
Robust Specification of Real Time Components

Kim G. Larsen,1 Axel Legay,2 Louis-Marie Traonouez,3 Andrzej Wąsowski3

1 Aalborg University, Denmark, kgl@cs.aau.dk
2 INRIA Rennes, France, axel.legay@irisa.fr

3 IT University of Copenhagen, Denmark, {lmtr,wasowski}@itu.dk

Abstract. Specification theories for real-time systems allow to reason about in-
terfaces and their implementation models, using a set of operators that includes
satisfaction, refinement, logical and parallel composition. To make such theories
applicable throughout the entire design process from an abstract specification to
an implementation, we need to be able to reason about possibility to effectively
implement the theoretical specifications on physical systems. In the literature, this
implementation problem has already been linked to the robustness problem for
Timed Automata, where small perturbations in the timings of the models are intro-
duced. We address the problem of robust implementations in timed specification
theories. Our contributions include the analysis of robust timed games and the
study of robustness with respect to the operators of the theory.

1 Introduction

For long, software engineers have practiced component-oriented software construc-
tion, building systems from modules that only depend on each other in well specified
ways. Foundational research follows up by developing trustworthy rigorous methods for
component-oriented design. In concurrency theory this includes compositional design
(specification theories, stepwise-refinement) and compositional model checking. Akin to
algebraic specifications, specification theories provide a language for specifying compo-
nent interfaces together with operators for combining them, such as parallel (structural)
composition and conjunction (logical composition).

Specification theories integrate prior results to provide a uniform design method.
In [1], we have proposed the first complete specification theory for timed systems. We
build on an input/output extension of the classical timed automata model—inputs are
used to represent behaviors of the environment and outputs represent the behavior of
the component. The theory is equipped with a game-based semantic, which is used to
define all the good operations for such specification theory, including satisfaction (can
a specification be implemented), refinement (how to compare specifications), logical
composition (computing the intersection of two sets of implementations), structural
composition (building large components from smaller ones), and quotient (synthesizing
a component in a large design).

The theory in [1] is equipped with a consistency check that allows to decide whether
a specification can indeed be implemented. Unfortunately, this check does not take
imprecision of the physical world into account, that is consistency can be used to
synthesize an implementation that may be not robust with respect to variations of

the environment. In practice, one would want to guarantee that a perturbation of the
implementation still matches the requirements of the specification. Providing a solution
to this problem in the setting of timed I/O specifications is our objective in this paper.

Our contributions include:

– We propose a notion of implementation of a specification that is robust with respect
to a given perturbation in the delay before an action. Such perturbation is fixed in
advance, which is a reasonable assumption as sensitivity with respect to perturbation
of the environment is generally given in the description of the component that is pro-
vided by the manufacturer. The concept of robust implementation is lifted to a robust
satisfaction operation that takes variations of timed behaviors into account when
checking whether the implementation matches the requirement of the specification.

– We propose a consistency check for robust satisfaction. This new check relies on an
extension of the classical timed I/O game to the robust setting. In [2], Chatterjee et al.
showed that problems on robust timed games can be reduced to classical problems
on an extended timed game. We modify the original construction of [2] to take the
duality of inputs and outputs into account. Then, we show how our new game can
be used to decide consistency in a robust setting as well as to synthesize a robust
implementation from a given specification.

– Finally, classical compositional design operators are lifted to the robust setting.
One of the nice features of our approach is that this does not require to modify
the definitions of the operators themselves and that all the good properties of a
specification theory (including independent implementability) are maintained.

To the best of our knowledge, this paper presents the first complete theory for robust
timed specification. While the presentation is restricted to the theory of [1], we believe
that the approach works for any timed specifications. Our experience with industrial
projects shows that such realistic design theories are of clear interest [3,4,5].

State of The Art. None of the existing specification theories for timed systems allows for
the treatment of robustness.

Various works have considered robustness for timed automata using logical formulas
as specifications (and neglecting compositional design operators). The robust semantics
for timed automata with clock drifts has been introduced by Puri [6]. The problem has
been linked to the implementation problem in [7], which introduced the first semantics
that modeled the hardware on which the automaton is executed. In this work, the authors
proposed a robust semantics of Timed Automata called AASAP semantics (for “Almost
As Soon As Possible”), that enlarges the guards of an automaton by a delay ∆. This
work has been extended in [8] that proposes another robust semantics with both clock
drifts and guard enlargement. Extending [6] they solve the robust safety problem, defined
as the existence of a non-null value for the delays. They show that in terms of robust
safety the semantics with clock drifts is just as expressive as the semantics with delay
perturbation. We extend the work of [7,8] by considering compositional design operators,
stepwise-refinement, and reasoning about open systems (only closed system composition
were considered so far).

