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Abstrat. We onsider the partial behavior model framework of dis-

juntive modal transition systems. We extend the framework to a gen-

eral quantitative setting and show that also in this quantitative setting,

modal transition systems and the modal nu-alulus are losely related.

The main tehnial ontribution is that our quantitative framework is

ompositional with respet to general notions of distanes between sys-

tems and the standard operations. Moreover, we show how to ompute

the results of the operations, inluding the quotient, whih has not been

previously onsidered for quantitative non-deterministi systems. This

allows for ompositional and step-wise design and veri�ation of systems

with quantitative information, suh as rewards, time or energy.

1 Introdution

Spei�ations of systems ome in two main �avors. Logial spei�ations are

formalized as formulae of modal or temporal logis, suh as the modal µ-alulus
or LTL. A ommon way to verify them on a system is to translate them to

automata and then analyze the omposition of the system and the automaton.

In ontrast, in the behavioral approah, spei�ations are written, from the very

beginning, in an automata-like formalism. Suh properties an be veri�ed using

various equivalenes and preorders, suh as bisimilarity or re�nement. Here we

fous on the latter approah, but also show onnetions between the two.

The behavioral formalism we work with ismodal transition systems (MTS) [28℄

and their extensions. MTS are like automata, but with two types of transitions:

must-transitions represent behavior that has to be present in every implemen-

tation; may-transition represent behavior that is allowed, but not required to

be implemented. A simple example of a vending mahine spei�ation s, in
Fig. 1 on the left, desribes that any orret implementation must be ready to

aept money, then may o�er the ustomer to hoose extras and must issue a

beverage. While the must-transitions are preserved in the re�nement proess, the

may-transitions an be either implemented and turned into must-transitions, or

dropped. This low-level re�nement proess is, however, insu�ient when the de-

signer wants to get more spei� about the implemented ations, suh as going

from the oarse spei�ation just desribed to the more �ne-grained spei�ation

on the right.

In order to relate suh spei�ations, MTS with strutured labels were intro-

dued [5℄. Given a preorder on labels, relating for instane coffee 4 beverage,
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Fig. 1. Two spei�ations of a vending mahine

we an re�ne a transition label into one whih is below, for example implement

�beverage� with its re�nement �coffee�. Then t will be a re�nement of s.

This framework an be applied to various preorders. For example, one an use

labels with a disrete omponent arrying the ation information and an interval

omponent to model time durations or energy onsumption. As an example,

onsider the simple real-time property to the left in Fig. 2: �after a req(uest),

grant has to be exeuted within 5 time units without the proess being idle

meanwhile�. The transition (grant, [0, 5]) ould be safely re�ned to (grant, [l, r])
for any 0 ≤ l ≤ r ≤ 5.

However, here we identify several shortomings of the urrent approahes:

Expressive power. The urrent theory of strutured labels is available only for the

basi MTS. Very often one needs to use riher strutures suh as disjuntive MTS

(DMTS) [8, 29℄ or aeptane automata [21, 31℄. While MTS generally annot

express disjuntion of properties, DMTS and further related formalisms an and

are, in fat, equivalent to the ν-alulus [7℄. This allows, for instane, to prohibit
deadloks as in the example to the right in Fig. 2. The disjuntive must, depited

as a branhing arrow, requires at least one of the transitions to be present. Thus

we allow the deadline for grant to be reset if additional work is generated. Note

that speifying grant and work as two separate must-transitions would not allow

postponing the deadline; and two separate may-transitions would not guarantee

any progress, as none of them has to be implemented. We hene propose DMTS

with strutured labels and also extend the equivalene between DMTS and the

modal ν-alulus [7℄ to our setting. Fig. 3 (left) shows a ν-alulus translation
of the seond quantitative spei�ation of Fig. 2.

u
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Fig. 2. Two simple quantitative spei�ations
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Fig. 3. A quantitative ν-alulus expression (left) and a quantitative DMTS

Robustness. Consider the grant issuing example u. While an implementation

issuing grant after preisely 5 time units is a valid re�nement, if there is but a

small positive drift in the implementation, it is not a re�nement anymore. How-

ever, this drift might be easily mended or just might be due to measuring errors.

Therefore, when models and spei�ations ontain suh quantitative informa-

tion, the standard Boolean notions of satisfation and re�nement are of limited

utility [23℄ and should be replaed by notions more robust to perturbations. As

an example, the DMTS in Fig. 3 is not a re�nement of the seond one in Fig. 2,

but for all pratial purposes, it is very lose.

One approah is to employ metri distanes instead of Boolean relations; this

has been done for example in [12�14, 16, 22, 27, 32, 33, 35, 36℄. An advantage of

behavioral spei�ation formalisms is that models and spei�ations are losely

related, hene distanes between models an easily be extended to distanes

between spei�ations. We have developed a distane-based approah for MTS

in [3, 4℄ and shown in [4, 18℄ that a good general setting is given by reursively

spei�ed trae distanes on an abstrat quantale. Here we extend this to DMTS.

Compositionality. The framework should be ompositional. In the quantitative

setting, this in essene means that the operations we de�ne on the systems should

behave well with respet not only to satisfation, but also to the distanes. For

instane, if s1 is lose to t1 and s2 lose to t2 then also the omposition s1 ‖ s2

should be lose to t1 ‖ t2. We prove this for the usual operations; in partiular,

we give a onstrution for suh a well-behaved quotient. The quotient of s by t is
the most general system that, when omposed with t, re�nes s. This operation is

thus useful for omputing missing parts of a system to be implemented, when we

already have several omponents at our disposal. The onstrution is omplex

already in the non-quantitative setting [7℄ and the extension of the algorithm to

strutured labels is non-trivial.

Our ontribution. To sum up, we extend the framework of strutured labels

to DMTS and ν-alulus. We equip this framework with distanes and give

onstrutions for the strutured analogues of the standard operations, so that

they behave ompositionally with respet to the distanes.

Further related work. Re�nement of omponents is a frequently used design ap-

proah in various areas, ranging from subtyping [30℄ over the Java modeling

language JML [24℄ or orret-by-design lass diagrams operations [17℄ to inter-

fae theories lose to MTS suh as interfae automata [15℄ based on alternating
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simulation. A variant of alternating simulation alled ovariant-ontravariant

simulation has been ompared to MTS modal re�nement in [1℄. The graphial

representability of these variants was studied in [7, 9℄.

2 Strutured Labels

Let Σ be a poset with partial order 4. We think of 4 as label re�nement, so

that if a 4 b, then a is less permissive (more restrited) than b.

We say that a label a ∈ Σ is an implementation label if b 4 a implies b = a
for all b ∈ Σ, i.e., if a annot be further re�ned. The set of implementation labels

is denoted Γ , and for a ∈ Σ, we let JaK = {b ∈ Γ | b 4 a}. Note that a 4 b
implies JaK ⊆ JbK for all a, b ∈ Σ.

Example 1. A trivial but important example of our label struture is the disrete

one in whih label preorder 4 is equality. This is equivalent to the �standard�

ase of unstrutured labels.

A typial label set in quantitative appliations onsists of a disrete ompo-

nent and real-valued weights. For spei�ations, weights are replaed by (losed)

weight intervals, so that Σ = U ×{[l, r] | l ∈ R∪{−∞}, r ∈ R∪{∞}, l ≤ r} for

a �nite set U , f. [4, 5℄. Label re�nement is given by (u1, [l1, r1]) 4 (u2, [l2, r2])
i� u1 = u2 and [l1, r1] ⊆ [l2, r2], so that labels are more re�ned if they speify

smaller intervals; thus, Γ = U × {[x, x] | x ∈ R} ≈ U ×R.
For a quite general setting, we an instead start with an arbitrary set Γ of

implementation labels, let Σ = 2Γ
, the powerset, and 4 = ⊆ be subset inlusion.

Then JaK = a for all a ∈ Σ. (Hene we identify implementation labels with one-

element subsets of Σ.) ⊓⊔

Label operations. Spei�ation theories ome equipped with several standard

operations that make ompositional software design possible [2℄: onjuntion for

merging viewpoints overing di�erent system's aspets [6, 34℄, strutural om-

position for running omponents in parallel, and quotient to synthesize missing

parts of systems [29℄. In order to provide them for DMTS, we �rst need the

respetive atomi operations on their ation labels.

We hene assume that Σ omes equipped with a partial onjuntion, i.e., an

operator 7 : Σ × Σ ⇀ Σ for whih it holds that

(1) if a1 7 a2 is de�ned, then a1 7 a2 4 a1 and a1 7 a2 4 a2, and

(2) if a3 4 a1 and a3 4 a2, then a1 7 a2 is de�ned and a3 4 a1 7 a2.

Note that by these properties, any two partial onjuntions on Σ have to agree

on elements for whih they are both de�ned.

Example 2. For disrete labels, the unique onjuntion operator is given by

a1 7 a2 =

{

a1 if a1 = a2 ,

undef. otherwise .



Compositionality for Quantitative Spei�ations 5

For labels in U × {[l, r] | l, r ∈ R, l ≤ r}, the unique onjuntion is

(u1, [l1, r1]) 7 (u2, [l2, r2]) =

{

undef. if u1 6= u2 or [l1, r1] ∩ [l2, r2] = ∅ ,

(u1, [l1, r1] ∩ [l2, r2]) otherwise .

Finally, for the general ase of spei�ation labels as sets of implementation

labels, the unique onjuntion is a1 7 a2 = a1 ∩ a2. ⊓⊔

For strutural omposition and quotient of spei�ations, we assume a partial

label synhronization operator � : Σ × Σ ⇀ Σ whih spei�es how to ompose

labels. We assume � to be assoiative and ommutative, with the following

additional property: For all a1, a2, b1, b2 ∈ Σ with a1 4 a2 and b1 4 b2, a1 � b1

is de�ned i� a2 � b2 is, and if both are de�ned, then a1 � b1 4 a2 � b2.

Example 3. For disrete labels, the onjuntion of Example 2 is the same as

CSP-style omposition, but other ompositions may be de�ned.

For labels in U × {[l, r] | l, r ∈ R, l ≤ r}, several useful label synhronization
operators may be de�ned for di�erent appliations. One is given by addition of

intervals, i.e.,

(u1, [l1, r1])
+

� (u2, [l2, r2]) =

{

undef. if u1 6= u2 ,

(u1, [l1 + l2, r1 + r2]) otherwise ,

for example modeling omputation time of ations on a single proessor. Another

operator, useful in sheduling, uses maximum instead of addition:

(u1, [l1, r1])
max

� (u2, [l2, r2]) =

{

undef. if u1 6= u2 ,

(u1, [max(l1, l2), max(r1, r2)]) otherwise .

Yet another operator uses interval intersetion instead, i.e.,

∩
� = 7; this is useful

if the intervals model deadlines.

For general set-valued spei�ation labels, we may take any synhronization

operator � given on implementation labels Γ and lift it to one on Σ by a1�a2 =
{b1 � b2 | b1 ∈ Ja1K, b2 ∈ Ja2K}. ⊓⊔

3 Spei�ation Formalisms

In this setion we introdue the spei�ation formalisms whih we use in the rest

of the paper. The universe of models for our spei�ations is the one of standard

labeled transition systems. For simpliity of exposition, we work only with �nite

spei�ations and implementations, but most of our results extend to the in�nite

(but �nitely branhing) ase.

A labeled transition system (LTS) is a struture I = (S, s0,−→) onsisting

onsisting of a �nite set S of states, an initial state s0 ∈ S, and a transition

relation −→ ⊆ S × Γ × S. We usually write s
a

−→ t instead of (s, a, t) ∈ −→.

