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Abstract. We consider the partial behavior model framework of dis-
junctive modal transition systems. We extend the framework to a gen-
eral quantitative setting and show that also in this quantitative setting,
modal transition systems and the modal nu-calculus are closely related.
The main technical contribution is that our quantitative framework is
compositional with respect to general notions of distances between sys-
tems and the standard operations. Moreover, we show how to compute
the results of the operations, including the quotient, which has not been
previously considered for quantitative non-deterministic systems. This
allows for compositional and step-wise design and verification of systems
with quantitative information, such as rewards, time or energy.

1 Introduction

Specifications of systems come in two main flavors. Logical specifications are
formalized as formulae of modal or temporal logics, such as the modal p-calculus
or LTL. A common way to verify them on a system is to translate them to
automata and then analyze the composition of the system and the automaton.
In contrast, in the behavioral approach, specifications are written, from the very
beginning, in an automata-like formalism. Such properties can be verified using
various equivalences and preorders, such as bisimilarity or refinement. Here we
focus on the latter approach, but also show connections between the two.

The behavioral formalism we work with is modal transition systems (MTS) [28]
and their extensions. MTS are like automata, but with two types of transitions:
must-transitions represent behavior that has to be present in every implemen-
tation; may-transition represent behavior that is allowed, but not required to
be implemented. A simple example of a vending machine specification s, in
Fig. 1 on the left, describes that any correct implementation must be ready to
accept money, then may offer the customer to choose extras and must issue a
beverage. While the must-transitions are preserved in the refinement process, the
may-transitions can be either implemented and turned into must-transitions, or
dropped. This low-level refinement process is, however, insufficient when the de-
signer wants to get more specific about the implemented actions, such as going
from the coarse specification just described to the more fine-grained specification
on the right.

In order to relate such specifications, MTS with structured labels were intro-
duced [5]. Given a preorder on labels, relating for instance coffee < beverage,
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Fig. 1. Two specifications of a vending machine

we can refine a transition label into one which is below, for example implement
“beverage” with its refinement “coffee”. Then ¢ will be a refinement of s.

This framework can be applied to various preorders. For example, one can use
labels with a discrete component carrying the action information and an interval
component to model time durations or energy consumption. As an example,
consider the simple real-time property to the left in Fig. 2: “after a req(uest),
grant has to be executed within 5 time units without the process being idle
meanwhile”. The transition (grant, [0, 5]) could be safely refined to (grant, [I,7])
forany 0 <[ <r <5.

However, here we identify several shortcomings of the current approaches:

Ezxpressive power. The current theory of structured labels is available only for the
basic MTS. Very often one needs to use richer structures such as disjunctive MTS
(DMTS) [8,29] or acceptance automata [21,31]. While MTS generally cannot
express disjunction of properties, DMTS and further related formalisms can and
are, in fact, equivalent to the v-calculus [7]. This allows, for instance, to prohibit
deadlocks as in the example to the right in Fig. 2. The disjunctive must, depicted
as a branching arrow, requires at least one of the transitions to be present. Thus
we allow the deadline for grant to be reset if additional work is generated. Note
that specifying grant and work as two separate must-transitions would not allow
postponing the deadline; and two separate may-transitions would not guarantee
any progress, as none of them has to be implemented. We hence propose DM TS
with structured labels and also extend the equivalence between DMTS and the
modal v-calculus [7] to our setting. Fig. 3 (left) shows a v-calculus translation
of the second quantitative specification of Fig. 2.

grant, idle grant, work, idle

N ~
I ’|

(grant,[0,5])
0,5] [2,4]

Fig. 2. Two simple quantitative specifications
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Fig. 3. A quantitative v-calculus expression (left) and a quantitative DMTS

Robustness. Consider the grant issuing example u. While an implementation
issuing grant after precisely 5 time units is a valid refinement, if there is but a
small positive drift in the implementation, it is not a refinement anymore. How-
ever, this drift might be easily mended or just might be due to measuring errors.
Therefore, when models and specifications contain such quantitative informa-
tion, the standard Boolean notions of satisfaction and refinement are of limited
utility [23] and should be replaced by notions more robust to perturbations. As
an example, the DMTS in Fig. 3 is not a refinement of the second one in Fig. 2,
but for all practical purposes, it is very close.

One approach is to employ metric distances instead of Boolean relations; this
has been done for example in [12-14, 16, 22,27, 32, 33, 35,36]. An advantage of
behavioral specification formalisms is that models and specifications are closely
related, hence distances between models can easily be extended to distances
between specifications. We have developed a distance-based approach for MTS
in [3,4] and shown in [4, 18] that a good general setting is given by recursively
specified trace distances on an abstract quantale. Here we extend this to DMTS.

Compositionality. The framework should be compositional. In the quantitative
setting, this in essence means that the operations we define on the systems should
behave well with respect not only to satisfaction, but also to the distances. For
instance, if s is close to ¢; and so close to to then also the composition s1 || s2
should be close to t; || t2. We prove this for the usual operations; in particular,
we give a construction for such a well-behaved quotient. The quotient of s by ¢ is
the most general system that, when composed with ¢, refines s. This operation is
thus useful for computing missing parts of a system to be implemented, when we
already have several components at our disposal. The construction is complex
already in the non-quantitative setting [7] and the extension of the algorithm to
structured labels is non-trivial.

Our contribution. To sum up, we extend the framework of structured labels
to DMTS and v-calculus. We equip this framework with distances and give
constructions for the structured analogues of the standard operations, so that
they behave compositionally with respect to the distances.

Further related work. Refinement of components is a frequently used design ap-
proach in various areas, ranging from subtyping [30] over the Java modeling
language JML [24] or correct-by-design class diagrams operations [17] to inter-
face theories close to MTS such as interface automata [15] based on alternating
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simulation. A variant of alternating simulation called covariant-contravariant
simulation has been compared to MTS modal refinement in [1]. The graphical
representability of these variants was studied in [7,9].

2 Structured Labels

Let X be a poset with partial order <. We think of < as label refinement, so
that if @ < b, then a is less permissive (more restricted) than b.

We say that a label a € X' is an implementation label if b < a implies b = a
forall b € X, i.e., if a cannot be further refined. The set of implementation labels
is denoted I', and for a € X, we let [a] = {b € I' | b < a}. Note that a < b
implies [a] C [b] for all a,b € X.

Ezxample 1. A trivial but important example of our label structure is the discrete
one in which label preorder < is equality. This is equivalent to the “standard”
case of unstructured labels.

A typical label set in quantitative applications consists of a discrete compo-
nent and real-valued weights. For specifications, weights are replaced by (closed)
weight intervals, so that X =U x {[I,r] | | € RU{—o0},r € RU{o0},l < r} for
a finite set U, cf. [4,5]. Label refinement is given by (u1, [l1,71]) < (uz, [l2, r2])
iff u1 = ug and [l3,71] C [l2,72], so that labels are more refined if they specify
smaller intervals; thus, I' =U x {[z,z] |z € R} = U x R.

For a quite general setting, we can instead start with an arbitrary set I" of
implementation labels, let X = 27", the powerset, and < = C be subset inclusion.
Then [a] = a for all @ € X. (Hence we identify implementation labels with one-
element subsets of X.) O

Label operations. Specification theories come equipped with several standard
operations that make compositional software design possible [2]: conjunction for
merging viewpoints covering different system’s aspects [6, 34], structural com-
position for running components in parallel, and quotient to synthesize missing
parts of systems [29]. In order to provide them for DMTS, we first need the
respective atomic operations on their action labels.

We hence assume that X' comes equipped with a partial conjunction, i.e., an
operator @® : X x X — X for which it holds that

(1) if a1 ® a2 is defined, then a1 ® a2 < a1 and a1 ® az < a2, and
(2) if a3 < a1 and a3 < ag, then a1 @ as is defined and a3 < a1 @ as.

Note that by these properties, any two partial conjunctions on X' have to agree
on elements for which they are both defined.

Ezample 2. For discrete labels, the unique conjunction operator is given by

a1 if a1 = az
a1 ®ay = o
undef. otherwise.
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For labels in U x {[I,r] | I,r € R, < r}, the unique conjunction is

undef. if up # ug or [ly,71] N [la,m2] =0,
u, [l1,71]) © (ug, [l2,12]) = .
(w1, [l ) © (w2, [f2,72]) {(ul, [l1,m1] N [l2, r2]) otherwise .
Finally, for the general case of specification labels as sets of implementation
labels, the unique conjunction is a; ® a2 = a1 N as. O

For structural composition and quotient of specifications, we assume a partial
label synchronization operator O : X x X — X which specifies how to compose
labels. We assume @ to be associative and commutative, with the following
additional property: For all ay,as,b1,b2 € X with a1 < as and by < b2, a1 © by
is defined iff as @ by is, and if both are defined, then a; © b1 < as © bo.

Example 3. For discrete labels, the conjunction of Example 2 is the same as
CSP-style composition, but other compositions may be defined.

For labels in U x {[I,r] | I, € R, < r}, several useful label synchronization
operators may be defined for different applications. One is given by addition of
intervals, i.e.,

undef. if uy # ug,

(ula [11, Tl]) é (Uz, [12,7"2]) = {

(u1,[li + 12,71 +12])  otherwise,

for example modeling computation time of actions on a single processor. Another
operator, useful in scheduling, uses maximum instead of addition:

undef. if uy # us,
(u1, [max(ly,l2), max(ry, r2)]) otherwise .

(ur, 11, m1]) @ (uz, [l2,m2]) = {
Yet another operator uses interval intersection instead, i.e., & = @; this is useful
if the intervals model deadlines.

