
Parametric Model-Checking of Time Petri Nets

with Stopwatches Using the State-Class Graph ⋆

Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux

Institute of Research in Communications and Cybernetics of Nantes,
1 rue de la Noë, BP 92101, 44321 Nantes Cedex 03, France

{Louis-Marie.Traonouez,Didier.Lime,Olivier-h.Roux}@irccyn.ec-nantes.fr

Abstract. In this paper, we propose a new framework for the paramet-
ric verification of time Petri nets with stopwatches controlled by inhibitor
arcs. We first introduce an extension of time Petri nets with inhibitor
arcs (ITPNs) with temporal parameters. Then, we define a symbolic
representation of the parametric state space based on the classical state
class graph method. The parameters of the model are embedded into the
firing domains of the classes, that are represented by convex polyhedra.
Finally, we propose semi-algorithms for the parametric model-checking of
a subset of parametric TCTL formulae on ITPNs. We can thus generate
the set of the parameter valuations that satisfy the formulae.

Key words: Time Petri nets, stopwatches, model-checking, parameters,
state-class graph

Introduction

Formal methods are widely used in the conception of real-time systems. Methods
such as model-checking allow the verification of a system by exploring the state-
space of a model. A popular class of models is Petri nets and their extensions
among which Time Petri nets (TPNs) [1] are a widely used time extension in
which transitions can be fired within a time interval.

In order to take into account the global complexity of systems, we can use
models that encompass the notion of actions that can be suspended and resumed.
This implies extending traditional clock variables by ”stopwatches”. Several ex-
tensions of TPNs address this issue, such as Preemptive-TPNs [2] or Inhibitor
Hyperarc TPNs (ITPNs) [3]. ITPNs introduce special inhibitor arcs that con-
trol the progress of transitions. These models all belong to the class of TPNs
extended with stopwatches (SwPNs)[4].

The model-checking of these models has become more and more efficient.
It nevertheless requires a complete knowledge of the system. Consequently, the
verification of the behavior must be done after the conception when the global
system and its environment are known. On the one hand, it increases the com-
plexity of the conception and the verification of systems. For too complex systems

⋆ Work supported by the French Government under grant ANR-SETI-06-003.

2 Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux

this can lead to a combinatory explosion. Besides, if the system is proven wrong
or if the environment changes, this complex verification process must be carried
out again. On the other hand, getting a complete knowledge of a system can be
impossible. In many important applications, a system is defined by parameters
that are in relation with several other systems. In the existing tools for modelling
and verification, parameters are often used, however they must be instantiated
to perform analyses. The next development step of the technology is to be able
to directly analyze a parametric model.

Related Works Parametric analysis of real-time systems has been studied
in [5]. They introduce Parametric Timed Automata (PTA) and prove that, in
the general case, the emptiness problem is undecidable. On this subject, in [6]
the authors prove that for a particular class of PTA called L/U automata this
emptiness problem is decidable. They also give a model-checking algorithm that
use parametric Difference Bound Matrices. Parametric model-checking can be
used to generate a set of constraints on the parameters such that the property is
verified. In discrete time, parametric model-checking of PTA has been studied in
[7], and some decidability results have been found. On hybrid automata, state-
space exploration algorithms have been extended to allow a parametric analysis
and implemented in the tool Hytech [8].

Another approach developed in [9] focuses on the verification of parametric
TCTL formulae on clock automata. They consider unbounded parameters that
take their value among integers and the problem is proved decidable. In [10], this
approach is used in parametric TPNs, but with bounded parameters. However,
they consider and analyze a region graph for each parameter valuation.

Our Contribution In this context, we propose to study the parametric model-
checking problem on time Petri nets and more generally on ITPNs. We consider
unbounded parameters and thus, we need a proper abstraction of the state-space
of the parametric model. In TPNs, considering that the time is dense, the state-
space of the model is infinite, but it can be represented by a finite partition as in
the state-class graph [11]. We therefore extend the state-class graph construction
with parameters and define parametric state-classes that represent at the same
time the temporal domain and the parameter domain. Although the state-class
graph does not preserve timed properties, there exists methods [12] to verify
a subset of TCTL with this abstraction. We consider this subset of formulae
and extend it with parameters. Then, we propose and prove semi-algorithms for
parametric model-checking.

Outline of the Paper In section 1, we present our parametric extension of
ITPNs (PITPNs). Then, in section 2, we introduce some decidability and unde-
cidability results. Section 3 defines the parametric state-class graph of PITPNs.
In section 4, we study the parametric model-checking of a subset of TCTL
with parameters. Finally, in 5 we discuss our solution to the parametric model-
checking problem.

Due to the lack of place proofs of theorems and algorithms are not included
in this paper but can be found in the internal report based on this article [13].

Parametric Model-Checking of Time Petri Nets with Stopwatches 3

1 Parametric Time Petri Nets with Inhibitor Arcs

1.1 Notations

The sets N, Q+ and R+ are respectively the sets of natural, non-negative rational
and non-negative real numbers. An interval I of R+ is a Q-interval iff its left
endpoint I↑ belongs to Q+ and its right endpoint I↓ belongs to Q+ ∪ {∞}. We
denote by I(Q) the set of Q-intervals of R+.

