
Statistical Model Checking of
Dynamic Software Architectures

Everton Cavalcante1,2, Jean Quilbeuf2,3, Louis-Marie Traonouez3,
Flavio Oquendo2, Thais Batista1, Axel Legay3

1DIMAp, Federal University of Rio Grande do Norte, Natal, Brazil
2IRISA-UMR CNRS/Université Bretagne Sud, Vannes, France

3INRIA Rennes Bretagne Atlantique, Rennes, France

everton@dimap.ufrn.br, jean.quilbeuf.irisa.fr,
louis-marie.traonouez@inria.fr, flavio.oquendo@irisa.fr, thais@ufrnet.br,

axel.legay@inria.fr

Abstract. The critical nature of many complex software-intensive sys-
tems calls for formal, rigorous architecture descriptions as means of sup-
porting automated verification and enforcement of architectural prop-
erties and constraints. Model checking has been one of the most used
techniques to automatically verify software architectures with respect to
the satisfaction of architectural properties. However, such a technique
leads to an exhaustive exploration of all possible states of the system,
a problem that becomes more severe when verifying dynamic software
systems due to their typical non-deterministic runtime behavior and un-
predictable operation conditions. To tackle these issues, we propose using
statistical model checking (SMC) to support the verification of dynamic
software architectures while aiming at reducing computational resources
and time required for this task. In this paper, we introduce a novel no-
tation to formally express architectural properties as well as an SMC-
based toolchain for verifying dynamic software architectures described in
π-ADL, a formal architecture description language. We use a flood mon-
itoring system to show how to express relevant properties to be verified.
We also report the results of some computational experiments performed
to assess the efficiency of our approach.

Keywords: Dynamic software architecture, Architecture description lan-
guage, Formal verification, Statistical model checking

1 Introduction

One of the major challenges in software engineering is to ensure correctness of
software-intensive systems, especially as they have become increasingly complex
and used in many critical domains. Ensuring these concerns becomes more im-
portant mainly when evolving these systems since such a verification needs to
be performed before, during, and after evolution. Software architectures play
an essential role in this context since they represent an early blueprint for the
system construction, deployment, execution, and evolution.

2 E. Cavalcante et al.

The critical nature of many complex software systems calls for rigorous archi-
tectural models (such as formal architecture descriptions) as means of supporting
the automated verification and enforcement of architectural properties. However,
architecture descriptions should not cover only structure and behavior of a soft-
ware architecture, but also the required and desired architectural properties, in
particular the ones related to consistency and correctness [15]. For instance, after
describing a software architecture, a software architect might want to verify if it
is complete, consistent, and correct with respect to architectural properties.

In order to foster the automated verification of architectural properties based
on architecture descriptions, they need to be formally specified. Despite the in-
herent difficulty of pursuing formal methods, the advantage of a formal verifica-
tion is to precisely determine if a software system can satisfy properties related
to user requirements. Additionally, automated verification provides an efficient
method to check the correctness of architectural design. As reported by Zhang
et al. [19], one of the most popular formal methods for analyzing software ar-
chitectures is model checking, an exhaustive, automatic verification technique
whose general goal is to verify if an architectural specification satisfies architec-
tural properties [8]. It takes as inputs a representation of the system (e.g., an
architecture description) and a set of property specifications expressed in some
notation. The model checker returns true if the properties are satisfied, or false
with the case in which a given property is violated.

Despite its wide and successful use, model checking faces a critical challenge
with respect to scalability. Holzmann [10] remarks that no currently available
traditional model checking approach is exempted from the state space explosion
problem, that is, the exponential growth of the state space. This problem is ex-
acerbated in the contemporary dynamic software systems for two main reasons,
namely (i) the non-determinism of their behavior caused by concurrency and
(ii) the unpredictable environmental conditions in which they operate. In spite
of the existence of a number of techniques aimed at reducing the state space,
such a problem remains intractable for some software systems, thereby making
the use of traditional model checking techniques a prohibitive choice in terms of
execution time and computational resources. As a consequence, software archi-
tects have to trade-off the risks of possibly undiscovered problems related to the
violation of architectural properties against the practical limitations of applying
a model checking technique on a very large architectural model.