For general set-valued specification labels, we may take any synchronization
operator O given on implementation labels I" and lift it to one on X by a1 Qas =
{b1 D by | b, € [[al]],bg S [[agﬂ}. O

3 Specification Formalisms

In this section we introduce the specification formalisms which we use in the rest
of the paper. The universe of models for our specifications is the one of standard
labeled transition systems. For simplicity of exposition, we work only with finite
specifications and implementations, but most of our results extend to the infinite
(but finitely branching) case.

A labeled transition system (LTS) is a structure Z = (.9, s°, —) consisting
consisting of a finite set S of states, an initial state s° € S, and a transition
relation — C S x I' x S. We usually write s — ¢ instead of (s,a,t) € —.
Note that transitions are labeled with implementation labels.
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Disjunctive Modal Transition Systems. A disjunctive modal transition sys-
tem (DMTS) is a structure D = (S, 5% --+, —) consisting of finite sets S D S°
of states and initial states, respectively, may-transitions --+ C S x X' xS, and dis-
junctive must-transitions — C S x2**5 It is assumed that for all (s, N) € —
and (a,t) € N there is (s,b,t) € --» with a < b.

Ezample 4. The specification = in Section 1 has a may transition to y; from
there we have a disjunctive must transition with identical underlying may tran-
sitions. The intuitive meaning of the transition, that either grant or work must
be available, is formalized below using the modal refinement.

Note that we allow multiple (or zero) initial states. We write s -—» ¢ instead
of (s,a,t) € --» and s — N instead of (s, N) € —. A DMTS (S, S°, --», —)
is an implementation if ~—> C S x I' x 8, — = {(s,{(a,t)}) | s -2 t}, and
SY = {s%} is a singleton; DMTS implementations are hence isomorphic to LTS.

DMTS were introduced in [29] in the context of equation solving, or quotient
of specifications by processes. They are a natural closure of modal transition
systems [28], which are DMTS in which all disjunctive must-transitions s — N
lead to singletons N = {(a,t)}.

We introduce a notion of modal refinement of DMTS with structured labels.
It coincides with the classical definition [29] on discrete labels.

Definition 5. LetD; = (51,59, --+1, —1), D2 = (52,59, ~-+3, —2) be DMTS.
A relation R C S X Sy is a modal refinement if it holds for all (s1,s2) € R that
— for all s, —a—1+1 t1 there is so —{1—292 to such that a1 < as and (t1,t2) € R, and
— for all s9 —o No there is s —1 N1 such that for all (aq1,t1) € N1 there is
((Lg,tg) € Ny with a1 < as and (tl,tg) € R.
D; refines Do, denoted D1 <m, D2, if there exists a modal refinement R for which
it holds that for every s9 € Sy there is s € SY for which (s?,s9) € R.

We write D1 =, Do if Dy <m D2 and Dy <, Di. The implementation
semantics of a DMTS D is [D] = {Z <m D | Z implementation}. We say that
D, thoroughly refines Ds, and write D; <y, Do, if [D1] C [D2]. The below
proposition, which follows directly from transitivity of modal refinement, shows
that modal refinement is sound with respect to thorough refinement; in the
context of specification theories, this is what one would expect.

Proposition 6. For all DMTS Dy, Ds, D1 <m Do implies Dy <gn Do. a

Acceptance automata. A (non-deterministic) acceptance automaton (AA) is
a structure A = (S, S, Tran), with S D S finite sets of states and initial states
and Tran : S — 2277 an assignment of transition constraints. The intuition is
that a transition constraint Tran(s) = {My,..., M,} specifies a disjunction of n
choices My, ..., M, as to which transitions from s have to be implemented.

An AA is an implementation if S° = {s°} is a singleton and it holds for all
s € S that Tran(s) = {M} C 2I'%5 is a singleton; hence AA implementations
are isomorphic to LTS. Acceptance automata were first introduced in [31], based
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on the notion of acceptance trees in [21]; however, there they are restricted to
be deterministic. We employ no such restriction here.

Let A; = (51,59, Tran;) and Ay = (52,59, Trans) be AA. A relation R C
S1 xSy is a modal refinement if it holds for all (s1, s2) € Rand all M; € Tran;(s1)
that there exists My € Trana(sz2) such that

(1)

for all (a1,t1) € M there is (as,t2) € Ms with a1 < as and (¢1,12) € R,
for all (ag,t2) € Ms there is (a1,t1) € M7 with a1 < a2 and (¢1,t2) € R.

The definition degrades to the one of [31] in case labels are discrete. We will
write M1 <R MQ if Ml, MQ satisfy (1)

In [7], the following translations were discovered between DMTS and AA: For
a DMTS D = (5,5% --»,—) and s € S, let Tran(s) = {M C X x S | ¥(a,t) €
M:s-%tV¥s — N: NNM # 0} and define the AA da(D) = (S, S, Tran).
For an AA A = (S, 5% Tran), define the DMTS ad(A) = (D, D°, --+,—) by

D ={M € Tran(s) | s € S}, D° = {M° € Tran(s") | s° € S°},
— ={(M,{(a, M) | M" € Tran(t)}) | (a,t) € M},
--»={(M,a,M")| 3IM — N : (a, M') € N}.

Similarly to a theorem of [7,19], we can now show the following:

Theorem 7. For DMTS Dy, Dy and AA Ai, Az, D1 <m D2 iff da(D1) <m
da(D2) and Ay <m Az iff ad(A1) <m ad(As). a

This structural equivalence will allow us to freely translate forth and back
between DMTS and AA in the rest of the paper. Note, however, that the state
spaces of A and ad(A) are not the same; the one of ad(A) may be exponentially
larger. [19] shows that this blow-up is unavoidable.

From a practical point of view, DMTS are a somewhat more useful specifi-
cation formalism than AA. This is because they are usually more compact and
easily drawn and due to their close relation to the modal v-calculus, see below.

The Modal v-Calculus. In [7], translations were discovered between DMTS
and the modal v-calculus, and refining the translations in [19], we could show
that for discrete labels, these formalisms are structurally equivalent. We use the
representation by equation systems in Hennessy-Milner logic developed in [26].
For a finite set X of variables, let H(X) be the set of Hennessy-Milner formulae,
generated by the abstract syntax H(X) 2> ¢ ==t | |z | (@) | [a]p | oA D | @V
¢, for a € X and x € X. A v-calculus expression is a structure N' = (X, X9, A),
with X? C X sets of variables and A : X — H(X) a declaration.

The semantics of v-calculus expressions is usually given as a greatest fixed
point to a declaration, c¢f. [26]. In [19] we have introduced another semantics,
which is given by a notion of refinement, like for DMTS and AA. For this we
need a normal form for v-calculus expressions:

Lemma 8 ([19]). For any v-calculus expression N1 = (X1, XY, A1), there exists
another expression Ny = (Xo, X9, Ag) with [N1] = [N2] and such that for any
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r € X, Ax(x) is of the form Az (x) = N\;¢; (VjeJ,i (aij>xij)/\/\a€2[a](\/jeJa Ya.j)
for finite (possibly empty) index sets I, J;, Jo and all z;j,yq,; € Xo. O

As this is a type of conjunctive normal form, it is clear that translating
a v-calculus expression into normal form may incur an exponential blow-up.
We introduce some notation for v-calculus expressions in normal form. Let N =
(X, X° A)be such an expression and z € X, with A(z) = A,¢; (vjeJi (aij)wij )N
Naeslal (Ve Yaj) as in the lemma. Define O(x) = {{(aij, i) | j € Ji} | i €
I} and, for each a € X, 0%(z) = {ya,; | j € Ja}. Intuitively, O(z) collects all (a)-
requirements from z, whereas (0%(z) specifies the disjunction of [a]-properties
which must hold from z. Note that now,

A= A (V @)r Ald( V v). (2)

Ned(z) (a,y)EN acXy yela(z)

Let N1 = (X1,XY{, A1), N2 = (X2,X3,A3) be v-calculus expressions in
normal form and R C X; x X5. The relation R is a modal refinement if it holds
for all (z1,z2) € R that

— for all a1 € X and y; € O (1) there is ax € X and yy € 032 (x2) with
a1 < a2 and (y1,y2) € R, and
— for all Ny € Oa(x2) there is N1 € O1(x1) such that for all (a1,y1) € N; there

exists (az,y2) € Ny with a1 < as and (y1,92) € R.

For a DMTS D = (5,5% --»,—) and all s € S, let O(s) = {N | s —
N} and, for each a € X, 0%s) = {t | s -%» t}. Define the (normal-form) v-
calculus expression dn(D) = (S, S, A), with A given as in (2). For a v-calculus
expression ' = (X, X% A) in normal form, let --» = {(z,a,y) € X x ¥ x
X |y e O%=)}, — = {(z,N) | x € X, N € O(z)} and define the DMTS
nd(N) = (X, X%, --»,—). Given that these translations are entirely syntactic,
the following theorem is not a surprise:

Theorem 9. For DMTS D+, Dy and v-calculus expressions N1, Na, D1 <m Do
iff dn(D1) <m dn(Ds3) and N7 <m Nz iff nd(N1) <m nd(N>). O

It is shown in [19] that the refinement semantics and the standard fixed-point
semantics for v-calculus expressions agree, i.e., that an LTS 7 is an implemen-
tation of an expression N iff 7 <., A/. Here we have used an embedding of LTS
into v-calculus similar to the one into DMTS or AA, ¢f. [19].

