking technique based on
the computation of the interleavings of actions, leading to a very large state
space in case of highly concurrent systems. The seminal papers are [13] and [8].
They dealt with basic bounded Petri nets.

? This work was partially funded by the ANR national research program DOTS (ANR-
06-SETI-003).

Since then, the technique has attracted more attention, and the notion of
unfolding has been extended to more expressive classes of Petri nets (Petri nets
with read and inhibitor arcs [7,3], unbounded nets [1], high-level nets [11], and
time Petri nets [6]).

Advancing this line of works, we present in this paper a method to unfold safe
parametric stopwatch Petri nets. Stopwatch Petri nets (SwPNs) [5] are a strict
extension of the classical time Petri nets à la Merlin (TPNs) [14,4] and provide
a means to model the suspension and resumption of actions with a memory of
the “work” done before the suspension. This is very useful to model real-time
preemptive scheduling policies for example.

The contribution of this paper is a new unfolding algorithm addressing the
problem for stopwatch and parametric models for the first time. When applied
to the subclass of time Petri nets, it provides an alternative to [6] and improves
on the latter method by providing a more compact unfolding and not requiring
read arcs in the unfolding (if the TPN itself has no read arcs of course). We
also provide a way to compute a finite complete prefix of the unfolding for (safe)
TPNs. Note this is the best we can do as most interesting properties, such as
reachability, are undecidable in time Petri nets in presence of stopwatches [5] or
parameters [15].

While not extremely difficult from a theoretical point of view, we think that
the handling of parameters is of utmost practical importance: adding parameters
in specifications is a real need. It is often difficult to set them a priori: indeed,
we expect from the analysis some useful information about their possible values.
This feature of genericity clearly adds some “robustness” to the modeling phase.
It is important to note that, as for time, we handle these parameters symboli-
cally to achieve this genericity and the unfolding technique synthesizes all their
possible values as linear constraint expressions.

Finally, note that the lack of existence of a finite prefix in the stopwatch
or parametric cases is not necessarily prohibitive as several analysis techniques,
such as supervision, can do without it. Practical experience also demonstrates
that even for very expressive models, such as Linear Hybrid Automata [10], the
undecidability of the interesting problems still allows to analyze them in many
cases.
Organization of the paper. Section 2 gives preliminary definitions and Sec-
tion 3 propose an unfolding method of stopwatch parametric Petri nets based
on an original way of determining conflicts in the net. Section 4 shows how to
compute a complete finite prefix of the unfolding of a time Petri net. Finally in
Section 5, we discuss open problems and future work.

2 Definitions

We denote byN the set of non-negative integers, by Q the set of rational numbers
and R the set of real numbers. For A ∈ {Q,R}, A≥0 (resp. A>0) denotes the
subset of non-negative (resp. strictly positive) elements of A. Given a, b ∈ N
such that a ≤ b, we denote by [a..b] the set of integers greater or equal to a and
less or equal to b. For any set X, we denote by |X| its cardinality.

For a function f on a domain D and a subset C of D, we denote by f|C the
restriction of f to C.

Let X be a finite set. A (rational) valuation of X is a function from X to
Q. A (rational) linear expression on X is an expression of the form a1x1 +
· · · + anxn, with n ∈ N, ∀i, ai ∈ Q and xi ∈ X. A linear constraint on X
is an expression of the form LX ∼ b, where LX is a linear expression on X,
b ∈ Q and ∼∈ {<,≤,≥, >}. Given a linear expression L = a1x1 + · · · + anxn
on X and a rational valuation v on X, we denote v(L) the rational number
a1v(x1) + · · · + anv(xn). Similarly for a linear constraint C = L ∼ b, we note
v(C) the Boolean expression (v(L) ∼ b). We extend this notation in the same
way for conjunctions, disjunctions and negations of constraints.

For the sake of readability, when non-ambiguous, we will “flatten” nested
tuples, e.g. 〈〈〈B,E, F 〉, l〉, v, θ〉 will be written 〈B,E, F, l, v, θ〉.

2.1 Unfolding Petri nets

Definition 1 (Place/transition net). A place/transition net with read arcs
(P/T net) is a tuple 〈P, T,W,Wr〉 where: P is a finite set of places, T is a finite
set of transitions, with P ∩ T = ∅, W ⊆ (P × T) ∪ (T × P) is the transition
incidence relation and Wr ⊆ P × T is the read incidence relation

This structure defines a directed bipartite graph such that (x, y) ∈ W ∪Wr

iff there is an arc from x to y.
We further define, for all x ∈ P ∪ T , the following sets: •x = {y ∈ P ∪

T | (y, x) ∈ W}, �x = {y ∈ P ∪ T | (y, x) ∈ Wr} and x• = {y ∈ P ∪ T | (x, y) ∈
W}. These set definitions naturally extend by union to subsets of P ∪ T .

A marking m : P → N is a function such that (P,m) is a multiset. For all
p ∈ P , m(p) is the number of tokens in the place p. In this paper we restrict
our study to 1-safe nets, i.e. nets such that ∀p ∈ P, m(p) ≤ 1. Therefore, in the
rest of the paper, we will usually identify the marking m with the set of places
p such that m(p) = 1. In the sequel we will call Petri net (with read arcs) a
marked P/T net, i.e. a pair 〈N ,m〉 where N is a P/T net and m a marking of
N , called initial marking.

A transition t ∈ T is said to be enabled by the marking m if •t∪ �t ⊆ m. We
denote by en(m), the set of transitions enabled by m.

2.2 Semantics of true concurrency

There is a path x1, x2, . . . , xn in a P/T net iff ∀i ∈ [1..n], xi ∈ P ∪ T and
∀i ∈ [1..n− 1], (xi, xi+1) ∈W ∪Wr.

In a P/T net, consider x, y ∈ P ∪ T . x and y are causally related, which we
denote by x < y, iff there exists a path in the net from x to y. The causal past of
a transition t is called local configuration and denoted by dte, and is constituted
by the transitions that causally precede t, i.e. dte = {t′ ∈ T | t′ < t}.

The addition of the read arcs introduces another causal relation between
two transitions x, y ∈ T , that is called weak causality and denoted by x ↗ y,

iff x < y ∨ �x ∩ •y 6= ∅. This solution is already presented in [7]. The relation
denotes that the firing of the transition x happens before the one of y.

The two causal relations induce a relation of conflicts between the transitions
of the net. A set X ⊆ T of transitions are said to be in conflict, noted #X ,
when some transitions consumed the same token, or when the weak causality
defines a cycle in this set. Formally:

#X =
{
∃x, y ∈ X : x 6= y ∧ •x ∩ •y 6= ∅ ∨
∃x0, x1, . . . , xn ∈ X : x0 ↗ x1 ↗ . . . xn ↗ x0

Definition 2 (Occurrence net). An occurrence net is an acyclic P/T net
〈B,E, F, Fr〉:

– finite by precedence (∀e ∈ E, dee is finite),
– such that each place has at most one input transition (∀b ∈ B, |•b| ≤ 1),
– and such that there is no conflicts in the causal past of each transition (∀e ∈
E, ¬#{e ∪ dee}).

We use the classical terminology of conditions and events to refer to the places
B and the transitions E in an occurrence net.

Definition 3 (Branching process). A branching process of a Petri net N =
〈P, T,W,Wr,m0〉 is a labeled occurrence net β = 〈O, l〉 where O = 〈B,E, F, Fr〉
is an occurrence net and l : B ∪ E → P ∪ T is the labeling function such that:

– l(B) ⊆ P and l(E) ⊆ T ,
– for all e ∈ E, the restriction l|•e of l to •e is a bijection between •e and •l(e),
– for all e ∈ E, the restriction l|�e of l to �e is a bijection between �e and �l(e),
– for all e ∈ E, the restriction l|e• of l to e• is a bijection between e• and l(e)•,
– for all e1, e2 ∈ E, if •e1 = •e2, �e1 = �e2 and l(e1) = l(e2) then e1 = e2.