In order to tackle the aforementioned issues, this paper proposes the use of
statistical model checking (SMC) to support the formal verification of dynamic
software architectures while striving to reduce computational resources and time
for performing this task. SMC is a probabilistic, simulation-based technique in-
tended to verify, at a given confidence level, if a certain property is satisfied dur-
ing the execution of a system [13]. Unlike model checking, SMC does not analyze
the internal logic of the target system, thereby not suffering from the state space
explosion problem [12]. Furthermore, an SMC-based approach promotes better
scalability and less consumption of computational resources, important factors
to be considered when analyzing software architectures for complex critical sys-

StA 3

tems. An architect wishing to verify the correctness of a software architecture
with SMC has to build an executable model of the system, a task that is much
easier than building a model of the system that is abstract enough to be used
by a model checker and still detailed enough to detect meaningful errors.

The main contribution presented in this paper is an SMC-based toolchain for
verifying dynamic software architectures described in π-ADL, a formal language
for describing dynamic software architectures [5, 16]. π-ADL does not natively
allow for a probabilistic execution, but rather provides a non-deterministic speci-
fication of a dynamic architecture. Therefore, we obtain a probabilistic model by
resolving non-determinism by probabilities, enforced by a stochastic scheduler.
We also make use of DynBLTL [18], a new logic to express properties about dy-
namic systems. Using a real-world flood monitoring system, we herein show how
to express relevant properties to be verified and we report the results of some
computational experiments performed to assess the efficiency of our approach.

The remainder of this paper is organized as follows. Section 2 briefly presents
the SMC technique. Section 3 details how to stochastically execute π-ADL ar-
chitecture descriptions. Section 4 introduces our notation to formally express
properties of dynamic software architectures. Section 5 presents the developed
toolchain to verify dynamic software architectures. Section 6 uses the flood mon-
itoring system as case study to show how to express properties with DynBLTL,
as well as it reports the results of experiments on the computational effort to
verify these properties. Finally, Section 7 contains concluding remarks.

2 Statistical Model Checking

The SMC approach consists of building a statistical model of finite executions of
the system under verification and deducing the probability of satisfying a given
property within confidence bounds. This technique provides a number of advan-
tages in comparison to traditional model checking techniques. First (and perhaps
the most important one), it does not suffer from the state space explosion prob-
lem since it does not analyze the internal logic of the system under verification,
neither requires the entire representation of the state space, thus making it a
promising approach for verifying complex large-scale and critical software sys-
tems [12]. Second, SMC requires only the system be able to be simulated, so that
it can be applied to larger classes of systems, including black-box and infinite-
state systems. Third, the proliferation of parallel computer architectures makes
the production of multiple independent simulation runs relatively easier. Fourth,
despite SMC can provide approximate results (as opposed to exact results pro-
vided by traditional model checking), it is compensated by a better scalability
and less consumption of computational resources. In some cases, knowing the
result with less than 100% of confidence is quite acceptable or even the unique
available option. Therefore, SMC allows trading-off between verification accuracy
and computational time by selecting appropriate precision parameter values.

Figure 1 illustrates a general schema on how the SMC technique works. A
statistical model checker basically consists of a simulator for running the system

4 E. Cavalcante et al.

under verification, a model checker for verifying properties, and a statistical
analyzer responsible for calculating probabilities and performing statistical tests.
It receives three inputs: (i) an executable stochastic model of the target system
M ; (ii) a formula ϕ expressing a bounded property to be verified, i.e., a property
that can be decided over a finite execution of M ; and (iii) user-defined precision
parameters determining the accuracy of the probability estimation. The modelM
is stochastic in the sense that the next state is probabilistically chosen among the
states that are reachable from the current one. Depending on the probabilistic
choices made during the executions of M , some executions will satisfy ϕ and
others will not. The simulator executes M and generates an execution trace
σi composed of a sequence of states. Next, the model checker determines if
σi satisfies ϕ and sends the result (either success or failure) to the statistical
analyzer, which in turn estimates the probability p for M to satisfy ϕ. The
simulator repeatedly generates other execution traces σi+1 until the analyzer
determines that enough traces have been analyzed to produce an estimation of p
satisfying the precision parameters. A higher accuracy of the answer provided by
the model checker requires generating more execution traces through simulations.

executable
system

model M
simulator

model
checker

statistical model checker

success/
failure

execution trace i

generation of new execution trace i+1

statistical
analyzer

probability p
for M to
satisfy

precision
parameters

property

Fig. 1. Working schema of the SMC technique.

3 Stochastic Execution of π-ADL models
In this section, we briefly recall how the π-ADL language allows describing dy-
namic software architectures. As SMC is a stochastic technique, the executable
model representing the system needs to be stochastic, a feature that π-ADL does
not possess. For this reason, we have provided a way of producing a stochastic
executable model from π-ADL architecture descriptions, thus allowing for prop-
erty verification using SMC. Finally, we show how to extract execution traces
from a stochastic execution.