4 Specification theory

Structural specifications typically come equipped with operations which allow for
compositional reasoning, viz. conjunction, structural composition, and quotient,
cf. [2]. On deterministic MTS, these operations can be given easily using simple
structural operational rules (for such semantics of weighted systems, see e.g.
[25]). For non-deterministic systems this is significantly harder; in [7] it is shown
that DMTS and AA permit these operations and, additionally but trivially,
disjunction. Here we show how to extend these operations on non-deterministic
systems to our quantitative setting with structured labels.
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We remark that structural composition and quotient operators are well-
known from some logics, such as, e.g., linear [20] or spatial logic [10], and were
extended to very general contexts [11]. However, whereas these operators are
part of the formal syntax in those logics, for us they are simply operations on
logical expressions (or DMTS, or AA). Consequently [19], structural composition
is generally only a sound over-approximation of the semantic composition.

Given the equivalence of DMTS, AA and the modal v-calculus exposed in the
previous section, we will often state properties for all three types of specifications
at the same time, letting S stand for any of the three types.

Disjunction and conjunction. Disjunction of specifications is easily defined
as we allow multiple initial states. For DMTS D; = (51,59, --+1, —1), Dy =
(S2, 89, --+2,—3), we can hence define D; V Dy = (S; U S2, 5% U S9,--+; U
--29,—1 U —9) (with all unions disjoint). For conjunction, we let D; A Dy =
(51 X SQ,S? X Sg, -=3, —>), with

a1 Qaz al a2 .
— (s1,82) --» (t1,t2) whenever sy --+1 t1, 83 —-+2 to and aj ® ap is defined,

— for all S1 — Nl, (81, 82) E— {(al@ag, (tl,tg)) | ((Ll,tl) S Nl,SQ —11—2-)2 tg,al@
ay defined},

— forall s, — Na, (s1,82) — {(a10as, (t1,t2)) | (as,t2) € No, 51 -5 11,010
ay defined}.

Theorem 10. For all specifications S1, Sa, S3,
= S51 VS <im 83 iff S1 <im S3 and Sz <im S3,
= 81 <m S2 A S3 iff ST <im S2 and 1 <m Ss,
— [[51 V Sgﬂ = [[81]] U [[Sgﬂ, and [[51 A\ Szﬂ = [[81]] n [[Sgﬂ

With bottom and top elements given by L = ((,0,0) and T = ({s}, {s}, TranT)
with Trant(s) = 222X{S}, our classes of specifications form bounded distributive
lattices up to =p,.

Structural composition. For AA A; = (51,5, Tran;), Ay = (S2, S9, Trany),

their structural composition is A || Az = (S1x S2, SYxSY, Tran), with Tran((s1, s2)) =

{My ©® My | My € Tran;(s1), My € Trany(sz)} for all s; € S1, s2 € S, where

My © My = {(a1 O ao, (tl,tg)) | (al,tl) € My, (ag,tg) € Ms,a1 © as deﬁned}.
Remark a subtle difference between conjunction and

structural composition, which we expose for discrete labels D,

and CSP-style composition: for the DMTS Dy, Dy shown
to the right, both D1 ADs and D4 || D2 have only one state, D . b .
but Tran(s; A t1) = @ and Tran(si||t1) = {0}, so that :
D; A Dy is inconsistent, whereas D1 || D2 is not.

This definition extends the structural composition defined for modal transi-
tion systems, with structured labels, in [4]. For DMTS specifications (and hence

also for v-calculus expressions), the back translation from AA to DMTS entails
an exponential explosion.

Theorem 11. Up to =y, the operator || is associative, commutative and mono-
tone, and L||S =n L for any specification S.
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Corollary 12 (Independent implementability). For all specifications Sy,
Sa, S3, Su, S1 <m Sz and Sz <m Sa imply S1]|S2 <m S3||Sa. O

Quotient. Because of non-determinism, we have to use a subset construction
for the quotient, as opposed to conjunction and structural composition where
product is sufficient. For AA A3 = (S3,59, Trang), A; = (S1,5Y, Tran; ), the
quotient is Az/A; = (S, {s°}, Tran), with S = 25> and 5% = {(s9,59) |
5§ € 89,59 € SY}. States in S will be written {sl/sl,... s%/s7)} instead of
{(sd,s1),...,(s%,s7))}. Intuitively, this denotes that such state when composed
with sj conforms to s% for each i; we call this consistency here.

We now define Tran. First, Tran(()) = 2¥*{?} 5o () is universal. For any other
state s = {s3/s1,...,s%/s7} € S, its set of permissible labels is defined by

pl(s) ={ax € ¥ |Vi=1,...,n:Y(a1,t1) €€ Tran;(st) :
I(as, t3) €€ Tranz(sy) : a1 © as < as},

that is, a label is permissible iff it cannot violate consistency. Here we use the
notation z €€ z as a shortcut for Iy : z € y € z.

Now for each a € pl(s) and each i € {1,...,n}, let {t; € S1 | (a,t1) €€
Trang (t)} = {t%', ..., 2"} be an enumeration of all the possible states in S
after an a-transition. Then we define the set of all sets of possible assignments
of next-a states from s} to next-a states from s¢:

pto(s) = {{t57 07 | i=1,...,n,5=1,...,m;} | Vi:Vj: (a,t5) €€ Trans(s})}

These are all possible next-state assignments which preserve consistency. Now
let pt(s) = U,epi(s) Pta(s) and define

Tran(s) = {M C pt(s) | Vi =1,...,n: VM, € Tran,(s}) :
3IM; € Trang(s}) : M > My <r M3},

where M > My = {(a; © a,t}) | (a,{th/t],... tk/t5)}) € M, (a1,ti) € M},
to guarantee consistency no matter which element of Tran;(s?), s is composed
with.

Ezample 13. Consider the two simple systems in Fig. 4 and their quotient un-
der @, i.e., where label synchronization is intersection. During the construction
and the translation back to DMTS, many states were eliminated as they were
inconsistent (their Tran-set was empty). For instance, there is no may transition
to state {sa/t2}, because when it is composed with ¢ there is no guarantee of
late-transition, hence no guarantee to refine s,.

Theorem 14. For all specifications S1, Sz, Sz, S1/|S2 <m S3 iff S2 <m S3/S51.

5 Robust Specification Theories

We proceed to lift the results of the previous sections to a quantitative setting,
where the Boolean notions of modal and thorough refinement are replaced by
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early

I
(W . (send,[1,2 @ .
@ o=
(send, (2,3 late ¢ (send, (2, 3])’@7[21:(;) *

2\ {late}

(send, [1,2]) T early T

\ {s1/t1} . ;ZDZ

early, late, (send, [0, 1)]), (send, (5, 0))

Fig. 4. Two DMTS and their quotient.

refinement distances. We have shown in [4, 18] that an appropriate setting for
quantitative analysis is given by the one of recursively specified trace distances
on an abstract commutative quantale as defined below; we refer to the above-
cited papers for a detailed exposition of how this framework covers all common
approaches to quantitative analysis.

Denote by X*° = X* U X the set of finite and infinite traces over Y.

Recursively specified trace distances. Recall that a (commutative) quantale
consists of a complete lattice (IL, Cr,) and a commutative, associative addition
operation @r, which distributes over arbitrary suprema; we denote by Lp, Tr,
the bottom and top elements of IL.. We call a function d : X x X — L, for
a set X and a quantale I, an IL-hemimetric if it satisfies d(z,x) = Ly, for
all z € X and d(z,2) Cr, d(z,y) &1 d(y, z) for all z,y,z € X. L-hemimetrics
are generalizations of distances: for I. = R> U {oo} the extended real line, an
(R0 U {o0})-hemimetric is simply an extended hemimetric.

A recursive trace distance specification F = (IL,eval,d", F) consists of a
quantale I, a quantale morphism eval : I — Rx>o U {occ0}, an L-hemimetric
dY : 30 x 3¢ — 1L (called lifted trace distance), and a distance iterator function
F: XY x X xIL — L. F must be monotone in the third coordinate and satisfy
an extended triangle inequality: for all a,b,¢ € X and «, 8 € L, F(a,b,a) &1,
F(b,c,[) 31, F(a,c,a @y, B).

F is to specify d¥ recursively in the sense that for all a,b € X and all
o,7 € X¥*° (and with . denoting concatenation),

d¥(a.0,b.7) = F(a,b,d" (o, 7)). (3)

The trace distance associated with such a distance specification is dy : X*° x
2> — R>¢ given by dy = eval o d™. Note that d* specializes to a distance
on labels (because X C X°°); we require that this is compatible with label
refinement in the sense that a < b implies d”(a,b) = Ly. Then (3) implies that
whenever a < b, then F(a,b, L) =d%(a,b) = Lp.

Ezample 15. It is shown in [4,18] that all commonly used trace distances obey
recursive characterizations as above. We give a few examples:
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— The point-wise distance from [13], for example, has IL. = R>oU{oo}, eval = id
and d¥(a.o,b.7) = max(d(a,b),d (o, 7)), where d : X x ¥ — R0 U {00} is
a hemimetric on labels. For the label set X = U x {[l,r] | | € RU{—o0},r €
R U {00}, < r} from Example 1, one useful example of such a hemimetric
is d((u1, [l1,m1]), (u2, [l2,72])) = SuP,, cpiy ) 0ot |21 — @2] if w1t = up
and oo otherwise, cf. [3].

— The discounting distance, also used in [13], again uses I = R> U {c0} and
eval = id, but d¥(a.0,b.7) = d(a,b) + AL (o, 7) for a constant A € [0, 1].

— For the limit-average distance used in [36] and others, L = (Rx>o U {oo})N,
eval(a) = liminfjen a(j), d¥(a.0,b.7)(j) = j%d(a,b) + jJ?dItL(a, T)(F —1).