Note that transitions are labeled with implementation labels.
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Disjuntive Modal Transition Systems. A disjuntive modal transition sys-

tem (DMTS) is a struture D = (S, S0, 99K,−→) onsisting of �nite sets S ⊇ S0

of states and initial states, respetively, may-transitions 99K ⊆ S×Σ×S, and dis-
juntive must-transitions −→ ⊆ S×2Σ×S

. It is assumed that for all (s, N) ∈ −→
and (a, t) ∈ N there is (s, b, t) ∈ 99K with a 4 b.

Example 4. The spei�ation x in Setion 1 has a may transition to y; from
there we have a disjuntive must transition with idential underlying may tran-

sitions. The intuitive meaning of the transition, that either grant or work must

be available, is formalized below using the modal re�nement.

Note that we allow multiple (or zero) initial states. We write s
a

99K t instead
of (s, a, t) ∈ 99K and s −→ N instead of (s, N) ∈ −→. A DMTS (S, S0, 99K,−→)
is an implementation if 99K ⊆ S × Γ × S, −→ = {(s, {(a, t)}) | s

a
99K t}, and

S0 = {s0} is a singleton; DMTS implementations are hene isomorphi to LTS.

DMTS were introdued in [29℄ in the ontext of equation solving, or quotient

of spei�ations by proesses. They are a natural losure of modal transition

systems [28℄, whih are DMTS in whih all disjuntive must-transitions s −→ N
lead to singletons N = {(a, t)}.

We introdue a notion of modal re�nement of DMTS with strutured labels.

It oinides with the lassial de�nition [29℄ on disrete labels.

De�nition 5. Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS.

A relation R ⊆ S1 ×S2 is a modal re�nement if it holds for all (s1, s2) ∈ R that

� for all s1
a1

99K1 t1 there is s2
a2

99K2 t2 suh that a1 4 a2 and (t1, t2) ∈ R, and

� for all s2 −→2 N2 there is s1 −→1 N1 suh that for all (a1, t1) ∈ N1 there is

(a2, t2) ∈ N2 with a1 4 a2 and (t1, t2) ∈ R.

D1 re�nes D2, denoted D1 ≤
m

D2, if there exists a modal re�nement R for whih

it holds that for every s0
1 ∈ S0

1 there is s0
2 ∈ S0

2 for whih (s0
1, s

0
2) ∈ R.

We write D1 ≡
m

D2 if D1 ≤
m

D2 and D2 ≤
m

D1. The implementation

semantis of a DMTS D is JDK = {I ≤
m

D | I implementation}. We say that

D1 thoroughly re�nes D2, and write D1 ≤
th

D2, if JD1K ⊆ JD2K. The below

proposition, whih follows diretly from transitivity of modal re�nement, shows

that modal re�nement is sound with respet to thorough re�nement; in the

ontext of spei�ation theories, this is what one would expet.

Proposition 6. For all DMTS D1, D2, D1 ≤
m

D2 implies D1 ≤
th

D2. ⊓⊔

Aeptane automata. A (non-deterministi) aeptane automaton (AA) is

a struture A = (S, S0,Tran), with S ⊇ S0
�nite sets of states and initial states

and Tran : S → 22Σ×S

an assignment of transition onstraints. The intuition is

that a transition onstraint Tran(s) = {M1, . . . , Mn} spei�es a disjuntion of n
hoies M1, . . . , Mn as to whih transitions from s have to be implemented.

An AA is an implementation if S0 = {s0} is a singleton and it holds for all

s ∈ S that Tran(s) = {M} ⊆ 2Γ×S
is a singleton; hene AA implementations

are isomorphi to LTS. Aeptane automata were �rst introdued in [31℄, based
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on the notion of aeptane trees in [21℄; however, there they are restrited to

be deterministi. We employ no suh restrition here.

Let A1 = (S1, S
0
1 ,Tran1) and A2 = (S2, S

0
2 ,Tran2) be AA. A relation R ⊆

S1×S2 is amodal re�nement if it holds for all (s1, s2) ∈ R and all M1 ∈ Tran1(s1)
that there exists M2 ∈ Tran2(s2) suh that

for all (a1, t1) ∈ M1 there is (a2, t2) ∈ M2 with a1 4 a2 and (t1, t2) ∈ R ,

for all (a2, t2) ∈ M2 there is (a1, t1) ∈ M1 with a1 4 a2 and (t1, t2) ∈ R .
(1)

The de�nition degrades to the one of [31℄ in ase labels are disrete. We will

write M1 4R M2 if M1, M2 satisfy (1).

In [7℄, the following translations were disovered between DMTS and AA: For

a DMTS D = (S, S0, 99K,−→) and s ∈ S, let Tran(s) = {M ⊆ Σ × S | ∀(a, t) ∈

M : s
a

99K t, ∀s −→ N : N ∩ M 6= ∅} and de�ne the AA da(D) = (S, S0,Tran).
For an AA A = (S, S0,Tran), de�ne the DMTS ad(A) = (D, D0, 99K,−→) by

D = {M ∈ Tran(s) | s ∈ S}, D0 = {M0 ∈ Tran(s0) | s0 ∈ S0},

−→ =
{(

M, {(a, M ′) | M ′ ∈ Tran(t)}
) ∣

∣ (a, t) ∈ M
}

,

99K = {(M, a, M ′) | ∃M −→ N : (a, M ′) ∈ N}.

Similarly to a theorem of [7, 19℄, we an now show the following:

Theorem 7. For DMTS D1, D2 and AA A1, A2, D1 ≤
m

D2 i� da(D1) ≤
m

da(D2) and A1 ≤
m

A2 i� ad(A1) ≤m

ad(A2). ⊓⊔

This strutural equivalene will allow us to freely translate forth and bak

between DMTS and AA in the rest of the paper. Note, however, that the state

spaes of A and ad(A) are not the same; the one of ad(A) may be exponentially

larger. [19℄ shows that this blow-up is unavoidable.

From a pratial point of view, DMTS are a somewhat more useful spei�-

ation formalism than AA. This is beause they are usually more ompat and

easily drawn and due to their lose relation to the modal ν-alulus, see below.

The Modal ν-Calulus. In [7℄, translations were disovered between DMTS

and the modal ν-alulus, and re�ning the translations in [19℄, we ould show

that for disrete labels, these formalisms are struturally equivalent. We use the

representation by equation systems in Hennessy-Milner logi developed in [26℄.

For a �nite set X of variables, let H(X) be the set of Hennessy-Milner formulae,

generated by the abstrat syntax H(X) ∋ φ ::= tt | ff | x | 〈a〉φ | [a]φ | φ∧φ | φ∨
φ, for a ∈ Σ and x ∈ X . A ν-alulus expression is a struture N = (X, X0, ∆),
with X0 ⊆ X sets of variables and ∆ : X → H(X) a delaration.

The semantis of ν-alulus expressions is usually given as a greatest �xed

point to a delaration, f. [26℄. In [19℄ we have introdued another semantis,

whih is given by a notion of re�nement, like for DMTS and AA. For this we

need a normal form for ν-alulus expressions:

Lemma 8 ([19℄). For any ν-alulus expression N1 = (X1, X
0
1 , ∆1), there exists

another expression N2 = (X2, X
0
2 , ∆2) with JN1K = JN2K and suh that for any
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x ∈ X, ∆2(x) is of the form ∆2(x) =
∧

i∈I

(
∨

j∈Ji
〈aij〉xij

)

∧
∧

a∈Σ [a]
(
∨

j∈Ja
ya,j

)

for �nite (possibly empty) index sets I, Ji, Ja and all xij , ya,j ∈ X2. ⊓⊔

As this is a type of onjuntive normal form, it is lear that translating

a ν-alulus expression into normal form may inur an exponential blow-up.

We introdue some notation for ν-alulus expressions in normal form. Let N =
(X, X0, ∆) be suh an expression and x ∈ X , with ∆(x) =

∧

i∈I

(
∨

j∈Ji
〈aij〉xij

)

∧
∧

a∈Σ [a]
(
∨

j∈Ja
ya,j

)

as in the lemma. De�ne ♦(x) = {{(aij, xij) | j ∈ Ji} | i ∈
I} and, for eah a ∈ Σ, �a(x) = {ya,j | j ∈ Ja}. Intuitively, ♦(x) ollets all 〈a〉-
requirements from x, whereas �a(x) spei�es the disjuntion of [a]-properties
whih must hold from x. Note that now,

∆(x) =
∧

N∈♦(x)

(

∨

(a,y)∈N

〈a〉y
)

∧
∧

a∈Σ

[a]
(

∨

y∈�a(x)

y
)

. (2)

Let N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2) be ν-alulus expressions in

normal form and R ⊆ X1 ×X2. The relation R is a modal re�nement if it holds

for all (x1, x2) ∈ R that

� for all a1 ∈ Σ and y1 ∈ �
a1

1 (x1) there is a2 ∈ Σ and y2 ∈ �
a2

2 (x2) with

a1 4 a2 and (y1, y2) ∈ R, and

� for all N2 ∈ ♦2(x2) there is N1 ∈ ♦1(x1) suh that for all (a1, y1) ∈ N1 there

exists (a2, y2) ∈ N2 with a1 4 a2 and (y1, y2) ∈ R.

For a DMTS D = (S, S0, 99K,−→) and all s ∈ S, let ♦(s) = {N | s −→

N} and, for eah a ∈ Σ, �a(s) = {t | s
a

99K t}. De�ne the (normal-form) ν-
alulus expression dn(D) = (S, S0, ∆), with ∆ given as in (2). For a ν-alulus
expression N = (X, X0, ∆) in normal form, let 99K = {(x, a, y) ∈ X × Σ ×
X | y ∈ �a(x)}, −→ = {(x, N) | x ∈ X, N ∈ ♦(x)} and de�ne the DMTS

nd(N ) = (X, X0, 99K,−→). Given that these translations are entirely syntati,

the following theorem is not a surprise:

Theorem 9. For DMTS D1, D2 and ν-alulus expressions N1, N2, D1 ≤
m

D2

i� dn(D1) ≤m

dn(D2) and N1 ≤
m

N2 i� nd(N1) ≤m

nd(N2). ⊓⊔

It is shown in [19℄ that the re�nement semantis and the standard �xed-point

semantis for ν-alulus expressions agree, i.e., that an LTS I is an implemen-

tation of an expression N i� I ≤
m

N . Here we have used an embedding of LTS

into ν-alulus similar to the one into DMTS or AA, f. [19℄.

4 Spei�ation theory

Strutural spei�ations typially ome equipped with operations whih allow for

ompositional reasoning, viz. onjuntion, strutural omposition, and quotient,

f. [2℄. On deterministi MTS, these operations an be given easily using simple

strutural operational rules (for suh semantis of weighted systems, see e.g.

[25℄). For non-deterministi systems this is signi�antly harder; in [7℄ it is shown

that DMTS and AA permit these operations and, additionally but trivially,

disjuntion. Here we show how to extend these operations on non-deterministi

systems to our quantitative setting with strutured labels.
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We remark that strutural omposition and quotient operators are well-

known from some logis, suh as, e.g., linear [20℄ or spatial logi [10℄, and were

extended to very general ontexts [11℄. However, whereas these operators are

part of the formal syntax in those logis, for us they are simply operations on

logial expressions (or DMTS, or AA). Consequently [19℄, strutural omposition

is generally only a sound over-approximation of the semanti omposition.