3.1 Modeling Dynamic Architectures in π-ADL
π-ADL [16] is a formal, well-founded theoretically language intended to describe
software architectures under both structural and behavioral viewpoints. In order

StA 5

to cope with dynamicity concerns, π-ADL is endowed with architectural-level
primitives for specifying programmed reconfiguration operations, i.e., foreseen,
pre-planned changes described at design time and triggered at runtime by the
system itself under a given condition or event [5]. Additionally, code source
in the Go programming language [1] is automatically generated from π-ADL
architecture descriptions, thereby allowing for their execution [6].

From the structural viewpoint, a software architecture is described in π-
ADL in terms of components, connectors, and their composition to form the
system, i.e., an architecture as a configuration of components and connectors.
From the behavioral viewpoint, both components and connectors comprise a
behavior, which expresses the interaction of an architectural element and its
internal computation and uses connections to send and receive values between
architectural elements. The attachment of a component to a connector (and vice-
versa) is made by unifying their connections. Therefore, the transmission of a
value from an architectural element to another is possible only if (i) the output
connection of the sender is unified to the input connection of the receiver, (ii)
the sender is ready to send a value through that output connection, and (iii) the
receiver is ready to receive a value on that input connection.

In π-ADL, dynamic reconfiguration is obtained by decomposing architectures
[5]. The decomposition action removes all unifications defined in the original
architecture, but it does not terminate its elements. The decomposition of a given
architecture A is typically called from another coexisting architecture B, which
results from a reconfiguration applied over A. After calling the decomposition of
A, B can access and modify the elements originally instantiated in A.

3.2 Resolving Non-Determinism in π-ADL

In π-ADL, non-determinism occurs in two different ways. First, whenever several
actions are possible, any one of them can be executed as the next action, i.e., the
choice of the next action to execute is non-deterministic. Second, some functions
and behaviors can declared as unobservable, thus meaning that its internal oper-
ations are concealed at the architectural level. In this case, the value returned by
the function is also non-deterministic because it is not defined in the model. As
performing SMC requires a stochastic process, we resolve the non-determinism
of π-ADL models by using probabilities. In the following, we describe how to
proceed in the aforementioned cases.

Resolving non-determinism in the choice of the next action. The
Go code from a π-ADL architecture description encodes architectural element
(component or connector) as a concurrent goroutine, a lightweight process similar
to a thread. The communication between architectural elements takes place via
a channel, another Go construct. If several communications are possible, the Go
runtime chooses one of them to execute according to a FIFO policy, which is not
suitable for SMC since it is necessary to specify how the next action is chosen.

To support the stochastic scheduling of actions, we have implemented a sched-
uler as a goroutine controlling all non-local actions, i.e., composition, decomposi-
tion, and communication. Whenever an architectural element needs to perform

6 E. Cavalcante et al.

a non-local action, it informs the scheduler and blocks until the scheduler re-
sponds. The scheduler responds with the action executed (if the component has
submitted a choice between several actions) and a return value, corresponding
either to the receiving side of a communication or a decomposed architecture.

Fig. 2 depicts the behavior of the scheduler. The scheduler waits until all
components and connectors have indicated their possible actions. At this step,
the scheduler builds a list of possible rendezvous by checking which declared uni-
fications have both sender and receiver ready to communicate. For this purpose,
the scheduler maintains a list of the active architectures and the corresponding
unifications. The possible communications are added to the list of possible ac-
tions and the scheduler chooses one of them according to a probabilistic choice
function. The scheduler then executes the action and outputs its effect to the
statistical model checker. Finally, the scheduler notifies the components and
connectors involved in the action.

architectural
elements

wait

notify

compute possible
unications

choose
next action

execute
action

next possible
actions and
communications

new and
notied elements
added to
waiting list

involved
architectural
elements

statistical
model checker

list of
possible
actions

chosen action
output

changes

waiting
architectural
elements

scheduler

probabilistic
choice

function

parametrization

Fig. 2. Scheduler to support the stochastic simulation of a π-ADL model.

Resolving non-determinism in unobservable functions. Functions de-
clared as unobservable require an implementation to allow simulating the model.
In practice, this implementation is provided in form of a Go function whose re-
turn value can be determined by a probability distribution. Such an implemen-
tation relies on the Go libraries implementing usual probability distributions. In
particular, such functions can model inputs of the systems that have a known
probabilistic value, i.e., input to a component, time to the next failure of a
component, etc.