— The discrete trace distance is given by di(o,7) = 0if o < 7 and co otherwise
(here we have extended = to traces in the obvious way). It has a recursive
characterization with I. = R>o U {oo}, eval = id, and di(a.0,b.7) = di(0,7)
if a < b and oo otherwise.

For the rest of this paper, we fix a recursively specified trace distance.

Refinement distances. We lift the notions of modal refinement, for all our
formalisms, to distances. Conceptually, this is done by replacing “V” quantifiers
by “sup” and “3” by “inf” in the definitions, and then using the distance iterator
to introduce a recursive functional whose least fixed point is the distance.

Definition 16. The lifted refinement distance on the states of DMTS Dy = (51,
89 —=1,——1), Dy = (52,89, ~-+, —2) is the least fized point to the equations

sup inf F(a1,aq,d%(t1,t2)),
da (51, 52) = max 31——1~>t1 82——.2-)1:2 - )

sup  inf sup inf  F(ay,a2,d%(t1,t2)) .
s2——Nz 51— N1 (a1,t1)€N1 (az,t2)EN2

For AA Ay = (51,59, Tran;), Ay = (S2, 59, Trany), the equations are instead

dpn (51, 82) =
sup inf  F(a1,as,d%(t1,t2)),
sup inf max { (@01)EM (GQ’?)EMQ L
M €Tran; (s1) M2€Trana(s2) sup inf F(alv az, dm (tla t2)) )

(az,tz)eMg (al,t1)€M1

and for v-calculus expressions N1 = (X1, X, A1), Na = (X2, X3, Ag),

sup inf Fl(ay,az,d%(y1,y2)),
d&(z1,72) = max alex’yleuil(?l) a2€ Zy2€l; (a2) . L
sup inf sup inf  Flai,az,dg(y1,y2))-

N2€Q2(x2) N1€O1(21) (a1,y1)EN1 (a2,y2)EN2

Using Tarski’s fixed point theorem, one easily sees that the lifted refinement
distances are indeed well-defined. (Here one needs monotonicity of F' in the third
coordinate, together with the fact that sup and inf are monotonic.)

The lifted refinement distance between specifications is defined by d%(S;, Sy) =
Sup0 e g0 infocgo d% (59, 59). Analogously to thorough refinement, there is also a
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lifted thorough refinement distance, given by di (S1,S2) = SUPZ, e[s4] infzze[[Sﬂ
d%(Z1,T,). Using the eval function, one gets non-lifted distances dn,, = eval o d%
and dyy = eval o d%, with values in R>o U {00}, which will be the ones one is
interested in for concrete applications.

Example 17. We compute the discounted refinement distance between the sec-
ond DMTS in Figs. 2 and 3, assuming sup-inf distance on quantitative la-
bels. We have dm(z,2") = max(0 + Adm(z,2'),0 + Adm(y,y")) and dm(y,y’) =
max(0 4+ Adm(z,2),1 + Mdm(y,y'), whose least fixed point is dm(z,2') = 2.
Similarly, dm(2', 2) = 125. Note that © £m 2’ and 2’ £m .

The following quantitative extension of Theorems 7 and 9 shows that our
translations preserve and reflect refinement distances.

Theorem 18. For all DMTS D1,Ds, all AA Ay, Ao and all v-calculus expres-
sions./\/l, NQ, d&(Dl,'Dg) = dﬂ;(da(Dl), da(Dg)), d],I{;(Al, ./42) = d],I{;(ad(Al), ad(Ag)),
Ay (D1, D2) = dg(dn(Dy), dn(Dy)), and dy, (N1, N2) = dg (nd(N1), nd(N2)).

Our distances behave as expected:

Proposition 19. The functions d%, d% are L-hemimetrics, and dm, dw are
hemimetrics. For specifications S1, Sz, 81 <m S2 implies d%(S1,S2) = L1, and
81 Sth 82 implies dltlfl (81,82) = J_]L.

For the discrete distances, dm(S1,S2) = 0 if S1 <m Sz and oo otherwise.
Similarly, din(S1,S82) =0 if S1 <th S2 and oo otherwise.

As a quantitative analogy to the implication from (Boolean) modal refine-
ment to thorough refinement (Proposition 6), the next theorem shows that thor-
ough refinement distance is bounded above by modal refinement distance. Note
that for the discrete trace distance (and using Proposition 19), this is equivalent
to the Boolean statement.

Theorem 20. For all specifications Si, Sa, d% (S1,82) Cr, d%(S1,S2).

Structural composition and quotient. We proceed to devise a quantitative
generalization of the properties of structural composition and quotient exposed
in Section 4. To this end, we need to use a uniform composition bound on labels:
Let P: L x L. — IL be a function which is monotone in both coordinates,
has P(a, 1p) = P(ly,) =  and P(a, T,) = P(Tp, ) = T for all o € L.
We require that for all aj, b1, a2,b2 € X and «, 8 € L with F(a1,a2, ) # T and
F(b1,b2,8) # T, a1 © by is defined iff ag @ bs is, and if both are defined, then

F(a1 © by,az © by, P, 3)) Cr, P(F(a1,az,a), F(b1,b2,5)) . (4)

Note that (4) implies that dt(al O az, by © bg) Crn P(dt(al,bl),dt(ag,bg)).
Hence P provides a uniform bound on distances between synchronized labels,
and (4) extends this property so that it holds recursively. Also, this is a gener-
alization of the condition that we imposed on @ in Section 2; it is shown in [4]
that it holds for all common label synchronizations.
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The following theorems show that composition is uniformly continuous (i.e., a
quantitative generalization of independent implementability; Corollary 12) and
that quotient preserves and reflects refinement distance (a quantitative general-
ization of Theorem 14).

Theorem 21.  For all specifications S1, Sa, Sz, Su, d%(S1/S2,S3|Ss) CL
P(dg(S1,83), diy(S2, S4))-

Theorem 22. For all specifications S, Sz, S3, d%(S1||S2, S3) = d%(Ss, S3/S1).

6 Conclusion

We have presented a framework for compositional system development which
supports quantities and system and action refinement. Moreover, it is robust, in
that it uses distances to measure quantitative refinement and the compositional
operations are uniformly continuous.

The framework is very general. It can be applied to a large variety of quan-
tities (energy, time, resource consumption etc.) and implement the robustness
notions associated with them. It is also agnostic with respect to the type of
specifications used, as it applies equally to behavioral and logical specifications.
This means that logical and behavioral quantitative specifications can be freely
combined in system development.
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Appendix: Proofs

Proof (of Theorem 10). The proof that S;VSs <p S3iff S; <iy Sz and So <, S3
is trivial: any modal refinement R C (57 U S3) x S3 splits into two refinements
R1 - Sl X Sg, R2 - 52 X 53 and vice versa.

For the proof of the second claim, which we show for DMTS, we prove the
back direction first. Let Ra C S7 X Sa, Rg C 57 x S3 be initialized (DMTS)
modal refinements and define R = {(s1, (s2,s3)) | (s1,$2) € R, (s1,83) € Rg} C
S1 x (S x S3). Then R is initialized.

Now let (s1, (s2,53)) € R, then (s1,s2) € Rp and (s1, $3) € R3. Assume that
S1 —(1—191 tl, then by 81 <m 82, we have EP) —(1—292 to with a; X as and (tl, tg) S RQ.
Similarly, by &1 <, S3, we have s3 —a—3+3 ts with a1 < as and (t1,t3) € Rs.

as

But then also a1 < a2 ® as and (t1, (t2,t3)) € R, and (s2, s3) 2204 (ta,t3) by
definition.

Assume that (s2,s3) — N. Without loss of generality we can assume that
there is s9 — 9o N5 such that N = {(CLQ D as, (tg,tg)) | (ag,tg) € No, s3 —(1—393 tg}.
By S1 <m S2, we have s; —1 Ny such that V(aq,t1) € N1 : I(ag,t2) € Na :
a] < as, (tl,tg) € Rs.

Let (a1,t1) € N1, then also s; —a—1->1 t1, so by S1 < S3, there is s3 —a—?’->3 t3
with a1 < as and (t1,¢3) € Rs. By the above, we also have (as,t2) € Ny such
that a1 < a2 and (¢1,t2) € Ra, but then (a2 ® as, (t2,t3)) € N, a1 < a2 Aas, and
(tl, (tQ, tg)) € R.

For the other direction of the second claim, let R C S; x (S2x S3) be an initial-
ized (DMTS) modal refinement. We show that S; <., Sa, the proof of S; <p S3
being entirely analogous. Define Ry = {(s1,52) | 3s3 € S3 : (s1, (s2,83)) € R} C
S1 X So, then Rs is initialized.

Let (s1,52) € R, then we must have s3 € S3 such that (s1,(s2,53)) € R.
Assume that s; --»1 t1, then also (sa, s3) --» (2, t3) for some a with a1 < a and

(t1,(t2,t3)) € R. By construction we have so —a—2+2 to and s3 —a—3+3 ts such that
a = as O as, but then a; < az ® as < az and (t1,t2) € Ra.

Assume that s —9 Na, then by construction, (s2,s3) — N = {(a2 ®
as, (tg,tg)) | ((Lg,tg) S NQ,Sg —11—3-)3 t3}. By Sl Sm 82 A 83, we have S1 —1 N1
such that V(ai,t1) € N1 : 3(a, (t2,t3)) € N : a1 < a, (t1, (t2,3)) € R.

Let (a1,t1) € Ny, then we have (a, (to,t3)) € N for which a1 < a and
(t1, (t2,t3)) € R. By construction of N, this implies that there are (az,t2) € No
and s3 —(1—393 ts such that a = as ®@ag, but then a1 < a2 ®as < a2 and (t1,2) € R.