Given the equivalene of DMTS, AA and the modal ν-alulus exposed in the

previous setion, we will often state properties for all three types of spei�ations

at the same time, letting S stand for any of the three types.

Disjuntion and onjuntion. Disjuntion of spei�ations is easily de�ned

as we allow multiple initial states. For DMTS D1 = (S1, S
0
1 , 99K1,−→1), D2 =

(S2, S
0
2 , 99K2,−→2), we an hene de�ne D1 ∨ D2 = (S1 ∪ S2, S

0
1 ∪ S0

2 , 99K1 ∪
99K2,−→1 ∪−→2) (with all unions disjoint). For onjuntion, we let D1 ∧D2 =
(S1 × S2, S

0
1 × S0

2 , 99K,−→), with

� (s1, s2)
a17a2

99K (t1, t2) whenever s1
a1

99K1 t1, s2
a2

99K2 t2 and a1 7 a2 is de�ned,

� for all s1 −→ N1, (s1, s2) −→ {(a17a2, (t1, t2)) | (a1, t1) ∈ N1, s2
a2

99K2 t2, a17
a2 de�ned},

� for all s2 −→ N2, (s1, s2) −→ {(a17a2, (t1, t2)) | (a2, t2) ∈ N2, s1
a1

99K1 t1, a17
a2 de�ned}.

Theorem 10. For all spei�ations S1, S2, S3,

� S1 ∨ S2 ≤
m

S3 i� S1 ≤
m

S3 and S2 ≤
m

S3,

� S1 ≤
m

S2 ∧ S3 i� S1 ≤
m

S2 and S1 ≤
m

S3,

� JS1 ∨ S2K = JS1K ∪ JS2K, and JS1 ∧ S2K = JS1K ∩ JS2K.

With bottom and top elements given by⊥ = (∅, ∅, ∅) and⊤ = ({s}, {s},Tran⊤)

with Tran⊤(s) = 22Σ×{s}

, our lasses of spei�ations form bounded distributive

latties up to ≡
m

.

Strutural omposition. For AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2),

their strutural omposition isA1‖A2 = (S1×S2, S
0
1×S0

2 ,Tran), with Tran((s1, s2)) =
{M1 � M2 | M1 ∈ Tran1(s1), M2 ∈ Tran2(s2)} for all s1 ∈ S1, s2 ∈ S2, where

M1 � M2 = {(a1 � a2, (t1, t2)) | (a1, t1) ∈ M1, (a2, t2) ∈ M2, a1 � a2 de�ned}.

D1

D2

s1 s2

t1 t2

a

b

Remark a subtle di�erene between onjuntion and

strutural omposition, whih we expose for disrete labels

and CSP-style omposition: for the DMTS D1, D2 shown

to the right, both D1∧D2 and D1‖D2 have only one state,

but Tran(s1 ∧ t1) = ∅ and Tran(s1‖t1) = {∅}, so that

D1 ∧ D2 is inonsistent, whereas D1‖D2 is not.

This de�nition extends the strutural omposition de�ned for modal transi-

tion systems, with strutured labels, in [4℄. For DMTS spei�ations (and hene

also for ν-alulus expressions), the bak translation from AA to DMTS entails

an exponential explosion.

Theorem 11. Up to ≡
m

, the operator ‖ is assoiative, ommutative and mono-

tone, and ⊥‖S ≡
m

⊥ for any spei�ation S.
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Corollary 12 (Independent implementability). For all spei�ations S1,

S2, S3, S4, S1 ≤
m

S3 and S2 ≤
m

S4 imply S1‖S2 ≤
m

S3‖S4. ⊓⊔

Quotient. Beause of non-determinism, we have to use a subset onstrution

for the quotient, as opposed to onjuntion and strutural omposition where

produt is su�ient. For AA A3 = (S3, S
0
3 ,Tran3), A1 = (S1, S

0
1 ,Tran1), the

quotient is A3/A1 = (S, {s0},Tran), with S = 2S3×S1
and s0 = {(s0

3, s
0
1) |

s0
3 ∈ S0

3 , s0
1 ∈ S0

1}. States in S will be written {s1
3/s1

1, . . . , s
n
3/sn

1 )} instead of

{(s1
3, s

1
1), . . . , (s

n
3 , sn

1 ))}. Intuitively, this denotes that suh state when omposed

with si
1 onforms to si

3 for eah i; we all this onsisteny here.

We now de�ne Tran. First, Tran(∅) = 2Σ×{∅}
, so ∅ is universal. For any other

state s = {s1
3/s1

1, . . . , s
n
3/sn

1} ∈ S, its set of permissible labels is de�ned by

pl(s) = {a2 ∈ Σ | ∀i = 1, . . . , n : ∀(a1, t1) ∈∈ Tran1(s
i
1) :

∃(a3, t3) ∈∈ Tran3(s
i
3) : a1 � a2 4 a3} ,

that is, a label is permissible i� it annot violate onsisteny. Here we use the

notation x ∈∈ z as a shortut for ∃y : x ∈ y ∈ z.
Now for eah a ∈ pl(s) and eah i ∈ {1, . . . , n}, let {t1 ∈ S1 | (a, t1) ∈∈

Tran1(t
i
1)} = {ti,11 , . . . , ti,mi

1 } be an enumeration of all the possible states in S1

after an a-transition. Then we de�ne the set of all sets of possible assignments

of next-a states from si
3 to next-a states from si

1:

pta(s) = {{(ti,j3 , ti,j1 ) | i = 1, . . . , n, j = 1, . . . , mi} | ∀i : ∀j : (a, ti,j3 ) ∈∈ Tran3(s
i
3)}

These are all possible next-state assignments whih preserve onsisteny. Now

let pt(s) =
⋃

a∈pl(s) pta(s) and de�ne

Tran(s) = {M ⊆ pt(s) | ∀i = 1, . . . , n : ∀M1 ∈ Tran1(s
i
1) :

∃M3 ∈ Tran3(s
i
3) : M ⊲ M1 4R M3} ,

where M ⊲ M1 = {(a1 � a, ti3) | (a, {t13/t11, . . . , t
k
3/tk1)}) ∈ M, (a1, t

i
1) ∈ M1},

to guarantee onsisteny no matter whih element of Tran1(s
i
1), s is omposed

with.

Example 13. Consider the two simple systems in Fig. 4 and their quotient un-

der

∩
�, i.e., where label synhronization is intersetion. During the onstrution

and the translation bak to DMTS, many states were eliminated as they were

inonsistent (their Tran-set was empty). For instane, there is no may transition

to state {s2/t2}, beause when it is omposed with t2 there is no guarantee of

late-transition, hene no guarantee to re�ne s2.

Theorem 14. For all spei�ations S1, S2, S3, S1‖S2 ≤
m

S3 i� S2 ≤
m

S3/S1.

5 Robust Spei�ation Theories

We proeed to lift the results of the previous setions to a quantitative setting,

where the Boolean notions of modal and thorough re�nement are replaed by
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s0

s1
(send, [1, 2])

s2(send, (2, 3])

•
early

•
late

t0

t1(send, [1, 2])

t2(send, (2, 3])

•
early

late

•
late

{s0/t0} {s1/t1} ∅ Σ
(send, [1, 2])

early, late, (send, [0, 1)]), (send, (5,∞))

Σ \ {late}

early

Fig. 4. Two DMTS and their quotient.

re�nement distanes. We have shown in [4, 18℄ that an appropriate setting for

quantitative analysis is given by the one of reursively spei�ed trae distanes

on an abstrat ommutative quantale as de�ned below; we refer to the above-

ited papers for a detailed exposition of how this framework overs all ommon

approahes to quantitative analysis.

Denote by Σ∞ = Σ∗ ∪ Σω
the set of �nite and in�nite traes over Σ.

Reursively spei�ed trae distanes. Reall that a (ommutative) quantale

onsists of a omplete lattie (L,⊑
L

) and a ommutative, assoiative addition

operation �
L

whih distributes over arbitrary suprema; we denote by ⊥
L

, ⊤
L

the bottom and top elements of L. We all a funtion d : X × X → L, for

a set X and a quantale L, an L-hemimetri if it satis�es d(x, x) = ⊥
L

for

all x ∈ X and d(x, z) ⊑
L

d(x, y) �
L

d(y, z) for all x, y, z ∈ X . L-hemimetris

are generalizations of distanes: for L = R≥0 ∪ {∞} the extended real line, an

(R≥0 ∪ {∞})-hemimetri is simply an extended hemimetri.

A reursive trae distane spei�ation F = (L, eval, dL
t

, F ) onsists of a

quantale L, a quantale morphism eval : L → R≥0 ∪ {∞}, an L-hemimetri

dL
t

: Σ∞×Σ∞ → L (alled lifted trae distane), and a distane iterator funtion

F : Σ × Σ × L → L. F must be monotone in the third oordinate and satisfy

an extended triangle inequality: for all a, b, c ∈ Σ and α, β ∈ L, F (a, b, α) �
L

F (b, c, β) ⊒
L

F (a, c, α �
L

β).
F is to speify dL

t

reursively in the sense that for all a, b ∈ Σ and all

σ, τ ∈ Σ∞
(and with . denoting onatenation),

dL
t

(a.σ, b.τ) = F (a, b, dL
t

(σ, τ)) . (3)

The trae distane assoiated with suh a distane spei�ation is d
t

: Σ∞ ×
Σ∞ → R≥0 given by d

t

= eval ◦ dL
t

. Note that dL
t

speializes to a distane

on labels (beause Σ ⊆ Σ∞
); we require that this is ompatible with label

re�nement in the sense that a 4 b implies dL
t

(a, b) = ⊥
L

. Then (3) implies that

whenever a 4 b, then F (a, b,⊥
L

) = dL
t

(a, b) = ⊥
L

.

Example 15. It is shown in [4, 18℄ that all ommonly used trae distanes obey

reursive haraterizations as above. We give a few examples:
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� The point-wise distane from [13℄, for example, has L = R≥0∪{∞}, eval = id

and dL
t

(a.σ, b.τ) = max(d(a, b), dL
t

(σ, τ)), where d : Σ × Σ → R≥0 ∪ {∞} is

a hemimetri on labels. For the label set Σ = U ×{[l, r] | l ∈ R∪{−∞}, r ∈
R ∪ {∞}, l ≤ r} from Example 1, one useful example of suh a hemimetri

is d((u1, [l1, r1]), (u2, [l2, r2])) = supx1∈[l1,r1] infx2∈[l2,r2] |x1 − x2| if u1 = u2

and ∞ otherwise, f. [3℄.

� The disounting distane, also used in [13℄, again uses L = R≥0 ∪ {∞} and

eval = id, but dL
t

(a.σ, b.τ) = d(a, b) + λdL
t

(σ, τ) for a onstant λ ∈ [0, 1[.
� For the limit-average distane used in [36℄ and others, L = (R≥0 ∪ {∞})N,

eval(α) = lim infj∈N α(j), dL
t

(a.σ, b.τ)(j) = 1
j+1d(a, b) + j

j+1dL
t

(σ, τ)(j − 1).

� The disrete trae distane is given by d
t

(σ, τ) = 0 if σ 4 τ and ∞ otherwise

(here we have extended 4 to traes in the obvious way). It has a reursive

haraterization with L = R≥0 ∪ {∞}, eval = id, and d
t

(a.σ, b.τ) = d
t

(σ, τ)
if a 4 b and ∞ otherwise.

For the rest of this paper, we �x a reursively spei�ed trae distane.