We solve games for consistency and compatibility using a robust controller synthesis
approach largely inspired by Chatterjee et al. [2], who provide synthesis techniques for

robust strategies in games with parity objectives. Driven by the fact that consistency and
compatibility are safety games, we restrict ourselves to safety objectives, but we extend
[2] by allowing negative perturbation of delays.

We proceed by introducing the background on Timed Specifications (Section 2). In Sec-
tion 3 we introduce methods for solving robust time games that arise in our specification
theory. These methods are used in Sections 4–5 to reason about consistency, conjunction,
parallel composition and synthesis of specifications and robust implementations of real
time components.

2 Background on Timed I/O Specifications

We now recall the definition of Timed I/O specifications [1]. We use Z (respectively N)
for the set of all integer numbers (resp. non-negative integers), R for the set of all real
numbers, and R≥0 (resp. R>0) for the non-negative (resp. strictly positive) subset of
R. Rational numbers are denoted by Q, and their subsets are denoted analogously. For
x ∈ R≥0, let bxc denote the integer part of x and 〈x〉 denote its fractional part.

In the framework of [1], specifications and their implementations are semantically
represented by Timed I/O Transition Systems (TIOTS) that are nothing more than timed
transition systems with input and output modalities on transitions. Later we shall see
that input represents the behaviors of the environment in which a specification is used,
while output represents behaviours of the component itself.

Definition 1. A Timed I/O Transition System is a tuple S = (StS, s0, ΣS,→S), where
StS is an infinite set of states, s0∈StS is the initial state, ΣS=ΣS

i ⊕ΣS
o is a finite set of

actions partitioned into inputs ΣS
i and outputs ΣS

o , and→S : StS×(ΣS ∪R≥0)×StS is
a transition relation. We write s a−→Ss′ when (s, a, s′)∈→S and use i?, o! and d to range
over inputs, outputs and R≥0, respectively.

In what follows, we assume that any TIOTS satisfies the following conditions:

– time determinism: whenever s d−→Ss′ and s d−→Ss′′ then s′ = s′′

– time reflexivity: s 0−→Ss for all s ∈ StS

– time additivity: for all s, s′′ ∈ StS and all d1, d2 ∈ R≥0 we have s d1+d2−−−−→Ss′′ iff
s
d1−→Ss′ and s′ d2−→Ss′′ for an s′ ∈ StS

A run ρ of a TIOTS S from its state s1 is a sequence s1
a1−→Ss2

a2−→S . . .
an−−→Ssn+1 such

that for all 1 ≤ i ≤ n si
ai−→Ssi+1. We write Runs(s1, S) for the set of runs of S starting

in s1 and Runs(S) for Runs(s0, S). We write States(ρ) for the set of states reached in
ρ, and if ρ is finite last(ρ) is the last state occurring in ρ.

A TIOTS S is deterministic iff ∀a ∈ ΣS ∪ R≥0, whenever s a−→Ss′ and s a−→Ss′′,
then s′ = s′′. It is input-enabled iff each of its states s ∈ StS is input-enabled: ∀i?∈
ΣS
i .∃s′ ∈ StS . s i?−→Ss′. We say that S is output urgent iff ∀s, s′, s′′ ∈ StS if s o!−→Ss′

and s d−→Ss′′ then d = 0. Finally, S verifies the independent progress condition iff either
(∀d ≥ 0.s

d−→S) or (∃d ∈ R≥0.∃o! ∈ ΣS
o .s

d−→Ss′ and s′ o!−→S).
TIOTS are syntactically represented by Timed I/O Automata (TIOA). Let X be a

finite set of clocks. A clock valuation over X is a mapping X 7→ R≥0 (thus RX≥0). Given

a valuation u and d ∈ R≥0, we write u+d for the valuation in which for each clock
x∈X we have (u+d)(x) = u(x)+d. For Y ⊆X , we write u[Y 7→ 0] for a valuation
agreeing with u on clocks in X \ Y , and giving 0 for clocks in Y .

Let C(X) denote all clock constraints ϕ generated by the grammar ψ ::= x ≺
k | x−y ≺ k | ψ∧ψ, where k ∈ Q, x, y ∈X and ≺∈ {<,≤, >,≥}. For ϕ ∈ C(X)
and u ∈ RX≥0, we write u |= ϕ if u satisfies ϕ. Let JϕK denote the set of valuations
{u∈RX≥0 | u |= ϕ}. A subset Z ⊆ RX≥0 is a zone if Z = JϕK for some ϕ ∈ C(X).