E should also contain the special event ⊥, such that: •⊥ = ∅, �⊥ = ∅, l(⊥) = ∅,
and l|⊥• is a bijection between ⊥• and m0.

Example 1. Fig. 1b shows a branching process obtained by unfolding the net
presented in Fig. 1a (ignoring any timing or parameter information). The labels
are figured inside the nodes. The branching process in Fig. 1b includes two firings
of t1 after executing the loop t2, t3. It could be repeated infinitely many times,
leading to an infinite unfolding.

Branching processes can be partially ordered by a prefix relation. For exam-
ple, the process {e1, e2, e3} is a prefix of the branching process in Fig. 1b in
which t1 is fired only once. There exists the greatest branching process accord-
ing to this relation for any Petri net N , which is called the unfolding of N . Let
β = 〈B,E, F, Fr, l〉 be branching process.

A co-set in β is a set B′ ⊆ B of conditions that are in concurrence, that
is to say without causal relation or conflict, i.e. ∀b, b′ ∈ B′,¬(b < b′) and
¬#

⋃
b∈B′(

•b ∪ d•be).

p1

t1[10, 20]

p2

t2[a, b]

p3 p4

t3[5, 5]t4[16, 16]

p5

(a)

∅⊥

p1 p2

t1 e1 t2 e2

p3 p4

t3 e3

p2t1e4

p3

t4e5

p5

(b)

Fig. 1. A parametric stopwatch Petri net (a) and a branching processes of its underlying
(untimed) Petri net (b). Stopwatch arcs are drawn with a circle tip and read arcs with
a diamond tip.

A configuration of β is a set of events E′ ⊆ E which is causally closed and
conflict-free, that is to say ∀e′ ∈ E′,∀e ∈ E, e < e′ ⇒ e ∈ E′ and ¬#E′. In
particular the local configuration dee of an event e is a configuration.

A cut is a maximal co-set (inclusion-wise). For any configuration E′, we can
define the cut Cut(E′) = E′•\•E′, which is the marking of the Petri net obtained
after executing the sequence of events in E′.

An extension of β is a pair 〈t, e〉 such that e is an event not in E, •e∪ �e ⊆ B
is a co-set, the restriction of l to •e is bijection between •e and •t, the restriction
of l to �e is bijection between �e and �t, and there is no e′ ∈ E s.t. l(e′) = t,
•e′ = •e and �e′ = �e. Adding e to E and labeling e with t gives a new branching
process.

2.3 Stopwatch Petri nets

A mainstream way of adding time to Petri nets is by equipping transitions with
a time interval. This model is known as Time Petri nets (TPNs) [14,4]. We
use a further extension of TPNs featuring stopwatches, called Stopwatch Petri
nets (SwPNs) and originally proposed in [5]. Stopwatches allow the modelling
of suspension / resumption of actions, which has many useful applications like
modelling real-time preemptive scheduling policies [12].

The added expressivity comes at the expense of decidability: most interesting
problems, such as reachability, liveness, etc. are undecidable for SwTPNs, even
when bounded [5]. They are decidable however when restricting to bounded
TPNs [4].

Definition 4 (Stopwatch Petri net). A Stopwatch Petri net (with read arcs)
SwPN is a tuple 〈P, T,W,Wr,Ws,m0, eft, lft〉 where: 〈P, T,W,Wr,m0〉 is a Petri
net, Ws ⊆ P × T is the stopwatch incidence relation, and eft : T → Q≥0

and lft : T → Q≥0 ∪ {∞} are functions satisfying ∀t ∈ T, eft(t) ≤ lft(t), and
respectively called earliest (eft) and latest (lft) transition firing times.

Given a SwPN N = 〈P, T,W,Wr,Ws,m0, eft, lft〉, we denote by Untimed(N)
the Petri net 〈P, T,W,Wr ∪Ws,m0〉. Note that in Untimed(N) stopwatch arcs
are transformed into read arcs. For any transition t, we define the set of its
activating places as ◦t = {p ∈ P | (p, t) ∈ Ws}. A transition is said to be active
in marking M if it is enabled by M and ◦t ⊆ M . An enabled transition that is
not active is said to be suspended.

Intuitively, the semantics of TPN states that any enabled transition measures
the time during which it has been enabled and an enabled transition can only fire
if that time is within the time interval of the transition. Also, unless it is disabled
by the firing of another transition, the transition must fire within the interval:
a finite upper bound for the time interval then means that the transition will
become urgent at some point. For SwPNs, the time during which the transition
has been enabled progresses if and only if all its activating places are marked.
Otherwise it is “frozen” and keeps its current value.

More formally, we define the concurrent semantics of SwPNs using the time
processes of Aura and Lilius [2]. Let us first recall the definition of these time
processes:

Definition 5 (Time process). A time process of a Stopwatch Petri net N is a
pair 〈E′, θ〉, where E′ is a configuration of (a branching process of) Untimed(N)
and θ : E′ → R≥0 is a timing function giving a firing date for any event of E′.

Let 〈E′, θ〉 be a time process of a SwPN N = 〈P, T,W,Wr,Ws,m0, eft, lft〉
and β = 〈B,E, F, Fr, l〉 be the associated branching process of Untimed(N). We
note ∗e = •e ∪ {b ∈ �e | l(b) ∈ �l(e)} the set of conditions that enabled an
event e in the process E. These conditions are the consumed conditions and
the read conditions due to read arcs, but it excludes the read conditions due to
stopwatches.

Let B′ ⊆ E′• be a co-set and t ∈ T be a transition enabled by l(B′). We define
the enabling date of t by B′ as: TOE(B′, t) = max({θ(•b) | b ∈ B′∧l(b) ∈ •t∪�t}).
This means that we measure the time during which the transition has been
enabled. By extension, for any event e, we note TOE(e) = TOE(∗e, l(e)). We also
define the set of events temporally preceding an event e ∈ E′ as: Earlier(e) =
{e′ ∈ E′ | θ(e′) < θ(e)}, and we note Ce = Cut(Earlier(e)).

When dealing with stopwatches, the enabling date is not sufficient to de-
termine the firing dates of the event, and is replaced by the notion of activity
duration. For any co-set B′, we define its duration up to some date θ as:

dur(B′, θ) = min{ min
e∈B′•

{θ(e)}, θ} −max
b∈B′
{θ(•b)}

Then, for a transition t enabled by a co-set B′, we define its active co-sets
Acos(B′, t) as all the co-sets A s.t.

– A is in the causal past of B′,
– the conditions that enabled t in B also belong to A,
– t is active in A.

Finally the activity duration of the transition t at some date θ is:

adur(B, t, θ) =
∑

A∈Acos(B,t)

dur(A, θ)

By extension, for any event e, we note Acos(e) = Acos(∗e, l(e)), and adur(e, θ) =
adur(∗e, l(e), θ).

The semantics of a Stopwatch Petri net is then defined using the notion of
validity of time processes.