Re�nement distanes. We lift the notions of modal re�nement, for all our

formalisms, to distanes. Coneptually, this is done by replaing �∀� quanti�ers
by �sup� and �∃� by � inf� in the de�nitions, and then using the distane iterator

to introdue a reursive funtional whose least �xed point is the distane.

De�nition 16. The lifted re�nement distane on the states of DMTS D1 = (S1,
S0

1 , 99K1,−→1), D2 = (S2, S
0
2 , 99K2,−→2) is the least �xed point to the equations

dL
m

(s1, s2) = max











sup
s1

a1
99Kt1

inf
s2

a2
99Kt2

F (a1, a2, d
L

m

(t1, t2)) ,

sup
s2−→N2

inf
s1−→N1

sup
(a1,t1)∈N1

inf
(a2,t2)∈N2

F (a1, a2, d
L

m

(t1, t2)) .

For AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), the equations are instead

dL
m

(s1, s2) =

sup
M1∈Tran1(s1)

inf
M2∈Tran2(s2)

max











sup
(a1,t1)∈M1

inf
(a2,t2)∈M2

F (a1, a2, d
L

m

(t1, t2)) ,

sup
(a2,t2)∈M2

inf
(a1,t1)∈M1

F (a1, a2, d
L

m

(t1, t2)) ,

and for ν-alulus expressions N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2),

dL
m

(x1, x2) = max











sup
a1∈Σ,y1∈�

a1
1

(x1)

inf
a2∈Σ,y2∈�

a2
2

(x2)

F (a1, a2, d
L

m

(y1, y2)),

sup
N2∈♦2(x2)

inf
N1∈♦1(x1)

sup
(a1,y1)∈N1

inf
(a2,y2)∈N2

F (a1, a2, d
L

m

(y1, y2)).

Using Tarski's �xed point theorem, one easily sees that the lifted re�nement

distanes are indeed well-de�ned. (Here one needs monotoniity of F in the third

oordinate, together with the fat that sup and inf are monotoni.)

The lifted re�nement distane between spei�ations is de�ned by dL
m

(S1,S2) =
sups0

1
∈S0

1
infs0

2
∈S0

2
dL
m

(s0
1, s

0
2). Analogously to thorough re�nement, there is also a
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lifted thorough re�nement distane, given by dL
th

(S1,S2) = supI1∈JS1K infI2∈JS2K

dL
m

(I1, I2). Using the eval funtion, one gets non-lifted distanes d
m

= eval ◦ dL
m

and d
th

= eval ◦ dL
th

, with values in R≥0 ∪ {∞}, whih will be the ones one is

interested in for onrete appliations.

Example 17. We ompute the disounted re�nement distane between the se-

ond DMTS in Figs. 2 and 3, assuming sup-inf distane on quantitative la-

bels. We have d
m

(x, x′) = max(0 + λd
m

(x, x′), 0 + λd
m

(y, y′)) and d
m

(y, y′) =
max(0 + λd

m

(x, x′), 1 + λd
m

(y, y′), whose least �xed point is d
m

(x, x′) = λ
1−λ .

Similarly, d
m

(x′, x) = λ
1−λ . Note that x 6≤

m

x′
and x′ 6≤

m

x.

The following quantitative extension of Theorems 7 and 9 shows that our

translations preserve and re�et re�nement distanes.

Theorem 18. For all DMTS D1,D2, all AA A1, A2 and all ν-alulus expres-
sions N1, N2, dL

m

(D1,D2) = dL
m

(da(D1), da(D2)), dL
m

(A1,A2) = dL
m

(ad(A1), ad(A2)),
dL
m

(D1,D2) = dL
m

(dn(D1), dn(D2)), and dL
m

(N1,N2) = dL
m

(nd(N1),nd(N2)).

Our distanes behave as expeted:

Proposition 19. The funtions dL
m

, dL
th

are L-hemimetris, and d
m

, d
th

are

hemimetris. For spei�ations S1, S2, S1 ≤
m

S2 implies dL
m

(S1,S2) = ⊥
L

, and

S1 ≤
th

S2 implies dL
th

(S1,S2) = ⊥
L

.

For the disrete distanes, d
m

(S1,S2) = 0 if S1 ≤
m

S2 and ∞ otherwise.

Similarly, d
th

(S1,S2) = 0 if S1 ≤
th

S2 and ∞ otherwise.

As a quantitative analogy to the impliation from (Boolean) modal re�ne-

ment to thorough re�nement (Proposition 6), the next theorem shows that thor-

ough re�nement distane is bounded above by modal re�nement distane. Note

that for the disrete trae distane (and using Proposition 19), this is equivalent

to the Boolean statement.

Theorem 20. For all spei�ations S1, S2, dL
th

(S1,S2) ⊑L dL
m

(S1,S2).

Strutural omposition and quotient. We proeed to devise a quantitative

generalization of the properties of strutural omposition and quotient exposed

in Setion 4. To this end, we need to use a uniform omposition bound on labels:

Let P : L × L → L be a funtion whih is monotone in both oordinates,

has P (α,⊥
L

) = P (⊥
L

, α) = α and P (α,⊤
L

) = P (⊤
L

, α) = ⊤
L

for all α ∈ L.
We require that for all a1, b1, a2, b2 ∈ Σ and α, β ∈ L with F (a1, a2, α) 6= ⊤ and

F (b1, b2, β) 6= ⊤, a1 � b1 is de�ned i� a2 � b2 is, and if both are de�ned, then

F (a1 � b1, a2 � b2, P (α, β)) ⊑
L

P (F (a1, a2, α), F (b1, b2, β)) . (4)

Note that (4) implies that d
t

(a1 � a2, b1 � b2) ⊑
L

P (d
t

(a1, b1), dt(a2, b2)).
Hene P provides a uniform bound on distanes between synhronized labels,

and (4) extends this property so that it holds reursively. Also, this is a gener-

alization of the ondition that we imposed on � in Setion 2; it is shown in [4℄

that it holds for all ommon label synhronizations.
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The following theorems show that omposition is uniformly ontinuous (i.e., a

quantitative generalization of independent implementability; Corollary 12) and

that quotient preserves and re�ets re�nement distane (a quantitative general-

ization of Theorem 14).

Theorem 21. For all spei�ations S1, S2, S3, S4, dL
m

(S1‖S2,S3‖S4) ⊑
L

P (dL
m

(S1,S3), d
L

m

(S2,S4)).

Theorem 22. For all spei�ations S1, S2, S3, dL
m

(S1‖S2,S3) = dL
m

(S2,S3/S1).

6 Conlusion

We have presented a framework for ompositional system development whih

supports quantities and system and ation re�nement. Moreover, it is robust, in

that it uses distanes to measure quantitative re�nement and the ompositional

operations are uniformly ontinuous.

The framework is very general. It an be applied to a large variety of quan-

tities (energy, time, resoure onsumption et.) and implement the robustness

notions assoiated with them. It is also agnosti with respet to the type of

spei�ations used, as it applies equally to behavioral and logial spei�ations.

This means that logial and behavioral quantitative spei�ations an be freely

ombined in system development.
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Appendix: Proofs

Proof (of Theorem 10). The proof that S1∨S2 ≤
m

S3 i� S1 ≤
m

S3 and S2 ≤
m

S3

is trivial: any modal re�nement R ⊆ (S1 ∪ S2) × S3 splits into two re�nements

R1 ⊆ S1 × S3, R2 ⊆ S2 × S3 and vie versa.

For the proof of the seond laim, whih we show for DMTS, we prove the

bak diretion �rst. Let R2 ⊆ S1 × S2, R3 ⊆ S1 × S3 be initialized (DMTS)

modal re�nements and de�ne R = {(s1, (s2, s3)) | (s1, s2) ∈ R1, (s1, s3) ∈ R3} ⊆
S1 × (S2 × S3). Then R is initialized.

Now let (s1, (s2, s3)) ∈ R, then (s1, s2) ∈ R2 and (s1, s3) ∈ R3. Assume that

s1
a1

99K1 t1, then by S1 ≤
m

S2, we have s2
a2

99K2 t2 with a1 4 a2 and (t1, t2) ∈ R2.

Similarly, by S1 ≤
m

S3, we have s3
a3

99K3 t3 with a1 4 a3 and (t1, t3) ∈ R3.

But then also a1 4 a2 7 a3 and (t1, (t2, t3)) ∈ R, and (s2, s3)
a27a3

99K (t2, t3) by

de�nition.

Assume that (s2, s3) −→ N . Without loss of generality we an assume that

there is s2 −→2 N2 suh that N = {(a2 7 a3, (t2, t3)) | (a2, t2) ∈ N2, s3
a3

99K3 t3}.
By S1 ≤

m

S2, we have s1 −→1 N1 suh that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2 :
a1 4 a2, (t1, t2) ∈ R2.

Let (a1, t1) ∈ N1, then also s1
a1

99K1 t1, so by S1 ≤
m

S3, there is s3
a3

99K3 t3
with a1 4 a3 and (t1, t3) ∈ R3. By the above, we also have (a2, t2) ∈ N2 suh

that a1 4 a2 and (t1, t2) ∈ R2, but then (a2 7a3, (t2, t3)) ∈ N , a1 4 a2 ∧a3, and

(t1, (t2, t3)) ∈ R.

For the other diretion of the seond laim, let R ⊆ S1×(S2×S3) be an initial-
ized (DMTS) modal re�nement. We show that S1 ≤

m

S2, the proof of S1 ≤
m

S3

being entirely analogous. De�ne R2 = {(s1, s2) | ∃s3 ∈ S3 : (s1, (s2, s3)) ∈ R} ⊆
S1 × S2, then R2 is initialized.

Let (s1, s2) ∈ R2, then we must have s3 ∈ S3 suh that (s1, (s2, s3)) ∈ R.

Assume that s1
a1

99K1 t1, then also (s2, s3)
a

99K (t2, t3) for some a with a1 4 a and

(t1, (t2, t3)) ∈ R. By onstrution we have s2
a2

99K2 t2 and s3
a3

99K3 t3 suh that

a = a2 7 a3, but then a1 4 a2 7 a3 4 a2 and (t1, t2) ∈ R2.

Assume that s2 −→2 N2, then by onstrution, (s2, s3) −→ N = {(a2 7

a3, (t2, t3)) | (a2, t2) ∈ N2, s3
a3

99K3 t3}. By S1 ≤
m

S2 ∧ S3, we have s1 −→1 N1

suh that ∀(a1, t1) ∈ N1 : ∃(a, (t2, t3)) ∈ N : a1 4 a, (t1, (t2, t3)) ∈ R.

Let (a1, t1) ∈ N1, then we have (a, (t2, t3)) ∈ N for whih a1 4 a and

(t1, (t2, t3)) ∈ R. By onstrution of N , this implies that there are (a2, t2) ∈ N2

and s3
a3

99K3 t3 suh that a = a27a3, but then a1 4 a27a3 4 a2 and (t1, t2) ∈ R.

As to the last laims of the theorem, JS1∧S2K = JS1K∩JS2K is lear from what

we just proved: for all implementations I, I ≤
m

S1∧S2 i� I ≤
m

S1 and I ≤
m

S2.

