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Abstra
t. We 
onsider the partial behavior model framework of dis-

jun
tive modal transition systems. We extend the framework to a gen-

eral quantitative setting and show that also in this quantitative setting,

modal transition systems and the modal nu-
al
ulus are 
losely related.

The main te
hni
al 
ontribution is that our quantitative framework is


ompositional with respe
t to general notions of distan
es between sys-

tems and the standard operations. Moreover, we show how to 
ompute

the results of the operations, in
luding the quotient, whi
h has not been

previously 
onsidered for quantitative non-deterministi
 systems. This

allows for 
ompositional and step-wise design and veri�
ation of systems

with quantitative information, su
h as rewards, time or energy.

1 Introdu
tion

Spe
i�
ations of systems 
ome in two main �avors. Logi
al spe
i�
ations are

formalized as formulae of modal or temporal logi
s, su
h as the modal µ-
al
ulus
or LTL. A 
ommon way to verify them on a system is to translate them to

automata and then analyze the 
omposition of the system and the automaton.

In 
ontrast, in the behavioral approa
h, spe
i�
ations are written, from the very

beginning, in an automata-like formalism. Su
h properties 
an be veri�ed using

various equivalen
es and preorders, su
h as bisimilarity or re�nement. Here we

fo
us on the latter approa
h, but also show 
onne
tions between the two.

The behavioral formalism we work with ismodal transition systems (MTS) [28℄

and their extensions. MTS are like automata, but with two types of transitions:

must-transitions represent behavior that has to be present in every implemen-

tation; may-transition represent behavior that is allowed, but not required to

be implemented. A simple example of a vending ma
hine spe
i�
ation s, in
Fig. 1 on the left, des
ribes that any 
orre
t implementation must be ready to

a

ept money, then may o�er the 
ustomer to 
hoose extras and must issue a

beverage. While the must-transitions are preserved in the re�nement pro
ess, the

may-transitions 
an be either implemented and turned into must-transitions, or

dropped. This low-level re�nement pro
ess is, however, insu�
ient when the de-

signer wants to get more spe
i�
 about the implemented a
tions, su
h as going

from the 
oarse spe
i�
ation just des
ribed to the more �ne-grained spe
i�
ation

on the right.

In order to relate su
h spe
i�
ations, MTS with stru
tured labels were intro-

du
ed [5℄. Given a preorder on labels, relating for instan
e coffee 4 beverage,
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Fig. 1. Two spe
i�
ations of a vending ma
hine

we 
an re�ne a transition label into one whi
h is below, for example implement

�beverage� with its re�nement �coffee�. Then t will be a re�nement of s.

This framework 
an be applied to various preorders. For example, one 
an use

labels with a dis
rete 
omponent 
arrying the a
tion information and an interval


omponent to model time durations or energy 
onsumption. As an example,


onsider the simple real-time property to the left in Fig. 2: �after a req(uest),

grant has to be exe
uted within 5 time units without the pro
ess being idle

meanwhile�. The transition (grant, [0, 5]) 
ould be safely re�ned to (grant, [l, r])
for any 0 ≤ l ≤ r ≤ 5.

However, here we identify several short
omings of the 
urrent approa
hes:

Expressive power. The 
urrent theory of stru
tured labels is available only for the

basi
 MTS. Very often one needs to use ri
her stru
tures su
h as disjun
tive MTS

(DMTS) [8, 29℄ or a

eptan
e automata [21, 31℄. While MTS generally 
annot

express disjun
tion of properties, DMTS and further related formalisms 
an and

are, in fa
t, equivalent to the ν-
al
ulus [7℄. This allows, for instan
e, to prohibit
deadlo
ks as in the example to the right in Fig. 2. The disjun
tive must, depi
ted

as a bran
hing arrow, requires at least one of the transitions to be present. Thus

we allow the deadline for grant to be reset if additional work is generated. Note

that spe
ifying grant and work as two separate must-transitions would not allow

postponing the deadline; and two separate may-transitions would not guarantee

any progress, as none of them has to be implemented. We hen
e propose DMTS

with stru
tured labels and also extend the equivalen
e between DMTS and the

modal ν-
al
ulus [7℄ to our setting. Fig. 3 (left) shows a ν-
al
ulus translation
of the se
ond quantitative spe
i�
ation of Fig. 2.

u

req

grant, idle

(grant,[0,5℄)

x
y

req

grant,work, idle

grant

[0, 5]

work

[2, 4]

Fig. 2. Two simple quantitative spe
i�
ations
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Fig. 3. A quantitative ν-
al
ulus expression (left) and a quantitative DMTS

Robustness. Consider the grant issuing example u. While an implementation

issuing grant after pre
isely 5 time units is a valid re�nement, if there is but a

small positive drift in the implementation, it is not a re�nement anymore. How-

ever, this drift might be easily mended or just might be due to measuring errors.

Therefore, when models and spe
i�
ations 
ontain su
h quantitative informa-

tion, the standard Boolean notions of satisfa
tion and re�nement are of limited

utility [23℄ and should be repla
ed by notions more robust to perturbations. As

an example, the DMTS in Fig. 3 is not a re�nement of the se
ond one in Fig. 2,

but for all pra
ti
al purposes, it is very 
lose.

One approa
h is to employ metri
 distan
es instead of Boolean relations; this

has been done for example in [12�14, 16, 22, 27, 32, 33, 35, 36℄. An advantage of

behavioral spe
i�
ation formalisms is that models and spe
i�
ations are 
losely

related, hen
e distan
es between models 
an easily be extended to distan
es

between spe
i�
ations. We have developed a distan
e-based approa
h for MTS

in [3, 4℄ and shown in [4, 18℄ that a good general setting is given by re
ursively

spe
i�ed tra
e distan
es on an abstra
t quantale. Here we extend this to DMTS.

Compositionality. The framework should be 
ompositional. In the quantitative

setting, this in essen
e means that the operations we de�ne on the systems should

behave well with respe
t not only to satisfa
tion, but also to the distan
es. For

instan
e, if s1 is 
lose to t1 and s2 
lose to t2 then also the 
omposition s1 ‖ s2

should be 
lose to t1 ‖ t2. We prove this for the usual operations; in parti
ular,

we give a 
onstru
tion for su
h a well-behaved quotient. The quotient of s by t is
the most general system that, when 
omposed with t, re�nes s. This operation is

thus useful for 
omputing missing parts of a system to be implemented, when we

already have several 
omponents at our disposal. The 
onstru
tion is 
omplex

already in the non-quantitative setting [7℄ and the extension of the algorithm to

stru
tured labels is non-trivial.

Our 
ontribution. To sum up, we extend the framework of stru
tured labels

to DMTS and ν-
al
ulus. We equip this framework with distan
es and give


onstru
tions for the stru
tured analogues of the standard operations, so that

they behave 
ompositionally with respe
t to the distan
es.

Further related work. Re�nement of 
omponents is a frequently used design ap-

proa
h in various areas, ranging from subtyping [30℄ over the Java modeling

language JML [24℄ or 
orre
t-by-design 
lass diagrams operations [17℄ to inter-

fa
e theories 
lose to MTS su
h as interfa
e automata [15℄ based on alternating
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simulation. A variant of alternating simulation 
alled 
ovariant-
ontravariant

simulation has been 
ompared to MTS modal re�nement in [1℄. The graphi
al

representability of these variants was studied in [7, 9℄.

2 Stru
tured Labels

Let Σ be a poset with partial order 4. We think of 4 as label re�nement, so

that if a 4 b, then a is less permissive (more restri
ted) than b.

We say that a label a ∈ Σ is an implementation label if b 4 a implies b = a
for all b ∈ Σ, i.e., if a 
annot be further re�ned. The set of implementation labels

is denoted Γ , and for a ∈ Σ, we let JaK = {b ∈ Γ | b 4 a}. Note that a 4 b
implies JaK ⊆ JbK for all a, b ∈ Σ.

Example 1. A trivial but important example of our label stru
ture is the dis
rete

one in whi
h label preorder 4 is equality. This is equivalent to the �standard�


ase of unstru
tured labels.

A typi
al label set in quantitative appli
ations 
onsists of a dis
rete 
ompo-

nent and real-valued weights. For spe
i�
ations, weights are repla
ed by (
losed)

weight intervals, so that Σ = U ×{[l, r] | l ∈ R∪{−∞}, r ∈ R∪{∞}, l ≤ r} for

a �nite set U , 
f. [4, 5℄. Label re�nement is given by (u1, [l1, r1]) 4 (u2, [l2, r2])
i� u1 = u2 and [l1, r1] ⊆ [l2, r2], so that labels are more re�ned if they spe
ify

smaller intervals; thus, Γ = U × {[x, x] | x ∈ R} ≈ U ×R.
For a quite general setting, we 
an instead start with an arbitrary set Γ of

implementation labels, let Σ = 2Γ
, the powerset, and 4 = ⊆ be subset in
lusion.

Then JaK = a for all a ∈ Σ. (Hen
e we identify implementation labels with one-

element subsets of Σ.) ⊓⊔

Label operations. Spe
i�
ation theories 
ome equipped with several standard

operations that make 
ompositional software design possible [2℄: 
onjun
tion for

merging viewpoints 
overing di�erent system's aspe
ts [6, 34℄, stru
tural 
om-

position for running 
omponents in parallel, and quotient to synthesize missing

parts of systems [29℄. In order to provide them for DMTS, we �rst need the

respe
tive atomi
 operations on their a
tion labels.

We hen
e assume that Σ 
omes equipped with a partial 
onjun
tion, i.e., an

operator 7 : Σ × Σ ⇀ Σ for whi
h it holds that

(1) if a1 7 a2 is de�ned, then a1 7 a2 4 a1 and a1 7 a2 4 a2, and

(2) if a3 4 a1 and a3 4 a2, then a1 7 a2 is de�ned and a3 4 a1 7 a2.

Note that by these properties, any two partial 
onjun
tions on Σ have to agree

on elements for whi
h they are both de�ned.

Example 2. For dis
rete labels, the unique 
onjun
tion operator is given by

a1 7 a2 =

{

a1 if a1 = a2 ,

undef. otherwise .
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For labels in U × {[l, r] | l, r ∈ R, l ≤ r}, the unique 
onjun
tion is

(u1, [l1, r1]) 7 (u2, [l2, r2]) =

{

undef. if u1 6= u2 or [l1, r1] ∩ [l2, r2] = ∅ ,

(u1, [l1, r1] ∩ [l2, r2]) otherwise .

Finally, for the general 
ase of spe
i�
ation labels as sets of implementation

labels, the unique 
onjun
tion is a1 7 a2 = a1 ∩ a2. ⊓⊔

For stru
tural 
omposition and quotient of spe
i�
ations, we assume a partial

label syn
hronization operator � : Σ × Σ ⇀ Σ whi
h spe
i�es how to 
ompose

labels. We assume � to be asso
iative and 
ommutative, with the following

additional property: For all a1, a2, b1, b2 ∈ Σ with a1 4 a2 and b1 4 b2, a1 � b1

is de�ned i� a2 � b2 is, and if both are de�ned, then a1 � b1 4 a2 � b2.

Example 3. For dis
rete labels, the 
onjun
tion of Example 2 is the same as

CSP-style 
omposition, but other 
ompositions may be de�ned.

For labels in U × {[l, r] | l, r ∈ R, l ≤ r}, several useful label syn
hronization
operators may be de�ned for di�erent appli
ations. One is given by addition of

intervals, i.e.,

(u1, [l1, r1])
+

� (u2, [l2, r2]) =

{

undef. if u1 6= u2 ,

(u1, [l1 + l2, r1 + r2]) otherwise ,

for example modeling 
omputation time of a
tions on a single pro
essor. Another

operator, useful in s
heduling, uses maximum instead of addition:

(u1, [l1, r1])
max

� (u2, [l2, r2]) =

{

undef. if u1 6= u2 ,

(u1, [max(l1, l2), max(r1, r2)]) otherwise .

Yet another operator uses interval interse
tion instead, i.e.,

∩
� = 7; this is useful

if the intervals model deadlines.