Definition 6 (Valid time process for SwPNs). A time process is valid iff
θ(⊥) = 0 and the following constraints are satisfied, ∀e ∈ E′ (e 6= ⊥):

θ(e) ≥ max({θ(•b) | b ∈ •e ∪ �e}) (1)

adur(e, θ(e)) ≥ eft(l(e)) (2)

∀t ∈ en(l(Ce)), adur(Ce, t, θ(e)) ≤ lft(t) (3)

Condition 1 ensures that time progresses. Condition 2 states that to fire a
transition l(e) by an event e, it must have been active for at least a duration
equal to eft(l(e)) before being fired. Condition 3 states that at the firing date
of an event e, the activity duration of no transition t can exceed its maximum
firing time lft(t). Notice that if the former is purely local to the transition t, the
latter refers to all enabled transitions in the net, which adds causality between
events that are not causally related in the underlying untimed net.

It is easy to see that in the case of TPNs without stopwatches this definition
reduces to the definition of Aura and Lilius [2] since, for any transition t enabled
by a co-set B, we then have Acos(B, t) = B and ∀θ, dur(B, θ) = θ − TOE(B, t).

Note that, in this paper, we consider only Petri nets with non-zeno behavior.
Finally, we extend SwPNs with parameters, a model introduced in [15].

Definition 7 (Parametric Stopwatch Petri net). A Parametric Stopwatch
Petri net (PSwPN) is a tuple N = 〈P, T,W,Wr,Ws,m0, eft, lft, Π,DΠ〉 where:
〈P, T,W,Wr,m0〉 is a Petri net, Ws is the stopwatch incidence relation as before,
Π is a finite set of parameters (Π ∩ (P ∪T) = ∅), DΠ is a conjunction of linear
constraints describing the set of initial constraints on the parameters, and eft
and lft are functions on T such that for all t ∈ T , eft(t) and lft(t) are rational
linear expressions on Π (or lft(t) is infinite).

Definition 8 (Semantics of a PSwPN). Let N = 〈P, T,W,Wr,Ws,m0, eft, lft,
Π,DΠ〉. Given a rational valuation v on Π such that v(DΠ) is true, we define
the semantics of N as the SwPN Nv = 〈P, T,W,Wr,Ws,m0, v(eft), v(lft)〉.

Example 2. Fig. 1a gives an example of a PSwPN. Notice that the time interval
of transition t2 refers to two parameters a and b. The only initial constraint is
DΠ = {a ≤ b}.

3 Unfolding

The method we propose to unfold parametric stopwatch Petri nets is based on an
original way of determining conflicts in the net. In the non parametric timed case
(no stopwatch), unfoldings built with this method differ in general from those
of [6]. In [6], the emphasis is put on the on-line characteristic of the algorithm:
it is a pessimistic approach that ensures that events and constraints put in
the unfolding cannot be back into question. This leads possibly to unnecessary
duplication of events. In contrast, we propose here an optimistic approach, which
requires to dynamically compute the conflicts, and sometimes to backtrack on
the constraints.

We propose to refine the conflict notion by defining a relation of direct con-
flict.

Definition 9 (Direct conflict). Let O = 〈B,E, F, Fr〉 be an occurrence net.
Two events e1, e2 ∈ E are in direct conflict, which we denote by e1 conf e2, iff¬#{e2 ∪ de2e ∪ de1e}

¬#{e1 ∪ de1e ∪ de2e}
•e1 ∩ •e2 6= ∅

The first two conditions amount to say that •e1 ∪ •e2 is a co-set. Direct
conflicts are central to our study for they are at the root of all conflicts.

Example 3. The branching process presented in Fig. 1b contains direct conflicts
e1 conf e5, e4 conf e5 and e1 conf e4. e1 and e2 are only weakly ordered (e1 ↗ e2).

3.1 Time Branching Processes

We shall now extend the notion of branching process with time information,
allowing us to define the symbolic unfolding of PSwPNs. We do this in a way
similar to extending configurations to time processes, by adding a function la-
beling events with their firing date. In a branching process however, some events
may be in conflict, which means that some of them may not fire at all. We will
account for this situation by labeling an event that never fires with +∞.

The introduction of time in Petri nets reduces the admissible discrete be-
haviors, but induces new kinds of causal relations. For instance, in the TPN of
Fig. 2(a), the firing of t1 is only possible if t3 is fired before t2, which liberates
the conflict between t1 and t2.

In the unfolding method of TPNs proposed in [6] these relations are handled
by using read arcs in the unfolding, so that the firing of an event is duplicated
according to the local state in which it is fired. The drawback in this approach is
that it can lead to numerous unnecessary duplications of an event. For instance,
considering now the TPN of Fig. 2(b), the firing of t4 is possible in the states
(p1, p4), (p2, p4) or (p3, p4), leading to a duplication of the event in each case.

t1 [5, 5]

p1

t2 [3, 3]

p2

t3 [0, 4]

(a)

p1

t1 [0, 5]

p2

t2 [0, 5]

p3

t3 [5, 5]

p4

t4 [10, 10]

(b)

Fig. 2. Time-induced causality in time Petri nets

In our approach we try to express more local conditions by referring only to
events in direct conflict. In the example of Fig. 2(b), this is expressed by the
relation et3 conf et4 that allows the derivation of the constraints on the firing
date of these two events. The cost of this approach is that until t2 has not been
fired, no restriction is put on the firing of t4, and additional constraints are only
added afterwards.

Definition 10 (Time branching process). Given a SwPN N = 〈P, T,W,Wr

,Ws,m0, eft, lft〉 , a Time Branching Process (TBP) of N is a tuple 〈β, θ〉 where
β = 〈B,E, F, Fr, l〉 is a branching process of Untimed(N) and θ : E → R≥0∪{∞}
is a timing function giving a firing date for any event in E.

As for time processes we define the notion of validity of the timing function
of time branching process. In the sequel, we will say that a TBP is valid if its
timing function is valid.

Definition 11 (Valid timing function for a TBP). Given a PSwPN N =
〈P, T,W,Wr,Ws,m0, eft, lft, Π,DΠ〉 and a valuation v ∈ DΠ of the parameters,
let Γ = 〈B,E, F, Fr, l, θ〉 be a time branching process of Nv. θ is a valid timing
function for Γ iff θ(⊥) = 0 and ∀e ∈ E (e 6= ⊥),[

θ(e) 6=∞ ∧ θ(e) ≥ max({θ(•b) | b ∈ •e ∪ �e}) (4)

∧ adur(e, θ(e)) ≥ v(eft(l(e))) (5)
∧ adur(e, θ(e)) ≤ v(lft(l(e))) (6)
∧ ∀e′ ∈ E s.t. e′ conf e, θ(e′) =∞ (7)

∧ ∀e′ ∈ E s.t. e↗ e′, θ(e) ≤ θ(e′)
]

(8)

∨
[
θ(e) =∞ ∧ ∃b ∈ •e, θ(•b) =∞

]
(9)

∨
[
θ(e) =∞ ∧ ∃e′ ∈ E s.t. (e conf e′ ∨ e↗ e′)

∧ θ(e′) 6=∞∧ adur(e, θ(e′)) ≤ v(lft(l(e)))
]

(10)

∅⊥

p1 p2

t1

10 ≤ θ(e1) ≤ 16
∧θ(e1) ≤ θ(e2)
∧θ(e5) = +∞
∧θ(e4) = +∞
∨θ(e1) =∞

t2 a ≤ θ(e2) ≤ b

p3 p4

t3 5 + a ≤ θ(e3) ≤ 5 + b

p2t1

15 ≤ θ(e4) ≤ 16
∧θ(e5) = +∞
∧θ(e1) = +∞
∨θ(e4) =∞

p3

t4

θ(e5) = 16
∧θ(e1) = +∞
∧θ(e4) = +∞
∨θ(e5) =∞

p5

Fig. 3. A TBP with symbolic constraints for the PSwPN of Fig. 1a.