As to the last claims of the theorem, [S; ASz] = [S1]N[Sz] is clear from what
we just proved: for all implementations 7, 7 <, SiAS iff 7 <, S1 and Z <, Ss.
For the other part, it is clear by construction that for any implementation Z,
any witness R for Z <, &7 is also a witness for Z <, S1 V S, and similarly for
SQ, hence [[Slﬂ U [[SQH g [[81 \Y SQ]]

To show the other inclusion, we note that an initialized refinement R wit-
nessing 7 <., &1 VS, must relate the initial state of Z either to an initial state of
S1 or to an initial state of Sy. In the first case, and by disjointness, R witnesses
Z <m 81, in the second, Z <., Ss. a
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Proof (of Theorem 11). Associativity and commutativity are clear. Monotonicity
is equivalent to the assertion that (up to =) || distributes over the least upper
bound V; one easily sees that for all specifications &1, Sa, S3, the identity is
a two-sided modal refinement S;||(S2 V 83) =m S1/|S2 V S1]|Ss. The assertion
L1||§ =m L is also clear. O

Proof (of Theorem 14). We show the proof for AA; for DMTS and v-calculus
expressions it will follow through the translations. Let A; = (S1,SY, Tran;),
Az = (Ss, 59, Trany), As = (53,59, Trans); we show that A;||Adx <m Ajs iff
Ay <py As/A;.

We assume that the elements of Tran;(s;) are pairwise disjoint for each
s1 € Sy; this can be achieved by, if necessary, splitting states.

First we note that by construction, s O t implies s <, t for all s,t € S.

Now assume that Ay <n Asz/A; and let R = {(s1]|$2,53) | s2 <m $3/$1}; we
show that R is a witness for A; || Az <m As.

Let (s1[|s2,53) € R and M|, € Tran)(s1||s2). Then M = M| M with M; €
Tran;(s1) and My € Trans(sz). As so <m s3/51, we can pair Mo with an M, €
Tran,(s3/s1), i.e., such that the conditions in (1) are satisfied.

Let M3 = M, > M;. We show that (1) holds for the pair M), Ms3:

— Let (a,t1||t2) € M), then there are a1, ay € X with a = a; ©ag and (a1,t1) €
My, (az,t2) € M. By (1), there is (a5,t) € M, such that ax < a5 and ty <,
t. Note that a3 = a1 © a} is defined and a < az. Write t = {t3/t1,... t3/t7}.
By construction, there is an index i for which ¢{ = ¢, hence (as,t}) € Ms.
Also, t D {t4/ti}, hence ty <n, t/t! and consequently (¢1|/t2,t3) € R.

— Let (a3, t3) € Ms, then there are (a5, t) € M, and (ai,t1) € My such that
az = a1 © a4 and t3/t; € t. By (1), there is (a2, t2) € My for which ay < a)
and to <p t. Note that a = a1 @ax is defined and a < ag. Thus (a, t1||t2) € M,
and by t O {t3/t1}, ta <m t3/t1.

Assume, for the other direction of the proof, that A;[| A2 <n Asz. Define
R C Sy x 293%51 by

R={(s2,{s3/57,...,8%/s"}) |Vi=1,....n:8}[|sa <m s5};

we show that R is a witness for Ay <, As/A;. Let (s2,8) € R, with s =
{si/s1,...,s%/sT}, and My € Trans(ss). ‘ A

For every i = 1,...,n, write Tran; (s}) = {M}"",..., M"™}. By assumption,
M0 Mf” = () for j; # jo, hence every (a1,t1) €€ Tran;(st) is contained in
a unique M{’éi(al’tl) € Tran; (s?).

For every j = 1,...,my, let M = M7||M; € Tran(s}|[s2). By si[ls2 <m
s%, we have M3’ € Trans(s}) such that (1) holds for the pair M7, M3,

Now define

M = {((Lg,t) | H(CLQ,tg) € M, thg/tl et: Eli,al,ag :

] i,0; (a1,
(ay,t1) €€ Trany (s), (as, ts) € M) a1 © ay < as, t1||ts <m ts}. (5)
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We need to show that M € Tran,(s).

Let i € {1,...,n} and M}” € Tran(s}); we claim that M > M7 <z M7,
Let (as,t3) € M > Mli’j, then ag = a1 © as for some a1, as such that t3/t; €
t, (a1,t1) € M{J and (ao,t) € M. By disjointness, j = d;(a1,t1), hence by
definition of M, (az,t3) € M7 as was to be shown.

For the reverse inclusion, let (as,t3) € Mi7. By (1) and definition of M%7,
there are (a1,t1) € ij and (ag,tz) € My for which a; @as < ag and t1[[ta <m ts.
Thus j = d;(a1,t1), so that there must be (az,t) € M for which ¢3/t; € t, but
then also (a1 @ aq,t3) € M > M7’

We show that My g M.

— Let (aa,t2) € Ms. For every i = 1,...,n and every (ai1,t1) €€ Tran;(t}),
we can use (1) to choose an element (n;(a1,t1),7(a1,t1)) € Mg"si(“l’tl) for
which t1||t2 <m Ti(al,tl) and a1 Qas X m(al,tl). Let t = {Ti(al,tl)/tl | 1=
1,...,n,(a1,t1) €€ Trany (t!)}, then (ag,t) € M and (t2,t) € R.

— Let (az2,t) € M, then we have (az,t2) € M satisfying the conditions in (5).
Hence t1]||ta <m t3 for all t3/t; € t, so that (t2,t) € R. O

Before we attempt any more proofs, we need to recall the notion of refinement
family from [4] and extend it to AA. We give the definition for AA only; for
DMTS and the modal v-calculus it is similar.

Definition 23. A refinement family from A; to As, for AA Ay = (51,5, Trany),
Ag = (52,89, Trany), is an L-indexed family of relations R = {R, C S1 x S |
a € L} with the property that for all o € L with o # T, all (s1,52) € Ry, and
all My € Tran;(s1), there is Mo € Trans(ss) such that

— V((Ll,tl) S M1 : H(GQ,tQ) S Mg,ﬁ cll: (tl,tg) S Rﬁ,F((Ll,ag,ﬁ) C «,
— Y(az,ta) € My : 3(ay,t1) € My, B € L: (t1,t2) € Rg, F(ay,az,8) C .

Lemma 24. Forall AA Ay = (51,5, Trany ), As = (S, S, Trans), there exists
a refinement family R from Ay to As such that for all s € S, there is s3 € SY
for which (s9,59) € Rt 4, 45)-

We say that a refinement family as in the lemma witnesses d% (A1, Az).

Proof. Define R by R, = {(s1,82) | d%(s1,52) Cp «}. First, as (s9,s9) €
Rgr (0 s9) for all 59 €59, 59 € 89, it is indeed the case that for all s? € SY, there
is 9 € S for which

(8(1), 8(2)) € Rd&,(.AlmAQ) =R

; L0 ,0Y.
MaX 0 ¢ 50 Mino e g0 de(s9,59)

Now let @ € IL with  # Ty, and (s1,s2) € Ra. Let M; € Tran;(s1). We
have d% (s1, s2) Cr, @, hence there is M, € Trany(s2) such that

sup inf F(al,ag,d&(tl,tg)),
(a1,t1)EM; (az,ta)EMas
« Jf, max
=L sup inf  F(ay,as,d%(t1,12)).

(az2,t2)€M2 (ay,t1)EM:
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But this entails that for all (ay,t;) € My, thereis (as,t2) € Mo and 8 = d% (t1,t2)
such that F'(a1, a2, 8) Cp, «, and that for all (ag,ts) € Ma, there is (a1,t1) € M,
and 3 = d%(t1,t2) such that F(a1,as,3) Cp a. O

Proof (of Theorem 18).
dlf;,(da(’Dl), da(Dg)) CrL dg (Dl,Dg):

Let Dl = (51,5?,——-)1,—>1), D2 = (SQ,Sg,——-)Q,—)g) be DMTS. There
exists a DMTS refinement family R = {R, C S1 x S2 | @ € L} such that for all
s§ € 57, there is s§ € S9 with (s7, s3) € Ryt (p, p,)- We show that R is an AA
refinement family.

Let o € L and (s1, $2) € R,. Let M; € Tran;(s1) and define

My = {(ag,tg) | S9 —(1—292 tg,ﬂ(al,tl) eM,:3p el
(t17t2) € RﬁaF(ahaZvﬂ) Cr a}'

The condition
V(ag,tz) € My : 3(a1,t1) € My, B €L (t1,t2) € Rg, F'(a1,a2,0) C a

is satisfied by construction. For the inverse condition, let (a1,t1) € M;, then
S1 -2 t1, and as R is a DMTS refinement family, this implies that there is
S —a—2->2 to and B € LL for which (¢1,t2) € Rg and F'(a1,a2,0) Cr «, so that
(ag,t2) € My by construction.

We are left with showing that My € Trans(se). First we notice that by
construction, indeed sg —a—2+2 to for all (ag,t2) € Ma. Now let so — Na; we need
to show that Ny N My # ().