1.2 Formal Definitions of PITPNs

We parameterize the ITPN model with a set of temporal parameters Par =
{λ1, λ2, . . . , λl} by replacing some of the temporal bounds of the transitions
by parameters. These parameters are considered as constant variables in the
semantics, and take their values among rationals.

Some initial constraints are given on the parameters. These constraints define

the domain Dp ⊆ Q+Par
of the parameters which is a convex polyhedron. These

constraints must at least specify that for all parameters valuations in Dp, the
minimum bounds of the firing intervals of the transitions are inferior to the
maximum bounds. Additional linear constraints may of course be given.

A valuation of the parameters is a function ν : Par → Q+, such that
[ν(λ1) ν(λ2) . . . ν(λl)]

⊤ ∈ Dp, which is equivalent to say that ν is a point of
Dp. We will also write that ν = [λ1 λ2 . . . λl]

⊤.

A linear constraint over the parameters is an expression γ =
∑l

i=0 ai∗λi ∼ b,
where ∀0 ≤ i ≤ l, ai, b ∈ R and ∼∈ {=, <,>,≤,≥}. A convex polyhedron is a
conjunction of linear constraints.

A parametric time interval is a function J : Dp → I(Q+) that associates to
each parameter valuation a Q-interval. The set of parametric time intervals over
Par is denoted by J (Par).

Definition 1. A parametric time Petri net with inhibitor arcs (PITPN) is a
tuple N = 〈P, T, Par, •(.), (.)•, ◦(.),M0, Js, Dp〉, where:

– P = {p1, p2, . . . , pm} is a non-empty finite set of places,
– T = {t1, t2, . . . , tn} is a non-empty finite set of transitions,
– Par = {λ1, λ2, . . . , λl} is a finite set of parameters,
– •(.) ∈ (NP)T is the backward incidence function,
– (.)• ∈ (NP)T is the forward incidence function,
– ◦(.) ∈ (NP)T is the inhibition function,
– M0 ∈ NP is the initial marking of the net,
– Js ∈ (J (Par))T is the function that associates a parametric firing interval

to each transition,

– Dp ⊆ Q+Par
is a convex polyhedron that is the domain of the parameters.

A marking M of the net is an element of NP such that ∀p ∈ P,M(p) is the
number of tokens in the place p.

4 Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux

A transition t is said to be enabled by the marking M if M ≥• t, (i.e. if the
number of tokens in M in each input place of t is greater or equal to the value on
the arc between this place and the transition). We denote it by t ∈ enabled (M).

A transition t is said to be inhibited by the marking M if the place connected
to one of its inhibitor arc is marked with at least as many tokens than the weight
of the considered inhibitor arc between this place and t: 0 < ◦t ≤M . We denote
it by t ∈ inhibited (M). Practically, inhibitor arcs are used to stop the elapsing of
time for some transitions: an inhibitor arc between a place p and a transition t
means that the stopwatch associated to t is stopped as long as place p is marked
with enough tokens.

A transition t is said to be active in the marking M if it is enabled and not
inhibited by M .

Example 1. In the figure 1 an example of PTPN is given that includes three
parameters a, b and c.

• •A B

C D E

t1[a, 10] t2[b, c] t3[5, 5]

Fig. 1. A parametric time Petri net

1.3 Semantics of Parametric Time Petri Nets with Inhibitor Arcs

The semantics of a Parametric Time Petri net with Inhibitor Arcs N is defined
for a parameter valuation ν ∈ Dp, as the non-parametric ITPN obtained when
replacing in N all the parameters by their valuation.

Definition 2 (Semantics of a PITPN). Given a PITPN N = 〈P, T, Par,
•(.), (.)•, ◦(.),M0, Js, Dp〉, and a valuation ν ∈ Dp, the semantics JN Kν = 〈P, T,
•(.), (.)•, ◦(.),M0, Is〉 of N is a ITPN such that ∀t ∈ T, Is(t) = Js(t)(ν).

We now recall the semantics of an ITPN.
A transition t is said to be firable when it has been enabled and not inhibited

for at least Is(t)
↑ time units.

A transition tk is said to be newly enabled by the firing of the transition ti
from the marking M , and we denote it by ↑ enabled (tk,M, ti), if the transition
is enabled by the new marking M −• ti + t•i but was not by M −• ti, where M
is the marking of the net before the firing of ti. Formally:

↑enabled (tk,M, ti) = (•tk ≤M −• ti + t•i)
∧((tk = ti) ∨ (•tk > M −• ti))

By extension, we will denote by ↑ enabled (M, ti) the set of transitions newly
enabled by firing the transition ti from the marking M .

Parametric Model-Checking of Time Petri Nets with Stopwatches 5

Definition 3. A state of a ITPN is a pair q = (M, I) in which M is a marking
and I is a function called the interval function. Function I ∈ (I(Q))T associates
a temporal interval with every transition enabled at M .

The semantics of an ITPN is defined as a timed transition system (TTS) [14],
in which two kinds of transitions may occur: time transitions when time passes
and discrete transitions when a transition of the net is fired.