Additionally, if ∃{e0, e1, . . . , en} ⊆ E s.t. e0 ↗ e1 ↗ · · · ↗ en ↗ e0 then
∃i ∈ [0..n] s.t θ(ei) =∞.
In these constraints, the usual operators are naturally extended to R≥0 ∪ {∞}.

Equation 4 ensures that time progresses. Equation 5 constrains the earliest
firing date and Equation 6 the latest firing date of event e according to the
parametric time interval associated to the transition l(e). Also, an event e has a
finite firing date iff it actually fires: this means that no other event e′ in conflict
with e can have a finite firing date e (Eq. 7). Finally with read arcs, in case the
event e is weakly ordered before an event e′, then with Equation 8, e must fire
before e′.

While Equations 5 to 7 define when an event can be fired, i.e. they give it a
constrained but finite firing date, the last two equations define the cases in which
an event cannot fire at all, giving it an infinite firing date. First, if one of the
preconditions of event e has an infinite production date, then e has an infinite
firing date (Eq. 9). Second, e may have an infinite firing date if it is in direct
conflict with another event that has a finite firing date (Eq. 10). This implies
that this event with a finite firing date will fire before e would have been forced
to fire i.e. before its activity duration reaches the upper bound of the interval.
Note that this is the only way to introduce infinite firing dates in the equation
system. Those will then be propagated by Eq. 9.

Example 4. We consider the PSwPN of Fig. 1a. One of its TBP with symbolic
constraints is presented on Fig. 3. For the values a = 2 and b = 4 of the pa-
rameters, a valid timing that verifies these constraints is θ(e1) = ∞, θ(e2) = 3,
θ(e3) = 8, θ(e4) = 15 and θ(e5) =∞.

3.2 Temporally Complete Time Branching Processes

Valid time branching processes as defined by Def. 10 and 11 do not necessarily
contain correct executions, since a TBP is a priori incomplete in the sense that
all timed constraints of the PSwPN may not be included yet in the TBP: by
extending the TBP with additional events, new conflicts may appear that would
add those constraints. We will therefore consider temporally complete TBP as
defined below:

Definition 12 (Temporally complete TBP). Let N = 〈P, T,W,Wr,Ws,m0,
eft, lft, Π,DΠ〉 be PSwPN and v be a valuation of its parameters. A valid TBP
〈B,E, F, Fr, l, θ〉 of Nv is temporally complete if for all the extensions 〈t, e〉 of
〈B,E, F, Fr, l〉,

∀e′ ∈ E s.t. θ(e′) 6=∞, adur(∗e, t, θ(e′)) ≤ v(lft(t)) (11)

This definition basically says that the firing date of all events in the TBP
should be less or equal than the latest firing date of all possible extensions. Since
the conflicts that have not yet been discovered will result from these extensions,
this implies that all the events in the TBP are possible before these conflicts
occur. It further ensures that all the parallel branches in the TBP have been
unfolded to a same date. A similar condition can be stated for time processes.

Example 5. For the TBP of Fig. 3, the timing given in example 4, although valid,
admits the firing of t2 as an extension after e3, and its maximal firing date is 13
which is inferior to the firing date of e4. Thus, this TPB cannot be complete.

3.3 Extensions of a TBP

We now show how a given TBP can be extended with additional events, even-
tually leading to the construction of the whole unfolding.

Proposition 1. Let N be a PSwPN and v a valuation of its parameters. Let
〈B,E, F, Fr, l, θ〉 be a temporally complete TBP of Nv and let 〈t, e〉 be an exten-
sion of β = 〈B,E, F, Fr, l〉. Let β′ be the branching process obtained by extending
β by 〈t, e〉. Then there exists θ′ such that 〈β′, θ′〉 is a valid TBP of Nv.

While the TBP obtained by the extension 〈t, e〉 is valid, it is not necessarily
temporally complete: only the conflicts present in β′ are considered but e could
be prevented by conflicts that have not yet been added through other extensions.
We have the following result however:

Proposition 2. Let 〈β, θ〉 be a temporally complete TBP of a PSwPN and let
〈t, e〉 be the extension of β with the smallest latest firing date. Then 〈β, θ〉 ex-
tended by 〈t, e〉 is a temporally complete TBP.

3.4 Symbolic time branching processes

If we consider all the possible valuations of the parameters and all the possible
valid timing functions for a given branching process of Untimed(N) we obtain
what we call a symbolic TBP.

Definition 13 (Symbolic time branching process). Let N be a PSwPN.
A symbolic time branching process (STBP) Γ is a pair 〈β,D〉 where β =
〈B,E, F, Fr, l〉 is a branching process of Untimed(N), D is a subset of Q|Π| ×
(R∪{+∞})|E| such that for all λ = (v1, . . . , v|Π|, θ1, . . . , θn, . . .) ∈ D, if we note
E = {e1, . . . , en, . . .}, vλ the valuation (v1, . . . , v|Π|) and θλ the timing function
such that ∀i, θλ(ei) = θi, then 〈β, θλ〉 is a valid TBP of Nvλ .

In practice, the set D can be represented as a union of pairs 〈Ei,Di〉 where
Ei is a subset of the events of β and Di is a rational convex polyhedron (possibly
of infinite dimension) whose variables are the events in Ei plus the parameters
of the net. Each point λ in Di describes a value of the parameters and the finite
values of the timing function on the elements of Ei. For all elements not in Ei,
the timing function has value +∞.

Now we can extend the notion of prefix to STBPs.

Definition 14 (Prefix of an STBP). Let N be PSwPN whose set of param-
eters is Π. Let 〈β,

⋃
i Ei,

⋃
iDi〉 and 〈β′,

⋃
j E ′j ,D′〉 be two STBPs of N . 〈β,D〉

is a prefix of 〈β′,D′〉 if β is a prefix of β′ and D is the projection of D′ on the
parameters plus the events of β.

Finally, we can define the symbolic unfolding of a PSwPN.

Definition 15 (Symbolic unfolding). The symbolic unfolding of a PSwPN
N is the greatest STBP according to the prefix relation.

This unfolding has the same size as the one computed for underlying Petri
net. However, some events may not be able to take a finite firing date, in any
circumstances. These events are not possible and will be useless. Thus, it will be
sufficient to compute a prefix of the unfolding in which they are discarded.

3.5 Correctness and completeness

In this subsection we give two results proving the correctness and completeness
of our symbolic unfolding w.r.t. to the concurrent semantics of (P)SwPNs, that
we have given in section 2 as time processes.

We first establish a result on the configurations of TBP. For every TBP
Γ = 〈B,E, F, Fr, l, v, θ〉, we define the set E<∞ = {e ∈ E | θ(e) <∞} of all the
events which may fire in the TBP.

Proposition 3. Let Γ = 〈B,E, F, Fr, l, v, θ〉 be valid TBP. Then E<∞ is a
configuration.

The correctness result for our approach states that all the time processes we
can extract from our TBPs, and in particular those contained in the symbolic
unfolding, are valid:

Theorem 1 (Correctness). Let N = 〈P, T,W,Wr,Ws,m0, eft, lft, Π,DΠ〉 be
a parametric stopwatch Petri net and let v ∈ DΠ be a valuation of its parameters.
Let 〈B,E, F, Fr, l, θ〉 be a temporally complete time branching process of Nv. Let
E<∞ = {e ∈ E | θ(e) <∞} and θ<∞ is the restriction of θ to E<∞.
〈E<∞, θ<∞〉 is a valid time process of Nv.

Finally the following completeness result states that all valid time processes
can be represented by a TBP. Therefore, since the symbolic unfolding contains
all the valid TBPs, it also contains all the time processes of the PSwPN.