3.3 Trace of a Stochastic Execution

In order to verifying dynamic software architectures with SMC, we abstract
away the internal structure of architectural elements and represent a state of
the system as a directed graph g = (V,E) in which V is a finite set of nodes

StA 7

and E is a finite set of edges. Each node v ∈ V represents an architectural
element (component or connector) whereas each direct edge e ∈ E represents a
communication channel between two architectural elements.

The SMC technique relies on checking multiple execution traces resulted
from simulations of the system under verification against the specified properties.
Therefore, as a simulation ω results in a trace σ composed of a finite sequence
of states, σ can be defined as a sequence of state graphs gi (i ∈ N), i.e., σ =
(g0, g1, . . . , gn). Aiming at obtaining an execution trace from an architecture
description in π-ADL, the simulation emits explicit messages recording a set of
actions on the state graph.

4 A Novel Notation for Expressing Properties in
Dynamic Software Architectures

Most architectural properties to be verified by using model checking techniques
are temporal [19], i.e., they are qualified and can be reasoned upon a sequence of
system states along the time. In the literature, linear temporal logic (LTL) [17]
has been often used as underlying formalism for specifying temporal architectural
properties and verifying them through model checking. LTL extends classical
Boolean logic with temporal operators that allow reasoning on the temporal
dimension of the execution of the system. In this perspective, LTL can be used
to encode formulas about the future of execution paths (sequences of states),
e.g., a condition that will be eventually true, a condition that will be true until
another fact becomes true, etc.

Besides using standard propositional logic operators, LTL defines four tem-
poral operators, namely: (i) next, which means that a formula ϕ will be true in
the next step; (ii) finally or eventually, which indicates that a formula ϕ will be
true at least once in the time interval; (iii) globally or always, which means that
a formula ϕ will be true at all times in the time interval; and (iv) until, which
indicates that either a formula ϕ is initially true or another previous formula
ψ is true until ϕ become true at the current or a future time. SMC techniques
verify bounded properties, i.e., where temporal operators are parameterized by a
time bound. While LTL-based formulas aim at specifying the infinite behavior
of the system, a time-bounded form of LTL called BLTL considers properties
that can be decided on finite sequences of execution states.

Temporal logics such as LTL and BLTL are expressed over atomic predi-
cates that evaluate properties to a Boolean value at every point of execution.
However, a key characteristic of dynamic software systems is the impossibility
of foreseeing the exact set of architectural elements deployed at a given point
of execution. Such traditional formalisms do not allow reasoning about elements
that may appear, disappear, be connected or be disconnected during the execu-
tion of the system for two main reasons. First, specifying a predicate for each
property of each element is not possible as the set of architectural elements may
be unknown a priori. Second, there is no canonical way of assigning a truth value
to a property about an element that does not exist at the considered point of

8 E. Cavalcante et al.

execution. In addition, existing approaches to tackle such issues typically focus
on behavioral properties, but they do not address architectural properties [7].
On the other hand, some approaches assume that the architectures are static
[3]. These limitations have led us to propose DynBLTL, an extension of BLTL
to formally express properties in dynamic software architectures [18].

DynBLTL was designed to handle the absence of an architectural element in
a given formula expressing a property. In practice, this means that a Boolean
expression can take three values, namely true, false or undefined. The undefined
value refers to the fact that an expression may not be evaluated depending on
the current runtime configuration of the system. This is necessary for situations
in which it is not possible to evaluate an expression in the considered point of
execution, e.g., a statement about an architectural element that does not exist
at that moment. Some operators interpret the undefined value as true or false,
depending on the context. Furthermore, DynBLTL allows expressing properties
using (i) arithmetic, logical, and comparison operations on values, (ii) existential
and universal quantifications, traditionally used in predicate logic, and (iii) some
predefined functions that can be used to explore the architectural configuration.
Four temporal operators are available, namely in, eventually before, always dur-
ing, and until, which are similar to the ones defined in both LTL and BLTL.
Some examples of DynBLTL properties are presented in Section 6.2.

5 A Toolchain to Simulate and Verify Dynamic Software
Architectures

SMC techniques rely on the simulation of an executable model of the system
under verification against a set of formulas expressing bounded properties to be
verified (see Section 2). These elements are provided as inputs to a statistical
model checker, which consists of (i) a simulator to run the executable model
of the system, (ii) a model checker to verify properties, and (iii) a statistical
analyzer responsible for calculating probabilities and performing statistical tests.