Definition 2. A Timed I/O Automaton is a tuple A = (Loc, q0,Clk, E,Act, Inv), where
Loc is a finite set of locations, q0 ∈ Loc is the initial location, Clk is a finite set of clocks,
E ⊆ Loc×Act×C(Clk)× 2Clk×Loc is a set of edges, Act = Acti⊕Acto is a finite set
of actions, partitioned into inputs (Acti) and outputs (Acto), Inv : Loc 7→ C(Clk) is a set
of location invariants. Without loss of generality we assume that invariants of a location
are always included in the guards of the edges that are incident with the location. We
also assume that guards are satisfiable (for any guard ϕ the set JϕK is non-empty).

A universal location, denoted lu, in a TIOA accepts every input and can produce
every output at any time. Location lu models an unpredictable behavior of a component.

The semantics of a TIOA A = (Loc, q0,Clk, E,Act, Inv) is a TIOTS JAKsem =
(Loc× RClk

≥0, (q0,0),Act,→), where 0 is a constant function mapping all clocks to zero,
and→ is the largest transition relation generated by the following rules:

– Each edge (q, a, ϕ, λ, q′) ∈ E gives rise to (q, u)
a−→(q′, u′) for each clock valuation

u ∈ RClk
≥0 such that u |= ϕ and u′ = u[λ 7→ 0] and u′ |= Inv(q′).

– Each location q ∈ Loc with a valuation u ∈ RClk
≥0 gives rise to a transition

(q, u)
d−→(q, u+ d) for each delay d ∈ R≥0 such that u+ d |= Inv(q).

Since TIOTSs are infinite size they cannot be directly manipulated by computations.
Usually symbolic representations, such as region graphs [9] or zone graphs, are used
as data structures that finitely represent semantics of TIOAs. Let M be the greatest (in
absolute value) integer constant that appears in the guards of a TIOA 4. A clock region
is an equivalence class of the relation ∼ on clock valuations such that u ∼ v iff the
following conditions hold:

– ∀x∈Clk, either bu(x)c = bv(x)c, or u(x) > M and v(x) > M ,
– ∀x, y∈Clk, ∀c ∈ [−M,M], u(x)− u(y)≤c iff v(x)− v(y) ≤ c,
– ∀x∈Clk if u(x) ≤M then 〈u(x)〉 = 0 iff 〈v(x)〉 = 0,

We write r↗ for the direct time successor of the region r, if such exists. The region
graph of a TIOAA is G = (RA,−→G), whereRA = {(q, r) | ∃(q, u) ∈ StJAKsem . u ∈ r}
is the set of regions, and −→G ⊆ RA × (Act ∪ {τ})×RA, such that (q, r) τ−→G(q, r↗)
iff r↗|= Inv(q), and (q, r)

a−→G(q′, r′) iff (q, u) a−→(q′, u′) for some u ∈ r and u′ ∈ r′.

4 The region graph of an automaton with rational constants can be built by multiplying all
constants of the automaton to work only with integers.

tea?

tea?

pub!

tea?

cof?

pub!

cof?

pub!

tea?cof?

x<=4

x>15

x>=2

lu

x<=8

Idle

cof?

x=0 x=0

tea?

x>=4
x=0 x=0

x<=15

(a) A specification

tea?

tea?

pub!

tea?

cof?

pub!

cof?

pub!

tea?cof?

x<=3

x>16

x>=3

lu

x<=6

Idle

cof?

x=0 x=0

tea?

x>=6
x=0 x=0

x<=16

(b) An implementation

Fig. 1: TIOAs of a specification and an implementation for a researcher.

Basics of the Timed Specification Theory. In [1], timed specifications and implementa-
tions are both represented by TIOAs satisfying additional conditions:

Definition 3. A specification S is a TIOA whose semantics JSKsem is deterministic
and input-enabled. An implementation I is a specification whose semantics JIKsem
additionally verifies the output urgency and the independent progress conditions.

Example 1. Figure 1a presents a specification of a researcher. It accepts either coffee
(coff) or tea in order to produce publications (pub). If tea is served after a too long
period the researcher falls into an error state represented by a universal state lu. An
individual researcher is an implementation of this specification. One example is presented
in Figure 1b.