For the other part, it is lear by onstrution that for any implementation I,
any witness R for I ≤

m

S1 is also a witness for I ≤
m

S1 ∨ S2, and similarly for

S2, hene JS1K ∪ JS2K ⊆ JS1 ∨ S2K.
To show the other inlusion, we note that an initialized re�nement R wit-

nessing I ≤
m

S1∨S2 must relate the initial state of I either to an initial state of

S1 or to an initial state of S2. In the �rst ase, and by disjointness, R witnesses

I ≤
m

S1, in the seond, I ≤
m

S2. ⊓⊔
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Proof (of Theorem 11). Assoiativity and ommutativity are lear. Monotoniity

is equivalent to the assertion that (up to ≡
m

) ‖ distributes over the least upper

bound ∨; one easily sees that for all spei�ations S1, S2, S3, the identity is

a two-sided modal re�nement S1‖(S2 ∨ S3) ≡
m

S1‖S2 ∨ S1‖S3. The assertion

⊥‖S ≡
m

⊥ is also lear. ⊓⊔

Proof (of Theorem 14). We show the proof for AA; for DMTS and ν-alulus
expressions it will follow through the translations. Let A1 = (S1, S

0
1 ,Tran1),

A2 = (S2, S
0
2 ,Tran2), A3 = (S3, S

0
3 ,Tran3); we show that A1‖A2 ≤

m

A3 i�

A2 ≤
m

A3/A1.

We assume that the elements of Tran1(s1) are pairwise disjoint for eah

s1 ∈ S1; this an be ahieved by, if neessary, splitting states.

First we note that by onstrution, s ⊇ t implies s ≤
m

t for all s, t ∈ S.
Now assume that A2 ≤

m

A3/A1 and let R = {(s1‖s2, s3) | s2 ≤
m

s3/s1}; we
show that R is a witness for A1‖A2 ≤

m

A3.

Let (s1‖s2, s3) ∈ R and M‖ ∈ Tran‖(s1‖s2). Then M‖ = M1‖M2 with M1 ∈
Tran1(s1) and M2 ∈ Tran2(s2). As s2 ≤

m

s3/s1, we an pair M2 with an M/ ∈
Tran/(s3/s1), i.e., suh that the onditions in (1) are satis�ed.

Let M3 = M/ ⊲ M1. We show that (1) holds for the pair M‖, M3:

� Let (a, t1‖t2) ∈ M‖, then there are a1, a2 ∈ Σ with a = a1 �a2 and (a1, t1) ∈
M1, (a2, t2) ∈ M2. By (1), there is (a′

2, t) ∈ M/ suh that a2 4 a′
2 and t2 ≤

m

t. Note that a3 = a1 �a′
2 is de�ned and a 4 a3. Write t = {t13/t11, . . . , t

n
3/tn1}.

By onstrution, there is an index i for whih ti1 = t1, hene (a3, t
i
3) ∈ M3.

Also, t ⊇ {ti3/ti1}, hene t2 ≤
m

ti3/ti1 and onsequently (t1‖t2, t3) ∈ R.

� Let (a3, t3) ∈ M3, then there are (a′
2, t) ∈ M/ and (a1, t1) ∈ M1 suh that

a3 = a1 � a′
2 and t3/t1 ∈ t. By (1), there is (a2, t2) ∈ M2 for whih a2 4 a′

2

and t2 ≤
m

t. Note that a = a1�a2 is de�ned and a 4 a3. Thus (a, t1‖t2) ∈ M ,

and by t ⊇ {t3/t1}, t2 ≤
m

t3/t1.

Assume, for the other diretion of the proof, that A1‖A2 ≤
m

A3. De�ne

R ⊆ S2 × 2S3×S1
by

R = {(s2, {s
1
3/s1

1, . . . , s
n
3/sn

1}) | ∀i = 1, . . . , n : si
1‖s2 ≤

m

si
3} ;

we show that R is a witness for A2 ≤
m

A3/A1. Let (s2, s) ∈ R, with s =
{s1

3/s1
1, . . . , s

n
3/sn

1}, and M2 ∈ Tran2(s2).
For every i = 1, . . . , n, write Tran1(s

i
1) = {M i,1

1 , . . . , M i,mi

1 }. By assumption,

M i,j1
1 ∩ M i,j2

1 = ∅ for j1 6= j2, hene every (a1, t1) ∈∈ Tran1(s
i
1) is ontained in

a unique M
i,δi(a1,t1)
1 ∈ Tran1(s

i
1).

For every j = 1, . . . , mi, let M i,j = M i,j
1 ‖M2 ∈ Tran‖(s

i
1‖s2). By si

1‖s2 ≤
m

si
3, we have M i,j

3 ∈ Tran3(s
i
3) suh that (1) holds for the pair M i,j , M i,j

3 .

Now de�ne

M = {(a2, t) | ∃(a2, t2) ∈ M2 : ∀t3/t1 ∈ t : ∃i, a1, a3 :

(a1, t1) ∈∈ Tran1(s
i
1), (a3, t3) ∈ M

i,δi(a1,t1)
3 , a1 � a2 4 a3, t1‖t2 ≤

m

t3} . (5)
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We need to show that M ∈ Tran/(s).

Let i ∈ {1, . . . , n} and M i,j
1 ∈ Tran1(s

i
1); we laim that M ⊲ M i,j

1 4R M i,j
3 .

Let (a3, t3) ∈ M ⊲ M i,j
1 , then a3 = a1 � a2 for some a1, a2 suh that t3/t1 ∈

t, (a1, t1) ∈ M i,j
1 and (a2, t) ∈ M . By disjointness, j = δi(a1, t1), hene by

de�nition of M , (a3, t3) ∈ M i,j
3 as was to be shown.

For the reverse inlusion, let (a3, t3) ∈ M i,j
3 . By (1) and de�nition of M i,j

,

there are (a1, t1) ∈ M i,j
1 and (a2, t2) ∈ M2 for whih a1�a2 4 a3 and t1‖t2 ≤

m

t3.
Thus j = δi(a1, t1), so that there must be (a2, t) ∈ M for whih t3/t1 ∈ t, but
then also (a1 � a2, t3) ∈ M ⊲ M i,j

1 .

We show that M2 4R M .

� Let (a2, t2) ∈ M2. For every i = 1, . . . , n and every (a1, t1) ∈∈ Tran1(t
i
1),

we an use (1) to hoose an element (ηi(a1, t1), τi(a1, t1)) ∈ M
i,δi(a1,t1)
3 for

whih t1‖t2 ≤
m

τi(a1, t1) and a1 � a2 4 ηi(a1, t1). Let t = {τi(a1, t1)/t1 | i =
1, . . . , n, (a1, t1) ∈∈ Tran1(t

i
1)}, then (a2, t) ∈ M and (t2, t) ∈ R.

� Let (a2, t) ∈ M , then we have (a2, t2) ∈ M2 satisfying the onditions in (5).

Hene t1‖t2 ≤
m

t3 for all t3/t1 ∈ t, so that (t2, t) ∈ R. ⊓⊔

Before we attempt any more proofs, we need to reall the notion of re�nement

family from [4℄ and extend it to AA. We give the de�nition for AA only; for

DMTS and the modal ν-alulus it is similar.

De�nition 23. A re�nement family from A1 to A2, for AA A1 = (S1, S
0
1 ,Tran1),

A2 = (S2, S
0
2 ,Tran2), is an L-indexed family of relations R = {Rα ⊆ S1 × S2 |

α ∈ L} with the property that for all α ∈ L with α 6= ⊤
L

, all (s1, s2) ∈ Rα, and

all M1 ∈ Tran1(s1), there is M2 ∈ Tran2(s2) suh that

� ∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑ α,
� ∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑ α.

Lemma 24. For all AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), there exists

a re�nement family R from A1 to A2 suh that for all s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2

for whih (s0
1, s

0
2) ∈ RdL

m

(A1,A2).

We say that a re�nement family as in the lemma witnesses dL
m

(A1,A2).

Proof. De�ne R by Rα = {(s1, s2) | dL
m

(s1, s2) ⊑
L

α}. First, as (s0
1, s

0
2) ∈

RdL
m

(s0
1
,s0

2
) for all s0

1 ∈ S0
1 , s0

2 ∈ S0
2 , it is indeed the ase that for all s0

1 ∈ S0
1 , there

is s0
2 ∈ S0

2 for whih

(s0
1, s

0
2) ∈ RdL

m

(A1,A2) = Rmax
s0
1
∈S0

1
min

s0
2
∈S0

2
dL
m

(s0
1
,s0

2
).

Now let α ∈ L with α 6= ⊤
L

and (s1, s2) ∈ Rα. Let M1 ∈ Tran1(s1). We

have dL
m

(s1, s2) ⊑L α, hene there is M2 ∈ Tran2(s2) suh that

α ⊒
L

max











sup
(a1,t1)∈M1

inf
(a2,t2)∈M2

F (a1, a2, d
L

m

(t1, t2)),

sup
(a2,t2)∈M2

inf
(a1,t1)∈M1

F (a1, a2, d
L

m

(t1, t2)).
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But this entails that for all (a1, t1) ∈ M1, there is (a2, t2) ∈ M2 and β = dL
m

(t1, t2)
suh that F (a1, a2, β) ⊑

L

α, and that for all (a2, t2) ∈ M2, there is (a1, t1) ∈ M1

and β = dL
m

(t1, t2) suh that F (a1, a2, β) ⊑
L

α. ⊓⊔

Proof (of Theorem 18).

dL
m

(da(D1), da(D2)) ⊑L dL
m

(D1,D2):

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS. There

exists a DMTS re�nement family R = {Rα ⊆ S1 × S2 | α ∈ L} suh that for all

s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2 with (s0
1, s

0
2) ∈ RdL

m

(D1,D2). We show that R is an AA

re�nement family.

Let α ∈ L and (s1, s2) ∈ Rα. Let M1 ∈ Tran1(s1) and de�ne

M2 = {(a2, t2) | s2
a2

99K2 t2, ∃(a1, t1) ∈ M1 : ∃β ∈ L :

(t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α}.

The ondition

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑ α

is satis�ed by onstrution. For the inverse ondition, let (a1, t1) ∈ M1, then

s1
a1

99K1 t1, and as R is a DMTS re�nement family, this implies that there is

s2
a2

99K2 t2 and β ∈ L for whih (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α, so that

(a2, t2) ∈ M2 by onstrution.

We are left with showing that M2 ∈ Tran2(s2). First we notie that by

onstrution, indeed s2
a2

99K2 t2 for all (a2, t2) ∈ M2. Now let s2 −→ N2; we need

to show that N2 ∩ M2 6= ∅.
We have s1 −→ N1 suh that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈

Rβ , F (a1, a2, β) ⊑
L

α. We know that N1∩M1 6= ∅, so let (a1, t1) ∈ N1∩M1. Then

there is (a2, t2) ∈ N2 and β ∈ L suh that (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α.

But (a2, t2) ∈ N2 implies s2
a2

99K2 t2, hene (a2, t2) ∈ M2.

dL
m

(D1,D2) ⊑L dL
m

(da(D1), da(D2)):

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS. There

exists an AA re�nement family R = {Rα ⊆ S1 × S2 | α ∈ L} suh that for all

s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2 with (s0
1, s

0
2) ∈ RdL

m

(da(D1),da(D2)). We show that R is a

DMTS re�nement family. Let α ∈ L and (s1, s2) ∈ Rα.

Let s1
a1

99K1 t1, then we annot have s1 −→ ∅. Let M1 = {(a1, t1)} ∪
⋃

{N1 |
s1 −→ N1}, then M1 ∈ Tran1(s1) by onstrution. This implies that there

is M2 ∈ Tran2(s2), (a2, t2) ∈ M2 and β ∈ L suh that (t1, t2) ∈ Rβ and

F (a1, a2, β) ⊑
L

α, but then also s2
a2

99K t2 as was to be shown.