Theorem 2 (Completeness). Let N = 〈P, T,W,Wr,Ws,m0, eft, lft, Π,DΠ〉
be a PSwPN and v ∈ DΠ be a valuation of the parameters. Let 〈B,E, F, Fr, l〉
be a branching process of the underlying Petri net and 〈E, θ〉 be a time process
of the SwPN Nv.

There exists a temporally complete time branching process of Nv, 〈B′, E′, F ′,
F ′r, l

′, θ′〉, such that ∀e ∈ E,∃e′ ∈ E′ s.t. l(e) = l′(e′) and θ(e) = θ′(e′).

The idea of the proof is to construct a TBP by adding all the events in conflict
with some events of the time process.

4 Complete Prefixes of the Symbolic Unfolding

In this section, we show how to compute a complete prefix of the symbolic un-
folding of a TPN. Consequently, from now we replace v(eft(t)) by eft(t), v(lft(t))
by lft(t), and we assume that adur(B, t, θ) = θ − TOE(B, t), and that ◦t = ∅. In
this conditions, we prove this prefix is finite.

A consistent state of the unfolding 〈B,E, F, Fr, l,D〉 of a TPN N = 〈P, T,W,
Wr,m0, eft, lft〉 is a pair 〈A, λ〉 such that A ⊆ B is a cut and λ ∈ D and

– ∀b ∈ A, θλ(•b) 6=∞,
– ∀t ∈ T, •t ∪ �t ⊆ l(A)⇒ maxb∈A{θλ(•b)} ≤ TOE(t, A) + lft(t).

To compute a finite prefix we need to consider a finite number of states. How-
ever, the firing dates of the events grow continuously in the unfolding. Therefore,
we define an equivalence relation between two consistent states by considering
the age of the tokens (a reduced age since even ages can grow infinitely). Finally,
we prove that the same transitions are firable from two equivalent states.

Definition 16 (reduced age of a condition). For any co-set A, any timing
function θ, and any condition b ∈ A, we define the (reduced) age of b in A as

age(b, θ, A) = min{max
b′∈A
{θ(•b′)} − θ(•b),max{K(t) | t ∈ T ∧ t ∈ l(b)•}}

where K(t) =
{

eft(t) if lft(t) = +∞
lft(t) otherwise.

Definition 17 (Equivalent consistent states). Two consistent states 〈A1, λ1〉
and 〈A2, λ2〉 are equivalent iff l(A1) = l(A2) and ∀b1 ∈ A1,∀b2 ∈ A2, s.t. l(b1) =
(b2), age(b1, θλ1 , A1) = age(b2, θλ2 , A2).

Theorem 3 (Firing a transition in equivalent states). Let s1 = 〈A1, λ1〉
and s2 = 〈A2, λ2〉 be two equivalent consistent states of the unfolding 〈B,E, F, Fr,
l,D〉 of a TPN N = 〈P, T,W,Wr,m0, eft, lft〉. If a transition t is firable from s1
in an event e1 at a date θλ1(e1) ≥ maxb∈A1(θλ1(•b)), before all the other enabled
transitions (i.e. ∀t ∈ en(l(A1))θλ1(e1) ≤ TOE(t, A1) + lft(t)), then

1. t is firable from s2 in an event e2 at the date θλ1(e1)−maxb∈A1(θλ1(•b)) +
maxb∈A2(θλ2(•b)), before all the other enabled transitions,

2. the states reached after the firing are equivalent.

Knowing that the same behaviors are possible after equivalent states we can
stop the construction of the unfolding by defining the notion of cut-off event.

Definition 18 (Cut-off event). Let N = 〈P, T,W,Wr,m0, eft, lft〉 be a TPN.
and let β = 〈B,E, F, Fr, l,D〉 be a symbolic time branching process of N . An
event e ∈ E is a cut-off event if there exists e′ ∈ E such that:

– e′ < e,
– l(e′) = l(e),
– ∀λ ∈ D, ∃λ′ ∈ D s.t. 〈Ce′ , λ′〉 and 〈Ce, λ〉 are equivalent.

Definition 19 (Cut-off-free maximal prefix). Let N be a TPN and let Γ =
〈β,D〉 be its symbolic unfolding. The cut-off-free maximal prefix CFP (N). is the
greatest prefix of Γ that does not contain any cut-off events.

We prove that the prefix computed contains at least the firing of each fireable
transition of the unfolding, ad we show that this prefix is finite.

Theorem 4 (Completeness of the prefix). Let N = 〈P, T,W,Wr,m0, eft, lft〉
be a TPN whose symbolic unfolding is 〈B,E, F, Fr, l,D〉. Let CFP (N) = 〈B∗, E∗,
F ∗, F ∗r , l

∗,D∗〉. Then ∀λ ∈ D, ∀e ∈ E s.t. θλ(e) 6= ∞, ∃λ∗ ∈ D∗, ∃e∗ ∈
E∗, s.t. θλ∗(e∗) 6=∞ and l(e∗) = l(e).

Theorem 5 (Finiteness of the prefix). For any (1-safe) time Petri net N ,
the cut-off-free maximal prefix CFP (N) is finite.

5 Conclusion

In this paper we have proposed a new technique for the unfolding of safe para-
metric stopwatch Petri nets that allow a symbolic handling of both time and
parameters. To the best of our knowledge, this is the first time that the para-
metric or stopwatch cases are addressed in the context of unfoldings. Moreover,
when restricting to the subclass of safe time Petri nets, our technique compares
well with the previous approach of [6]. It indeed provides a more compact un-
folding, by eliminating the duplication of transitions, and also removes the need
for read arcs in the unfolding. As a tradeoff, the constraints associated with the
firing times of events may seem slightly more complex.

We have partly implemented the technique in our tool, Romeo, whose 2.9.0
version can currently compute unfoldings of safe time Petri nets. The compu-
tation of the finite prefix is however not yet implemented and the unfolding is
there coupled to a supervision technique that makes the unfolding finite based
on a finite set of observations.

Further work includes investigating non-safe bounded models and application
of the unfolding technique to revisit the problems of model-checking and control.

References

1. P. A. Abdulla, S. P. Iyer, and A. Nylen. Unfoldings of unbounded Petri nets. In
Proceedings of CAV, volume 1855 of LNCS, pages 495–507. Springer, 2000.

2. Tuomas Aura and Johan Lilius. A causal semantics for time Petri nets. Theoretical
Computer Science, 243(2):409–447, 2000.

3. Paolo Baldan, Nadia Busi, Andrea Corradini, and G. Michele Pinna. Functorial
concurrent semantics for petri nets with read and inhibitor arcs. In CONCUR,
volume 1877 of Lecture Notes in Computer Science, pages 442–457. Springer, 2000.

4. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent
systems using time Petri nets. IEEE trans. on Soft. Eng., 17(3):259–273, 1991.

5. Bernard Berthomieu, Didier Lime, Olivier (H.) Roux, and Francois Vernadat.
Reachability problems and abstract state spaces for time Petri nets with stop-
watches. Journal of Discrete Event Dynamic Systems - Theory and Applications
(DEDS), 17(2):133–158, 2007.

6. T. Chatain and C. Jard. Complete finite prefixes of symbolic unfoldings of safe
time Petri nets. In Proceedings of ICATPN, volume 4024 of LNCS, pages 125–145.
Springer, 2006.

7. Thomas Chatain and Claude Jard. Sémantique concurrente symbolique des réseaux
de petri saufs et dépliages finis des réseaux temporels. In NOTERE (to appear),
2010.

8. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23:151–195, 1994.