Definition 4 (Semantics of an ITPN). The semantics of a time Petri net
with inhibitor arcs N = 〈P, T,•(.), (.)•, ◦(.),M0, Is〉 is defined as the TTS SN =
〈Q, q0,→〉 such that:

– Q = NP × (I(Q))T ,
– q0 = (M0, Is),
– →∈ Q× (T ∪ R+) ×Q is the transition relation including a time transition

relation and a discrete transition relation.
The time transition relation is defined ∀d ∈ R+ by:

(M, I)
d
−→ (M, I ′) iff ∀ti ∈ T,

I ′(ti) =

{

I(ti) if ti ∈ enabled (M) and ti ∈ inhibited (M)
I ′(ti)

↑ = max(0, I(ti)
↑ − d), and I ′(ti)

↓ = I(ti)
↓ − d otherwise,

M ≥• ti ⇒ I ′(ti)
↓ ≥ 0

The discrete transition relation is defined ∀ti ∈ T by:

(M, I)
ti−→ (M ′, I ′) iff

ti ∈ enabled (M) and ti 6∈ inhibited (M) ,
M ′ = M −• ti + t•i ,
I(ti)

↑ = 0,

∀tk ∈ T, I ′(tk) =

{

Is(tk) if ↑enabled (tk,M, ti)
I(tk) otherwise

A run ρ of length n ≥ 0 in SN is a finite or infinite sequence of alternating
time and discrete transitions of the form

ρ = q0
d0−−→ q0 + d0

t0−−→ q1
d1−−→ q1 + d1

t1−−→ · · · qn dn−−−→ · · ·

We write first(ρ) the first state of a run ρ. A run is initial if first(ρ) = q0. A
run ρ of N is an initial run of SN . For a state q, the set of all the infinite runs
starting from q is denoted by π(q). The set of all the runs of N is π(q0).

For a state qi in ρ the absolute time elapsed (relative to the initial state)
is time(q) = d0 + d1 + · · · + di−1. For a run ρ the total elapsed time in ρ is
time(ρ) =

∑n

i=0 di. In this paper we restrict ourselves to non-zeno ITPN, which
means that the elapsed time is diverging (i.e. ∀ρ ∈ π(q0), time(ρ) = ∞), and by
extension to non-zeno PITPN (i.e. such that ∀ν ∈ Dp, JN Kν is non zeno).

2 Decidability of Parametric TPNs

In this section, we give some results concerning the decidability of the emptiness
and reachability problems for bounded parametric time Petri nets (without in-
hibitor arcs). The case of PITPNs is of little interest since these problems are
already known undecidable for bounded ITPNs [4].

6 Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux

Let us consider lower/upper bound (L/U) bounded parametric TPNs i.e.
every parameter occurring in the PTPN is either the lower bound of some of the
time intervals or their upper bound, but there exists no pair of intervals I1, I2
and no parameter λ such that λ = I↑1 and λ = I↓2 .

Theorem 1. The emptiness and reachability problems are decidable on bounded
L/U parametric TPNs.

Proof (Theorem 1). The structural and syntactical translation proposed in [15]
from a TPN into a bisimilar timed automaton (TA) can straightforwardly be
extended from L/U PTPNs to L/U parametric TA [6]. Therefore, since the
emptiness and reachability problems are decidable for L/U parametric TA [6],
they also are decidable for L/U PTPNs.

Theorem 2. The emptiness and reachability problems are undecidable on bounded
Parametric TPNs.

Proof (Theorem 2). The structural and syntactical translation preserving timed
language acceptance proposed in [16] from a TA into a bounded TPN can
straightforwardly be extended to parametric TA. Thus, for every parametric
TA, we can compute a parametric TPN that accepts the same timed language.
Since the emptiness problem (and then, the reachability problem) is undecidable
for parametric TA [5], it is also undecidable for parametric TPNs.

3 The Parametric State-Class Graph of a PITPN

Since the state-space of a non-parametric TPN is generally infinite in dense-time,
it is required to abstract the time by merging some states into some equivalence
classes. Consequently, symbolic representations of the state-space are used. One
of the approaches to partition the state-space in a finite set of infinite state
classes is the state-class graph [11]. This approach has been extended for ITPNs
in [3].

However, there also exists an infinite number of parameter valuations. Thus,
in the same way, we need to use symbolic representations of the parameter do-
mains. In time Petri nets or timed automata, the time domain of an abstract
state can be efficiently encoded by a difference bound matrix (DBM). This is
why, in the parametric timed automata proposed in [6], the authors define para-
metric DBMs in which they encode both the time domain and the parameter
domain. When considering stopwatch time Petri nets, the firing domain of a
class is a general polyhedron and cannot necessarily be represented by a DBM.
Consequently, in the parametric state-classes of PITPNs we will use polyhedra,
which describe both the transition variable domains and the parameter domains.

3.1 Parametric State-Classes

Definition 5. A parametric state-class C of a PITPN is a pair (M,D) where
M is a marking of the net and D is a firing domain represented by a (con-
vex) polyhedron involving l+ n variables, with n being the number of transitions
enabled by the marking of the class and l the number of parameters in the net.