Among the SMC tools available in the literature, PLASMA [2] is a compact,
flexible platform that enables users to create custom SMC plug-ins atop it. For
instance, users who have developed their own model description language can
use it with PLASMA by providing a simulator plug-in. Similarly, users can add
custom languages for specifying properties and use the available SMC algorithms
through a checker plug-in. Besides its efficiency and good performance results
[4, 11, 14], such a flexibility was one of the main reasons motivating the choice of
PLASMA to serve as basis to develop the toolchain for specifying and verifying
properties of dynamic software architectures.

Fig. 3 provides an overview of our toolchain. The inputs for the process are
(i) an architecture description in π-ADL and (ii) a set of properties specified in
DynBLTL. By following the process proposed in our previous work [5, 6], the
architecture description in π-ADL is translated towards generating source code
in Go. As π-ADL architectural models do not have a stochastic execution, they
are linked to a stochastic scheduler parameterized by a probability distribution

StA 9

for drawing the next action, as described in Section 3. Furthermore, we use
existing probability distribution Go libraries to model inputs of system models
as user functions. The program resulting from the compilation of the generated
Go source code emits messages referring to transitions from a given state to
another in case of addition, attachment, detachment, and value exchanges of
architectural elements.

properties
in DynBLTL

PLASMA

simulator
plug-in

checker
plug-in

Go
source
code execution

traces

code
generation

-ADL
architecture
description

stochastic
scheduler

user
Go functions

executable

compilation

Fig. 3. Overview of the toolchain to verify properties of dynamic software architectures.

We have developed two plug-ins atop the PLASMA platform, namely (i) a
simulator plug-in that interprets execution traces produced by the generated
Go program and (ii) a checker plug-in that implements DynBLTL. With this
toolchain, a software architect is able to evaluate the probability of a π-ADL
architectural model to satisfy a given property specified in DynBLTL. The devel-
oped tools are publicly available at http://plasma4pi-adl.gforge.inria.fr.

6 Case Study

In this section, we apply our approach to a real-world flood monitoring system
used as a case study. Section 6.1 presents an overview of the system and Section
6.2 describes some relevant properties to be verified in the context of this system.
At last, Section 6.3 reports some computational experiments performed to assess
the efficiency of our approach with the developed toolchain.

6.1 Description

A flood monitoring system can support monitoring urban rivers and create alert
messages to notify authorities and citizens about the risks of an imminent flood,
thereby fostering effective predictions and improving warning times. This system
is typically based on a wireless sensor network composed of sensors that measure
the water level in flood-prone areas near the river. In addition, a gateway station

10 E. Cavalcante et al.

analyzes data measured by motes, makes such data available, and can trigger
alerts when a flood condition is detected. The communication among these ele-
ments takes place by using wireless network connections, such as WiFi, ZigBee,
GPRS, Bluetooth, etc.

Fig. 4 shows the main architecture of the system. Sensor components com-
municate with each other through ZigBee connectors and a gateway component
receives all measurements to evaluate the current risk. Each measure from a sen-
sor is propagated its neighbors via ZigBee connectors until reaching the gateway.
The environment is modeled through the Env component and the SensorEnv and
Budget connectors. Env is responsible for synchronizing the model by defining
cycles corresponding to the frequency at which measures are taken by sensors. A
cycle consists of: (i) signaling Budget that a new cycle has started; (ii) updating
the river status; (iii) registering deployed sensors; (iv) signaling each SensorEnv
connector to deliver a new measure; and (v) waiting for each SensorEnv connec-
tor to confirm that a new measure has been delivered. The Sensor, SensorEnv,
and ZigBee elements can added and removed during the execution of the system
through reconfigurations triggered by the gateway component.

ZigBeeSensor

pass

sense end

value

killZb die

measure input output

Env

BudgetSensorEnv
newS valReady valSent sfailed

newS valReady valSent sfailed

tick

tick

Reconf

Gatewaypass

balance
spent

removeS newS

removeS newS

newCov

alert

sendCov

balance spend

rncfStart

rncfStart

rncfEnd

rncfEnd

Observer

ood

ood

alert

Fig. 4. Overview of the main architecture for the flood monitoring system.

Fig. 5 shows an excerpt of the π-ADL description for the sensor component.
The behavior of this components comprises choosing between two alternatives,
either obtaining a new measure (i) from the environment via the sense input
connection or (ii) from a neighbor sensor via the pass input connection. After
receiving the gathered value, it is transmitted through the measure output con-
nection. Reading a negative value indicates a failure of the sensor, so that it
becomes a FailingSensor, which simply ignores all incoming messages.