For general set-valued spe
i�
ation labels, we may take any syn
hronization

operator � given on implementation labels Γ and lift it to one on Σ by a1�a2 =
{b1 � b2 | b1 ∈ Ja1K, b2 ∈ Ja2K}. ⊓⊔

3 Spe
i�
ation Formalisms

In this se
tion we introdu
e the spe
i�
ation formalisms whi
h we use in the rest

of the paper. The universe of models for our spe
i�
ations is the one of standard

labeled transition systems. For simpli
ity of exposition, we work only with �nite

spe
i�
ations and implementations, but most of our results extend to the in�nite

(but �nitely bran
hing) 
ase.

A labeled transition system (LTS) is a stru
ture I = (S, s0,−→) 
onsisting


onsisting of a �nite set S of states, an initial state s0 ∈ S, and a transition

relation −→ ⊆ S × Γ × S. We usually write s
a

−→ t instead of (s, a, t) ∈ −→.

Note that transitions are labeled with implementation labels.
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Disjun
tive Modal Transition Systems. A disjun
tive modal transition sys-

tem (DMTS) is a stru
ture D = (S, S0, 99K,−→) 
onsisting of �nite sets S ⊇ S0

of states and initial states, respe
tively, may-transitions 99K ⊆ S×Σ×S, and dis-
jun
tive must-transitions −→ ⊆ S×2Σ×S

. It is assumed that for all (s, N) ∈ −→
and (a, t) ∈ N there is (s, b, t) ∈ 99K with a 4 b.

Example 4. The spe
i�
ation x in Se
tion 1 has a may transition to y; from
there we have a disjun
tive must transition with identi
al underlying may tran-

sitions. The intuitive meaning of the transition, that either grant or work must

be available, is formalized below using the modal re�nement.

Note that we allow multiple (or zero) initial states. We write s
a

99K t instead
of (s, a, t) ∈ 99K and s −→ N instead of (s, N) ∈ −→. A DMTS (S, S0, 99K,−→)
is an implementation if 99K ⊆ S × Γ × S, −→ = {(s, {(a, t)}) | s

a
99K t}, and

S0 = {s0} is a singleton; DMTS implementations are hen
e isomorphi
 to LTS.

DMTS were introdu
ed in [29℄ in the 
ontext of equation solving, or quotient

of spe
i�
ations by pro
esses. They are a natural 
losure of modal transition

systems [28℄, whi
h are DMTS in whi
h all disjun
tive must-transitions s −→ N
lead to singletons N = {(a, t)}.

We introdu
e a notion of modal re�nement of DMTS with stru
tured labels.

It 
oin
ides with the 
lassi
al de�nition [29℄ on dis
rete labels.

De�nition 5. Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS.

A relation R ⊆ S1 ×S2 is a modal re�nement if it holds for all (s1, s2) ∈ R that

� for all s1
a1

99K1 t1 there is s2
a2

99K2 t2 su
h that a1 4 a2 and (t1, t2) ∈ R, and

� for all s2 −→2 N2 there is s1 −→1 N1 su
h that for all (a1, t1) ∈ N1 there is

(a2, t2) ∈ N2 with a1 4 a2 and (t1, t2) ∈ R.

D1 re�nes D2, denoted D1 ≤
m

D2, if there exists a modal re�nement R for whi
h

it holds that for every s0
1 ∈ S0

1 there is s0
2 ∈ S0

2 for whi
h (s0
1, s

0
2) ∈ R.

We write D1 ≡
m

D2 if D1 ≤
m

D2 and D2 ≤
m

D1. The implementation

semanti
s of a DMTS D is JDK = {I ≤
m

D | I implementation}. We say that

D1 thoroughly re�nes D2, and write D1 ≤
th

D2, if JD1K ⊆ JD2K. The below

proposition, whi
h follows dire
tly from transitivity of modal re�nement, shows

that modal re�nement is sound with respe
t to thorough re�nement; in the


ontext of spe
i�
ation theories, this is what one would expe
t.

Proposition 6. For all DMTS D1, D2, D1 ≤
m

D2 implies D1 ≤
th

D2. ⊓⊔

A

eptan
e automata. A (non-deterministi
) a

eptan
e automaton (AA) is

a stru
ture A = (S, S0,Tran), with S ⊇ S0
�nite sets of states and initial states

and Tran : S → 22Σ×S

an assignment of transition 
onstraints. The intuition is

that a transition 
onstraint Tran(s) = {M1, . . . , Mn} spe
i�es a disjun
tion of n

hoi
es M1, . . . , Mn as to whi
h transitions from s have to be implemented.

An AA is an implementation if S0 = {s0} is a singleton and it holds for all

s ∈ S that Tran(s) = {M} ⊆ 2Γ×S
is a singleton; hen
e AA implementations

are isomorphi
 to LTS. A

eptan
e automata were �rst introdu
ed in [31℄, based
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on the notion of a

eptan
e trees in [21℄; however, there they are restri
ted to

be deterministi
. We employ no su
h restri
tion here.

Let A1 = (S1, S
0
1 ,Tran1) and A2 = (S2, S

0
2 ,Tran2) be AA. A relation R ⊆

S1×S2 is amodal re�nement if it holds for all (s1, s2) ∈ R and all M1 ∈ Tran1(s1)
that there exists M2 ∈ Tran2(s2) su
h that

for all (a1, t1) ∈ M1 there is (a2, t2) ∈ M2 with a1 4 a2 and (t1, t2) ∈ R ,

for all (a2, t2) ∈ M2 there is (a1, t1) ∈ M1 with a1 4 a2 and (t1, t2) ∈ R .
(1)

The de�nition degrades to the one of [31℄ in 
ase labels are dis
rete. We will

write M1 4R M2 if M1, M2 satisfy (1).

In [7℄, the following translations were dis
overed between DMTS and AA: For

a DMTS D = (S, S0, 99K,−→) and s ∈ S, let Tran(s) = {M ⊆ Σ × S | ∀(a, t) ∈

M : s
a

99K t, ∀s −→ N : N ∩ M 6= ∅} and de�ne the AA da(D) = (S, S0,Tran).
For an AA A = (S, S0,Tran), de�ne the DMTS ad(A) = (D, D0, 99K,−→) by

D = {M ∈ Tran(s) | s ∈ S}, D0 = {M0 ∈ Tran(s0) | s0 ∈ S0},

−→ =
{(

M, {(a, M ′) | M ′ ∈ Tran(t)}
) ∣

∣ (a, t) ∈ M
}

,

99K = {(M, a, M ′) | ∃M −→ N : (a, M ′) ∈ N}.

Similarly to a theorem of [7, 19℄, we 
an now show the following:

Theorem 7. For DMTS D1, D2 and AA A1, A2, D1 ≤
m

D2 i� da(D1) ≤
m

da(D2) and A1 ≤
m

A2 i� ad(A1) ≤m

ad(A2). ⊓⊔

This stru
tural equivalen
e will allow us to freely translate forth and ba
k

between DMTS and AA in the rest of the paper. Note, however, that the state

spa
es of A and ad(A) are not the same; the one of ad(A) may be exponentially

larger. [19℄ shows that this blow-up is unavoidable.

From a pra
ti
al point of view, DMTS are a somewhat more useful spe
i�-


ation formalism than AA. This is be
ause they are usually more 
ompa
t and

easily drawn and due to their 
lose relation to the modal ν-
al
ulus, see below.

The Modal ν-Cal
ulus. In [7℄, translations were dis
overed between DMTS

and the modal ν-
al
ulus, and re�ning the translations in [19℄, we 
ould show

that for dis
rete labels, these formalisms are stru
turally equivalent. We use the

representation by equation systems in Hennessy-Milner logi
 developed in [26℄.

For a �nite set X of variables, let H(X) be the set of Hennessy-Milner formulae,

generated by the abstra
t syntax H(X) ∋ φ ::= tt | ff | x | 〈a〉φ | [a]φ | φ∧φ | φ∨
φ, for a ∈ Σ and x ∈ X . A ν-
al
ulus expression is a stru
ture N = (X, X0, ∆),
with X0 ⊆ X sets of variables and ∆ : X → H(X) a de
laration.

The semanti
s of ν-
al
ulus expressions is usually given as a greatest �xed

point to a de
laration, 
f. [26℄. In [19℄ we have introdu
ed another semanti
s,

whi
h is given by a notion of re�nement, like for DMTS and AA. For this we

need a normal form for ν-
al
ulus expressions:

Lemma 8 ([19℄). For any ν-
al
ulus expression N1 = (X1, X
0
1 , ∆1), there exists

another expression N2 = (X2, X
0
2 , ∆2) with JN1K = JN2K and su
h that for any
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x ∈ X, ∆2(x) is of the form ∆2(x) =
∧

i∈I

(
∨

j∈Ji
〈aij〉xij

)

∧
∧

a∈Σ [a]
(
∨

j∈Ja
ya,j

)

for �nite (possibly empty) index sets I, Ji, Ja and all xij , ya,j ∈ X2. ⊓⊔

As this is a type of 
onjun
tive normal form, it is 
lear that translating

a ν-
al
ulus expression into normal form may in
ur an exponential blow-up.

We introdu
e some notation for ν-
al
ulus expressions in normal form. Let N =
(X, X0, ∆) be su
h an expression and x ∈ X , with ∆(x) =

∧

i∈I

(
∨

j∈Ji
〈aij〉xij

)

∧
∧

a∈Σ [a]
(
∨

j∈Ja
ya,j

)

as in the lemma. De�ne ♦(x) = {{(aij, xij) | j ∈ Ji} | i ∈
I} and, for ea
h a ∈ Σ, �a(x) = {ya,j | j ∈ Ja}. Intuitively, ♦(x) 
olle
ts all 〈a〉-
requirements from x, whereas �a(x) spe
i�es the disjun
tion of [a]-properties
whi
h must hold from x. Note that now,

∆(x) =
∧

N∈♦(x)

(

∨

(a,y)∈N

〈a〉y
)

∧
∧

a∈Σ

[a]
(

∨

y∈�a(x)

y
)

. (2)

Let N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2) be ν-
al
ulus expressions in

normal form and R ⊆ X1 ×X2. The relation R is a modal re�nement if it holds

for all (x1, x2) ∈ R that

� for all a1 ∈ Σ and y1 ∈ �
a1

1 (x1) there is a2 ∈ Σ and y2 ∈ �
a2

2 (x2) with

a1 4 a2 and (y1, y2) ∈ R, and

� for all N2 ∈ ♦2(x2) there is N1 ∈ ♦1(x1) su
h that for all (a1, y1) ∈ N1 there

exists (a2, y2) ∈ N2 with a1 4 a2 and (y1, y2) ∈ R.

For a DMTS D = (S, S0, 99K,−→) and all s ∈ S, let ♦(s) = {N | s −→

N} and, for ea
h a ∈ Σ, �a(s) = {t | s
a

99K t}. De�ne the (normal-form) ν-

al
ulus expression dn(D) = (S, S0, ∆), with ∆ given as in (2). For a ν-
al
ulus
expression N = (X, X0, ∆) in normal form, let 99K = {(x, a, y) ∈ X × Σ ×
X | y ∈ �a(x)}, −→ = {(x, N) | x ∈ X, N ∈ ♦(x)} and de�ne the DMTS

nd(N ) = (X, X0, 99K,−→). Given that these translations are entirely synta
ti
,

the following theorem is not a surprise:

Theorem 9. For DMTS D1, D2 and ν-
al
ulus expressions N1, N2, D1 ≤
m

D2

i� dn(D1) ≤m

dn(D2) and N1 ≤
m

N2 i� nd(N1) ≤m

nd(N2). ⊓⊔

It is shown in [19℄ that the re�nement semanti
s and the standard �xed-point

semanti
s for ν-
al
ulus expressions agree, i.e., that an LTS I is an implemen-

tation of an expression N i� I ≤
m

N . Here we have used an embedding of LTS

into ν-
al
ulus similar to the one into DMTS or AA, 
f. [19℄.

4 Spe
i�
ation theory

Stru
tural spe
i�
ations typi
ally 
ome equipped with operations whi
h allow for


ompositional reasoning, viz. 
onjun
tion, stru
tural 
omposition, and quotient,


f. [2℄. On deterministi
 MTS, these operations 
an be given easily using simple

stru
tural operational rules (for su
h semanti
s of weighted systems, see e.g.