Let s2 −→ N2 and assume, for the sake of ontradition, that there is no

s1 −→ N1 for whih ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈
Rβ , F (a1, a2, β) ⊑

L

α holds. Then for eah s1 −→ N1, there is an element

(aN1
, tN1

) ∈ N1 suh that ∃(a2, t2) ∈ N2, β ∈ L : (tN1
, t2) ∈ Rβ , F (aN1

, a2, β) ⊑
L

α does not hold.
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Let M1 = {(aN1
, tN1

) | s1 −→ N1}, then M1 ∈ Tran1(s1) by onstrution.

Hene we have M2 ∈ Tran2(s2) suh that ∀(a2, t2) ∈ M2 : ∃(a1, t2) ∈ M1, β ∈ L :
(t1, t2) ∈ Rβ , F (a1, a2, β) ⊑ α. Now N2 ∩M2 6= ∅, so let (a2, t2) ∈ N2 ∩M2, then

there is (a1, t1) ∈ M1 and β ∈ L suh that (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α,
in ontradition to how M1 was onstruted.

dL
m

(ad(A1), ad(A2)) ⊑L dL
m

(A1,A2):

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA, with DMTS trans-

lations (D1, D
0
1,−→1, 99K1), (D2, D

0
2,−→2, 99K2). There is an AA re�nement

family R = {Rα ⊆ S1 × S2 | α ∈ L} suh that for all s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2

with (s0
1, s

0
2) ∈ RdL

m

(A1,A2).

De�ne a relation family R′ = {R′
α ⊆ D1 × D2 | α ∈ L} by

R′
α = {(M1, M2) | ∃(s1, s2) ∈ Rα : M1 ∈ Tran1(s1), M2 ∈ Tran(s2),

∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α,

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α.

We show that R′
is a witness for dL

m

(ad(A1), ad(A2)) ⊑L dL
m

(A1,A2). Let α ∈ L
and (M1, M2) ∈ R′

α.

Let M2 −→2 N2. By onstrution of −→, there is (a2, t2) ∈ M2 suh that

N2 = {(a2, M
′
2) | M ′

2 ∈ Tran2(t2)}. Then (M1, M2) ∈ R′
α implies that there

must be (a1, t1) ∈ M1 and β ∈ L suh that (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α.
Let N1 = {(a1, M

′
1) | M ′

1 ∈ Tran1(t1)}, then M1 −→1 N1.

We show that ∀(a1, M
′
1) ∈ N1 : ∃(a2, M

′
2) ∈ N2 : (M ′

1, M
′
2) ∈ R′

β : Let

(a1, M
′
1) ∈ N1, then M ′

1 ∈ Tran1(t1). From (t1, t2) ∈ Rβ we get M ′
2 ∈ Tran2(t2)

suh that

∀(b1, u1) ∈ M ′
1 : ∃(b2, u2) ∈ M ′

2, γ ∈ L : (u1, u2) ∈ Rγ , F (b1, b2, γ) ⊑
L

β,

∀(b2, u2) ∈ M ′
2 : ∃(b1, u1) ∈ M ′

1, γ ∈ L : (u1, u2) ∈ Rγ , F (b1, b2, γ) ⊑
L

β,

hene (M ′
1, M

′
2) ∈ R′

β ; also, (a2, M
′
2) ∈ N2 by onstrution of N2.

Let M1
a1

99K1 M ′
1, then we have M1 −→1 N1 for whih (a1, M

′
1) ∈ N1 by

onstrution of 99K1. This in turn implies that there must be (a1, t1) ∈ M1

suh that N1 = {(a1, M
′′
1 ) | M ′′

1 ∈ Tran1(t1)}. By (M1, M2) ∈ R′
α, we get

(a2, t2) ∈ M2 and β ∈ L suh that (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α. Let

N2 = {(a2, M
′
2) | M ′

2 ∈ Tran2(t2)}, then M2 −→2 N2 and hene M2
a2

99K2 M ′
2 for

all (a2, M
′
2) ∈ N2. By the same arguments as above, there is (a2, M

′
2) ∈ N2 for

whih (M ′
1, M

′
2) ∈ R′

β .

We miss to show that R′
is initialized. Let M0

1 ∈ D0
1, then we have s0

1 ∈ S0
1

with M0
1 ∈ Tran1(s

0
1). As R is initialized, this entails that there is s0

2 ∈ S0
2

with (s0
1, s

0
2) ∈ RdL

m

(A1,A2), whih gives us M0
2 ∈ Tran2(s

0
2) whih satis�es the

onditions in the de�nition of R′
dL
m

(A1,A2)
, whene (M0

1 , M0
2 ) ∈ R′

dL
m

(A1,A2).

dL
m

(A1,A2) ⊑L dL
m

(ad(A1), ad(A2)):

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA, with DMTS trans-

lations (D1, D
0
1,−→1, 99K1), (D2, D

0
2 ,−→2, 99K2). There is a DMTS re�nement
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family R = {Rα ⊆ D1 × D2 | α ∈ L} suh that for all M0
1 ∈ D0

1 , there exists

M0
2 ∈ D0

2 with (M0
1 , M0

2 ) ∈ RdL
m

(ad(A1),ad(A2)).

De�ne a relation family R′ = {R′
α ⊆ S1 × S2 | α ∈ L} by

R′
α = {(s1, s2) | ∀M1 ∈ Tran1(s1) : ∃M2 ∈ Tran2(s2) : (M1, M2) ∈ Rα};

we will show that R′
is a witness for dL

m

(A1,A2) ⊑L dL
m

(ad(A1), ad(A2)).

Let α ∈ L, (s1, s2) ∈ R′
α and M1 ∈ Tran1(s1), then by onstrution of R′

,

we have M2 ∈ Tran2(s2) with (M1, M2) ∈ Rα.

Let (a2, t2) ∈ M2 and de�ne N2 = {(a2, M
′
2) | M ′

2 ∈ Tran2(t2)}, then
M2 −→2 N2. Now (M1, M2) ∈ Rα implies that there must be M1 −→1 N1 satis-

fying ∀(a1, M
′
1) ∈ N1 : ∃(a2, M

′
2) ∈ N2, β ∈ L : (M ′

1, M
′
2) ∈ Rβ , F (a1, a2, β) ⊑

L

α. We have (a1, t1) ∈ M1 suh that N1 = {(a1, M
′
1) | M ′

1 ∈ Tran1(t1)}; we only
miss to show that (t1, t2) ∈ R′

β for some β ∈ L with F (a1, a2, β) ⊑
L

α. Let
M ′

1 ∈ Tran1(t1), then (a1, M
′
1) ∈ N1, hene there is (a2, M

′
2) ∈ N2 and β ∈ L

suh that (M ′
1, M

′
2) ∈ Rβ and F (a1, a2, β) ⊑ α, but (a2, M

′
2) ∈ N2 also entails

M ′
2 ∈ Tran2(t2).

Let (a1, t1) ∈ M1 and de�ne N1 = {(a1, M
′
1) | M ′

1 ∈ Tran1(t1)}, then

M1 −→1 N1. Now let (a1, M
′
1) ∈ N1, then M1

a1

99K1 M ′
1, hene we have M2

a2

99K2

M ′
2 and β ∈ L suh that (M ′

1, M
′
2) ∈ Rβ and F (a1, a2, β) ⊑

L

α. By onstru-

tion of 99K2, this implies that there is M2 −→2 N2 with (a2, M
′
2) ∈ N2, and

we have (a2, t2) ∈ M2 for whih N2 = {(a2, M
′′
2 ) | M ′′

2 ∈ Tran2(t2)}. Now
if M ′′

1 ∈ Tran1(t1), then (a1, M
′′
1 ) ∈ N1, hene there is (a2, M

′′
2 ) ∈ N2 with

(M ′′
1 , M ′′

2 ) ∈ Rβ , but (a, M ′′
2 ) ∈ N2 also gives M ′′

2 ∈ Tran2(t2).

We miss to show that R′
is initialized. Let s0

1 ∈ S0
1 and M0

1 ∈ Tran1(s
0
1). As

R is initialized, this gets us M0
2 ∈ D2 with (M0

1 , M0
2 ) ∈ RdL

m

(ad(A1),ad(A2)), but

M0
2 ∈ Tran2(s

0
2) for some s0

2 ∈ S0
2 , and then (s0

1, s
0
2) ∈ R′

dL
m

(ad(A1),ad(A2)).

dL
m

(dn(D1), dn(D2)) ⊑L dL
m

(D1,D2):

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS, with ν-

alulus translations dn(D1) = (S1, S
0
1 , ∆1), dn(D2) = (S2, S

0
2 , ∆2). There is a

DMTS re�nement family R = {Rα ⊆ S1 ×S2 | α ∈ L} suh that for all s0
1 ∈ S0

1 ,

there exists s0
2 ∈ S0

2 for whih (s0
1, s

0
2) ∈ RdL

m

(D1,D2).

Let α ∈ L, (s1, s2) ∈ Rα, a1 ∈ Σ, and t1 ∈ �
a1

1 (s1). Then s1
a1

99K1 t1, hene

we have s2
a2

99K2 t2 and β ∈ L with (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α, but then
also t2 ∈ �

a2

2 (s2).

Let N2 ∈ ♦2(s2), then also s2 −→2 N2, so that there must be s1 −→1 N1

suh that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α,
but then also N1 ∈ ♦1(s1).

dL
m

(D1,D2) ⊑L dL
m

(dn(D1), dn(D2)):

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS, with ν-

alulus translations dn(D1) = (S1, S
0
1 , ∆1), dn(D2) = (S2, S

0
2 , ∆2). There is a

ν-alulus re�nement family R = {Rα ⊆ S1 × S2 | α ∈ L} suh that for all

s0
1 ∈ S0

1 , there exists s0
2 ∈ S0

2 for whih (s0
1, s

0
2) ∈ RdL

m

(D1,D2).
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Let α ∈ L and (s1, s2) ∈ Rα, and assume that s1
a1

99K1 t1. Then t1 ∈ �
a1

1 (s1),
so that there is a2 ∈ Σ, t2 ∈ �

a2

2 (s2) and β ∈ L for whih (t1, t2) ∈ Rβ and

F (a1, a2, β) ⊑
L

α, but then also s2
a2

99K2 t2.
Assume that s2 −→2 N2, then N2 ∈ ♦2(s2). Hene there is N1 ∈ ♦1(s1) so

that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α, but
then also s1 −→1 N1.

dL
m

(nd(N1),nd(N2)) ⊑L dL
m

(N1,N2):

Let N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2) be ν-alulus expressions in

normal form, with DMTS translations nd(N1) = (X1, X
0
1 , 99K1,−→1), nd(N2) =

(X2, X
0
2 , 99K2,−→2). There is a ν-alulus re�nement family R = {Rα ⊆ X1 ×

X2 | α ∈ L} suh that for all x0
1 ∈ X0

1 , there is x0
2 ∈ X0

2 for whih (x0
1, x

0
2) ∈

RdL
m

(N1,N2).

Let α ∈ L and (x1, x2) ∈ Rα, and assume that x1
a1

99K1 y1. Then y1 ∈
�

a1

1 (x1), hene there are a2 ∈ Σ, y2 ∈ �
a2

2 and β ∈ L suh that (y1, y2) ∈ Rβ

and F (a1, a2, β) ⊑
L

α, but then also x2
a2

99K2 y2.