Parametric Model-Checking of Time Petri Nets with Stopwatches 7

A point (ν, ν′) of the firing domain is constituted by a valuation ν of the
parameters in Par and a valuation ν′ of the firing times θ of enabled transitions.
The set of those variables θ of D will be noted Θ.

We denote by D|Par the projection of a firing domain D on the set of pa-
rameters:

D|Par = {ν ∈ Q+l
| ∃ν′ ∈ Rn s.t. (ν, ν′) ∈ D}

This definition can be extended to any arbitrary subset of variables of D.

3.2 Computation of the Parametric State-Class Graph

The parametric state-class graph is computed similarly to the non-parametric
case. Parameters are embedded into the firing domain of the initial class, and the
operations that compute the successor classes do not concern the parameters.
However, throughout the computation of the graph, the domain of the parame-
ters in a class will be automatically reduced to consider only the valuations that
make this class reachable.

Definition 6 (Firability). Let C = (M,D) be a parametric state-class of a
PITPN. A transition ti is said to be firable from C iff there exists a solution
(ν, ν′) of D, such that ∀j ∈ {1, . . . , n} − {i}, s.t. tj ∈ enabled (M) and tj /∈
inhibited (M) , ν′(θi) ≤ ν′(θj). We will write this: ti ∈ firable (C).

Now, given a parametric class C = (M,D) and a firable transition tf , the
parametric class C′ = (M ′, D′) obtained from C by the firing of tf , which we
write C′ = succ(C, tf), is given by

– M ′ = M −• tf + t•f
– D′ is computed along the following steps, and noted next(D, tf)

1. intersection with the firability constraints : ∀j s.t. tj is active, θf ≤ θj

2. variable substitutions for all enabled transitions that are active tj : θj =
θf + θ′j ,

3. elimination (using for instance the Fourier-Motzkin method) of all vari-
ables relative to transitions disabled by the firing of tf ,

4. addition of inequations relative to newly enabled transitions

∀tk ∈↑enabled (M, tf) , Js(tk)↑ ≤ θ′k ≤ Js(tk)↓

Case of a point : Let C = (M,D) be a parametric state-class of a PITPN,
x = [λ1 . . . λl θ1 . . . θn]⊤ be a point of D and tf be a transition firable from
(M, {x}). The successor of {x} by the firing tf from marking M is given by

next({x}, tf) =

∀i ∈ [1..n]

λ1

...
λl

θ′1
...
θ′n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ′i ∈ Is(ti) if ↑enabled (ti,M, tf)
θ′i = θi if ti ∈ enabled (M)
and ti ∈ inhibited (M)
and not ↑enabled (ti,M, tf)
θ′i = θi − θf otherwise

8 Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux

The next operator straightforwardly extends to finite or infinite unions of points.
The parametric state-class graph is generated by iteratively applying the

function that computes the successors of a state-class:

Definition 7. Given a PITPN N , the parametric state-class graph of N is the
transition system G(N) = 〈C,։, C0〉 such that:

– C0 = (M0, D0) is the initial class such that D0 = Dp ∧ {θk ∈ Js(tk) | tk ∈
enabled (M0)}

– C
t
։ C′ iff t ∈ firable (C) and C′ = succ(C, t),

– C = {C|C0 ։
∗ C}, where ։∗ is the reflexive and transitive closure of ։.

3.3 Valuation of the Parametric State-Class Graph

From the parametric state-class graph of a PITPN it is possible to choose a val-
uation of the parameters and to replace in the graph all the parameters by their
value. Then, we obtain a non-parametric graph. However, some firing domains
of the classes may become empty, which means that the class is not reachable for
this valuation. Those classes must be removed from the non-parametric graph.
The graph finally obtained corresponds to the state-class graph of the ITPN
obtained for this valuation.

Definition 8 (Valuation of a Parametric State-Class). Let C = (M,D)
be a parametric state-class of a PITPN N and let ν ∈ Dp be a valuation of the
parameters of N . The valuation of C by ν is a non-parametric class JCKν =
(M, JDKν) where

JDKν = {ν′ ∈ Rn | (ν, ν′) ∈ D}

The valuation of the parametric state-class graph is obtained by valuating
the classes of the graph, starting from the initial class and stopping if the firing
domains become empty.

Definition 9 (Valuation of the Parametric State-Class Graph). Given
a PITPN N and a valuation ν ∈ Dp, JG(N)Kν = (Cν ,։, JC0Kν) where:

– JC0Kν is the valuation of the initial class C0 of G(N),

– JCKν

t
։ JC′Kν iff C = (M,D), C′ = (M ′, D′) ∈ G(N)C

t
։ C′ and JD′Kν 6= ∅

– Cν = {JCKν | JC0Kν ։
∗ JCKν}, where ։∗ is the reflexive and transitive

closure of ։.

The theorem 3 establishes that the valuation of the parametric state-class
graph of a PITPN matches the non-parametric state-class graph of the ITPN
obtained for the same parameter valuation. Theorem 4 allows to directly deter-
mine the accessibility condition of a parametric state-class.