We have s; — Nj such that V(al,tl) c Ny 3(@2,'&2) S Ng,ﬁ cl: (tl,tg) S
Rg, F(a1,az,3) Cr, . We know that NyNM; # 0, solet (a1,t1) € N1NM;. Then
there is (ag,t2) € Ny and § € L such that (¢1,t2) € Rg and F(a1, a2, 5) Cr, a.
But (ag,t2) € No implies so —a—2+2 ta, hence (ag,ts) € Mo.
d&(Dl,'Dg) EIL d],I;,(da(’Dl), da(Dg))l

Let Dl = (51,5?,——-)1,—>1), D2 = (SQ,Sg,——-)Q,—)g) be DMTS. There
exists an AA refinement family R = {R, C S; x Sz | @ € L} such that for all
s9 € SY, there is s§ € S9 with (s7,59) € Ryt (4a(ps),da(p,))- We show that R is a
DMTS refinement family. Let o € IL and (s1, 82) € Rq.-

Let 51 -2, t1, then we cannot have s; — (. Let My = {(a1,t1)} U J{MN |
s1 — Ny}, then M; € Tran;(s;) by construction. This implies that there
is My € Trans(sg), (az,t2) € My and § € L such that (t1,t2) € Rg and
F(a1,a2,8) C, a, but then also s9 2, ty as was to be shown.

Let s, — Ny and assume, for the sake of contradiction, that there is no
s1 — N; for which V(al,tl) € Ny : E'(ag,tg) € Ny,B € L : (tl,tg) S
Rg,F(a1,a2,3) Cr « holds. Then for each s; — N, there is an element
(aNl,tNl) € Njp such that H(GQ,tg) S Ng,ﬁ el: (tNl,tg) € Rﬁ,F(GNl,ag,ﬁ) CL
« does not hold.
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Let My = {(an,,tn,) | $1 — N1}, then My € Tran;(s1) by construction.
Hence we have My € Trans(sq) such that V(ag,t2) € Ma : I(aq,t2) € My, €L :
(t1,t2) € Rg, F(a1, a2, ) C a. Now NoN My # 0, so let (az,t2) € NaN Ms, then
there is (a1,t1) € My and 8 € L such that (¢1,t2) € Rg and F(a1,a2,5) Cr, «,
in contradiction to how M; was constructed.
dm(ad(A1), ad(Az)) Cu, di (A, Az):

Let A; = (S1, 59, Tran;), Ay = (S2,59, Trans) be AA, with DMTS trans-
lations (D1, DY, ——1,--1), (Da, DY, —5,--+2). There is an AA refinement
family R = {R, C S1 x S2 | @ € I} such that for all s{ € S, there is s € SY
with (s9,59) € Ryt (a,,4,)-

Define a relation family R’ = {R/, C D; x Ds | a € L} by

R, = {(My, Ms) | 3(s1,s2) € Ry : My € Tran;(s1), My € Tran(ss),
V(al,tl) e M : 3(@2,1‘52) S Mg,ﬁ cl: (tl,tg) S R@,F(al,ag,ﬁ) CL a,
V((Lg,tg) € M : 3(&1,&) c Ml,ﬂ cel: (tl,tg) c Rﬁ,F((Ll,ag,ﬂ) CL a.

We show that R’ is a witness for d% (ad(A1), ad(Az2)) Cp, d% (A1, As). Let a € L
and (Ml,MQ) S R:l

Let Ms —9 Ns. By construction of —, there is (ag,t3) € My such that
Ny = {(a2, M%) | M} € Trany(t2)}. Then (M, Ms) € R., implies that there
must be (a1,t1) € My and 5 € L such that (t1,t2) € Rg and F(a1,a2,) Cr, a.
Let N1 = {(a1, M]) | M] € Trany(¢1)}, then M; —1 N7.

We show that V(ai, M) € Ny : 3(az,M3) € No : (M{,M;) € Rj: Let
(a1, M{) € Ny, then M] € Tran;(¢1). From (¢1,t2) € Rz we get M} € Trans(t2)
such that

V(b1 ur) € My = 3(bz,uz) € My, y € L : (ur,u2) € Ry, F(b1,b2,7) o 5,
V(bg,Ug) S Mé : El(bl,ul) S M{,’y cel: (Ul,UQ) S RW,F(bl,bQ,’Y) CrL 6,

hence (M, M}) € Rl; also, (az, M5) € Ny by construction of Ns.
1, Mo 2

Let M; -“»; M], then we have M; —1 N; for which (a1, M]) € Ny by
construction of --»7. This in turn implies that there must be (a1,t1) € M,
such that Ny = {(a1,M{") | M{ € Trany(¢t1)}. By (M1,Ms) € R., we get

(az,t2) € My and 8 € LL such that (t1,f2) € Rg and F(a1,aq2,8) Cr, a. Let
Ny = {(ag, M}) | M} € Trany(t2)}, then My —5 Ny and hence Mo —(1—292 MY for
all (ag, M%) € No. By the same arguments as above, there is (aq, M}) € Ny for
which (M], M}) € Rj.

We miss to show that R’ is initialized. Let MY € DY, then we have s§ € S¢
with MY € Tran;(s{). As R is initialized, this entails that there is s € S9
with (s9,59) € Ryt (4, 4,), which gives us My € Trany(s3) which satisfies the
conditions in the definition of R&&(Aw%), whence (M?, MYJ) € Rfi]f:.(Aqu)'

dg‘;(Al,Ag) EIL dﬂ;(ad(.Al), ad(Ag)):

Let A; = (51,59, Tran;), Ay = (52,59, Trany) be AA, with DMTS trans-
lations (D1, DY, —1,--»1), (D2, DY, —3, --+3). There is a DMTS refinement
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family R = {R, C D1 x D3 | a € L} such that for all MY € DY, there exists
M3 € D3 with (M?, M3) € Ra& (ad(Ay),ad(As))-
Define a relation family R’ = {R], C S1 x Sz | « € L} by

Rl = {(s1,s2) | VM1 € Tran;(s1) : IM € Trana(sz2) : (M1, M) € Ry };

we will show that R’ is a witness for d% (A1, As) Cr, d%(ad(A;), ad(As)).

Let o € I, (s1,82) € R/, and My € Tran;(s1), then by construction of R/,
we have My € Trang(s2) with (M7, Ms) € R,

Let (ag,t2) € My and define No = {(ag, M%) | M, € Trans(tz)}, then
My —9 Ny. Now (M7, M) € R, implies that there must be M; —1 N; satis-
fying V(a1, M]) € Ny : I(ag, MS) € No, B € L : (M1, M}) € Ra, F(ay,az2,8) CL
a. We have (a1,t1) € My such that N1 = {(a1, M{) | M € Tran; (¢1)}; we only
miss to show that (¢1,%2) € R% for some ¢ € L with F(a1,a2,8) Cp «a. Let
M € Tran;(t1), then (a1, M]) € Ny, hence there is (az, M) € Ny and 3 € L
such that (M1, M3) € Rg and F(a1,a2,0) C a, but (az, Mj) € Ny also entails
Mé € Trans (tg)

Let (a1,t1) € My and define Ny = {(a1,M7) | M{ € Trany(¢1)}, then
M; —1 Ny. Now let (a1, M]) € Ny, then M; —a—lal M, hence we have M, —a—2+2
M3 and B € L such that (M7, M}) € Rg and F(a1,aq2,5) Cr, «. By construc-
tion of --»9, this implies that there is My —9 Na with (a2, M}) € Ns, and
we have (ag,t2) € My for which Ny = {(ag, MY) | M} € Trans(t2)}. Now
if M{" € Trani(¢1), then (a1, M{) € Ni, hence there is (ag, M}') € Ny with
(M{',M3) € Rg, but (a, M) € Ny also gives M} € Trans(tz).

We miss to show that R’ is initialized. Let s € S? and M € Tran;(s?). As
R is initialized, this gets us M3 € Dy with (M7, M3) € Ryt (4a(4,),ad(A2))» DUt
M3 € Trany(s9) for some s3 € S, and then (s}, 53) € Rz (,q04,) ad(42))-

dk(dn(Dl), dn(Dg)) E]L d%‘ (Dl, Dg):

Let D1 = (51,59, -=1, —>1), Dy = (SQ,SS, -=9, —>2) be DMTS, with v-
calculus translations dn(D1) = (51,59, A1), dn(D2) = (S2,59, As). There is a
DMTS refinement family R = {R, C S; x Sy | a € L} such that for all s € S,
there exists s§ € S9 for which (9, s3) € Ra(p, p,).

Let a € I, (s1,82) € Rqa, a1 € X, and t1 € O (s1). Then s; N t1, hence
we have s —a—2->2 to and B € L with (¢1,t2) € Rg and F(a1, a2, 8) Cr, «, but then
also to € 052 (s2).

Let Ny € Qa(s2), then also s —o Na, so that there must be s; —1 N
such that V((Ll,tl) € Ny : H(GQ,tQ) S Ng,ﬁ el: (tl,tg) € R/@,F(al,ag,ﬁ) Cp o,
but then also N7 € O1(s1).

dk(Dl,'Dg) EIL dk(dn(Dl), dn(Dg))

Let D1 = (51,59, -=1, —>1), Dy = (SQ,SS, -=392, —>2) be DMTS, with v-
calculus translations dn(D1) = (51,59, A1), dn(D2) = (S2,59, As). There is a
v-calculus refinement family R = {R, C S1 x S2 | @ € L} such that for all
s) € 57, there exists s3 € S9 for which (s, s9) € Ryz (p, p,)-
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Let « € L and (s1, $2) € Ry, and assume that s; —a—lal t1. Then t; € O (s1),
so that there is as € X, to € 03%(s2) and § € L for which (¢1,t2) € Rg and
F(a1,a2,8) C, a, but then also s9 —a—2->2 to.