Assume that x2 −→2 N2, then N2 ∈ ♦2(x2). Hene there must be N1 ∈
♦1(x1) suh that ∀(a1, y1) ∈ N1 : ∃(a2, y2) ∈ N2, β ∈ L : (y1, y2) ∈ Rβ , F (a1, a2, β) ⊑

L

α, but then also x1 −→1 N1.

dL
m

(N1,N2) ⊑L dL
m

(nd(N1),nd(N2)):

Let N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2) be ν-alulus expressions in

normal form, with DMTS translations nd(N1) = (X1, X
0
1 , 99K1,−→1), nd(N2) =

(X2, X
0
2 , 99K2,−→2). There is a DMTS re�nement family R = {Rα ⊆ X1 ×X2 |

α ∈ L} suh that for all x0
1 ∈ X0

1 , there is x0
2 ∈ X0

2 for whih (x0
1, x

0
2) ∈

RdL
m

(N1,N2).

Let α ∈ L, (x1, x2) ∈ Rα, a1 ∈ Σ, and y1 ∈ �
a1

1 (x1). Then x1
a1

99K1 y1, hene

we have x2
a2

99K2 y2 and β ∈ L so that (y1, y2) ∈ Rβ and F (a1, a2, β) ⊑
L

α, but
then also y1 ∈ �

a2

2 (x2).
Let N2 ∈ ♦2(x2), then also x2 −→2 N2. Hene we must have x1 −→1 N1

with ∀(a1, y1) ∈ N1 : ∃(a2, y2) ∈ N2, β ∈ L : (y1, y2) ∈ Rβ , F (a1, a2, β) ⊑
L

α,
but then also N1 ∈ ♦1(x1). ⊓⊔

Proof (of Proposition 19, �rst part). We show the proposition for AA. First, if

A1 ≤
m

A2, with A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), then there is an

initialized re�nement relation R ⊆ S1 × S2, i.e., suh that for all (s1, s2) ∈ R
and all M1 ∈ Tran1(s1), there is M2 ∈ Tran2(s2) for whih

� ∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2 : a1 4 a2, (t1, t2) ∈ R and

� ∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1 : a1 4 a2, (t1, t2) ∈ R.

De�ning R′ = {R′
α | α ∈ L} by R′

α = R for all α ∈ L, we see that R′
is an

initialized re�nement family whih witnesses dL
m

(A1,A2) = ⊥
L

.

We have shown that A1 ≤
m

A2 implies dL
m

(A1,A2) = ⊥
L

; as a speial ase,

we see that dL
m

(A,A) = ⊥
L

for all AA A. Now if A1 ≤
th

A2 instead, then for all
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I ∈ JA1K, also I ∈ JA2K, hene dL
th

(A1,A2) = ⊥
L

. As a speial ase, we onlude

that dL
th

(A,A) = ⊥
L

for all AA A.

Next we show the triangle inequality for dL
m

. The triangle inequality for dL
th

will then follow from standard arguments used to show that the Hausdor� metri

satis�es the triangle inequality. Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2),

A3 = (S3, S
0
3 ,Tran3) be AA and R1 = {R1

α ⊆ S1 × S2 | α ∈ L}, R2 = {R2
α ⊆

S2 × S3 | α ∈ L} re�nement families suh that ∀s0
1 ∈ S0

1 : ∃s0
2 ∈ S0

2 : (s0
1, s

0
2) ∈

R1
dL
m

(A1,A2) and ∀s0
2 ∈ S0

2 : ∃s0
3 ∈ S0

3 : (s0
2, s

0
3) ∈ R2

dL
m

(A2,A3).

De�ne R = {Rα ⊆ S1 × S3 | α ∈ L} by Rα = {(s1, s3) | ∃α1, α2 ∈ L, s2 ∈
S2 : (s1, s2) ∈ R1

α1
, (s2, s3) ∈ R2

α2
, α1 �

L

α2 = α}. We see that ∀s0
1 ∈ S0

1 : ∃s0
3 ∈

S0
3 : (s0

1, s
0
3) ∈ RdL

m

(A1,A2)�
L

dL
m

(A2,A3); we show that R is a re�nement family

from A1 to A2.

Let α ∈ L and (s1, s3) ∈ Rα, then we have α1, α2 ∈ L and s2 ∈ S2 suh that

α1 �
L

α2 = α, (s1, s2) ∈ R1
α1

and (s2, s3) ∈ R2
α2
. Let M1 ∈ Tran1(s1), then we

have M2 ∈ Tran2(s2) suh that

∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2, β1 ∈ L : (t1, t2) ∈ R1
β1

, F (a1, a2, β1) ⊑L α1, (6)

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β1 ∈ L : (t1, t2) ∈ R1
β1

, F (a1, a2, β1) ⊑L α1. (7)

This in turn implies that there is M3 ∈ Tran3(s3) with

∀(a2, t2) ∈ M2 : ∃(a3, t3) ∈ M3, β2 ∈ L : (t2, t3) ∈ R2
β2

, F (a2, a3, β2) ⊑L α2, (8)

∀(a3, t3) ∈ M3 : ∃(a2, t2) ∈ M2, β2 ∈ L : (t2, t3) ∈ R2
β2

, F (a2, a3, β2) ⊑L α2. (9)

Now let (a1, t1) ∈ M1, then we get (a2, t2) ∈ M2, (a3, t3) ∈ M3 and β1, β2 ∈ L
as in (6) and (8). Let β = β1 �

L

β2, then (t1, t3) ∈ Rβ , and by the extended

triangle inequality for F , F (a1, a3, β) ⊑
L

F (a1, a2, β1)�LF (a2, a3, β2) ⊑L α1�
L

α2 = α.

Similarly, given (a3, t3) ∈ M3, we an apply (9) and (7) to get (a1, t1) ∈ M1

and β ∈ L suh that (t1, t3) ∈ Rβ and F (a1, a3, β) ⊑
L

α.

We have shown that dL
m

and dL
t

are L-hemimetris. Using monotoniity of

the eval funtion, it follows that d
m

and d
t

are hemimetris. ⊓⊔

Proof (of Proposition 19, seond part). We already know that, also for the dis-

rete distanes, A1 ≤
m

A2 implies d
m

(A1,A2) = 0 and that A1 ≤
th

A2 im-

plies d
th

(A1,A2) = 0. We show that d
m

(A1,A2) = 0 implies A1 ≤
m

A2. Let

R = {Rα ⊆ S1 × S2 | α ∈ L} be a re�nement family suh that ∀s0
1 ∈ S0

1 : ∃s0
2 ∈

S0
2 : (s0

1, s
0
2) ∈ R0. We show that R0 is a witness for A1 ≤

m

A2; it is learly

initialized.

Let (s1, s2) ∈ R0 and M1 ∈ Tran1(s1), then we have M2 ∈ Tran2(s2) suh

that

∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) = 0,

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) = 0.
(10)
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Using the de�nition of the distane, we see that the ondition F (a1, a2, β) = 0
is equivalent to a1 4 a2 and β = 0, hene (10) degenerates to

∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2 : (t1, t2) ∈ R0, a1 4 a2,

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1 : (t1, t2) ∈ R0, a1 4 a2,

whih are exatly the onditions for R0 to be a modal re�nement.

Again by de�nition, we see that for any AA A1, A2, either d
m

(A1,A2) = 0
or d

m

(A1,A2) = ∞, hene A1 6≤
m

A2 implies that d
m

(A1,A2) = ∞.

To show the last part of the proposition, we notie that

d
th

(A1,A2) = sup
I1∈JA1K

inf
I2∈JA2K

d
m

(I1, I2)

=

{

0 if ∀I1 ∈ JA1K : ∃I2 ∈ JA2K : I1 ≤
m

I2,

∞ otherwise,

=

{

0 if JA1K ⊆ JA2K,

∞ otherwise.

Hene d
th

(A1,A2) = 0 if A1 ≤
th

A2 and d
th

(A1,A2) = ∞ otherwise. ⊓⊔

Proof (of Theorem 20). We prove the statement for AA; for DMTS and ν-
alulus expressions it then follows from Theorem 18.

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2). We have a re�nement family

R = {Rα ⊆ S1 × S2 | α ∈ L} suh that for all s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2 with

(s0
1, s

0
2) ∈ RdL

m

(A1,A2). Let I = (S, S0, T ) ∈ JA1K, i.e., I ≤
m

A1.

Let R1 ⊆ S × S1 be an initialized modal re�nement, and de�ne a relation

family R2 = {R2
α ⊆ S × S2 | α ∈ L} by R2

α = R1 ◦ Rα = {(s, s2) | ∃s1 ∈ S :
(s, s1) ∈ R1, (s1, s2) ∈ Rα. We de�ne a LTS I2 = (S2, S

0
2 , T2) as follows:

For all α ∈ L with α 6= ⊤
L

and (s, s2) ∈ R2
α: We must have s1 ∈ S1 with

(s, s1) ∈ R1
and (s1, s2) ∈ Rα. Then there is M1 ∈ Tran1(s1) suh that

� for all s
a

−→ t, there is (a, t1) ∈ M1 with (t, t1) ∈ R1,

� for all (a1, t1) ∈ M1, there is s
a

−→ t with (t, t1) ∈ R1.

This in turn implies that there is M2 ∈ Tran2(s2) satisfying the onditions in

De�nition 23. For all (a2, t2) ∈ M2: add a transition s2
a2−→ t2 to T2.

We show that the identity relation {(s2, s2) | s2 ∈ S2} is a witness for I2 ≤
m

A2. Let s2 ∈ S2 and s2
a2−→ t2. By onstrution, there is M2 ∈ Tran2(s2) with

(a2, t2) ∈ M2, and for all (a′
2, t

′
2) ∈ M2, s2

a′
2−→ t′2.

We show that R2
is a witness for dL

m

(I, I2); learly, R2
is initialized. Let

α ∈ L with α 6= ⊤
L

and (s, s2) ∈ R2
α, then there is s1 ∈ S1 with (s, s1) ∈ R1

and (s1, s2) ∈ Rα. We also have M1 ∈ Tran1(s1) suh that

� for all s
a

−→ t, there is (a, t1) ∈ M1 with (t, t1) ∈ R1
,

� for all (a1, t1) ∈ M1, there is s
a1−→ t with (t, t1) ∈ R1
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and thus M2 ∈ Tran2(s2) satisfying the onditions in De�nition 23.

Let s
a

−→ t, then there is (a, t1) ∈ M1 with (t, t1) ∈ R1
, hene also (a2, t2) ∈

M2 and β ∈ L with (t1, t2) ∈ Rβ and F (a, a2, β) ⊑
L

α. But then (t, t2) ∈ R2
β ,

and s2
a2−→ t2 by onstrution.

Let s2
a2−→ t2. By onstrution, there is M2 ∈ Tran2(s2) with (a2, t2) ∈ M2.

This implies that there is M1 ∈ Tran1(s1), β ∈ L and (a1, t1) ∈ M1 with

(t1, t2) ∈ Rβ and F (a1, a2, β) ⊑ α. But then there is also s
a1−→ t with (t, t1) ∈ R1

,

hene (t, t2) ∈ R2
β . ⊓⊔

Proof (of Theorem 21). We show the proof for AA. For i = 1, 2, 3, 4, let Ai =
(Si, S

0
i ,Trani). Let R1 = {R1

α ⊆ S1×S3 | α ∈ L}, R2 = {R2
α ⊆ S2×S4 | α ∈ L}

be re�nement families suh that ∀s0
1 ∈ S0

1 : ∃s0
3 ∈ S0

3 : (s0
1, s

0
3) ∈ R1

dL
m

(A1,A3) and

∀s0
2 ∈ S0

2 : ∃s0
4 ∈ S0

4 : (s0
2, s

0
4) ∈ R2

dL
m

(A2,A4). De�ne R = {Rα ⊆ (S1 ×S2)× (S3 ×

S4) | α ∈ } by

Rα = {((s1, s2), (s3, s4)) | ∃α1, α2 ∈ L :

(s1, s3) ∈ R1
α1

, (s2, s4) ∈ R2
α2

, P (α1, α2) ⊑L α},

then it is lear that ∀(s0
1, s

0
2) ∈ S0

1 ×S0
2 : ∃(s0

3, s
0
4) ∈ S0

3 ×S0
4 : ((s0

1, s
0
2), (s

0
3, s

0
4)) ∈

RP (dL
m

(A1,A3),d
L

m

(A2,A4)). We show that R is a re�nement family from A1‖A2 to

A3‖A4.