Theorem 3. Given a PITPN N and a valuation ν ∈ Dp, then

JG(N)Kν = G(JN Kν)

Theorem 4. Given a PITPN N and a valuation ν ∈ Dp, let C = (M,D) be a
parametric state-class in G(N). Then

JCKν ∈ JG(N)Kν iff ν ∈ D|Par

Parametric Model-Checking of Time Petri Nets with Stopwatches 9

4 Parametric Model-Checking

The model-checking problem consists in checking that a model N satisfies a
property φ expressed in a given logic, which is more formally written N |= φ.
The answer to this problem is either true or false. Concerning the parametric
model-checking problem, given a parametric model N and a property φ, which
may also be parameterized, we want to determine the set of parameter valuations
F (N , φ) such that ∀ν ∈ F (N , φ) the non-parametric model JN Kν obtained for
the valuation ν satisfies the non-parametric property JφKν obtained for the same
valuation. This set will be represented by a set of constraints on the parameters
of the problem.

4.1 Parametric TCTL Formulae

Like ITPN, we parameterize TCTL formulae by allowing that the bounds of the
temporal intervals of the formulae are parameters. The parameters used in the
formulae are added to the set of parameters of the PITPN in study. Besides, we
consider only a subset of TCTL formulae for which ”on-the-fly” model-checking
algorithms have already been proposed for TPNs [12]. This subset is sufficient
to verify many interesting problems (reachability, safety, bounded liveness. . .).

First, we recall the syntax and semantics of TCTL formulae in the context
of TPNs (or ITPNs).

Definition 10 (TCTL for TPN). For a TPN N the grammar of TCTL for-
mulae is

TCTL ::= P | ¬ϕ | ϕ⇒ ψ | ∃ϕUIψ | ∀ϕUIψ

where ϕ, ψ ∈ TCTL, I ∈ I(Q+), P ∈ PR, and PR = {P | P : M →
{true, false}} is the set of propositions on the marking on the net.

We use the following abbreviations ∃♦Iϕ = ∃trueUIϕ, ∀♦Iϕ = ∀trueUIϕ,
∃�Iϕ = ¬∀♦I¬ϕ and ∀�Iϕ = ¬∃♦I¬ϕ.

We define the bounded time response by ϕ I ψ = ∀�(ϕ⇒ ∀♦Iψ).

TCTL formulae are interpreted on the states of a model M = (SN ,V),
where SN is the state space of the TPN and V : SN → 2PR is a function that
evaluates the marking of a state, such that V(q) = {P ∈ PR | P(M) = true}.
Now, let q ∈ SN be a state and ρ ∈ π(q) a run starting from q, such that

ρ = q0
d0−−→ q0 + d0

t0−−→ q1
d1−−→ q1 + d1

t1−−→ · · · . We define ρ∗ : R+ → SN by
ρ∗(r) = qi + δ if r =

∑i−1
j=0 dj + δ, with i ≥ 0 and 0 ≤ δ < di.

Definition 11 (Semantics of TCTL). Given a TPN N and its model M =
(SN ,V), the truth value of a TCTL formula for a state q ∈ SN is

– q |= P iff P ∈ V(q),
– q |= ¬ϕ iff q 6|= ϕ,
– q |= ϕ⇒ ψ iff q 6|= ϕ ∨ q |= ψ,
– q |= ∃ϕUIψ iff ∃ρ ∈ π(q), ∃r ∈ I s.t. ρ∗(r) |= ψ and ∀r′ < r, ρ∗(r′) |= ϕ
– q |= ∀ϕUIψ iff ∀ρ ∈ π(q), ∃r ∈ I, s.t. ρ∗(r) |= ψ and ∀r′ < r, ρ∗(r′) |= ϕ

10 Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux

Given a model M = (SN ,V), for a marking proposition P ∈ PR and a state
q = (M, I) ∈ SN , we use the notation M |= P if P ∈ V(q) and M 6|= P if
P /∈ V(q).

Finally, a TPN N satisfies a TCTL formula φ if and only if q0 |= φ.

We present now the syntax and semantics of Parametric TCTL (PTCTL)
formulae for PITPN.

Definition 12 (PTCTL for PITPN). For a PITPN N the grammar of PTCTL
formulae is

PTCTL ::= ∃ϕUJψ | ∀ϕUJψ | ∃♦Jϕ | ∀♦Jϕ | ∃�Jϕ | ∀�Jϕ | ϕ Jr
ψ

where ϕ, ψ ∈ PR, J, Jr ∈ J (Par) are parametric time intervals, with the re-
striction that Jr = [0, b] with b ∈ Q+ ∪ Par, or Jr = [0,∞[.

The semantics of PTCTL formulae are defined similarly to the semantics of
PITPNs. Given a valuation, the parameters in the formulae are replaced by their
value to obtain a TCTL formula, which is interpreted on the ITPN obtained for
this valuation.

Definition 13 (Semantics of PTCTL). Let N be a PITPN and φ be a
PTCTL formulae and ν ∈ Dp be a valuation of the parameters of N (which
are shared with φ). JφKν is the TCTL formula obtained when replacing in φ the
parametric time interval J (or Jr) by the Q-interval J(ν) (or Jr(ν)).
Then N satisfy φ for the valuation ν if and only if JN Kν |= JφKν .