We have modeled two reconfigurations, namely adding and removing a sensor,
as depicted in Fig. 6. The gateway component decides to add a sensor if the
coverage of the river is not optimal and the budget is sufficient to deploy a
new sensor. This operation is triggered by sending a message to Reconf via the

StA 11

component Sensor is abstraction() {
connection sense is in(MV)
connection measure is out(CmH2O)
connection pass is in(CmH2O)
behavior is {
choose {

via sense receive m : MV
via measure send CmH2O(tuple[self, m])
if m < 0.0 then {
become(FailingSensor())

}

or
via pass receive other_measure : CmH20
via measure send other_measure

}
}

}

Fig. 5. Partial π-ADL description of the sensor component.

newS connection, with the desired location for the new sensor. The new sensor is
connected to other sensors in range via a ZigBee connector, as shown in Fig. 6(a).
During this operation, Reconf decomposes the main architecture to include the
new elements and unifications before recomposing it. The reconfiguration uses
the position of each sensor to determine which links have to be created. After
triggering the reconfiguration, the gateway indicates to the Budget connector
that it has spent the price of a sensor.

The gateway removes a sensor when it receives a message indicating that
it is in failure. This operation is triggered by sending a message to Reconf via
the removeS connection, with the name of the sensor to remove. Removing a
sensor may isolate other sensors that are further away from the gateway as it in
shown in Fig. 6(b). In this case, sensors that were sending their measures via the
removed sensor (such as s4) are instead connected to a sink connector, which
loses all messages. This new connection prevents deadlocks that occur when the
last element of the isolated chain cannot propagate its message. When a sensor
is removed, the connected ZigBee and SensorEnv are composed in a separated
architecture. This architecture connects the killZb connection of the sensor to
the die connections of the ZigBee connectors, which allows an other branch of
the behavior to properly terminate these components.

6.2 Requirements

As previously mentioned, a DynBLTL formula requires bounds on temporal
operators to ensure that it can be decided in a finite number of steps. We have
two possibilities to express bounds, namely using steps or using time units.

12 E. Cavalcante et al.

Fig. 6. Reconfigurations in the flood monitoring system: adding sensor s3, which re-
quires connecting it to existing sensors s1 and s2 through new ZigBee connectors (left),
and removal of sensor s5 (right).

Usually, the number of steps executed during a time unit depends on the number
of components in the system. In the case of our flood monitoring system, the
number of steps executed during a cycle mainly depends on the number of sensors
deployed since each sensor reads one value at each cycle. Therefore, a time unit
correspond to a cycle, thus allowing us to specify bounds independently from
the number of components in the system.

First, we want to evaluate the correctness of our model with respect to its
main goal, i.e., warning about imminent flooding. In this context, a false negative
occurs when the system fails to predict a flood.

eventually before X time units { // FalseNegative(X,Y)
(gw.alert = "low")
and (eventually before Y time units env.flood)

}

This property characterizes a false negative: the gateway predicts a low risk and
a flood occurs in the next Y time units. The parameters of this formula are X,
the time during which the system is monitored, and Y , the time during which
the prediction of the gateway should hold.

Similarly, a false positive occurs when the system predicts a flood that does
not actually occur:

eventually before X time units { // FalsePositive(X,Y)
gw.alert = "flood detected"
and always during Y time units not env.flood

}

The system is correct if there is no false negatives nor false positives for the
expected prediction anticipation (parameter Y).

These two formulas are actually BLTL formulas as they involve simple pred-
icates on the state. However, DynBLTL allows expressing properties about the
dynamic architecture of the system. For example, suppose that one wants to
check that if a sensor sends a message indicating that it is failing, then it must
be removed from the system in a reasonable amount of time. This disconnection
is needed because the sensor in failure will not pass incoming messages. We char-

StA 13

acterize the removal of a sensor by a link on the end connection, corresponding
to the initiation of the sensor termination (not detailed here).

In our dynamic system, sensors may appear and disappear during execution.
Therefore, the temporal pattern needs to be dynamically instantiated at each
step for each existing sensor:
always during X time units { // RemoveSensor(X,Y)
forall s:allOfType(Sensor) {

(isTrue s.measure < 0) implies {
eventually before Y time units {

exists st:allOfType(StartTerminate)
areLinked(st.start,s.end)

}
}

}
}

This property cannot be stated in BLTL since it does not have a construct
such as forall for instantiating a variable number of temporal sub-formulas
depending on the current state.