Let α ∈ L and ((s1, s2), (s3, s4)) ∈ Rα, then we have α1, α2 ∈ L with

(s1, s3) ∈ R1
α1
, (s2, s4) ∈ R2

α2
and P (α1, α2) ⊑

L

α. Let M12 ∈ Tran((s1, s2)),
then there must be M1 ∈ Tran1(s1), M2 ∈ Tran2(s2) for whih M12 = M1 �M2.

Thus we also have M3 ∈ Tran3(s3) and M4 ∈ Tran4(s4) suh that

∀(a1, t1) ∈ M1 : ∃(a3, t3) ∈ M3, β1 ∈ L : (t1, t3) ∈ R1
β1

, F (a1, a3, β1) ⊑L α1,

(11)

∀(a3, t3) ∈ M3 : ∃(a1, t1) ∈ M1, β1 ∈ L : (t1, t3) ∈ R1
β1

, F (a1, a3, β1) ⊑L α1,

(12)

∀(a2, t2) ∈ M2 : ∃(a4, t4) ∈ M4, β2 ∈ L : (t2, t4) ∈ R2
β2

, F (a2, a4, β2) ⊑L α2,

(13)

∀(a4, t4) ∈ M4 : ∃(a2, t2) ∈ M2, β2 ∈ L : (t2, t4) ∈ R2
β2

, F (a2, a4, β2) ⊑L α2.

(14)

Let M34 = M3 � M4 ∈ Tran((s3, s4)). Let (a12, (t1, t2)) ∈ M12, then there

are (a1, t1) ∈ M1 and (a2, t2) ∈ M2 for whih a12 = a1 �a2. Using (11) and (13),

we get (a3, t3) ∈ M3, (a4, t4) ∈ M4 and β1, β2 ∈ L suh that (t1, t3) ∈ R1
β1
,

(t2, t4) ∈ R2
β2
, F (a1, a3, β1) ⊑L α1, and F (a2, a4, β2) ⊑L α2.

Let a34 = a3�a4 and β = P (β1, β2), then (a34, (t3, t4)) ∈ M34. Also, (t1, t3) ∈
R1

β1
and (t2, t4) ∈ R2

β2
imply that ((t1, t2), (t3, t4)) ∈ Rβ , and

F (a12, a34, β) = F (a1 � a2, a3 � a4, P (β1, β2))

⊑ P (F (a1, a3, β1), F (a2, a4, β2))

⊑
L

P (α1, α2) ⊑L α.



26 Uli Fahrenberg, Jan K°etínský, Axel Legay, and Louis-Marie Traonouez

We have shown that ∀(a12, (t1, t2)) ∈ M12 : ∃(a34, (t3, t4)) ∈ M34, β ∈ L :
((t1, t2), (t3, t4)) ∈ Rβ, F (a12, a34, β) ⊑

L

α. To show the reverse property, start-

ing from an element (a34, (t3, t4)) ∈ M34, we an proeed entirely analogous,

using (12) and (14). ⊓⊔

Proof (of Theorem 22). We show the proof for AA. Let A1 = (S1, S
0
1 ,Tran1),

A2 = (S2, S
0
2 ,Tran2), A3 = (S3, S

0
3 ,Tran3); we show that dL

m

(A1‖A2,A3) =
dL
m

(A2,A3/A1).
We assume that the elements of Tran1(s1) are pairwise disjoint for eah

s1 ∈ S1; this an be ahieved by, if neessary, splitting states.

De�neR = {Rα ⊆ S1×S2×S3 | α ∈ L} byRα = {(s1‖s2, s3) | dL
m

(s2, s3/s1) ⊑L
α}. We show that R is a witness for dL

m

(A1‖A2,A3).
Let s0

1‖s
0
2 ∈ S0

1 × S0
2 , then there is s0

3/s0
1 ∈ s0

for whih dL
m

(s0
2, s

0
3/s0

1) ⊑
L

dL
m

(A2,A3/A1), hene (s0
1‖s

0
1, s

0
3) ∈ RdL

m

(A2,A3/A1).

Let α ∈ L \ {⊤
L

}, (s1‖s2, s3) ∈ Rα and M‖ ∈ Tran‖(s1‖s2). Then M‖ =
M1‖M2 with M1 ∈ Tran1(s1) and M2 ∈ Tran2(s2). As dL

m

(s2, s3/s1) ⊑
L

α,
we an pair M2 with an M/ ∈ Tran/(s3/s1), i.e., suh that the onditions in

De�nition 23 are satis�ed.

Let M3 = M/⊲M1. We show that the onditions in De�nition 23 are satis�ed

for the pair M‖, M3:

� Let (a, t1‖t2) ∈ M‖, then there are a1, a2 ∈ Σ with a = a1 � a2 and

(a1, t1) ∈ M1, (a2, t2) ∈ M2. Hene there is (a′
2, t) ∈ M/ and β ∈ L suh

that F (a2, a
′
2, β) ⊑

L

α and dL
m

(t2, t) ⊑L β.
Note that a3 = a1�a′

2 is de�ned and F (a, a3, β) ⊑ α. Write t = {t13/t11, . . . , t
n
3/tn1}.

By onstrution, there is an index i for whih ti1 = t1, hene (a3, t
i
3) ∈ M3.

Also, t ⊇ {ti3/ti1}, hene dL
m

(t2, t
i
3/ti1) ⊑ β and onsequently (t1‖t2, t3) ∈ Rβ .

� Let (a3, t3) ∈ M3, then there are (a′
2, t) ∈ M/ and (a1, t1) ∈ M1 suh that

a3 = a1�a′
2 and t3/t1 ∈ t. Hene there are (a2, t2) ∈ M2 and β ∈ L for whih

F (a2, a
′
2, β) ⊑

L

α and dL
m

(t2, t) ⊑L β. Note that a = a1 � a2 is de�ned and

F (a, a3, β) ⊑
L

α. Thus (a, t1‖t2) ∈ M , and by t ⊇ {t3/t1}, dL
m

(t2, t3/t1) ⊑ β.

Assume, for the other diretion of the proof, that A1‖A2 ≤
m

A3. De�ne

R = {Rα ⊆ S2 × 2S3×S1 | α ∈ L} by

Rα = {(s2, {s
1
3/s1

1, . . . , s
n
3/sn

1}) | ∀i = 1, . . . , n : dL
m

(si
1‖s2, s

i
3) ⊑L α} ;

we show that R is a witness for dL
m

(A2,A3/A1).
Let s0

2 ∈ S0
2 . We know that for every s0

1 ∈ S0
1 , there exists σ(s0

1) ∈ S0
3 suh

that dL
m

(s0
1‖s

0
2, s

0
3) ⊑

L

dL
m

(A1‖A2,A3). By s0 ⊇ {σ(s0
1)/s0

1 | s0
1 ∈ S0

1}, we see

that (s0
2, s

0) ∈ RdL
m

(A1‖A2,A3).

Let α ∈ L \ {⊤
L

}, (s2, s) ∈ Rα, with s = {s1
3/s1

1, . . . , s
n
3/sn

1}, and M2 ∈
Tran2(s2).

For every i = 1, . . . , n, write Tran1(s
i
1) = {M i,1

1 , . . . , M i,mi

1 }. By assumption,

M i,j1
1 ∩ M i,j2

1 = ∅ for j1 6= j2, hene every (a1, t1) ∈∈ Tran1(s
i
1) is ontained in

a unique M
i,δi(a1,t1)
1 ∈ Tran1(s

i
1).



Compositionality for Quantitative Spei�ations 27

For every j = 1, . . . , mi, let M i,j = M i,j
1 ‖M2 ∈ Tran‖(s

i
1‖s2). By dL

m

(si
1‖s2, s

i
3) ⊑L

α, we have M i,j
3 ∈ Tran3(s

i
3) suh that the onditions in De�nition 23 hold for

the pair M i,j , M i,j
3 .

Now de�ne

M = {(a2, t) | ∃(a2, t2) ∈ M2 : ∀t3/t1 ∈ t : ∃i, a1, a3, β : (a1, t1) ∈∈ Tran1(s
i
1),

(a3, t3) ∈ M
i,δi(a1,t1)
3 , F (a1 � a2, a3, β) ⊑

L

α, dL
m

(t1‖t2, t3) ⊑L β} . (15)

We need to show that M ∈ Tran/(s).

Let i ∈ {1, . . . , n} and M i,j
1 ∈ Tran1(s

i
1); we laim that M ⊲ M i,j

1 4R M i,j
3 .

Let (a3, t3) ∈ M ⊲ M i,j
1 , then a3 = a1 � a2 for some a1, a2 suh that t3/t1 ∈

t, (a1, t1) ∈ M i,j
1 and (a2, t) ∈ M . By disjointness, j = δi(a1, t1), hene by

de�nition of M , (a3, t3) ∈ M i,j
3 as was to be shown.

For the reverse inlusion, let (a3, t3) ∈ M i,j
3 . By de�nition of M i,j

, there

are (a1, t1) ∈ M i,j
1 , (a2, t2) ∈ M2 and β for whih F (a1 � a2, a3, β) ⊑

L

α and

dL
m

(t1‖t2, t3) ⊑
L

β. Thus j = δi(a1, t1), so that there must be (a2, t) ∈ M for

whih t3/t1 ∈ t, but then also (a1 � a2, t3) ∈ M ⊲ M i,j
1 .

We show that the pair M2, M satis�es the onditions of De�nition 23.

� Let (a2, t2) ∈ M2. For every i = 1, . . . , n and every (a1, t1) ∈∈ Tran1(t
i
1),

we an use De�nition 23 applied to the pair M
i,δi(a1,t1)
1 ‖M2, M

i,δi(a1,t1)
3 to

hoose an element (ηi(a1, t1), τi(a1, t1)) ∈ M
i,δi(a1,t1)
3 and βi(a1, t1) ∈ L for

whih dL
m

(t1‖t2, τi(a1, t1)) ⊑L βi(a1, t1) and F (a1�a2, ηi(a1, t1), βi(a1, t1)) ⊑L
α. Let t = {τi(a1, t1)/t1 | i = 1, . . . , n, (a1, t1) ∈∈ Tran1(t

i
1)}, then (a2, t) ∈

M and (t2, t) ∈ Rβ .

� Let (a2, t) ∈ M , then we have (a2, t2) ∈ M2 satisfying the onditions in (15).

Hene for all t3/t1 ∈ t, there are i, a1, a3, β(t3/t1) suh that (a3, t3) ∈

M
i,δi(a1,t1)
3 , F (a1 � a2, a3, β(t3/t1)) ⊑

L

α and dL
m

(t1‖t2, t3) ⊑
L

β(t3/t1).
Let β = sup{β(t3/t1) | t3/t1 ∈ t}, then dL

m

(t1‖t2, t3) ⊑
L

β for all t3/t1 ∈ t,
hene (t2, t) ∈ Rβ . ⊓⊔