[25℄). For non-deterministi
 systems this is signi�
antly harder; in [7℄ it is shown

that DMTS and AA permit these operations and, additionally but trivially,

disjun
tion. Here we show how to extend these operations on non-deterministi


systems to our quantitative setting with stru
tured labels.
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We remark that stru
tural 
omposition and quotient operators are well-

known from some logi
s, su
h as, e.g., linear [20℄ or spatial logi
 [10℄, and were

extended to very general 
ontexts [11℄. However, whereas these operators are

part of the formal syntax in those logi
s, for us they are simply operations on

logi
al expressions (or DMTS, or AA). Consequently [19℄, stru
tural 
omposition

is generally only a sound over-approximation of the semanti
 
omposition.

Given the equivalen
e of DMTS, AA and the modal ν-
al
ulus exposed in the

previous se
tion, we will often state properties for all three types of spe
i�
ations

at the same time, letting S stand for any of the three types.

Disjun
tion and 
onjun
tion. Disjun
tion of spe
i�
ations is easily de�ned

as we allow multiple initial states. For DMTS D1 = (S1, S
0
1 , 99K1,−→1), D2 =

(S2, S
0
2 , 99K2,−→2), we 
an hen
e de�ne D1 ∨ D2 = (S1 ∪ S2, S

0
1 ∪ S0

2 , 99K1 ∪
99K2,−→1 ∪−→2) (with all unions disjoint). For 
onjun
tion, we let D1 ∧D2 =
(S1 × S2, S

0
1 × S0

2 , 99K,−→), with

� (s1, s2)
a17a2

99K (t1, t2) whenever s1
a1

99K1 t1, s2
a2

99K2 t2 and a1 7 a2 is de�ned,

� for all s1 −→ N1, (s1, s2) −→ {(a17a2, (t1, t2)) | (a1, t1) ∈ N1, s2
a2

99K2 t2, a17
a2 de�ned},

� for all s2 −→ N2, (s1, s2) −→ {(a17a2, (t1, t2)) | (a2, t2) ∈ N2, s1
a1

99K1 t1, a17
a2 de�ned}.

Theorem 10. For all spe
i�
ations S1, S2, S3,

� S1 ∨ S2 ≤
m

S3 i� S1 ≤
m

S3 and S2 ≤
m

S3,

� S1 ≤
m

S2 ∧ S3 i� S1 ≤
m

S2 and S1 ≤
m

S3,

� JS1 ∨ S2K = JS1K ∪ JS2K, and JS1 ∧ S2K = JS1K ∩ JS2K.

With bottom and top elements given by⊥ = (∅, ∅, ∅) and⊤ = ({s}, {s},Tran⊤)

with Tran⊤(s) = 22Σ×{s}

, our 
lasses of spe
i�
ations form bounded distributive

latti
es up to ≡
m

.

Stru
tural 
omposition. For AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2),

their stru
tural 
omposition isA1‖A2 = (S1×S2, S
0
1×S0

2 ,Tran), with Tran((s1, s2)) =
{M1 � M2 | M1 ∈ Tran1(s1), M2 ∈ Tran2(s2)} for all s1 ∈ S1, s2 ∈ S2, where

M1 � M2 = {(a1 � a2, (t1, t2)) | (a1, t1) ∈ M1, (a2, t2) ∈ M2, a1 � a2 de�ned}.

D1

D2

s1 s2

t1 t2

a

b

Remark a subtle di�eren
e between 
onjun
tion and

stru
tural 
omposition, whi
h we expose for dis
rete labels

and CSP-style 
omposition: for the DMTS D1, D2 shown

to the right, both D1∧D2 and D1‖D2 have only one state,

but Tran(s1 ∧ t1) = ∅ and Tran(s1‖t1) = {∅}, so that

D1 ∧ D2 is in
onsistent, whereas D1‖D2 is not.

This de�nition extends the stru
tural 
omposition de�ned for modal transi-

tion systems, with stru
tured labels, in [4℄. For DMTS spe
i�
ations (and hen
e

also for ν-
al
ulus expressions), the ba
k translation from AA to DMTS entails

an exponential explosion.

Theorem 11. Up to ≡
m

, the operator ‖ is asso
iative, 
ommutative and mono-

tone, and ⊥‖S ≡
m

⊥ for any spe
i�
ation S.
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Corollary 12 (Independent implementability). For all spe
i�
ations S1,

S2, S3, S4, S1 ≤
m

S3 and S2 ≤
m

S4 imply S1‖S2 ≤
m

S3‖S4. ⊓⊔

Quotient. Be
ause of non-determinism, we have to use a subset 
onstru
tion

for the quotient, as opposed to 
onjun
tion and stru
tural 
omposition where

produ
t is su�
ient. For AA A3 = (S3, S
0
3 ,Tran3), A1 = (S1, S

0
1 ,Tran1), the

quotient is A3/A1 = (S, {s0},Tran), with S = 2S3×S1
and s0 = {(s0

3, s
0
1) |

s0
3 ∈ S0

3 , s0
1 ∈ S0

1}. States in S will be written {s1
3/s1

1, . . . , s
n
3/sn

1 )} instead of

{(s1
3, s

1
1), . . . , (s

n
3 , sn

1 ))}. Intuitively, this denotes that su
h state when 
omposed

with si
1 
onforms to si

3 for ea
h i; we 
all this 
onsisten
y here.

We now de�ne Tran. First, Tran(∅) = 2Σ×{∅}
, so ∅ is universal. For any other

state s = {s1
3/s1

1, . . . , s
n
3/sn

1} ∈ S, its set of permissible labels is de�ned by

pl(s) = {a2 ∈ Σ | ∀i = 1, . . . , n : ∀(a1, t1) ∈∈ Tran1(s
i
1) :

∃(a3, t3) ∈∈ Tran3(s
i
3) : a1 � a2 4 a3} ,

that is, a label is permissible i� it 
annot violate 
onsisten
y. Here we use the

notation x ∈∈ z as a short
ut for ∃y : x ∈ y ∈ z.
Now for ea
h a ∈ pl(s) and ea
h i ∈ {1, . . . , n}, let {t1 ∈ S1 | (a, t1) ∈∈

Tran1(t
i
1)} = {ti,11 , . . . , ti,mi

1 } be an enumeration of all the possible states in S1

after an a-transition. Then we de�ne the set of all sets of possible assignments

of next-a states from si
3 to next-a states from si

1:

pta(s) = {{(ti,j3 , ti,j1 ) | i = 1, . . . , n, j = 1, . . . , mi} | ∀i : ∀j : (a, ti,j3 ) ∈∈ Tran3(s
i
3)}

These are all possible next-state assignments whi
h preserve 
onsisten
y. Now

let pt(s) =
⋃

a∈pl(s) pta(s) and de�ne

Tran(s) = {M ⊆ pt(s) | ∀i = 1, . . . , n : ∀M1 ∈ Tran1(s
i
1) :

∃M3 ∈ Tran3(s
i
3) : M ⊲ M1 4R M3} ,

where M ⊲ M1 = {(a1 � a, ti3) | (a, {t13/t11, . . . , t
k
3/tk1)}) ∈ M, (a1, t

i
1) ∈ M1},

to guarantee 
onsisten
y no matter whi
h element of Tran1(s
i
1), s is 
omposed

with.

Example 13. Consider the two simple systems in Fig. 4 and their quotient un-

der

∩
�, i.e., where label syn
hronization is interse
tion. During the 
onstru
tion

and the translation ba
k to DMTS, many states were eliminated as they were

in
onsistent (their Tran-set was empty). For instan
e, there is no may transition

to state {s2/t2}, be
ause when it is 
omposed with t2 there is no guarantee of

late-transition, hen
e no guarantee to re�ne s2.

Theorem 14. For all spe
i�
ations S1, S2, S3, S1‖S2 ≤
m

S3 i� S2 ≤
m

S3/S1.

5 Robust Spe
i�
ation Theories

We pro
eed to lift the results of the previous se
tions to a quantitative setting,

where the Boolean notions of modal and thorough re�nement are repla
ed by
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s0

s1
(send, [1, 2])

s2(send, (2, 3])

•
early

•
late

t0

t1(send, [1, 2])

t2(send, (2, 3])

•
early

late

•
late

{s0/t0} {s1/t1} ∅ Σ
(send, [1, 2])

early, late, (send, [0, 1)]), (send, (5,∞))

Σ \ {late}

early

Fig. 4. Two DMTS and their quotient.

re�nement distan
es. We have shown in [4, 18℄ that an appropriate setting for

quantitative analysis is given by the one of re
ursively spe
i�ed tra
e distan
es

on an abstra
t 
ommutative quantale as de�ned below; we refer to the above-


ited papers for a detailed exposition of how this framework 
overs all 
ommon

approa
hes to quantitative analysis.

Denote by Σ∞ = Σ∗ ∪ Σω
the set of �nite and in�nite tra
es over Σ.

Re
ursively spe
i�ed tra
e distan
es. Re
all that a (
ommutative) quantale


onsists of a 
omplete latti
e (L,⊑
L

) and a 
ommutative, asso
iative addition

operation �
L

whi
h distributes over arbitrary suprema; we denote by ⊥
L

, ⊤
L

the bottom and top elements of L. We 
all a fun
tion d : X × X → L, for

a set X and a quantale L, an L-hemimetri
 if it satis�es d(x, x) = ⊥
L

for

all x ∈ X and d(x, z) ⊑
L

d(x, y) �
L

d(y, z) for all x, y, z ∈ X . L-hemimetri
s

are generalizations of distan
es: for L = R≥0 ∪ {∞} the extended real line, an

(R≥0 ∪ {∞})-hemimetri
 is simply an extended hemimetri
.

A re
ursive tra
e distan
e spe
i�
ation F = (L, eval, dL
t

, F ) 
onsists of a

quantale L, a quantale morphism eval : L → R≥0 ∪ {∞}, an L-hemimetri


dL
t

: Σ∞×Σ∞ → L (
alled lifted tra
e distan
e), and a distan
e iterator fun
tion

F : Σ × Σ × L → L. F must be monotone in the third 
oordinate and satisfy

an extended triangle inequality: for all a, b, c ∈ Σ and α, β ∈ L, F (a, b, α) �
L

F (b, c, β) ⊒
L

F (a, c, α �
L

β).
F is to spe
ify dL

t

re
ursively in the sense that for all a, b ∈ Σ and all

σ, τ ∈ Σ∞
(and with . denoting 
on
atenation),

dL
t

(a.σ, b.τ) = F (a, b, dL
t

(σ, τ)) . (3)

The tra
e distan
e asso
iated with su
h a distan
e spe
i�
ation is d
t

: Σ∞ ×
Σ∞ → R≥0 given by d

t

= eval ◦ dL
t

. Note that dL
t

spe
ializes to a distan
e

on labels (be
ause Σ ⊆ Σ∞
); we require that this is 
ompatible with label

re�nement in the sense that a 4 b implies dL
t

(a, b) = ⊥
L

. Then (3) implies that

whenever a 4 b, then F (a, b,⊥
L

) = dL
t

(a, b) = ⊥
L

.

Example 15. It is shown in [4, 18℄ that all 
ommonly used tra
e distan
es obey

re
ursive 
hara
terizations as above. We give a few examples:
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� The point-wise distan
e from [13℄, for example, has L = R≥0∪{∞}, eval = id

and dL
t

(a.σ, b.τ) = max(d(a, b), dL
t

(σ, τ)), where d : Σ × Σ → R≥0 ∪ {∞} is

a hemimetri
 on labels. For the label set Σ = U ×{[l, r] | l ∈ R∪{−∞}, r ∈
R ∪ {∞}, l ≤ r} from Example 1, one useful example of su
h a hemimetri


is d((u1, [l1, r1]), (u2, [l2, r2])) = supx1∈[l1,r1] infx2∈[l2,r2] |x1 − x2| if u1 = u2

and ∞ otherwise, 
f. [3℄.