9. J. Esparza and K. Heljanko. Unfoldings, A Partial-Order Approach to Model Check-
ing. Monographs in Theoretical Computer Science. Springer, 2008.

10. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57:94–124, 1998.

11. V. Khomenko and M. Koutny. Branching processes of high-level Petri nets. In
Proceedings of TACAS, volume 2619 of LNCS, pages 458–472. Springer, 2003.

12. Didier Lime and Olivier (H.) Roux. Formal verification of real-time systems with
preemptive scheduling. Journal of Real-Time Systems, 41(2):118–151, 2009.

13. K. L. McMillan. Using unfolding to avoid the state space explosion problem in the
verification of asynchronous circuits. In Proceedings of CAV, volume 663 of LNCS,
pages 164–177. Springer, 1992.

14. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis, Dep.
of Information and Computer Science, University of California, Irvine, CA, 1974.

15. Louis-Marie Traonouez, Didier Lime, and Olivier (H.) Roux. Parametric model-
checking of stopwatch petri nets. Journal of Universal Computer Science,
15(17):3273–3304, December 2009.

A Proofs (given only for the reviewers)

Proposition 1. Let N be a PSwPN and v a valuation of its parameters. Let
〈B,E, F, Fr, l, θ〉 be a temporally complete TBP of Nv and let 〈t, e〉 be an exten-
sion of β = 〈B,E, F, Fr, l〉. Let β′ be the branching process obtained by extending
β by 〈t, e〉. Then there exists θ′ such that 〈β′, θ′〉 is a valid TBP of Nv.

Proof. First, for all events e′ but e, we take θ′(e′) = θ(e′). Now, we have to find
a suitable firing date for e, which has no impact on the other events:

– If one of the precondition of e has an infinite production date, then θ′(e) =
∞. In this case, θ′(e) verifies Eq. 9, and it does not impact the other events
since its maximum firing date is infinite.

– If e is in conflict with e′ ∈ E (or e↗ e′) s.t. θ(e′) 6=∞, then again θ′(e) =∞:
since 〈β, θ〉 was temporally complete, Eq. 11 was satisfied: the firing date by
θ of the other events was lower than the maximum date of the extension
〈t, e〉, which implies that θ′ indeed verifies Eq. 10.

– In the last case we need to find a finite firing date for e.
• If no additional conflict or weak causality is introduced, then any value

of θ′(e) satisfying both Eq. 5 and 6 is suitable.
• If ∃e′ s.t. e conf e′ or e↗ e′, and θ(e′) =∞, then either Eq. 9 is verified

for e′, and so θ′(e) can trivially verify Eq. 7 or Eq. 8. Or, it means that
there must exist e′′ such that e′ conf e′′ or e′ ↗ e′′ and θ(e′′) 6= ∞
(Eq. 10). We have e′′ 6= e since θ(e′) =∞ (the conflict existed before we
added e) , then any value of θ′(e) satisfying both Eq. 5 and 6 is suitable,
since θ was a valid timing function for β and therefore Eq. 10 is verified
by e′ and e′′ without any additional constraint on e.

Proposition 2. Let 〈β, v, θ〉 be a temporally complete TBP of a PTPN and let
〈t, e〉 be the extension of β with the smallest latest firing date. Then 〈β, v, θ〉
extended by 〈t, e〉 is a temporally complete TBP.

Proof. We already know, by Proposition 1, that 〈β, v, θ〉 extended by 〈t, e〉 is a
valid TBP. Now, let 〈t1, e1〉, . . . , 〈tm, em〉 be the extensions of β other than 〈t, e〉.
They still are extensions of β′. We also have new extensions to β′: 〈tm+1, em+1〉,
. . . , 〈tn, en〉, which causally extend e.

– all the events in β satisfy Eq. 11 for all the first m extensions since β is
temporally complete,

– for the same reason, they also satisfy it for the last n −m extensions since
they satisfy it for 〈t, e〉 which has a smaller latest firing date since it causally
precedes them,

– this also means that e satisfies Eq. 11 for those n−m last extensions,
– finally, e satisfies this equation for the first m extensions, because it has been

chosen as having a smaller latest firing date than all of them.

Proposition 3. Let Γ = 〈B,E, F, Fr, l, v, θ〉 be valid TBP. Then E<∞ is a
configuration.

Proof. 1. ∀e ∈ E<∞,∀e′ ∈ E, e′ < e ⇒ e′ ∈ E<∞: If e < e′ then there exists
a path from e to e′ and according to Eq. 4 the time progresses in this path,
and so θ(e′) ≤ θ(e), which implies that e′ ∈ E<∞.

2. ¬#E<∞: Ab absurdo. If #E<∞, according to Def. 11 there cannot exist a
cycle with the weak causal relation, so there exists e1, e2 ∈ E<∞ such that
•e1 ∩ •e2 6= ∅.
Either there exists a cycle of weak causal relations, but as shown previously it
is absurd, or there exists e′1 ∈ e1∪de1e and e′2 ∈ e2∪de2e such that e′1 conf e′2.
If •e1 ∩ •e2 6= ∅, either we directly show that e1 conf e2, or it means that the
preconditions of the events are not concurrent, for instance #{e1∪de1e∪de2e
(the other case is symmetrical). Excluding the case where there is a cycle
of weak causal relations, it means that there is another conflict candidate
•e′1 ∩ •e′2 6= ∅, such that e′1 ∈ e1 ∪de1e and e′2 ∈ de2e (since these two sets are
known to be without conflict. Again, either we prove e′1 conf e′2, or iterate
the search in the causal past of the events. Inductively, since O is finite by
precedence, there inevitably exist e(n)

1 conf e
(n)
2 such that e(n)

1 ∈ e1 ∪ de1e
and e

(n)
2 ∈ e2 ∪ de2e.

From the above point in the proof, we get e′1, e
′
2 ∈ E<∞ and therefore

θ(e1) < ∞ and θ(e′1) < ∞. However, since the TBP is valid, θ(e1) should
satisfy either Eq. 7 which implies that on the contrary θ(e2) =∞, hence the
contradiction.

To prove the correctness of the unfolding method we first introduce an inter-
mediate lemma:

Lemma 1. Let e be an event in a TBP 〈B,E, F, l, v, θ〉 such that θ(e) <∞:

∀e′ ∈ E, (•e′ ∪ �e′) ∩ Ce 6= ∅ ⇒ θ(e) ≤ θ(e′)

Proof. Ab absurdo. Let us assume θ(e′) < θ(e) then e′ ∈ Earlier(e) and e′ 6= e.
Consider the sequence of causal events in Earlier(e), e1 < e2 < · · · < em, such
that e1 = e′ (and then ∀i ∈ [1..m], θ(ei) < θ(e)). Since we have a non-zenoness
assumption, this sequence is necessarily finite. Thus, there exists n such that
e•n ⊆ Ce. Let b1 ∈ (•e′ ∪ �e′) ∩Ce and bn ∈ e•n. We have b1, bn ∈ Ce and we have
a path from b1 to bn. It is a contradiction since Ce is a cut.

Theorem 1 (Correctness). Let N = 〈P, T,W,Wr,Ws,m0, eft, lft, Π,DΠ〉 be
a parametric stopwatch Petri net and let v ∈ DΠ be a valuation of its parameters.
Let 〈B,E, F, Fr, l, θ〉 be a temporally complete time branching process of Nv Let
E<∞ = {e ∈ E | θ(e) <∞} and θ<∞ is the restriction of θ to E<∞.
〈E<∞, θ<∞〉 is a valid time process of Nv.