Assume that sy —o No, then No € O2(s2). Hence there is N1 € ¢1(s1) so
that V(al,tl) € Ny : 3(@2,'&2) S Ng,ﬂ cel: (tl,tg) S RB,F(al,ag,ﬂ) Cr a, but
then also s; —1 V7.

g (nd(N1), nd(N2)) Er dg (N1, Na):

Let N1 = (X1,XY, A1), Ao = (X2, X3, As) be v-calculus expressions in
normal form, with DMTS translations nd(N7) = (X1, XY, --+1, —1), nd(Na) =
(Xo, X9, --33, —2). There is a v-calculus refinement family R = {R, C X; x
X5 | @ € L} such that for all 29 € X¢, there is 25 € X9 for which (z9,29) €
Rar (nvy n) -

Let « € L and (z1,z2) € R, and assume that z; —a—ln y1. Then y; €
07" (z1), hence there are as € X, yo € 032 and § € LL such that (y1,y2) € Rg
and F(a1,a2,8) Cr, «, but then also zo —a—2+2 Ya.

Assume that xo —9 Ns, then No € Oz(z2). Hence there must be Ny €
<>1($1) such that V(al,yl) S N1 : H(GQ,yQ) S Ng,ﬁ cel: (yl,yg) S RB,F(al,ag,ﬁ) CrL
a, but then also 1 —1 Nj.

d&(./\/'l,./\/g) EIL dk(nd(./\/l), nd(./\/g))

Let N1 = (X1,XY{, A1), Ao = (X2,X3,A3) be v-calculus expressions in
normal form, with DMTS translations nd(N7) = (X1, XY, --+1, —1), nd(N3) =
(X, X9, --+3, —2). There is a DMTS refinement family R = {R, C X; x X3 |
a € L} such that for all 29 € X9, there is 29 € X9 for which (29,29) €
Rz vy )

Let o € L, (w1, 22) € Ra, a1 € X, and y; € 07" (x1). Then a1 ) 1, hence
we have x5 —a—2+2 y2 and § € IL so that (y1,y2) € Rg and F(a1, a2, ) CL o, but
then also y1 € 052(x2).

Let Ny € Oa(x2), then also zo —9 Na. Hence we must have 1 —1 Ny
with V(a1,y1) € N1 : 3(az,92) € N2, B € L : (y1,92) € Rg, F(a1,a2,5) CL o,
but then also Ny € O1(z1). O

Proof (of Proposition 19, first part). We show the proposition for AA. First, if
A1 <m Az, with Ay = (51,59, Tran;), Ay = (S2, 59, Trany), then there is an
initialized refinement relation R C S7 x Sy, i.e., such that for all (s1,s2) € R
and all M; € Tran;(s1), there is My € Trans(se) for which

— V((Ll,tl) € M : H(GQ,tQ) € Ms:ar <X as, (tl,tg) € R and
- V(ag,tg) € M, : El(al,tl) e M :ar X aq, (tl,tg) € R.

Defining R' = {R., | « € L} by R, = R for all @ € L, we see that R’ is an
initialized refinement family which witnesses d% (A;, A2) = Lp..

We have shown that A; <p Az implies d%(A;, A2) = Lp; as a special case,
we see that d% (A, A) = L for all AA A. Now if A; <y, As instead, then for all
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T € [A4], also Z € [As], hence d]t%] (A1, As) = L. As a special case, we conclude
that df (A, A) = Ly, for all AA A.

Next we show the triangle inequality for d%. The triangle inequality for df
will then follow from standard arguments used to show that the Hausdorff metric
satisfies the triangle inequality. Let A; = (51,5, Trany), Ay = (S, S9, Trany),
As = (53,59, Tranz) be AA and R' = {R, C S1 x S2 |a € L}, R? = {R? C
Sy x S3 | a € L} refinement families such that Vs € SY : 353 € 59 : (s9,59) €
Ré&,(Al,Ag) and Vs € S9:3sJ € 59 : (s9,59) € R(Qﬁ(&,&).

Define R = {R, € S1 x S3 | @ € L} by Ry = {(s1,83) | Ja1, a0 € L, 89 €
Sy : (s1,52) € RL,, (s2,83) € R2,, 01 @1 az = a}. We see that Vs € S : 3s§ €
59 1 (s9,53) € Ry, A0)@0d" (As,45); We show that R is a refinement family
from A; to As.

Let a € IL and (s1,s3) € Ry, then we have ay,as € IL and sy € Sy such that
a1 O a2 = a, (s1,52) € RL and (s2,53) € R?m. Let My € Tran;(s1), then we

(63}

have My € Trans(sz2) such that

V(ai,t1) € My : 3(ag, ta) € Ma, By € Lt (t1,t2) € Rj, F(a1,a2,41) EL o1, (6)
V(ag,tg) € M, : 3(al,t1) S Ml,ﬁl el: (tl,tg) S REI,F(al,ag,ﬁl) Cp ;. (7)

This in turn implies that there is M3 € Trang(s3) with

V(ag, tz) € My : 3(as, t3) € Ms, B2 € L : (ta,t3) € R3,, F(az, a3, f2) CL a2, (8)
V(ag,tg) S M3 : E'(ag,tg) S Mg,ﬂg cl: (tg,tg) S R%Z,F(ag,ag,ﬂg) Cr, as. (9)

Now let (a1,t1) € My, then we get (ag,ts2) € Ma, (as,t3) € M3 and 1,52 € LL
as in (6) and (8). Let 8 = (1 @1 f2, then (t1,%3) € Rg, and by the extended
triangle inequality for F', F(a1, a3, 3) Cr, F (a1, a2, 81)®1 F(az,as, 32) T, a1 BL,
g = (.

Similarly, given (as,t3) € Mg, we can apply (9) and (7) to get (a1,t1) € My
and § € L such that (¢1,¢3) € Rg and F(a1,as,5) CL a.

We have shown that d% and d¥ are L-hemimetrics. Using monotonicity of
the eval function, it follows that d,, and d; are hemimetrics. |

Proof (of Proposition 19, second part). We already know that, also for the dis-
crete distances, A; <p Ao implies dn(A1,42) = 0 and that A; <y As im-
plies din (A1, A2) = 0. We show that dm(A1,A2) = 0 implies A; <., As. Let
R={R, C 81 x S2 | a € L} be a refinement family such that Vs{ € Sy : 3s§ €
S8 1 (s9,89) € Ro. We show that Ry is a witness for A; <n, Ajg; it is clearly
initialized.

Let (s1,82) € Ry and M7 € Tran;(s1), then we have My € Trans(ss) such
that

V(ai,t1) € My : 3(ag,tz) € Ma, B € I (t1,12) € Rp, F(a1,a2,0) =0,

10
V(ag,tg) € M : 3(al,t1) S Ml,ﬁ el: (tl,tg) S R/@,F(al,ag,ﬁ) =0. ( )
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Using the definition of the distance, we see that the condition F(a1,az,3) =0
is equivalent to a1 < as and § = 0, hence (10) degenerates to

V(al,tl) c M : 3(@2,'&2) e M, : (tl,tg) € Ry, a1 X as,
V(ag,tg) c My : 3(@1,'&1) e M : (tl,tg) € Ry, a1 X as,

which are exactly the conditions for Ry to be a modal refinement.

Again by definition, we see that for any AA A;, As, either dn(A1,42) =0
or dm(A1, A2) = oo, hence A; £ Az implies that dm(A1,.A2) = 0.

To show the last part of the proposition, we notice that

din(A1,A3) = sup  inf  dm(Z1,Z2)
T €[A1] Z2€[A2]

B {o i VT, € [Ai] 1 3Tz € [Ao] i Ty < T,

oo otherwise,

_ {0 if [A] € [Ao],

oo otherwise.

Hence dih (A1, A2) =0 if Ay <th A2 and dip(Aq, A2) = oo otherwise. O

Proof (of Theorem 20). We prove the statement for AA; for DMTS and v-
calculus expressions it then follows from Theorem 18.

Let A; = (51,5, Tran; ), Az = (S2, 59, Trany). We have a refinement family
R ={R, C 51 x Sy | a € L} such that for all s € S?, there is sJ € S9 with
(8(1),8(2)) € Rd],]:.‘(.A17.A2)' Let 7 = (S, SO,T) S [[.Al]], e, T <pm Ai.

Let R' C S x S; be an initialized modal refinement, and define a relation
family R2 = {R2 C Sx Sy |a €L} by R2 = R'oR, = {(s,s2) | 3s1 € S :
(s,81) € R, (s1,82) € Ry We define a LTS Iy = (S2, 59, T») as follows:

For all o € IL with o # Ty, and (s,s2) € R2: We must have s; € S; with
(s,81) € R! and (s1,82) € R,. Then there is M; € Tran;(s;) such that

— for all s - ¢, there is (a,t1) € My with (t,t;) € Ry,
— for all (a1,t1) € My, there is s —— ¢ with (t,%;) € R;.

This in turn implies that there is My € Trang(sq) satisfying the conditions in
Definition 23. For all (ag,t2) € Ms: add a transition so 22, 5 to Th.

We show that the identity relation {(s2,s2) | s2 € S2} is a witness for Zy <p,
As. Let sy € Sy and sy —2 t5. By construction, there is My € Trans(s2) with
(a,t2) € My, and for all (al,th) € My, sy —2 ).

We show that R? is a witness for d%(Z,I,); clearly, R? is initialized. Let
a € L with o # T, and (s, s2) € R2, then there is s; € S; with (s,s;) € R
and (s1,s2) € R,. We also have M € Tran,(s1) such that

— for all s - ¢, there is (a,t1) € My with (t,t;) € R!,
— for all (ay,t;) € My, there is s —% t with (¢,¢,) € R!
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and thus My € Trany(sq) satisfying the conditions in Definition 23.