� The dis
ounting distan
e, also used in [13℄, again uses L = R≥0 ∪ {∞} and

eval = id, but dL
t

(a.σ, b.τ) = d(a, b) + λdL
t

(σ, τ) for a 
onstant λ ∈ [0, 1[.
� For the limit-average distan
e used in [36℄ and others, L = (R≥0 ∪ {∞})N,

eval(α) = lim infj∈N α(j), dL
t

(a.σ, b.τ)(j) = 1
j+1d(a, b) + j

j+1dL
t

(σ, τ)(j − 1).

� The dis
rete tra
e distan
e is given by d
t

(σ, τ) = 0 if σ 4 τ and ∞ otherwise

(here we have extended 4 to tra
es in the obvious way). It has a re
ursive


hara
terization with L = R≥0 ∪ {∞}, eval = id, and d
t

(a.σ, b.τ) = d
t

(σ, τ)
if a 4 b and ∞ otherwise.

For the rest of this paper, we �x a re
ursively spe
i�ed tra
e distan
e.

Re�nement distan
es. We lift the notions of modal re�nement, for all our

formalisms, to distan
es. Con
eptually, this is done by repla
ing �∀� quanti�ers
by �sup� and �∃� by � inf� in the de�nitions, and then using the distan
e iterator

to introdu
e a re
ursive fun
tional whose least �xed point is the distan
e.

De�nition 16. The lifted re�nement distan
e on the states of DMTS D1 = (S1,
S0

1 , 99K1,−→1), D2 = (S2, S
0
2 , 99K2,−→2) is the least �xed point to the equations

dL
m

(s1, s2) = max











sup
s1

a1
99Kt1

inf
s2

a2
99Kt2

F (a1, a2, d
L

m

(t1, t2)) ,

sup
s2−→N2

inf
s1−→N1

sup
(a1,t1)∈N1

inf
(a2,t2)∈N2

F (a1, a2, d
L

m

(t1, t2)) .

For AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), the equations are instead

dL
m

(s1, s2) =

sup
M1∈Tran1(s1)

inf
M2∈Tran2(s2)

max











sup
(a1,t1)∈M1

inf
(a2,t2)∈M2

F (a1, a2, d
L

m

(t1, t2)) ,

sup
(a2,t2)∈M2

inf
(a1,t1)∈M1

F (a1, a2, d
L

m

(t1, t2)) ,

and for ν-
al
ulus expressions N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2),

dL
m

(x1, x2) = max











sup
a1∈Σ,y1∈�

a1
1

(x1)

inf
a2∈Σ,y2∈�

a2
2

(x2)

F (a1, a2, d
L

m

(y1, y2)),

sup
N2∈♦2(x2)

inf
N1∈♦1(x1)

sup
(a1,y1)∈N1

inf
(a2,y2)∈N2

F (a1, a2, d
L

m

(y1, y2)).

Using Tarski's �xed point theorem, one easily sees that the lifted re�nement

distan
es are indeed well-de�ned. (Here one needs monotoni
ity of F in the third


oordinate, together with the fa
t that sup and inf are monotoni
.)

The lifted re�nement distan
e between spe
i�
ations is de�ned by dL
m

(S1,S2) =
sups0

1
∈S0

1
infs0

2
∈S0

2
dL
m

(s0
1, s

0
2). Analogously to thorough re�nement, there is also a
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lifted thorough re�nement distan
e, given by dL
th

(S1,S2) = supI1∈JS1K infI2∈JS2K

dL
m

(I1, I2). Using the eval fun
tion, one gets non-lifted distan
es d
m

= eval ◦ dL
m

and d
th

= eval ◦ dL
th

, with values in R≥0 ∪ {∞}, whi
h will be the ones one is

interested in for 
on
rete appli
ations.

Example 17. We 
ompute the dis
ounted re�nement distan
e between the se
-

ond DMTS in Figs. 2 and 3, assuming sup-inf distan
e on quantitative la-

bels. We have d
m

(x, x′) = max(0 + λd
m

(x, x′), 0 + λd
m

(y, y′)) and d
m

(y, y′) =
max(0 + λd

m

(x, x′), 1 + λd
m

(y, y′), whose least �xed point is d
m

(x, x′) = λ
1−λ .

Similarly, d
m

(x′, x) = λ
1−λ . Note that x 6≤

m

x′
and x′ 6≤

m

x.

The following quantitative extension of Theorems 7 and 9 shows that our

translations preserve and re�e
t re�nement distan
es.

Theorem 18. For all DMTS D1,D2, all AA A1, A2 and all ν-
al
ulus expres-
sions N1, N2, dL

m

(D1,D2) = dL
m

(da(D1), da(D2)), dL
m

(A1,A2) = dL
m

(ad(A1), ad(A2)),
dL
m

(D1,D2) = dL
m

(dn(D1), dn(D2)), and dL
m

(N1,N2) = dL
m

(nd(N1),nd(N2)).

Our distan
es behave as expe
ted:

Proposition 19. The fun
tions dL
m

, dL
th

are L-hemimetri
s, and d
m

, d
th

are

hemimetri
s. For spe
i�
ations S1, S2, S1 ≤
m

S2 implies dL
m

(S1,S2) = ⊥
L

, and

S1 ≤
th

S2 implies dL
th

(S1,S2) = ⊥
L

.

For the dis
rete distan
es, d
m

(S1,S2) = 0 if S1 ≤
m

S2 and ∞ otherwise.

Similarly, d
th

(S1,S2) = 0 if S1 ≤
th

S2 and ∞ otherwise.

As a quantitative analogy to the impli
ation from (Boolean) modal re�ne-

ment to thorough re�nement (Proposition 6), the next theorem shows that thor-

ough re�nement distan
e is bounded above by modal re�nement distan
e. Note

that for the dis
rete tra
e distan
e (and using Proposition 19), this is equivalent

to the Boolean statement.

Theorem 20. For all spe
i�
ations S1, S2, dL
th

(S1,S2) ⊑L dL
m

(S1,S2).

Stru
tural 
omposition and quotient. We pro
eed to devise a quantitative

generalization of the properties of stru
tural 
omposition and quotient exposed

in Se
tion 4. To this end, we need to use a uniform 
omposition bound on labels:

Let P : L × L → L be a fun
tion whi
h is monotone in both 
oordinates,

has P (α,⊥
L

) = P (⊥
L

, α) = α and P (α,⊤
L

) = P (⊤
L

, α) = ⊤
L

for all α ∈ L.
We require that for all a1, b1, a2, b2 ∈ Σ and α, β ∈ L with F (a1, a2, α) 6= ⊤ and

F (b1, b2, β) 6= ⊤, a1 � b1 is de�ned i� a2 � b2 is, and if both are de�ned, then

F (a1 � b1, a2 � b2, P (α, β)) ⊑
L

P (F (a1, a2, α), F (b1, b2, β)) . (4)

Note that (4) implies that d
t

(a1 � a2, b1 � b2) ⊑
L

P (d
t

(a1, b1), dt(a2, b2)).
Hen
e P provides a uniform bound on distan
es between syn
hronized labels,

and (4) extends this property so that it holds re
ursively. Also, this is a gener-

alization of the 
ondition that we imposed on � in Se
tion 2; it is shown in [4℄

that it holds for all 
ommon label syn
hronizations.



14 Uli Fahrenberg, Jan K°etínský, Axel Legay, and Louis-Marie Traonouez

The following theorems show that 
omposition is uniformly 
ontinuous (i.e., a

quantitative generalization of independent implementability; Corollary 12) and

that quotient preserves and re�e
ts re�nement distan
e (a quantitative general-

ization of Theorem 14).

Theorem 21. For all spe
i�
ations S1, S2, S3, S4, dL
m

(S1‖S2,S3‖S4) ⊑
L

P (dL
m

(S1,S3), d
L

m

(S2,S4)).

Theorem 22. For all spe
i�
ations S1, S2, S3, dL
m

(S1‖S2,S3) = dL
m

(S2,S3/S1).

6 Con
lusion

We have presented a framework for 
ompositional system development whi
h

supports quantities and system and a
tion re�nement. Moreover, it is robust, in

that it uses distan
es to measure quantitative re�nement and the 
ompositional

operations are uniformly 
ontinuous.

The framework is very general. It 
an be applied to a large variety of quan-

tities (energy, time, resour
e 
onsumption et
.) and implement the robustness

notions asso
iated with them. It is also agnosti
 with respe
t to the type of

spe
i�
ations used, as it applies equally to behavioral and logi
al spe
i�
ations.

This means that logi
al and behavioral quantitative spe
i�
ations 
an be freely


ombined in system development.
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Appendix: Proofs

Proof (of Theorem 10). The proof that S1∨S2 ≤
m

S3 i� S1 ≤
m

S3 and S2 ≤
m

S3

is trivial: any modal re�nement R ⊆ (S1 ∪ S2) × S3 splits into two re�nements

R1 ⊆ S1 × S3, R2 ⊆ S2 × S3 and vi
e versa.

For the proof of the se
ond 
laim, whi
h we show for DMTS, we prove the

ba
k dire
tion �rst. Let R2 ⊆ S1 × S2, R3 ⊆ S1 × S3 be initialized (DMTS)

modal re�nements and de�ne R = {(s1, (s2, s3)) | (s1, s2) ∈ R1, (s1, s3) ∈ R3} ⊆
S1 × (S2 × S3). Then R is initialized.

Now let (s1, (s2, s3)) ∈ R, then (s1, s2) ∈ R2 and (s1, s3) ∈ R3. Assume that

s1
a1

99K1 t1, then by S1 ≤
m

S2, we have s2
a2

99K2 t2 with a1 4 a2 and (t1, t2) ∈ R2.

Similarly, by S1 ≤
m

S3, we have s3
a3

99K3 t3 with a1 4 a3 and (t1, t3) ∈ R3.

But then also a1 4 a2 7 a3 and (t1, (t2, t3)) ∈ R, and (s2, s3)
a27a3

99K (t2, t3) by

de�nition.

Assume that (s2, s3) −→ N . Without loss of generality we 
an assume that

there is s2 −→2 N2 su
h that N = {(a2 7 a3, (t2, t3)) | (a2, t2) ∈ N2, s3
a3

99K3 t3}.
By S1 ≤

m

S2, we have s1 −→1 N1 su
h that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2 :
a1 4 a2, (t1, t2) ∈ R2.

Let (a1, t1) ∈ N1, then also s1
a1

99K1 t1, so by S1 ≤
m

S3, there is s3
a3

99K3 t3
with a1 4 a3 and (t1, t3) ∈ R3. By the above, we also have (a2, t2) ∈ N2 su
h

that a1 4 a2 and (t1, t2) ∈ R2, but then (a2 7a3, (t2, t3)) ∈ N , a1 4 a2 ∧a3, and

(t1, (t2, t3)) ∈ R.

For the other dire
tion of the se
ond 
laim, let R ⊆ S1×(S2×S3) be an initial-
ized (DMTS) modal re�nement. We show that S1 ≤

m

S2, the proof of S1 ≤
m

S3

being entirely analogous. De�ne R2 = {(s1, s2) | ∃s3 ∈ S3 : (s1, (s2, s3)) ∈ R} ⊆
S1 × S2, then R2 is initialized.

Let (s1, s2) ∈ R2, then we must have s3 ∈ S3 su
h that (s1, (s2, s3)) ∈ R.

Assume that s1
a1

99K1 t1, then also (s2, s3)
a

99K (t2, t3) for some a with a1 4 a and

(t1, (t2, t3)) ∈ R. By 
onstru
tion we have s2
a2

99K2 t2 and s3
a3

99K3 t3 su
h that

a = a2 7 a3, but then a1 4 a2 7 a3 4 a2 and (t1, t2) ∈ R2.

Assume that s2 −→2 N2, then by 
onstru
tion, (s2, s3) −→ N = {(a2 7

a3, (t2, t3)) | (a2, t2) ∈ N2, s3
a3

99K3 t3}. By S1 ≤
m

S2 ∧ S3, we have s1 −→1 N1

su
h that ∀(a1, t1) ∈ N1 : ∃(a, (t2, t3)) ∈ N : a1 4 a, (t1, (t2, t3)) ∈ R.