4.2 Extending the Parametric State-Class Graph with a Global
Clock

In the state-class graph, the firing domain of a class gives the firing dates of
the transitions with the entrance in the class as a time origin. Timed properties
are difficult to verify in this context. In order to easily check timed properties
with the state class graph abstraction, it is necessary to be able to evaluate the
time that has elapsed between classes. For this purpose, we propose to extend
the parametric state-classes with an additional variable noted θc. This variable
is initialized to zero in the initial class, and then decreases when time flows, like
a transition variable 1 . However, the variable will not constrain the transitions
variables when determining the firability constraints. Then, for all classes, the
time elapsed from the initialization of θc to the entrance in the class is: τc = −θc.

Definition 14. An extended parametric state-class C of a PITPN is a class
whose firing domain D is extended with an additional variable θc ∈ Θ.

1 The value of this variable will always be non-positive. But this is not a problem in
the computation of the state-classes. The alternative would be to initialize it, not to
zero, but to a sufficiently large value, but this value is hard to determine.

Parametric Model-Checking of Time Petri Nets with Stopwatches 11

The definition of the firability of an extended class is not modified. The
firability constraints indeed only involve the variables θi where ∀i ∈ {1, . . . , n},
ti ∈ T . The next operator is redefined for an extended class such that for a point
x = [λ1 . . . λl θ1 . . . θn θc]

⊤ of D, in next(({x}, tf) we have θ′c = θc − θf .
The extended parametric state-class graph Gc(N) is then computed itera-

tively in a similar way, starting from the initial class C0 = (M0, D0) where

D0 = Dp ∧ {θk ∈ J(tk) | tk ∈ enabled (M0)} ∧ {θc = 0}

Finally, given an extended parametric state-class C = (M,D), we are able
to determine:

– τmin(C), the absolute minimum time elapsed when entering the class. This
a function of the parameters Par of the net τmin(C) : Dp → Q+, such
that τmin(C)(ν) = minx=(ν,ν′)∈D(τc). It can be expressed as the maximum
between the minimum values of τc and it is necessarily positive and finite.

– τmax(C), the absolute maximum time elapsed when entering the class. This
a function on the parameters Par of the net τmax(C) : Dp → Q+∪{∞}, such
that τmax(C)(ν) = maxx=(ν,ν′)∈D(τc). It can be expressed as the minimum
between the maximum values of τc and it is necessarily positive but may be
infinite if there is no maximum time.

If JCKν ∈ JGc(N)Kν , let q ∈ JCKν be a state. Then the elapsed time of the
state is such that τmin(C)(ν) ≤ time(q) ≤ τmax(C)(ν).

Example 2. In the PTPN of the figure 1, we can exhibit the two following ex-
tended classes:

C0 = (M0,D0) :
M0 = (A,B)

D0 =

0 ≤ a ≤ θ1 ≤ 10,
0 ≤ b ≤ θ2 ≤ c,
θ3 = 5, θc = 0.

t1−−−−−→

C1 = (M1,D1) :
M1 = (B,C)

D1 =

θ3 − θc = 5,
b ≤ θ2 − θc ≤ c,
−5 ≤ θc ≤ −a,
0 ≤ θ2, 0 ≤ a, 0 ≤ b.

Thus, the elapsed time after the firing of t1 is such that τmin(C1) = a and
τmax(C1) = min(5, c).

4.3 Principles of Parametric Model-Checking with the State-Class
Graph

Given a PITPN N and a PTCTL property φ, in the parametric model-checking
problem we want to characterize the set F (N , φ) of all the parameters valuations
that resolve the problem, which is defined by:

F (N , φ) = {ν ∈ Dp | JN Kν |= JφKν}

To achieve this we are going to recursively compute, on each extended class
C = (M,D), a logical predicate on the parameters that corresponds to the

12 Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux

verification of the property on the current class and its successors. This predicate
represents the set: Fφ(C) = {ν ∈ D|Par | JCKν |= JφKν}

We begin by giving an interpretation of the verification of a PTCTL formula
φ on an extended parametric state class C, which we write JCKν |= JφKν .

Formulae φ = ∃ϕUJψ or φ = ∀ϕUJψ: For a valuation ν ∈ D|Par and a
state q ∈ JCKν , we define Jφ[J − time(q)]Kν as the TCTL formula obtained after
replacing in φ, the parametric time interval J by J(ν)−time(q). Then, according
to the form of the PTCTL formula φ we define:

– if φ = ∃ϕUJψ, then JCKν |= JφKν iff ∃q ∈ JCKν , q |= Jφ[J − time(q)]Kν

– if φ = ∀ϕUJψ, then JCKν |= JφKν iff ∀q ∈ JCKν , q |= Jφ[J − time(q)]Kν

Formulae φ = ϕ Jr
ψ: We extend the PITPN N with an additional place

named PLT that will be marked if and only if we are looking for ψ. We denote
by NLT the resulting PITPN. In this model, the successor C′ = (M ′, D′) =
succLT (C, t) of an extended parametric state-class C = (M,D) ∈ Gc(NLT) by a
transition tf ∈ firable (C), is given by:

– M ′ = M −• tf + t•f and

if (M ′ |= ϕ and M ′ 6|= ψ) then M ′(PLT) = 1,
else if (M |= ψ) then M ′(PLT) = 0,
else M ′(PLT) = M(PLT)

– D′ = next(D, tf) and
if (M(PLT) = 0 or M |= ψ) then the clock variable θc is reset to zero.