Proof. We already know, by Proposition 3 that E<∞ is a configuration. We now
have to prove that θ<∞ is a valid time process of N .

Eq. 4 straightforwardly gives the constraint on time progress of Eq. 1.

Eq. 5 provides the constraint on the minimum date: ∀e ∈ E<∞, adur(e, θ(e)) ≥
v(eft(l(e))).

For the maximum date, ∀e ∈ E<∞, ∀t ∈ en(l(Ce)) we will now prove that
∀t ∈ en(l(Ce)), adur(Ce, t, θ(e)) ≤ v(lft(t)).

Let us denote B′ = {b ∈ Ce | l(b) ∈ •t ∪ �t} the set of conditions enabling t.

– If t = l(e) then from the Eq. 6 we have: adur(e, θ(e)) ≤ v(lft(l(e))). Since
∗e ⊆ Ce and since we assume that the net is safe, the enabling conditions of
t in Ce are given by ∗e. Then adur(∗e, l(e), θ(e)) = adur(Ce, l(e), θ(e)), which
proves the expected result.

– Else, if ∃e′ ∈ E s.t. l(e′) = t and •e′ = B′, from Lemma 1, we have: θ(e) ≤
θ(e′).
1. If θ(e′) 6= ∞, then from the Eq. 6 we have: adur(e′, θ(e′)) ≤ v(lft(l(e′)))

i.e. adur(Ce, l(e′), θ(e′)) ≤ v(lft(l(e′))) which proves the expected result.
2. Else, θ(e′) =∞ and one of Eq. 9 or Eq. 10 is verified. However, since •e′ =
B′ ⊆ Ce, the production dates of its preconditions are necessarily finite
and there is no solution to the equation 9. This implies that ∃e′′ ∈ E s.t.
e′ conf e′′ or e′ ↗ e′′ and θ(e′′) 6= ∞ and adur(e′, θ(e′′)) ≤ v(lft(l(e′))).
Then e′ and e′′ share at least one precondition, so •e′′ ∩ Ce 6= ∅. By
Lemma 1, we have then θ(e) ≤ θ(e′′) and with that the expected result.

– If there is no event in β corresponding to the firing of t, then t must be a
possible extension e′ of β since there exist some conditions B′ ⊆ Ce enabling
t. In this case, Eq. 11, ensuring that 〈B,E, F, Fr, l, θ〉 is temporally com-
plete allows to deduce that: adur(∗e, t, θ(e)) ≤ v(lft(t)) i.e. adur(Ce, t, θ(e)) ≤
v(lft(t)).

Theorem 2 (Completeness). Let N = 〈P, T,W,Wr,Ws,m0, eft, lft, Π,DΠ〉
be a PSwPN and v ∈ DΠ be a valuation of the parameters. Let 〈B,E, F, Fr, l〉
be a branching process of the underlying Petri net and 〈E, θ〉 be a time process
of the SwPN Nv.

There exists a temporally complete time branching process of Nv, 〈B′, E′, F ′,
F ′r, l

′, θ′〉, such that ∀e ∈ E,∃e′ ∈ E′ s.t. l(e) = l′(e′) and θ(e) = θ′(e′).

Proof. To prove the theorem, we first build a TBP Γ ′ = 〈B′, E′, F ′, l′, θ′〉, start-
ing from β = 〈E, θ〉, adding the events e′ 6∈ E in conflict with the events of E
or such that �e′ ∩ •e 6= ∅ for some e ∈ E, and associating to these events a firing
date ∞, such that for all extension 〈t, e′〉 of β, ∃e ∈ E, e conf e′ ⇒ (e′ ∈
E′ ∧ θ′(e′) =∞).

Moreover, we add in B′ the conditions given by e′ and we extend the functions
F ′ and l′ accordingly. Proposition 1 ensures that Γ ′ conforms to the branching
process structure.

We now show that this TBP verifies the firing date constraints of the events.
∀e ∈ E′: if θ(e) =∞ then by construction ∃e′ ∈ E′ s.t. e conf e′, or e↗ e′, and
θ′(e′) 6=∞.

– if ∗e ⊂ Ce′ , then l(e) ∈ en(l(Ce′)), and since θ is valid adur(e, θ(e′)) ≤
v(lft(l(e))) and Eq. 10 is verified;

– else, if ∃b ∈ ∗e such that θ′(•b) > θ′(e′), that is to say b is produced after Ce′ .
Therefore e′ happened before l(e) was even enabled and so Eq. 10 trivially
holds.

– otherwise, it means that there exists a condition b ∈ ∗e preceding Ce′ : then
this condition must have been consumed by an event e′′ ∈ b• belonging to
Earlier(e′) (otherwise it would still be in Ce′). Thus we have e conf e′′ or
e ↗ e′′, with θ(e′′) ≤ θ(e′). Now, we can repeat this reasoning until one of
the first two items is applicable. We now that this will happen since there
are no zeno behaviors in the net and therefore we can apply this third item
only finitely many times.

θ(e) verifies the equation 10.
Otherwise e ∈ E and θ′(e) = θ(e) 6=∞:

1. Since θ is valid for E, the time progress constraint naturally carries on from
Eq. 1 to Eq. 4;

2. For the same reason, the minimum date (Eq. 2) gives: adur(e, θ(e)) ≥ v(eft(l(e))),
hence θ′(e) verifies Eq. 5;

3. Similarly, Eq. 3 gives: l(e) ∈ en(l(Ce)) ⇒ adur(Ce, l(e), θ(e)) ≤ v(lft(l(e)))
hence θ′(e) verifies Eq. 6;

4. Then, ∀e′ ∈ E′ s.t. e conf e′ and ∀e′ ∈ E′ \E s.t. e↗ e′, by construction we
have θ′(e′) =∞;

5. Finally, ∀e′ ∈ E s.t. e↗ e′ and e′ ∈ E. If e < e′, since θ is valid, from Eq. 1,
we immediately have θ(e) ≤ θ(e′). Otherwise, �e ∩ {b|l(b) ∈ �l(e)} ∩ •e′ 6= ∅
and if θ(e′) < θ(e) then some of the preconditions of e are consumed be it
is fired, which is impossible, since the net is safe; We have built a valid time
branching process Γ ′, which contains by construction the set of events of E.

6. We finally show that Γ ′ is temporally complete. For all extensions 〈t, e〉 of
Γ ′:
– if e depends on conditions whose production date is infinite, the condition

11 is obviously verified.
– otherwise, ∗e ⊆ Cut(E). So t ∈ en(l(Cut(E))) and Eq. 3 directly implies

the temporal completeness of Γ ′.

Theorem 3 (Firing a transition in equivalent states). Let s1 = 〈A1, λ1〉
and s2 = 〈A2, λ2〉 be two equivalent consistent states of the unfolding 〈B,E, F, Fr,
l,D〉 of a TPN N = 〈P, T,W,Wr,m0, eft, lft〉. If a transition t is firable from s1
in an event e1 at a date θλ1(e1) ≥ maxb∈A1(θλ1(•b)), before all the other enabled
transitions (i.e. ∀t ∈ en(l(A1))θλ1(e1) ≤ TOE(t, A1) + lft(t)), then

1. t is firable from s2 in an event e2 at the date θλ1(e1)−maxb∈A1(θλ1(•b)) +
maxb∈A2(θλ2(•b)), before all the other enabled transitions,

2. the states reach after the firing are equivalent.

Proof. 1. We need to find an event e2 with a valid firing date for the firing of t.
First, we remark that l(•t∪�t) ⊆ l(A1) = l(A2). Thus ∃∗e2 ⊆ A2 s.t. l(∗e2) = l(t).
Since we have found concurrent conditions to fire t there exists the event e2.