Let (a1, t1) ∈ N1, then we have (a, (t2, t3)) ∈ N for whi
h a1 4 a and

(t1, (t2, t3)) ∈ R. By 
onstru
tion of N , this implies that there are (a2, t2) ∈ N2

and s3
a3

99K3 t3 su
h that a = a27a3, but then a1 4 a27a3 4 a2 and (t1, t2) ∈ R.

As to the last 
laims of the theorem, JS1∧S2K = JS1K∩JS2K is 
lear from what

we just proved: for all implementations I, I ≤
m

S1∧S2 i� I ≤
m

S1 and I ≤
m

S2.

For the other part, it is 
lear by 
onstru
tion that for any implementation I,
any witness R for I ≤

m

S1 is also a witness for I ≤
m

S1 ∨ S2, and similarly for

S2, hen
e JS1K ∪ JS2K ⊆ JS1 ∨ S2K.
To show the other in
lusion, we note that an initialized re�nement R wit-

nessing I ≤
m

S1∨S2 must relate the initial state of I either to an initial state of

S1 or to an initial state of S2. In the �rst 
ase, and by disjointness, R witnesses

I ≤
m

S1, in the se
ond, I ≤
m

S2. ⊓⊔
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Proof (of Theorem 11). Asso
iativity and 
ommutativity are 
lear. Monotoni
ity

is equivalent to the assertion that (up to ≡
m

) ‖ distributes over the least upper

bound ∨; one easily sees that for all spe
i�
ations S1, S2, S3, the identity is

a two-sided modal re�nement S1‖(S2 ∨ S3) ≡
m

S1‖S2 ∨ S1‖S3. The assertion

⊥‖S ≡
m

⊥ is also 
lear. ⊓⊔

Proof (of Theorem 14). We show the proof for AA; for DMTS and ν-
al
ulus
expressions it will follow through the translations. Let A1 = (S1, S

0
1 ,Tran1),

A2 = (S2, S
0
2 ,Tran2), A3 = (S3, S

0
3 ,Tran3); we show that A1‖A2 ≤

m

A3 i�

A2 ≤
m

A3/A1.

We assume that the elements of Tran1(s1) are pairwise disjoint for ea
h

s1 ∈ S1; this 
an be a
hieved by, if ne
essary, splitting states.

First we note that by 
onstru
tion, s ⊇ t implies s ≤
m

t for all s, t ∈ S.
Now assume that A2 ≤

m

A3/A1 and let R = {(s1‖s2, s3) | s2 ≤
m

s3/s1}; we
show that R is a witness for A1‖A2 ≤

m

A3.

Let (s1‖s2, s3) ∈ R and M‖ ∈ Tran‖(s1‖s2). Then M‖ = M1‖M2 with M1 ∈
Tran1(s1) and M2 ∈ Tran2(s2). As s2 ≤

m

s3/s1, we 
an pair M2 with an M/ ∈
Tran/(s3/s1), i.e., su
h that the 
onditions in (1) are satis�ed.

Let M3 = M/ ⊲ M1. We show that (1) holds for the pair M‖, M3:

� Let (a, t1‖t2) ∈ M‖, then there are a1, a2 ∈ Σ with a = a1 �a2 and (a1, t1) ∈
M1, (a2, t2) ∈ M2. By (1), there is (a′

2, t) ∈ M/ su
h that a2 4 a′
2 and t2 ≤

m

t. Note that a3 = a1 �a′
2 is de�ned and a 4 a3. Write t = {t13/t11, . . . , t

n
3/tn1}.

By 
onstru
tion, there is an index i for whi
h ti1 = t1, hen
e (a3, t
i
3) ∈ M3.

Also, t ⊇ {ti3/ti1}, hen
e t2 ≤
m

ti3/ti1 and 
onsequently (t1‖t2, t3) ∈ R.

� Let (a3, t3) ∈ M3, then there are (a′
2, t) ∈ M/ and (a1, t1) ∈ M1 su
h that

a3 = a1 � a′
2 and t3/t1 ∈ t. By (1), there is (a2, t2) ∈ M2 for whi
h a2 4 a′

2

and t2 ≤
m

t. Note that a = a1�a2 is de�ned and a 4 a3. Thus (a, t1‖t2) ∈ M ,

and by t ⊇ {t3/t1}, t2 ≤
m

t3/t1.

Assume, for the other dire
tion of the proof, that A1‖A2 ≤
m

A3. De�ne

R ⊆ S2 × 2S3×S1
by

R = {(s2, {s
1
3/s1

1, . . . , s
n
3/sn

1}) | ∀i = 1, . . . , n : si
1‖s2 ≤

m

si
3} ;

we show that R is a witness for A2 ≤
m

A3/A1. Let (s2, s) ∈ R, with s =
{s1

3/s1
1, . . . , s

n
3/sn

1}, and M2 ∈ Tran2(s2).
For every i = 1, . . . , n, write Tran1(s

i
1) = {M i,1

1 , . . . , M i,mi

1 }. By assumption,

M i,j1
1 ∩ M i,j2

1 = ∅ for j1 6= j2, hen
e every (a1, t1) ∈∈ Tran1(s
i
1) is 
ontained in

a unique M
i,δi(a1,t1)
1 ∈ Tran1(s

i
1).

For every j = 1, . . . , mi, let M i,j = M i,j
1 ‖M2 ∈ Tran‖(s

i
1‖s2). By si

1‖s2 ≤
m

si
3, we have M i,j

3 ∈ Tran3(s
i
3) su
h that (1) holds for the pair M i,j , M i,j

3 .

Now de�ne

M = {(a2, t) | ∃(a2, t2) ∈ M2 : ∀t3/t1 ∈ t : ∃i, a1, a3 :

(a1, t1) ∈∈ Tran1(s
i
1), (a3, t3) ∈ M

i,δi(a1,t1)
3 , a1 � a2 4 a3, t1‖t2 ≤

m

t3} . (5)
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We need to show that M ∈ Tran/(s).

Let i ∈ {1, . . . , n} and M i,j
1 ∈ Tran1(s

i
1); we 
laim that M ⊲ M i,j

1 4R M i,j
3 .

Let (a3, t3) ∈ M ⊲ M i,j
1 , then a3 = a1 � a2 for some a1, a2 su
h that t3/t1 ∈

t, (a1, t1) ∈ M i,j
1 and (a2, t) ∈ M . By disjointness, j = δi(a1, t1), hen
e by

de�nition of M , (a3, t3) ∈ M i,j
3 as was to be shown.

For the reverse in
lusion, let (a3, t3) ∈ M i,j
3 . By (1) and de�nition of M i,j

,

there are (a1, t1) ∈ M i,j
1 and (a2, t2) ∈ M2 for whi
h a1�a2 4 a3 and t1‖t2 ≤

m

t3.
Thus j = δi(a1, t1), so that there must be (a2, t) ∈ M for whi
h t3/t1 ∈ t, but
then also (a1 � a2, t3) ∈ M ⊲ M i,j

1 .

We show that M2 4R M .

� Let (a2, t2) ∈ M2. For every i = 1, . . . , n and every (a1, t1) ∈∈ Tran1(t
i
1),

we 
an use (1) to 
hoose an element (ηi(a1, t1), τi(a1, t1)) ∈ M
i,δi(a1,t1)
3 for

whi
h t1‖t2 ≤
m

τi(a1, t1) and a1 � a2 4 ηi(a1, t1). Let t = {τi(a1, t1)/t1 | i =
1, . . . , n, (a1, t1) ∈∈ Tran1(t

i
1)}, then (a2, t) ∈ M and (t2, t) ∈ R.

� Let (a2, t) ∈ M , then we have (a2, t2) ∈ M2 satisfying the 
onditions in (5).

Hen
e t1‖t2 ≤
m

t3 for all t3/t1 ∈ t, so that (t2, t) ∈ R. ⊓⊔

Before we attempt any more proofs, we need to re
all the notion of re�nement

family from [4℄ and extend it to AA. We give the de�nition for AA only; for

DMTS and the modal ν-
al
ulus it is similar.

De�nition 23. A re�nement family from A1 to A2, for AA A1 = (S1, S
0
1 ,Tran1),

A2 = (S2, S
0
2 ,Tran2), is an L-indexed family of relations R = {Rα ⊆ S1 × S2 |

α ∈ L} with the property that for all α ∈ L with α 6= ⊤
L

, all (s1, s2) ∈ Rα, and

all M1 ∈ Tran1(s1), there is M2 ∈ Tran2(s2) su
h that

� ∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑ α,
� ∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑ α.

Lemma 24. For all AA A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), there exists

a re�nement family R from A1 to A2 su
h that for all s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2

for whi
h (s0
1, s

0
2) ∈ RdL

m

(A1,A2).

We say that a re�nement family as in the lemma witnesses dL
m

(A1,A2).

Proof. De�ne R by Rα = {(s1, s2) | dL
m

(s1, s2) ⊑
L

α}. First, as (s0
1, s

0
2) ∈

RdL
m

(s0
1
,s0

2
) for all s0

1 ∈ S0
1 , s0

2 ∈ S0
2 , it is indeed the 
ase that for all s0

1 ∈ S0
1 , there

is s0
2 ∈ S0

2 for whi
h

(s0
1, s

0
2) ∈ RdL

m

(A1,A2) = Rmax
s0
1
∈S0

1
min

s0
2
∈S0

2
dL
m

(s0
1
,s0

2
).

Now let α ∈ L with α 6= ⊤
L

and (s1, s2) ∈ Rα. Let M1 ∈ Tran1(s1). We

have dL
m

(s1, s2) ⊑L α, hen
e there is M2 ∈ Tran2(s2) su
h that

α ⊒
L

max











sup
(a1,t1)∈M1

inf
(a2,t2)∈M2

F (a1, a2, d
L

m

(t1, t2)),

sup
(a2,t2)∈M2

inf
(a1,t1)∈M1

F (a1, a2, d
L

m

(t1, t2)).
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But this entails that for all (a1, t1) ∈ M1, there is (a2, t2) ∈ M2 and β = dL
m

(t1, t2)
su
h that F (a1, a2, β) ⊑

L

α, and that for all (a2, t2) ∈ M2, there is (a1, t1) ∈ M1

and β = dL
m

(t1, t2) su
h that F (a1, a2, β) ⊑
L

α. ⊓⊔

Proof (of Theorem 18).

dL
m

(da(D1), da(D2)) ⊑L dL
m

(D1,D2):

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS. There

exists a DMTS re�nement family R = {Rα ⊆ S1 × S2 | α ∈ L} su
h that for all

s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2 with (s0
1, s

0
2) ∈ RdL

m

(D1,D2). We show that R is an AA

re�nement family.

Let α ∈ L and (s1, s2) ∈ Rα. Let M1 ∈ Tran1(s1) and de�ne

M2 = {(a2, t2) | s2
a2

99K2 t2, ∃(a1, t1) ∈ M1 : ∃β ∈ L :

(t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α}.

The 
ondition

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑ α

is satis�ed by 
onstru
tion. For the inverse 
ondition, let (a1, t1) ∈ M1, then

s1
a1

99K1 t1, and as R is a DMTS re�nement family, this implies that there is

s2
a2

99K2 t2 and β ∈ L for whi
h (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α, so that

(a2, t2) ∈ M2 by 
onstru
tion.

We are left with showing that M2 ∈ Tran2(s2). First we noti
e that by


onstru
tion, indeed s2
a2

99K2 t2 for all (a2, t2) ∈ M2. Now let s2 −→ N2; we need

to show that N2 ∩ M2 6= ∅.
We have s1 −→ N1 su
h that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈

Rβ , F (a1, a2, β) ⊑
L

α. We know that N1∩M1 6= ∅, so let (a1, t1) ∈ N1∩M1. Then

there is (a2, t2) ∈ N2 and β ∈ L su
h that (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α.

But (a2, t2) ∈ N2 implies s2
a2

99K2 t2, hen
e (a2, t2) ∈ M2.

dL
m

(D1,D2) ⊑L dL
m

(da(D1), da(D2)):

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS. There

exists an AA re�nement family R = {Rα ⊆ S1 × S2 | α ∈ L} su
h that for all

s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2 with (s0
1, s

0
2) ∈ RdL

m

(da(D1),da(D2)). We show that R is a

DMTS re�nement family. Let α ∈ L and (s1, s2) ∈ Rα.