On this model we define that JCKν |= JφKν if and only if ∀q ∈ JCKν , ∀ρ ∈ π(q),

M(PLT) = 1 ⇒

∃0 ≤ r1 ≤ Jr(ν)
↓ − time(q) s.t. ρ∗(r1) |= ψ and

∀r2 ≥ r1 ρ
∗(r2) |= M(PLT) = 1 ⇒ ∃r3 ≥ r2
s.t. r3 − r2 ≤ Jr(ν)

↓ and ρ∗(r3) |= ψ

M(PLT) = 0 ⇒

{

∀r2 ≥ 0 ρ∗(r2) |= M(PLT) = 1 ⇒ ∃r3 ≥ r2
s.t. r3 − r2 ≤ Jr(ν)

↓ and ρ∗(r3) |= ψ

In this model, time(q) refers to the time elapsed since the last reinitialization
of θc. We notice that when the time has been reset (then time(q) = 0) the two
definitions above are equivalent and correspond to q |= JφKν .

Finally, the theorem 5 states that we are able to resolve the parametric
model-checking problem if we compute the set of solutions on the initial class.

Theorem 5. Given a PITPN N and a PTCTL formula φ, F (N , φ) = Fφ(C0),
where C0 is the initial class of the extended parametric state class graph of N .

4.4 Parametric Model-Checking Semi-Algorithms

To verify PTCTL formulae we propose three semi-algorithms according to the
form of the formulae. These algorithms recursively characterize, for each class
C, the set Fφ(C). This set is represented by conjunctions or disjunctions of
linear constraints on the parameters. We use a disjunctive normal form (i.e. a
disjunction of convex polyhedra).

Parametric Model-Checking of Time Petri Nets with Stopwatches 13

Algorithm EU: This semi-algorithm is designed for formulae whose form is
φ = ∃ϕUJψ, where J ∈ J (Par). Let be C = (M,D) ∈ Gc(N), we compute:

F
φ
EU(C) =D|Par ∧ {τmin(C) ≤ J

↓} ∧

„

M |= ψ ∧ {τmax(C) ≥ J
↑}

«

∨

„

M |= ϕ ∧ M |= ψ ∧
“

firable (C) = ∅ ∨

`

_

t∈firable(C)

C′=(M′,D′)=succ(C,t)

({τmax(C′) ≥ J
↑} ∧ D

′
|Par)

´

”

«

∨

„

M |= ϕ ∧ firable (C) 6= ∅ ∧
“

_

t∈firable(C)

C′=succ(C,t)

F
φ
EU (C′)

”

«

!

This formula establishes three conditions in disjunction to prove the formula φ:

– The first disjunction is used when C verifies ψ but not φ. Thus, the elapsed
time must be entailed in the interval J as soon as we get into the class.

– The second case is when both φ and ψ are verified. Comparing to the first
one it allows to wait in the class.

– The third disjunction is used when only φ is verified. In this case we have to
compute the successors of C.

Example 3. In the net of the figure 1 we check the formula:
φ1 = ∃♦[0,inf [(M(D) = 1). The result is Fφ1

EU (C0) = {b <= 5}.

Algorithm AU: This semi-algorithm is designed for formulae whose form is
φ = ∀ϕUJψ, where J ∈ J (Par). Let be C = (M,D) ∈ Gc(N), we compute:

F
φ
AU (C) = D|Par ∧

τmax(C) ≤ J↓

τmax(C) 6= ∞

ff

∧

„

M |= ψ ∧ {τmin(C) ≥ J
↑}

«

∨

„

M |= ϕ ∧ M |= ψ ∧
“

firable (C) = ∅ ∨

`

^

t∈firable(C)

C′=(M′,D′)=succ(C,t)

D′′=D′∧{θc>−J↑}

(Fφ
AU (M ′

,D
′′) ∨ ¬D′′

|Par)
´

”

«

∨

„

M |= ϕ ∧ firable (C) 6= ∅ ∧
“

^

t∈firable(C)

C′=(M′,D′)=succ(C,t)

`

F
φ
AU (C′) ∨ ¬D′

|Par

´

”

«

!

Similarly, there are three conditions in disjunction. Unlike previously,. in the
second one successors are computed, but only on the points of the class for
which the property has not been verified yet. The conditions ¬D′

|Par or ¬D′′
|Par

forbid the accessibility of the class if it does not verify the property.

Example 4. In the net of the figure 1 we check the formula:
φ2 = ∀♦[0,inf](M(D) = 1). The result is Fφ2

AU (C0) = {c < 5}.

14 Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux

Algorithm LT: This semi-algorithm is designed for formulae whose form is
φ = ϕ Jr

ψ, where Jr ∈ J (Par) such that Jr = [0, b] with b ∈ Q+ ∪ Par, or
Jr = [0,∞[. Let be C = (M,D) ∈ Gc(NLT), we compute:

F
φ
LT (C) =D|Par ∧

„

M(PLT) = 0 ∨

τmax(C) ≤ J↓
r

τmax(C) 6= ∞

ff«

∧

„

“

firable (C) = ∅ ∧
`

M(PLT) = 0 ∨M |= ψ
´

”

∨

“

firable (C) 6= ∅ ∧
`

^

t∈firable(C)

C′=(M′,D′)=succLT (C,t)

(Fφ
LT (C′) ∨ ¬D′

|Par)
´

”

«

This algorithm is similar to FAU when J↑ = 0. However analysis only stops if
no successor is found.