Another property of interest consists in checking if a sensor is available, i.e.,
at least one sensor is connected to the gateway. More precisely, there must be
a ZigBee connector between the gateway and a sensor. If not, we require that
such a sensor appear in less than Y time units:
always during X time units { // SensorAvailable(X,Y)
(not (exists zb:allOfType(ZigBee) areLinked(zb.output,gw.pass)
and (exists s:allOfType(Sensor) areLinked(s.measure,zb.input))))
implies (eventually before Y time units {

exists zb:allOfType(ZigBee) areLinked(zb.output,gw.pass)
and (exists s:allOfType(Sensor) areLinked(s.measure,zb.input))

}
}

6.3 Experimental Results

In this section, we report some experiments aiming to quantitatively evaluate
the efficiency of our approach. Considering that the literature already reports
that PLASMA and its SMC algorithms outperform other existing approaches
(c.f. [4, 11, 14]), we are hereby interested in assessing how efficient is our ap-
proach and toolchain to verify properties in dynamic software architectures. In
the experiments, we have chosen computational effort in terms of execution time
and RAM consumption as metrics, which were used to observe the performance
of our toolchain when varying the precision of the verification. As PLASMA is
executed upon a Java Virtual Machine, 20 runs were performed for each preci-
sion value in order to ensure a proper statistical significance for the results. The
experiments were conducted under GNU/Linux on a computer with a quad-core
3 GHz processor and 16 GB of RAM. Time and RAM consumption measures
were obtained by using the time utility from Linux.

14 E. Cavalcante et al.

The toolchain was evaluated with the FalsePositive, SensorAvailable,
and RemoveSensor properties described in Section 6.2. These properties were
evaluated using the Chernoff algorithm [9] from PLASMA, which requires a
precision and a confidence degree as parameters and returns an approximation
of the probability with an error below the precision parameter, with the given
confidence. A confidence of 95% was chosen and the precision has ranged on
0.02, 0.03, 0.04, 0.05, and 0.1, respectively requiring 4612, 2050, 1153, 738, and
185 simulations.

Figure 7(a) how the average analysis time (in seconds) increases when the
precision increases, i.e., the error decreases. As highlighted in Section 2, a higher
accuracy of the answer provided by the statistical model checker requires gener-
ating more execution traces through simulations, thereby increasing the analysis
time. The property regarding the sensor availability evaluated over a window of
50 time units requires less time than the other properties evaluated over a win-
dow of 100 time units because the analysis of each trace is faster. In Fig. 7(b),
it is possible to observe that the increase of the average amount of RAM (in
megabytes) required to perform the analyses is nearly constant, thus meaning
that the precision has no strong influence on the RAM consumption. This can be
explained by the fact that SMC only analyzes one trace at a time. Therefore, we
can conclude that our SMC approach and toolchain can be regarded as efficient
with respect to both execution time and RAM consumption.

0

200

400

600

800

1000

1200

s

FalsePositive(100,3)

SensorAvailable(50,2)

RemoveSensor(100,4)

0.02 0.03 0.04 0.05 0.1

(a)

0.02 0.03 0.04 0.05 0.1

FalsePositive(100,3)

SensorAvailable(50,2)

RemoveSensor(100,4)

1400

1500

1600

1700

1800

1900

MB

(b)

Fig. 7. Effects of the variation in the precision in the analysis of three properties upon
analysis time (a) and RAM consumption (b).

We rely on the Chernoff bound to compute the number of required simu-
lations, which increases quadratically with respect to the precision. In case of
rare events, i.e., properties that have a very low probability to happen, a better
convergence can be obtained by using dedicated methods [11]. Regarding size,
our current model contains about 30 processes in total.

StA 15

7 Conclusion

In this paper, we have presented our approach on the use of statistical model
checking (SMC) to verify properties in dynamic software architectures. Our main
contribution is an SMC-based toolchain for specifying and verifying such proper-
ties atop the PLASMA platform. The inputs for this process are a probabilistic
version of an architecture description in the π-ADL language and a set of proper-
ties expressed in DynBLTL. We have used a real-world flood monitoring system
to show how to specify properties in a dynamic software architectures, as well
as it was used in some computational experiments aimed to demonstrate that
our approach and toolchain are efficient and hence feasible to be applied on the
verification task. To the best of our knowledge, this is the first work on the
application of SMC to verify properties in dynamic software architectures.