Let s1
a1

99K1 t1, then we 
annot have s1 −→ ∅. Let M1 = {(a1, t1)} ∪
⋃

{N1 |
s1 −→ N1}, then M1 ∈ Tran1(s1) by 
onstru
tion. This implies that there

is M2 ∈ Tran2(s2), (a2, t2) ∈ M2 and β ∈ L su
h that (t1, t2) ∈ Rβ and

F (a1, a2, β) ⊑
L

α, but then also s2
a2

99K t2 as was to be shown.

Let s2 −→ N2 and assume, for the sake of 
ontradi
tion, that there is no

s1 −→ N1 for whi
h ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈
Rβ , F (a1, a2, β) ⊑

L

α holds. Then for ea
h s1 −→ N1, there is an element

(aN1
, tN1

) ∈ N1 su
h that ∃(a2, t2) ∈ N2, β ∈ L : (tN1
, t2) ∈ Rβ , F (aN1

, a2, β) ⊑
L

α does not hold.
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Let M1 = {(aN1
, tN1

) | s1 −→ N1}, then M1 ∈ Tran1(s1) by 
onstru
tion.

Hen
e we have M2 ∈ Tran2(s2) su
h that ∀(a2, t2) ∈ M2 : ∃(a1, t2) ∈ M1, β ∈ L :
(t1, t2) ∈ Rβ , F (a1, a2, β) ⊑ α. Now N2 ∩M2 6= ∅, so let (a2, t2) ∈ N2 ∩M2, then

there is (a1, t1) ∈ M1 and β ∈ L su
h that (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α,
in 
ontradi
tion to how M1 was 
onstru
ted.

dL
m

(ad(A1), ad(A2)) ⊑L dL
m

(A1,A2):

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA, with DMTS trans-

lations (D1, D
0
1,−→1, 99K1), (D2, D

0
2,−→2, 99K2). There is an AA re�nement

family R = {Rα ⊆ S1 × S2 | α ∈ L} su
h that for all s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2

with (s0
1, s

0
2) ∈ RdL

m

(A1,A2).

De�ne a relation family R′ = {R′
α ⊆ D1 × D2 | α ∈ L} by

R′
α = {(M1, M2) | ∃(s1, s2) ∈ Rα : M1 ∈ Tran1(s1), M2 ∈ Tran(s2),

∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α,

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α.

We show that R′
is a witness for dL

m

(ad(A1), ad(A2)) ⊑L dL
m

(A1,A2). Let α ∈ L
and (M1, M2) ∈ R′

α.

Let M2 −→2 N2. By 
onstru
tion of −→, there is (a2, t2) ∈ M2 su
h that

N2 = {(a2, M
′
2) | M ′

2 ∈ Tran2(t2)}. Then (M1, M2) ∈ R′
α implies that there

must be (a1, t1) ∈ M1 and β ∈ L su
h that (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α.
Let N1 = {(a1, M

′
1) | M ′

1 ∈ Tran1(t1)}, then M1 −→1 N1.

We show that ∀(a1, M
′
1) ∈ N1 : ∃(a2, M

′
2) ∈ N2 : (M ′

1, M
′
2) ∈ R′

β : Let

(a1, M
′
1) ∈ N1, then M ′

1 ∈ Tran1(t1). From (t1, t2) ∈ Rβ we get M ′
2 ∈ Tran2(t2)

su
h that

∀(b1, u1) ∈ M ′
1 : ∃(b2, u2) ∈ M ′

2, γ ∈ L : (u1, u2) ∈ Rγ , F (b1, b2, γ) ⊑
L

β,

∀(b2, u2) ∈ M ′
2 : ∃(b1, u1) ∈ M ′

1, γ ∈ L : (u1, u2) ∈ Rγ , F (b1, b2, γ) ⊑
L

β,

hen
e (M ′
1, M

′
2) ∈ R′

β ; also, (a2, M
′
2) ∈ N2 by 
onstru
tion of N2.

Let M1
a1

99K1 M ′
1, then we have M1 −→1 N1 for whi
h (a1, M

′
1) ∈ N1 by


onstru
tion of 99K1. This in turn implies that there must be (a1, t1) ∈ M1

su
h that N1 = {(a1, M
′′
1 ) | M ′′

1 ∈ Tran1(t1)}. By (M1, M2) ∈ R′
α, we get

(a2, t2) ∈ M2 and β ∈ L su
h that (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α. Let

N2 = {(a2, M
′
2) | M ′

2 ∈ Tran2(t2)}, then M2 −→2 N2 and hen
e M2
a2

99K2 M ′
2 for

all (a2, M
′
2) ∈ N2. By the same arguments as above, there is (a2, M

′
2) ∈ N2 for

whi
h (M ′
1, M

′
2) ∈ R′

β .

We miss to show that R′
is initialized. Let M0

1 ∈ D0
1, then we have s0

1 ∈ S0
1

with M0
1 ∈ Tran1(s

0
1). As R is initialized, this entails that there is s0

2 ∈ S0
2

with (s0
1, s

0
2) ∈ RdL

m

(A1,A2), whi
h gives us M0
2 ∈ Tran2(s

0
2) whi
h satis�es the


onditions in the de�nition of R′
dL
m

(A1,A2)
, when
e (M0

1 , M0
2 ) ∈ R′

dL
m

(A1,A2).

dL
m

(A1,A2) ⊑L dL
m

(ad(A1), ad(A2)):

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA, with DMTS trans-

lations (D1, D
0
1,−→1, 99K1), (D2, D

0
2 ,−→2, 99K2). There is a DMTS re�nement
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family R = {Rα ⊆ D1 × D2 | α ∈ L} su
h that for all M0
1 ∈ D0

1 , there exists

M0
2 ∈ D0

2 with (M0
1 , M0

2 ) ∈ RdL
m

(ad(A1),ad(A2)).

De�ne a relation family R′ = {R′
α ⊆ S1 × S2 | α ∈ L} by

R′
α = {(s1, s2) | ∀M1 ∈ Tran1(s1) : ∃M2 ∈ Tran2(s2) : (M1, M2) ∈ Rα};

we will show that R′
is a witness for dL

m

(A1,A2) ⊑L dL
m

(ad(A1), ad(A2)).

Let α ∈ L, (s1, s2) ∈ R′
α and M1 ∈ Tran1(s1), then by 
onstru
tion of R′

,

we have M2 ∈ Tran2(s2) with (M1, M2) ∈ Rα.

Let (a2, t2) ∈ M2 and de�ne N2 = {(a2, M
′
2) | M ′

2 ∈ Tran2(t2)}, then
M2 −→2 N2. Now (M1, M2) ∈ Rα implies that there must be M1 −→1 N1 satis-

fying ∀(a1, M
′
1) ∈ N1 : ∃(a2, M

′
2) ∈ N2, β ∈ L : (M ′

1, M
′
2) ∈ Rβ , F (a1, a2, β) ⊑

L

α. We have (a1, t1) ∈ M1 su
h that N1 = {(a1, M
′
1) | M ′

1 ∈ Tran1(t1)}; we only
miss to show that (t1, t2) ∈ R′

β for some β ∈ L with F (a1, a2, β) ⊑
L

α. Let
M ′

1 ∈ Tran1(t1), then (a1, M
′
1) ∈ N1, hen
e there is (a2, M

′
2) ∈ N2 and β ∈ L

su
h that (M ′
1, M

′
2) ∈ Rβ and F (a1, a2, β) ⊑ α, but (a2, M

′
2) ∈ N2 also entails

M ′
2 ∈ Tran2(t2).

Let (a1, t1) ∈ M1 and de�ne N1 = {(a1, M
′
1) | M ′

1 ∈ Tran1(t1)}, then

M1 −→1 N1. Now let (a1, M
′
1) ∈ N1, then M1

a1

99K1 M ′
1, hen
e we have M2

a2

99K2

M ′
2 and β ∈ L su
h that (M ′

1, M
′
2) ∈ Rβ and F (a1, a2, β) ⊑

L

α. By 
onstru
-

tion of 99K2, this implies that there is M2 −→2 N2 with (a2, M
′
2) ∈ N2, and

we have (a2, t2) ∈ M2 for whi
h N2 = {(a2, M
′′
2 ) | M ′′

2 ∈ Tran2(t2)}. Now
if M ′′

1 ∈ Tran1(t1), then (a1, M
′′
1 ) ∈ N1, hen
e there is (a2, M

′′
2 ) ∈ N2 with

(M ′′
1 , M ′′

2 ) ∈ Rβ , but (a, M ′′
2 ) ∈ N2 also gives M ′′

2 ∈ Tran2(t2).

We miss to show that R′
is initialized. Let s0

1 ∈ S0
1 and M0

1 ∈ Tran1(s
0
1). As

R is initialized, this gets us M0
2 ∈ D2 with (M0

1 , M0
2 ) ∈ RdL

m

(ad(A1),ad(A2)), but

M0
2 ∈ Tran2(s

0
2) for some s0

2 ∈ S0
2 , and then (s0

1, s
0
2) ∈ R′

dL
m

(ad(A1),ad(A2)).

dL
m

(dn(D1), dn(D2)) ⊑L dL
m

(D1,D2):

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS, with ν-


al
ulus translations dn(D1) = (S1, S
0
1 , ∆1), dn(D2) = (S2, S

0
2 , ∆2). There is a

DMTS re�nement family R = {Rα ⊆ S1 ×S2 | α ∈ L} su
h that for all s0
1 ∈ S0

1 ,

there exists s0
2 ∈ S0

2 for whi
h (s0
1, s

0
2) ∈ RdL

m

(D1,D2).

Let α ∈ L, (s1, s2) ∈ Rα, a1 ∈ Σ, and t1 ∈ �
a1

1 (s1). Then s1
a1

99K1 t1, hen
e

we have s2
a2

99K2 t2 and β ∈ L with (t1, t2) ∈ Rβ and F (a1, a2, β) ⊑
L

α, but then
also t2 ∈ �

a2

2 (s2).

Let N2 ∈ ♦2(s2), then also s2 −→2 N2, so that there must be s1 −→1 N1

su
h that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α,
but then also N1 ∈ ♦1(s1).

dL
m

(D1,D2) ⊑L dL
m

(dn(D1), dn(D2)):

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS, with ν-


al
ulus translations dn(D1) = (S1, S
0
1 , ∆1), dn(D2) = (S2, S

0
2 , ∆2). There is a

ν-
al
ulus re�nement family R = {Rα ⊆ S1 × S2 | α ∈ L} su
h that for all

s0
1 ∈ S0

1 , there exists s0
2 ∈ S0

2 for whi
h (s0
1, s

0
2) ∈ RdL

m

(D1,D2).
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Let α ∈ L and (s1, s2) ∈ Rα, and assume that s1
a1

99K1 t1. Then t1 ∈ �
a1

1 (s1),
so that there is a2 ∈ Σ, t2 ∈ �

a2

2 (s2) and β ∈ L for whi
h (t1, t2) ∈ Rβ and

F (a1, a2, β) ⊑
L

α, but then also s2
a2

99K2 t2.
Assume that s2 −→2 N2, then N2 ∈ ♦2(s2). Hen
e there is N1 ∈ ♦1(s1) so

that ∀(a1, t1) ∈ N1 : ∃(a2, t2) ∈ N2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) ⊑
L

α, but
then also s1 −→1 N1.

dL
m

(nd(N1),nd(N2)) ⊑L dL
m

(N1,N2):

Let N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2) be ν-
al
ulus expressions in

normal form, with DMTS translations nd(N1) = (X1, X
0
1 , 99K1,−→1), nd(N2) =

(X2, X
0
2 , 99K2,−→2). There is a ν-
al
ulus re�nement family R = {Rα ⊆ X1 ×

X2 | α ∈ L} su
h that for all x0
1 ∈ X0

1 , there is x0
2 ∈ X0

2 for whi
h (x0
1, x

0
2) ∈

RdL
m

(N1,N2).