Let s - t, then there is (a,t;) € M, with (,¢;) € R', hence also (az,t2) €
My and 8 € L with (t1,t2) € Rg and F'(a,as, ) Cp, «. But then (¢,t2) € R%,
and so —25 to by construction.

Let so —2 to. By construction, there is M, € Trans(se2) with (ag,ts2) € Mo.
This implies that there is M; € Tran;(s1), 8 € L and (a1,t1) € M; with
(t1,t2) € Rg and F(ay, az, ) C . But then there is also s =% ¢ with (¢,¢,) € R!,
hence (t,t5) € R3. O

Proof (of Theorem 21). We show the proof for AA. For i = 1,2,3,4, let A; =
(Si,SlQ,Trani). Let Rl = {R(ly - Sl ><S3 | « G]L}, R2 = {R?X - SQ><S4 | « EIL}
be refinement families such that Vs? € S9 : 3s§ € 59 : (s9,s9) € Rcll],]:,(Al,As) and
Vs) € 59 : 39 € 871 (s9,89) € R¢21E,(A2,A4)' Define R = {R,, C (S1 X S2) x (S5 x
Si) | e €} by

R, = {((81,52), (83,84)) | 3051,042 cl:
(s1,83) € Rél, (s2,84) € R2_, P(a1,a2) C, a},

g
then it is clear that V(s9,s9) € SY x 59 : (59, 59) € ST x 59 : ((s9,59), (s9,59)) €
Rp(ak (A, ,A3),d%(As,A4))- We show that R is a refinement family from A [.A2 to
As|| Ag.

Let o € L and ((s1,52),(s3,84)) € Rq, then we have aj,as € L with
(s1,83) € Rél, (s2,84) € RZ2 and P(a1,a9) Cp, «. Let My € Tran((s1, s2)),
then there must be M; € Tran;(s1), My € Trans(sz) for which Mo = My © Ms.
Thus we also have M3 € Trang(s3) and My € Trany(s4) such that

V((Ll,tl) € M : 3(&3,t3) c M3,ﬂ1 cl: (tl,tg) c RéI,F(al,ag,ﬂl) Cp ag,
(11)
V(as,t3) € Mz : (a1, t1) € My, By € L: (t1,t3) € Rpy, F(ar,a3,01) Cr o,
(12)
Y(az,t2) € My : (aa,ts) € My, B2 € L : (t2,ta) € RE,, F(az, as, f2) CL ag,
(13)
V(as,ts) € My : Iaz,t2) € My, By € L : (t2,t4) € R3,, F(az,a4,82) Cr .
(14)
Let M3q4 = M3 ® My € Tran((ss,s4)). Let (a12, (f1,t2)) € My, then there
are (a1,t1) € My and (asg, ta) € My for which a2 = a1 ®ag. Using (11) and (13),
we get (Clg,tg) € Ms, (a4,t4) € My and (1,02 € IL such that (tl,tg) S Rél’
(t2,ta) € R3,, F(a1,a3,61) Cr, o1, and F(az, a4, 32) Cr. as.
Let az4 = azQaq and § = P(ﬂl, 62), then (a34, (tg, t4)) € Msy. Also, (tl, tg) €
Rél and (tg,t4) S R%2 imply that ((tl, tg), (tg,t4)) S Rﬁ, and

F(a12,a34,0) = F(a1 © az,a3 © as, P(81, 52))
C P(F(a1,as, (1), F(az,a4,32))
Cr Plai,a) Cp o
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We have shown that V(alg, (tl,tg)) c Mg : 3(&34,(t3,t4)) S M34,6 c L :
((t1,t2), (t3,t4)) € Rg, F'(a12,a34,3) Cr, a. To show the reverse property, start-
ing from an element (as4, (t3,t4)) € Msy4, we can proceed entirely analogous,
using (12) and (14). O

Proof (of Theorem 22). We show the proof for AA. Let A; = (51,5, Tran;),
As = (52,59, Trany), As = (S5, 59, Trans); we show that d%(A;|.Az2, A3) =
d%(Az, A3/ Ay).

We assume that the elements of Tran;(s;) are pairwise disjoint for each
s1 € Sy; this can be achieved by, if necessary, splitting states.

Define R = {Ra C 81 x89%S3 | o€ ]L} by R, = {(81”82,83) | dk(82,83/81) CL
a}. We show that R is a witness for d% (A;[|Az, A3).

Let s9||s9 € S? x S9, then there is s9/s € s for which d%(s9,s9/s9) Cr
(A2, A3/ Ar), hence (9159, 59) € Rat (4, 457.4,)-

Let @ € L\ {Tr}, (s1]/s2,53) € Ry and M) € Tran)(s;[|s2). Then M =
M, ||My with M; € Trani(s;) and My € Trans(sz). As d%(s2,s3/51) Cr «,
we can pair My with an M, € Tran,(s3/s1), i.e., such that the conditions in
Definition 23 are satisfied.

Let M3 = M,>M;. We show that the conditions in Definition 23 are satisfied
for the pair M, M3:

— Let (a,t1|/t2) € M), then there are aj,a; € X with a = a1 © az and
(a1,t1) € My, (ag,t2) € Ms. Hence there is (a5,t) € M, and 3 € IL such
that F(as,ab, 3) C1, a and dX (t2,t) Cr, 3.

Note that a3 = a1®d} is defined and F(a, a3, 8) C «. Writet = {t/t1,... t3/t}1}.
By construction, there is an index i for which ¢{ = ¢, hence (as,t}) € Ms.
Also, t D {ti/ti}, hence d%(t2,ti/t}) C 3 and consequently (t1|/t2,t3) € Rg.

— Let (as,t3) € Ms, then there are (a5,t) € M, and (a1,t1) € My such that
az = a1 ©adh and t3/t; € t. Hence there are (a2, t2) € Ms and 8 € L for which
F(ag,ab, ) Cp « and d% (t2,t) Cp, 3. Note that a = a; @ az is defined and
F(a,a3,8) Cr a. Thus (a,t1|[t2) € M, and by t D {t3/t1}, d% (t2,t3/t1) C .

Assume, for the other direction of the proof, that A4;|.A2 <m As. Define
R={R, C Sy x2%>*% | a € L} by

Ro = {(s2,{s/s1,--,85/s1}) | Vi=1,...,n du(si|s2, s5) Cr o} ;

we show that R is a witness for d%(Az, A3/ A1).

Let sJ € S9. We know that for every s) € S?, there exists o(s}) € S such
that d%(s9]|s9,s9) Cr d%(A;|Az2, A3). By s 2 {o(s9)/s) | s¥ € SV}, we see
that (53, 5°) € Rak (4, A2,40)-

Let « € L\ {TL}, (s2,8) € Ra, with s = {s3/s],...,s%/s7}, and M> €
Trans(s2). ‘ A

For every i = 1,...,n, write Tran; (s}) = {M}"',..., M"™}. By assumption,
Mli’j1 N Mf’jQ = () for j; # jo, hence every (ag,t1) €€ Tran;(s}) is contained in
a unique Mf’éi(al’tl) € Tran; (s?).
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Forevery j = 1,...,m;, let M = M{7|| My € Tranj(s}||s2). By d% (s s, s4) Cr.
a, we have M2’ € Trang(s}) such that the conditions in Definition 23 hold for
the pair M%7, Méj

Now define

M = {(ag,t) | 3(@2,'&2) € M, Ivtg/tl ct: Eli,al,ag,ﬂ : (al,tl) (S Tranl(si),
(a3, t3) € Mé’éi(al’tl),F(al @ az, as, B) Cr o, dpy(t1||t2, ts) o B}, (15)

We need to show that M € Tran,(s).

Let i € {1,...,n} and M}’ € Tran,(s}); we claim that M > M7 <r Mi7.
Let (as,t3) € M > Mli’j, then ag = a1 © ag for some a1, as such that t3/t; €
t, (a1,t1) € M{J and (aq,t) € M. By disjointness, j = d;(a1,t1), hence by
definition of M, (as,t3) € M27 as was to be shown.

For the reverse inclusion, let (as,t3) € My”. By definition of M%7, there
are (a1,t1) € Mli’j, (az,t2) € My and § for which F(a; @ as,as,8) Cr, « and
di(t1]|t2,t3) T 8. Thus j = 6;(a1,t1), so that there must be (as,t) € M for
which t3/t1 € t, but then also (a1 O ao, t3) c M M;’j.

We show that the pair My, M satisfies the conditions of Definition 23.

— Let (ag,tz) € Ms. For every i = 1,...,n and every (ai,t;) €€ Tran(t}),
we can use Definition 23 applied to the pair Mli’éi(al’tl)HMg,Mé’éi(al’tl) to
choose an element (n;(a1,t1),7i(a1,t1)) € Mg’éi(‘“’tl) and B;(a1,t1) € LL for
which d]&; (t1||t2, Ti(al, tl)) CrL Bi(al, tl) and F(ald)ag, m(al, tl), ﬂi(al, tl)) CrL
a. Let t = {r(a1,t1)/t1 | i =1,...,n,(a1,t1) €€ Trany(t})}, then (aq,t) €
M and (t2,t) € Rg.

— Let (ag,t) € M, then we have (ag,t2) € M; satisfying the conditions in (15).
Hence for all t3/t; € t, there are i,a1,as,3(t3/t1) such that (as,t3) €
MyP N F(ay © as,as, B(ts/th)) Co o and d% (4|t ts) Cr B(ts/t).
Let 3 = sup{B(ts/t1) | t3/t1 € t}, then d% (¢ ||t2,t3) Cp 3 for all t3/t; € ¢,
hence (t2,t) € Rg. O