As future work, we need to assess the expressiveness and usability of Dyn-
BLTL for expressing properties in dynamic software architectures. We also intend
to integrate our approach into a framework aimed to support software architects
in activities such as architectural representation and formal verification of archi-
tectural properties.

Acknowledgments. This work was partially supported by the Brazilian Na-
tional Agency of Petroleum, Natural Gas and Biofuels through the PRH-22/ANP/
MCTI Program (for Everton Cavalcante) and by CNPq under grant 308725/2013-
1 (for Thais Batista).

References

1. The Go programming language. https://golang.org/
2. PLASMA-Lab. https://project.inria.fr/plasma-lab/
3. Arnold, A., Boyer, B., Legay, A.: Contracts and behavioral patterns for SoS: The

EU IP DANSE Approach. In: Larsen, K.G., Legay, A., Nyman, U. (eds.) Proceed-
ings of the 1st Workshop on Advances in Systems of Systems. EPTCS, vol. 133,
pp. 47–60 (2013)

4. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) Proceedings of the 10th International Conference on Quan-
titative Evaluation of Systems, Lecture Notes in Computer Science, vol. 8054, pp.
160–164. Springer Berlin Heidelberg, Germany (2013)

5. Cavalcante, E., Batista, T., Oquendo, F.: Supporting dynamic software architec-
tures: From architectural description to implementation. In: Proceedings of the
12th Working IEEE/IFIP Conference on Software Architecture. pp. 31–40. IEEE
Computer Society, USA (2015)

6. Cavalcante, E., Oquendo, F., Batista, T.: Architecture-based code generation:
From π-adl descriptions to implementations in the Go language. In: Avgeriou,
P., Zdun, U. (eds.) Proceedings of the 8th European Conference on Software Ar-
chitecture, Lecture Notes in Computer Science, vol. 8627, pp. 130–145. Springer
International Publishing, Switzerland (2014)

16 E. Cavalcante et al.

7. Cho, S.M., Kim, H.H., Cha, S.D., Bae, D.H.: Specification and validation of dy-
namic systems using temporal logic. IEE Proceedings – Software 148(4), 135–140
(Aug 2001)

8. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press,
Cambridge, MA, USA (1999)

9. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Steffen, B., Levi, G. (eds.) Proceedings of the 5th International
Conference on Verification, Model Checking, and Abstract Implementations, Lec-
ture Notes in Computer Science, vol. 2937, pp. 73–84. Springer Berlin Heidelberg,
Germany (2004)

10. Holzmann, G.J.: The logic of bugs. In: 10th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering. pp. 81–87. ACM, New York, NY, USA (2002)

11. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statistical
model checking – PLASMA. In: Flanagan, C., König, B. (eds.) Proceedings of the
18th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science, vol. 7214, pp. 498–503.
Springer Berlin Heidelberg, Germany (2012)

12. Kim, Y., Choi, O., Kim, M., Baik, J., Kim, T.H.: Validating software reliability
early through statistical model checking. IEEE Software 30(3), 35–41 (May/Jun
2013)

13. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview.
In: Barringer, H., et al. (eds.) First International Conference on Runtime Verifica-
tion, Lecture Notes in Computer Science, vol. 6418, pp. 122–135. Springer Berlin
Heidelberg, Germany (2010)

14. Legay, A., Sedwards, S.: On statistical model checking with PLASMA. In: Pro-
ceedings of the 2014 Theoretical Aspects of Software Engineering Conference. pp.
139–145. IEEE Computer Society, Washington, DC, USA (2014)

15. Mateescu, R., Oquendo, F.: π-AAL: An architecture analysis language for formally
specifying and verifying structural and behavioural properties of software architec-
tures. ACM SIGSOFT Software Engineering Notes 31(2), 1–19 (Mar 2006)

16. Oquendo, F.: π-ADL: An architecture description language based on the higher-
order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT Software Engineering Notes 29(3), 1–14 (May 2004)

17. Pnueli, A.: The temporal logics of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science. pp. 46–57. IEEE Computer So-
ciety, Washington, DC, USA (1977)

18. Quilbeuf, J., Cavalcante, E., Traonouez, L.M., Oquendo, F., Batista, T., Legay,
A.: A logic for statistical model checking of dynamic software architectures. In:
Proceedings of the 7th International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation. Lecture Notes in Computer Science,
Springer (2016)

19. Zhang, P., Muccini, H., Li, B.: A classification and comparison of model checking
software architecture techniques. Journal of Systems and Software 83(5), 723–744
(May 2010)