Let α ∈ L and (x1, x2) ∈ Rα, and assume that x1
a1

99K1 y1. Then y1 ∈
�

a1

1 (x1), hen
e there are a2 ∈ Σ, y2 ∈ �
a2

2 and β ∈ L su
h that (y1, y2) ∈ Rβ

and F (a1, a2, β) ⊑
L

α, but then also x2
a2

99K2 y2.

Assume that x2 −→2 N2, then N2 ∈ ♦2(x2). Hen
e there must be N1 ∈
♦1(x1) su
h that ∀(a1, y1) ∈ N1 : ∃(a2, y2) ∈ N2, β ∈ L : (y1, y2) ∈ Rβ , F (a1, a2, β) ⊑

L

α, but then also x1 −→1 N1.

dL
m

(N1,N2) ⊑L dL
m

(nd(N1),nd(N2)):

Let N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2) be ν-
al
ulus expressions in

normal form, with DMTS translations nd(N1) = (X1, X
0
1 , 99K1,−→1), nd(N2) =

(X2, X
0
2 , 99K2,−→2). There is a DMTS re�nement family R = {Rα ⊆ X1 ×X2 |

α ∈ L} su
h that for all x0
1 ∈ X0

1 , there is x0
2 ∈ X0

2 for whi
h (x0
1, x

0
2) ∈

RdL
m

(N1,N2).

Let α ∈ L, (x1, x2) ∈ Rα, a1 ∈ Σ, and y1 ∈ �
a1

1 (x1). Then x1
a1

99K1 y1, hen
e

we have x2
a2

99K2 y2 and β ∈ L so that (y1, y2) ∈ Rβ and F (a1, a2, β) ⊑
L

α, but
then also y1 ∈ �

a2

2 (x2).
Let N2 ∈ ♦2(x2), then also x2 −→2 N2. Hen
e we must have x1 −→1 N1

with ∀(a1, y1) ∈ N1 : ∃(a2, y2) ∈ N2, β ∈ L : (y1, y2) ∈ Rβ , F (a1, a2, β) ⊑
L

α,
but then also N1 ∈ ♦1(x1). ⊓⊔

Proof (of Proposition 19, �rst part). We show the proposition for AA. First, if

A1 ≤
m

A2, with A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2), then there is an

initialized re�nement relation R ⊆ S1 × S2, i.e., su
h that for all (s1, s2) ∈ R
and all M1 ∈ Tran1(s1), there is M2 ∈ Tran2(s2) for whi
h

� ∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2 : a1 4 a2, (t1, t2) ∈ R and

� ∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1 : a1 4 a2, (t1, t2) ∈ R.

De�ning R′ = {R′
α | α ∈ L} by R′

α = R for all α ∈ L, we see that R′
is an

initialized re�nement family whi
h witnesses dL
m

(A1,A2) = ⊥
L

.

We have shown that A1 ≤
m

A2 implies dL
m

(A1,A2) = ⊥
L

; as a spe
ial 
ase,

we see that dL
m

(A,A) = ⊥
L

for all AA A. Now if A1 ≤
th

A2 instead, then for all
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I ∈ JA1K, also I ∈ JA2K, hen
e dL
th

(A1,A2) = ⊥
L

. As a spe
ial 
ase, we 
on
lude

that dL
th

(A,A) = ⊥
L

for all AA A.

Next we show the triangle inequality for dL
m

. The triangle inequality for dL
th

will then follow from standard arguments used to show that the Hausdor� metri


satis�es the triangle inequality. Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2),

A3 = (S3, S
0
3 ,Tran3) be AA and R1 = {R1

α ⊆ S1 × S2 | α ∈ L}, R2 = {R2
α ⊆

S2 × S3 | α ∈ L} re�nement families su
h that ∀s0
1 ∈ S0

1 : ∃s0
2 ∈ S0

2 : (s0
1, s

0
2) ∈

R1
dL
m

(A1,A2) and ∀s0
2 ∈ S0

2 : ∃s0
3 ∈ S0

3 : (s0
2, s

0
3) ∈ R2

dL
m

(A2,A3).

De�ne R = {Rα ⊆ S1 × S3 | α ∈ L} by Rα = {(s1, s3) | ∃α1, α2 ∈ L, s2 ∈
S2 : (s1, s2) ∈ R1

α1
, (s2, s3) ∈ R2

α2
, α1 �

L

α2 = α}. We see that ∀s0
1 ∈ S0

1 : ∃s0
3 ∈

S0
3 : (s0

1, s
0
3) ∈ RdL

m

(A1,A2)�
L

dL
m

(A2,A3); we show that R is a re�nement family

from A1 to A2.

Let α ∈ L and (s1, s3) ∈ Rα, then we have α1, α2 ∈ L and s2 ∈ S2 su
h that

α1 �
L

α2 = α, (s1, s2) ∈ R1
α1

and (s2, s3) ∈ R2
α2
. Let M1 ∈ Tran1(s1), then we

have M2 ∈ Tran2(s2) su
h that

∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2, β1 ∈ L : (t1, t2) ∈ R1
β1

, F (a1, a2, β1) ⊑L α1, (6)

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β1 ∈ L : (t1, t2) ∈ R1
β1

, F (a1, a2, β1) ⊑L α1. (7)

This in turn implies that there is M3 ∈ Tran3(s3) with

∀(a2, t2) ∈ M2 : ∃(a3, t3) ∈ M3, β2 ∈ L : (t2, t3) ∈ R2
β2

, F (a2, a3, β2) ⊑L α2, (8)

∀(a3, t3) ∈ M3 : ∃(a2, t2) ∈ M2, β2 ∈ L : (t2, t3) ∈ R2
β2

, F (a2, a3, β2) ⊑L α2. (9)

Now let (a1, t1) ∈ M1, then we get (a2, t2) ∈ M2, (a3, t3) ∈ M3 and β1, β2 ∈ L
as in (6) and (8). Let β = β1 �

L

β2, then (t1, t3) ∈ Rβ , and by the extended

triangle inequality for F , F (a1, a3, β) ⊑
L

F (a1, a2, β1)�LF (a2, a3, β2) ⊑L α1�
L

α2 = α.

Similarly, given (a3, t3) ∈ M3, we 
an apply (9) and (7) to get (a1, t1) ∈ M1

and β ∈ L su
h that (t1, t3) ∈ Rβ and F (a1, a3, β) ⊑
L

α.

We have shown that dL
m

and dL
t

are L-hemimetri
s. Using monotoni
ity of

the eval fun
tion, it follows that d
m

and d
t

are hemimetri
s. ⊓⊔

Proof (of Proposition 19, se
ond part). We already know that, also for the dis-


rete distan
es, A1 ≤
m

A2 implies d
m

(A1,A2) = 0 and that A1 ≤
th

A2 im-

plies d
th

(A1,A2) = 0. We show that d
m

(A1,A2) = 0 implies A1 ≤
m

A2. Let

R = {Rα ⊆ S1 × S2 | α ∈ L} be a re�nement family su
h that ∀s0
1 ∈ S0

1 : ∃s0
2 ∈

S0
2 : (s0

1, s
0
2) ∈ R0. We show that R0 is a witness for A1 ≤

m

A2; it is 
learly

initialized.

Let (s1, s2) ∈ R0 and M1 ∈ Tran1(s1), then we have M2 ∈ Tran2(s2) su
h

that

∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) = 0,

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1, β ∈ L : (t1, t2) ∈ Rβ , F (a1, a2, β) = 0.
(10)
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Using the de�nition of the distan
e, we see that the 
ondition F (a1, a2, β) = 0
is equivalent to a1 4 a2 and β = 0, hen
e (10) degenerates to

∀(a1, t1) ∈ M1 : ∃(a2, t2) ∈ M2 : (t1, t2) ∈ R0, a1 4 a2,

∀(a2, t2) ∈ M2 : ∃(a1, t1) ∈ M1 : (t1, t2) ∈ R0, a1 4 a2,

whi
h are exa
tly the 
onditions for R0 to be a modal re�nement.

Again by de�nition, we see that for any AA A1, A2, either d
m

(A1,A2) = 0
or d

m

(A1,A2) = ∞, hen
e A1 6≤
m

A2 implies that d
m

(A1,A2) = ∞.

To show the last part of the proposition, we noti
e that

d
th

(A1,A2) = sup
I1∈JA1K

inf
I2∈JA2K

d
m

(I1, I2)

=

{

0 if ∀I1 ∈ JA1K : ∃I2 ∈ JA2K : I1 ≤
m

I2,

∞ otherwise,

=

{

0 if JA1K ⊆ JA2K,

∞ otherwise.

Hen
e d
th

(A1,A2) = 0 if A1 ≤
th

A2 and d
th

(A1,A2) = ∞ otherwise. ⊓⊔

Proof (of Theorem 20). We prove the statement for AA; for DMTS and ν-

al
ulus expressions it then follows from Theorem 18.

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2). We have a re�nement family

R = {Rα ⊆ S1 × S2 | α ∈ L} su
h that for all s0
1 ∈ S0

1 , there is s0
2 ∈ S0

2 with

(s0
1, s

0
2) ∈ RdL

m

(A1,A2). Let I = (S, S0, T ) ∈ JA1K, i.e., I ≤
m

A1.

Let R1 ⊆ S × S1 be an initialized modal re�nement, and de�ne a relation

family R2 = {R2
α ⊆ S × S2 | α ∈ L} by R2

α = R1 ◦ Rα = {(s, s2) | ∃s1 ∈ S :
(s, s1) ∈ R1, (s1, s2) ∈ Rα. We de�ne a LTS I2 = (S2, S

0
2 , T2) as follows:

For all α ∈ L with α 6= ⊤
L

and (s, s2) ∈ R2
α: We must have s1 ∈ S1 with

(s, s1) ∈ R1
and (s1, s2) ∈ Rα. Then there is M1 ∈ Tran1(s1) su
h that

� for all s
a

−→ t, there is (a, t1) ∈ M1 with (t, t1) ∈ R1,

� for all (a1, t1) ∈ M1, there is s
a

−→ t with (t, t1) ∈ R1.

This in turn implies that there is M2 ∈ Tran2(s2) satisfying the 
onditions in

De�nition 23. For all (a2, t2) ∈ M2: add a transition s2
a2−→ t2 to T2.

We show that the identity relation {(s2, s2) | s2 ∈ S2} is a witness for I2 ≤
m

A2. Let s2 ∈ S2 and s2
a2−→ t2. By 
onstru
tion, there is M2 ∈ Tran2(s2) with

(a2, t2) ∈ M2, and for all (a′
2, t

′
2) ∈ M2, s2

a′
2−→ t′2.

We show that R2
is a witness for dL

m

(I, I2); 
learly, R2
is initialized. Let

α ∈ L with α 6= ⊤
L

and (s, s2) ∈ R2
α, then there is s1 ∈ S1 with (s, s1) ∈ R1

and (s1, s2) ∈ Rα. We also have M1 ∈ Tran1(s1) su
h that

� for all s
a

−→ t, there is (a, t1) ∈ M1 with (t, t1) ∈ R1
,

� for all (a1, t1) ∈ M1, there is s
a1−→ t with (t, t1) ∈ R1
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and thus M2 ∈ Tran2(s2) satisfying the 
onditions in De�nition 23.

Let s
a

−→ t, then there is (a, t1) ∈ M1 with (t, t1) ∈ R1
, hen
e also (a2, t2) ∈

M2 and β ∈ L with (t1, t2) ∈ Rβ and F (a, a2, β) ⊑
L

α. But then (t, t2) ∈ R2
β ,

and s2
a2−→ t2 by 
onstru
tion.

Let s2
a2−→ t2. By 
onstru
tion, there is M2 ∈ Tran2(s2) with (a2, t2) ∈ M2.