We note θ1 = maxb∈A1(θλ1(•b)) and θ2 = maxb∈A2(θλ2(•b)). Let show that
θλ2(e2) = θλ1(e1)− θ1 + θ2 is a valid firing date.

1. We remark first that since the three terms are finite, θλ2(e2) is finite.
2. In the case of TPN Eq. 4 is redundant with Eq. 5. Thus we only prove this

latter.
3. To prove Eq. 5 we must show that θλ1(e1) − θ1 + θ2 ≥ TOE(e2) + eft(t) =

maxb∈∗e2(θλ2(•b)) + eft(t).
Let bmax1 ∈ ∗e1 s.t. θλ1(bmax1) = maxb∈∗e1(θλ1(•b)), and bmax2 ∈ ∗e2 s.t.
θλ2(bmax2) = maxb∈∗e2(θλ2(•b)).
We remark that due to the equivalence of ages the time order between the
conditions in A1 and A2 is conserved (i.e. if b1, b′1 ∈ A1 and b2, b′2 ∈ A2 with
l(b1) = l(b2) and l(b′1) = l(b′2), then θλ1(b1) ≤ θλ1(b′1)⇔ θλ2(b2) ≤ θλ2(b′2)).
Therefore, l(bmax1) = l(bmax2) and their age are equal. If it is lower than
the constant max(K(t)), then we get that θ1−θλ1(bmax1) = θ2−θλ2(bmax2).
We can replace this expression in the inequation Eq. 5 and obtain the new
inequation to prove: θλ1(e1) − θλ1(bmax1) ≥ eft(t), which is proved since
θλ1(e1) verifies Eq. 5. Otherwise, θ2 − θλ2(bmax2) ≥ max(K(t)) ≥ eft(t) and
since θλ1(e1)− θ1 ≥ 0 we prove the results.

4. ∀t′ ∈ en(l(A2)) we prove that θλ2(e2) ≤ TOE(t, A2) + lft(t′): If lft(t′) 6=
∞ (otherwise the inequation is trivial), we know that t′ ∈ en(l(A1)) and
by hypothesis that θλ1(e1) ≤ TOE(t, A1) + lft(t′). We deduce that θ1 ≤
TOE(t, A1)+lft(t′) ≤ TOE(t, A1)+max(K(t)). Now, let b′max1 s.t. θλ1(b′max1) =
TOE(t′, A1), and b′max2 s.t. θλ2(b′max2) = TOE(t′, A2). We get that age(b′max1,
θλ1 , A1) = θ1−θλ1(b′max1), and from the equivalence that l(b′max1) = l(b′max2)
and θ1 − θλ1(b′max1) = θ2 − θλ2(b′max2). As previously we can replace this in
the inequation θλ1(e1) ≤ θλ1(b′max1) + lft(t′) and get the result.

5. The previous allow us to prove the Eq. 6 for the case t = t′. Moreover,
∀e′ s.t. e′ conf e2, we prove Eq. 7 if we prove Eq. 10 for e′. If e′ consume or
read a condition that is anterior to A2, then the event is already in conflict
with another one. On the contrary, if e′ consume a condition produced after
A2, then the condition is causally preceded by an event enabled by l(A2),
and we proved in the previous point than it can be fired after e2. And if
∗e′ ⊆ A2, the previous proof also apply to prove the inequation in Eq. 7. The
reasoning is similar if there exists e2 conf e′.

2. After the firing of t, from s1 we reach a state s′1 = 〈A1
•e1∪e•1, λ1〉 = 〈A′1, λ1〉

and from s2 a state s′2 = 〈A2
•e2 ∪ e•2, λ2〉 = 〈A′2, λ2〉. Obviously we get that

l(A′1) = l(A′2). Then, ∀b ∈ e•1, age(b, θλ1 , A
′
1) = 0, and ∀b ∈ e•2 age(b, θλ2 , A

′
2) =

0. Otherwise, θ(e1) = maxb∈A′1(θλ1(•b)), and ∀b1 ∈ A′1, θλ1(e1) − θλ1(•b1) =
θλ2(e2) − θ2 + θ1 − θλ2(•b1). Let b2 ∈ A′2 such that l(b1) = l(b2). Either θ1 −
θλ1(•b1) = age(b1, θλ1 , A1) = age(b2, θλ2 , A2) = θ2 − θλ2(•b2), and consequently
θλ1(e1) − θλ1(•b1) = θλ2(e2) − θλ2(•b2) which proves that age(b1, θλ1 , A

′
1) =

age(b2, θλ2 , A
′
2). Or θ1− θλ1(•b1) ≥ max(K(t). Then it follows since θλ2(e2) ≥ θ2

that age(b1, θλ1 , A
′
1) = max(K(t), and similarly age(b2, θλ2 , A

′
2) = max(K(t).

Theorem 4 (Completeness of the prefix). Let N = 〈P, T,W,Wr,m0, eft, lft〉
be a TPN whose symbolic unfolding is 〈B,E, F, Fr, l,D〉. Let CFP (N) = 〈B∗, E∗,
F ∗, F ∗r , l

∗,D∗〉. Then ∀λ ∈ D, ∀e ∈ E s.t. θλ(e) 6= ∞, ∃λ∗ ∈ D∗, ∃e∗ ∈
E∗, s.t. θλ∗(e∗) 6=∞ and l(e∗) = l(e).

Proof. If e /∈ CFP (N), there exists a sequence of events e1 < e2 < · · · < en < e,
such that e1 is a cut-off event. Then, there exists e′ ∈ E such that e′1 < e1
and l(e′1) = l(e1) and ∃λ′ ∈ D such that 〈Ce′ , λ′〉 and 〈Ce1 , λ〉 are equivalent.
Knowing from Theo 3 that from equivalent states the same transitions are fire-
able leading to equivalent states, we deduce that from e′1 a sequence of events
e′1 < e′2 < · · · < e′n < e′, such that ∀i, l(e′i) = l(ei), is admissible with finite firing
dates, leading to another firing of l(e) with event e′. With this sequence we have
decrease the size |de′e| < |dee|. However e′ might not yet be in CFP (N) in which
case the operation can be repeated a finite number of times since |dee| <∞ until
we get e∗ ∈ E∗.

Theorem 5 (Finiteness of the prefix). For any (1-safe) time Petri net N ,
the cut-off-free maximal prefix CFP (N) is finite.

Proof. Ab absurdo: suppose CFP (N) = 〈B,E, F, Fr, l,D〉 is not finite.
First recall that for TPNs, for any event e, adur(e, θ(e)) = θ(e)−TOE(e). So

D is actually a (possibly infinite) union of so-called zones (of possibly infinite
dimension), i.e. all constraints on θs have the general form: x− y ≤ d or x ≤ d
with d ∈ Q.

Let e be an event in E. Ce can only take its value among a finite number of
possibilities since the net is safe. So •Ce has a finite number of events. Therefore
the projection D|•Ce of D on •Ce is a finite union of zones of finite dimension.
Now the age transformation obviously preserves zones (this is classical, see [6]
for instance). Further, it makes sure that the obtained zones are bounded by the
greatest constant in the time intervals of the net. So, for any event e, age(D|•Ce)
can only take its value among a finite number of possibilities. Thus, since |E| is
infinite, there must exist two events e and e′ in E such that:

– e < e′ (there must exist a infinite sequence of causally related events in
CFP (N)));

– l(Ce) = l(Ce′) and
– age(D|•Ce) = age(D|•Ce′).

This exactly means that e′ is a cut-off event, which contradicts the definition
of CFP (N) and concludes the proof.