5 Discussion

The semi-algorithms presented in this paper have been implemented in the tool
Romeo [17], a software for time Petri nets analysis. For polyhedra manipula-
tion, the Parma Polyhedra Library [18] is used to represent the firing domains
of the parametric state-classes and the logical formulae computed by the model-
checking algorithms. These formulae are represented as powersets of convex poly-
hedra, that is to say a finite disjunction of polyhedra.

As mentioned before, the parametric model-checking problem is undecidable.
Indeed the parametric state-class graph of a PITPN may be infinite. Addition-
ally, to determine the whole set of parameters valuations that satisfy a formula,
it would be in general necessary to analyze every parametric state-class. Never-
theless, some methods can help with the termination. In this way, if a parametric
state-class C = (M,D) is included in another class C′ = (M ′, D′) (i.e. M = M ′

and D ⊆ D′), it can be shown that Fφ
EU (C) ⊆ Fφ

EU (C′), and on the contrary

that Fφ
AU (C′) ⊆ Fφ

AU (C)∨¬D|Par and Fφ
LT (C′) ⊆ Fφ

LT (C)∨¬D|Par . As a result,
in our “on-the-fly” model-checking approach it will not be necessary to analyze
the whole state-class graph, but we will be able to stop the analysis of successors
when finding included parametric state-classes.

Conclusion

In this paper, we have introduced a parametric extension of time Petri nets with
stopwatches where the temporal bounds of the firing intervals are replaced by
temporal parameters. We have proposed a symbolic representation of the state-
space of these parametric models which is based on a parametric extension of
the state-class graph. Upon this abstraction we have developed semi-algorithms
for the parametric model-checking of parametric TCTL formulae.

In our future works we want to integrate this parametric approach in the
development cycle of real-time systems through the functional decomposition of

Parametric Model-Checking of Time Petri Nets with Stopwatches 15

the systems. On concrete examples, a parametric decomposition combined with
a projection of the formulae to verify can be useful in the development process.
We hope to succeed in the elaboration of a formal framework for this method so
that the process could be automated.

References

1. Merlin, P.: A study of the recoverability of computing systems. PhD thesis, De-
partment of Information and Computer Science, Univ. of California, Irvine (1974)

2. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Time state space analysis of real-time
preemptive systems. IEEE trans. on Soft. Eng. 30(2) (February 2004) 97–111

3. Roux, O.H., Lime, D.: Time Petri nets with inhibitor hyperarcs. Formal semantics
and state space computation. In: ICATPN’04. Volume 3099 of LNCS., Bologna,
Italy, Springer (June 2004) 371–390

4. Berthomieu, B., Lime, D., Roux, O.H., Vernadat, F.: Reachability problems and
abstract state spaces for time petri nets with stopwatches. Discrete Event Dynamic
Systems 17(2) (2007) 133–158

5. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM
Symposium on Theory of Computing. (1993) 592–601

6. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. In: TACAS. Volume 2031 of LNCS., Springer (2001)

7. Bruyère, V., Raskin, J.F.: Real-time model-checking: Parameters everywhere.
CoRR abs/cs/0701138 (2007)

8. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HYTECH: A model checker for hybrid
systems. Int. Journal on Soft. Tools for Technology Transfer 1(1–2) (1997) 110–122

9. Wang, F.: Parametric timing analysis for real-time systems. Inf. Comput. 130(2)
(1996) 131–150

10. Virbitskaite, I., Pokozy, E.: Parametric behaviour analysis for time petri nets.
In: PaCT ’999: Proceedings of the 5th Int. Conference on Parallel Computing
Technologies, London, UK, Springer-Verlag (1999) 134–140

11. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE trans. on Soft. Eng. 17(3) (1991) 259–273

12. Hadjidj, R., Boucheneb, H.: On-the-fly tctl model checking for time petri nets
using state class graphs. In: ACSD, IEEE Computer Society (2006) 111–122

13. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of time petri
nets with stopwatches using the state-class graph. Technical Report RI2008-3,
IRCCyN, Nantes, France (2008)

14. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
Fundamentals of Computation Theory. (1995) 62–88

15. Cassez, F., Roux, O.H.: Structural translation from Time Petri Nets to Timed
Automata – Model-Checking Time Petri Nets via Timed Automata. The journal
of Systems and Software 79(10) (2006) 1456–1468

16. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the
expressiveness of timed automata and time Petri nets. In: FORMATS 05. Volume
3829 of LNCS., Uppsala, Sweden, Springer (2005)

17. Olivier (H.) Roux, Didier Lime, G.G., Magnin, M.: Roméo. Available at
http://romeo.rts-software.org (2006)

18. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library. Quaderno
457, Dipartimento di Matematica, Università di Parma, Italy (2006)