This implies that there is M1 ∈ Tran1(s1), β ∈ L and (a1, t1) ∈ M1 with

(t1, t2) ∈ Rβ and F (a1, a2, β) ⊑ α. But then there is also s
a1−→ t with (t, t1) ∈ R1

,

hen
e (t, t2) ∈ R2
β . ⊓⊔

Proof (of Theorem 21). We show the proof for AA. For i = 1, 2, 3, 4, let Ai =
(Si, S

0
i ,Trani). Let R1 = {R1

α ⊆ S1×S3 | α ∈ L}, R2 = {R2
α ⊆ S2×S4 | α ∈ L}

be re�nement families su
h that ∀s0
1 ∈ S0

1 : ∃s0
3 ∈ S0

3 : (s0
1, s

0
3) ∈ R1

dL
m

(A1,A3) and

∀s0
2 ∈ S0

2 : ∃s0
4 ∈ S0

4 : (s0
2, s

0
4) ∈ R2

dL
m

(A2,A4). De�ne R = {Rα ⊆ (S1 ×S2)× (S3 ×

S4) | α ∈ } by

Rα = {((s1, s2), (s3, s4)) | ∃α1, α2 ∈ L :

(s1, s3) ∈ R1
α1

, (s2, s4) ∈ R2
α2

, P (α1, α2) ⊑L α},

then it is 
lear that ∀(s0
1, s

0
2) ∈ S0

1 ×S0
2 : ∃(s0

3, s
0
4) ∈ S0

3 ×S0
4 : ((s0

1, s
0
2), (s

0
3, s

0
4)) ∈

RP (dL
m

(A1,A3),d
L

m

(A2,A4)). We show that R is a re�nement family from A1‖A2 to

A3‖A4.

Let α ∈ L and ((s1, s2), (s3, s4)) ∈ Rα, then we have α1, α2 ∈ L with

(s1, s3) ∈ R1
α1
, (s2, s4) ∈ R2

α2
and P (α1, α2) ⊑

L

α. Let M12 ∈ Tran((s1, s2)),
then there must be M1 ∈ Tran1(s1), M2 ∈ Tran2(s2) for whi
h M12 = M1 �M2.

Thus we also have M3 ∈ Tran3(s3) and M4 ∈ Tran4(s4) su
h that

∀(a1, t1) ∈ M1 : ∃(a3, t3) ∈ M3, β1 ∈ L : (t1, t3) ∈ R1
β1

, F (a1, a3, β1) ⊑L α1,

(11)

∀(a3, t3) ∈ M3 : ∃(a1, t1) ∈ M1, β1 ∈ L : (t1, t3) ∈ R1
β1

, F (a1, a3, β1) ⊑L α1,

(12)

∀(a2, t2) ∈ M2 : ∃(a4, t4) ∈ M4, β2 ∈ L : (t2, t4) ∈ R2
β2

, F (a2, a4, β2) ⊑L α2,

(13)

∀(a4, t4) ∈ M4 : ∃(a2, t2) ∈ M2, β2 ∈ L : (t2, t4) ∈ R2
β2

, F (a2, a4, β2) ⊑L α2.

(14)

Let M34 = M3 � M4 ∈ Tran((s3, s4)). Let (a12, (t1, t2)) ∈ M12, then there

are (a1, t1) ∈ M1 and (a2, t2) ∈ M2 for whi
h a12 = a1 �a2. Using (11) and (13),

we get (a3, t3) ∈ M3, (a4, t4) ∈ M4 and β1, β2 ∈ L su
h that (t1, t3) ∈ R1
β1
,

(t2, t4) ∈ R2
β2
, F (a1, a3, β1) ⊑L α1, and F (a2, a4, β2) ⊑L α2.

Let a34 = a3�a4 and β = P (β1, β2), then (a34, (t3, t4)) ∈ M34. Also, (t1, t3) ∈
R1

β1
and (t2, t4) ∈ R2

β2
imply that ((t1, t2), (t3, t4)) ∈ Rβ , and

F (a12, a34, β) = F (a1 � a2, a3 � a4, P (β1, β2))

⊑ P (F (a1, a3, β1), F (a2, a4, β2))

⊑
L

P (α1, α2) ⊑L α.
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We have shown that ∀(a12, (t1, t2)) ∈ M12 : ∃(a34, (t3, t4)) ∈ M34, β ∈ L :
((t1, t2), (t3, t4)) ∈ Rβ, F (a12, a34, β) ⊑

L

α. To show the reverse property, start-

ing from an element (a34, (t3, t4)) ∈ M34, we 
an pro
eed entirely analogous,

using (12) and (14). ⊓⊔

Proof (of Theorem 22). We show the proof for AA. Let A1 = (S1, S
0
1 ,Tran1),

A2 = (S2, S
0
2 ,Tran2), A3 = (S3, S

0
3 ,Tran3); we show that dL

m

(A1‖A2,A3) =
dL
m

(A2,A3/A1).
We assume that the elements of Tran1(s1) are pairwise disjoint for ea
h

s1 ∈ S1; this 
an be a
hieved by, if ne
essary, splitting states.

De�neR = {Rα ⊆ S1×S2×S3 | α ∈ L} byRα = {(s1‖s2, s3) | dL
m

(s2, s3/s1) ⊑L
α}. We show that R is a witness for dL

m

(A1‖A2,A3).
Let s0

1‖s
0
2 ∈ S0

1 × S0
2 , then there is s0

3/s0
1 ∈ s0

for whi
h dL
m

(s0
2, s

0
3/s0

1) ⊑
L

dL
m

(A2,A3/A1), hen
e (s0
1‖s

0
1, s

0
3) ∈ RdL

m

(A2,A3/A1).

Let α ∈ L \ {⊤
L

}, (s1‖s2, s3) ∈ Rα and M‖ ∈ Tran‖(s1‖s2). Then M‖ =
M1‖M2 with M1 ∈ Tran1(s1) and M2 ∈ Tran2(s2). As dL

m

(s2, s3/s1) ⊑
L

α,
we 
an pair M2 with an M/ ∈ Tran/(s3/s1), i.e., su
h that the 
onditions in

De�nition 23 are satis�ed.

Let M3 = M/⊲M1. We show that the 
onditions in De�nition 23 are satis�ed

for the pair M‖, M3:

� Let (a, t1‖t2) ∈ M‖, then there are a1, a2 ∈ Σ with a = a1 � a2 and

(a1, t1) ∈ M1, (a2, t2) ∈ M2. Hen
e there is (a′
2, t) ∈ M/ and β ∈ L su
h

that F (a2, a
′
2, β) ⊑

L

α and dL
m

(t2, t) ⊑L β.
Note that a3 = a1�a′

2 is de�ned and F (a, a3, β) ⊑ α. Write t = {t13/t11, . . . , t
n
3/tn1}.

By 
onstru
tion, there is an index i for whi
h ti1 = t1, hen
e (a3, t
i
3) ∈ M3.

Also, t ⊇ {ti3/ti1}, hen
e dL
m

(t2, t
i
3/ti1) ⊑ β and 
onsequently (t1‖t2, t3) ∈ Rβ .

� Let (a3, t3) ∈ M3, then there are (a′
2, t) ∈ M/ and (a1, t1) ∈ M1 su
h that

a3 = a1�a′
2 and t3/t1 ∈ t. Hen
e there are (a2, t2) ∈ M2 and β ∈ L for whi
h

F (a2, a
′
2, β) ⊑

L

α and dL
m

(t2, t) ⊑L β. Note that a = a1 � a2 is de�ned and

F (a, a3, β) ⊑
L

α. Thus (a, t1‖t2) ∈ M , and by t ⊇ {t3/t1}, dL
m

(t2, t3/t1) ⊑ β.

Assume, for the other dire
tion of the proof, that A1‖A2 ≤
m

A3. De�ne

R = {Rα ⊆ S2 × 2S3×S1 | α ∈ L} by

Rα = {(s2, {s
1
3/s1

1, . . . , s
n
3/sn

1}) | ∀i = 1, . . . , n : dL
m

(si
1‖s2, s

i
3) ⊑L α} ;

we show that R is a witness for dL
m

(A2,A3/A1).
Let s0

2 ∈ S0
2 . We know that for every s0

1 ∈ S0
1 , there exists σ(s0

1) ∈ S0
3 su
h

that dL
m

(s0
1‖s

0
2, s

0
3) ⊑

L

dL
m

(A1‖A2,A3). By s0 ⊇ {σ(s0
1)/s0

1 | s0
1 ∈ S0

1}, we see

that (s0
2, s

0) ∈ RdL
m

(A1‖A2,A3).

Let α ∈ L \ {⊤
L

}, (s2, s) ∈ Rα, with s = {s1
3/s1

1, . . . , s
n
3/sn

1}, and M2 ∈
Tran2(s2).

For every i = 1, . . . , n, write Tran1(s
i
1) = {M i,1

1 , . . . , M i,mi

1 }. By assumption,

M i,j1
1 ∩ M i,j2

1 = ∅ for j1 6= j2, hen
e every (a1, t1) ∈∈ Tran1(s
i
1) is 
ontained in

a unique M
i,δi(a1,t1)
1 ∈ Tran1(s

i
1).
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For every j = 1, . . . , mi, let M i,j = M i,j
1 ‖M2 ∈ Tran‖(s

i
1‖s2). By dL

m

(si
1‖s2, s

i
3) ⊑L

α, we have M i,j
3 ∈ Tran3(s

i
3) su
h that the 
onditions in De�nition 23 hold for

the pair M i,j , M i,j
3 .

Now de�ne

M = {(a2, t) | ∃(a2, t2) ∈ M2 : ∀t3/t1 ∈ t : ∃i, a1, a3, β : (a1, t1) ∈∈ Tran1(s
i
1),

(a3, t3) ∈ M
i,δi(a1,t1)
3 , F (a1 � a2, a3, β) ⊑

L

α, dL
m

(t1‖t2, t3) ⊑L β} . (15)

We need to show that M ∈ Tran/(s).

Let i ∈ {1, . . . , n} and M i,j
1 ∈ Tran1(s

i
1); we 
laim that M ⊲ M i,j

1 4R M i,j
3 .

Let (a3, t3) ∈ M ⊲ M i,j
1 , then a3 = a1 � a2 for some a1, a2 su
h that t3/t1 ∈

t, (a1, t1) ∈ M i,j
1 and (a2, t) ∈ M . By disjointness, j = δi(a1, t1), hen
e by

de�nition of M , (a3, t3) ∈ M i,j
3 as was to be shown.

For the reverse in
lusion, let (a3, t3) ∈ M i,j
3 . By de�nition of M i,j

, there

are (a1, t1) ∈ M i,j
1 , (a2, t2) ∈ M2 and β for whi
h F (a1 � a2, a3, β) ⊑

L

α and

dL
m

(t1‖t2, t3) ⊑
L

β. Thus j = δi(a1, t1), so that there must be (a2, t) ∈ M for

whi
h t3/t1 ∈ t, but then also (a1 � a2, t3) ∈ M ⊲ M i,j
1 .

We show that the pair M2, M satis�es the 
onditions of De�nition 23.

� Let (a2, t2) ∈ M2. For every i = 1, . . . , n and every (a1, t1) ∈∈ Tran1(t
i
1),

we 
an use De�nition 23 applied to the pair M
i,δi(a1,t1)
1 ‖M2, M

i,δi(a1,t1)
3 to


hoose an element (ηi(a1, t1), τi(a1, t1)) ∈ M
i,δi(a1,t1)
3 and βi(a1, t1) ∈ L for

whi
h dL
m

(t1‖t2, τi(a1, t1)) ⊑L βi(a1, t1) and F (a1�a2, ηi(a1, t1), βi(a1, t1)) ⊑L
α. Let t = {τi(a1, t1)/t1 | i = 1, . . . , n, (a1, t1) ∈∈ Tran1(t

i
1)}, then (a2, t) ∈

M and (t2, t) ∈ Rβ .

� Let (a2, t) ∈ M , then we have (a2, t2) ∈ M2 satisfying the 
onditions in (15).

Hen
e for all t3/t1 ∈ t, there are i, a1, a3, β(t3/t1) su
h that (a3, t3) ∈

M
i,δi(a1,t1)
3 , F (a1 � a2, a3, β(t3/t1)) ⊑

L

α and dL
m

(t1‖t2, t3) ⊑
L

β(t3/t1).
Let β = sup{β(t3/t1) | t3/t1 ∈ t}, then dL

m

(t1‖t2, t3) ⊑
L

β for all t3/t1 ∈ t,
hen
e (t2, t) ∈ Rβ . ⊓⊔