In specification theories, a refinement relation plays a central role. It allows to
compare specifications, and to relate implementations to specifications. In [1], as well as
in [10,11,12], refinement is defined in the style of alternating (timed) simulation:

Definition 4 (Refinement). An alternating timed simulation between TIOTS S=(StS, s0,
ΣS,→S) and T =(StT, t0, ΣT,→T) is a relation R ⊆ StS × StT such that (s0, t0) ∈ R
and for every (s, t) ∈ R

– If t i?−→T t′ for some t′ ∈ StT , then s i?−→Ss′ and (s′, t′) ∈ R for some s′ ∈ StS

– If s o!−→Ss′ for some s′ ∈ StS , then t o!−→T t′ and (s′, t′) ∈ R for some t′ ∈ StT

– If s d−→Ss′ for d ∈ R≥0, then t d−→T t′ and (s′, t′) ∈ R for some t′ ∈ StT

We write S ≤ T if there exists an alternating simulation between S and T . For two
TIOAs S and T , we say that S refines T , written S≤T , iff JSKsem ≤ JT Ksem.

Definition 5 (Satisfaction). An implementation I satisfies a specification S, denoted
I sat S, iff JIKsem ≤ JSKsem. We write JSKmod for the set of all implementations of S,
so JSKmod = {I | I sat S and I is an implementation}.

The reader might find it surprising that in a robust specification theory we refrain from
adjusting the refinement to account for imprecision of implementations when comparing
specifications. Our basic assumption is that specifications are precise mathematical

objects that are not susceptible to imprecision of execution. In contrary, implementations
can behave imprecisely when executed, so in Section 3 we will introduce an extension of
Def. 5 that takes this into account. It is a fortunate property of Def. 4 that we do not need
to modify it in order to reason about robust implementations (Property 3 in Sect. 3).

In [1], we have reduced refinement checking to finding winning strategies in timed
games. In the reminder of this section, we recall the definition of such games and show
how they can be used to check consistency. Timed games also underly other operations
such as conjunction, composition, and quotient [1], which will be illustrated in Sect. 4–5.

Timed Games for Timed I/O Specifications. TIOAs are interpreted as two-player real-time
games between the output player (the component) and the input player (the environment).
The input plays with actions in Acti and the output plays with actions in Acto. A strategy
for a player is a function that defines her move at a certain time (either delaying or
playing a controllable action). A strategy is called memoryless if the next move depends
solely on the current state. We only consider memoryless strategies, as these suffice for
safety games. For simplicity, we only define winning strategies for the output player (i.e.
output is the verifier). Definitions for the input player are obtained symmetrically.

Definition 6. A memoryless strategy f for the output player on the TIOAA is a function
StJAKsem 7→ Acto ∪ {delay}, such that whenever f(s) ∈ Acto then s

f(s)−−→s′ for some s′,
and whenever f(s) = delay then s d−→s′′ for some d > 0 and state s′′.

The restricted behavior of the TIOA when one player applies a specific strategy is defined
as the outcome of the strategy.

Definition 7. Let A be a TIOA, f a strategy over A for the output player, and s a state
of JAKsem. The outcome Outcomeo(s, f) of f from s is the subset of Runs(s, JAKsem)
defined inductively by:

– s ∈ Outcomeo(s, f),
– if ρ ∈ Outcomeo(s, f) then ρ′ = ρ

a−→s′ ∈ Outcomeo(s, f) if ρ′ ∈ Runs(s, JAKsem)
and one the following conditions hold:
1. a ∈ Acti,
2. a ∈ Acto and f(last(ρ)) = a,
3. a ∈ R≥0 and ∀d ∈ [0, a[.∃s′′.last(ρ)

d−→s′′ and f(s′′) = delay.
– ρ ∈ Outcomeo(s, f) if ρ infinite and all its finite prefixes are in Outcomeo(s, f).

A winning condition for a player in the TIOA A is a subset of Runs(JAKsem). In safety
games the winning condition is to avoid a set Bad of “bad” states (without lost of
generality we assume these “bad” states correspond to a set of entirely “bad” locations).
Formally, the winning condition is WSo(Bad) = {ρ ∈ Runs(JAKsem) | States(ρ)∩Bad =
∅}. A strategy f for output is winning from state s if Outcomeo(s, f) ⊆ WSo(Bad). A
state s is winning if there exists a winning strategy from s. The game (A,WSo(Bad)) is
winning if the initial state is winning. Solving this game is decidable [13,14,1].

Strategies can also be defined symbolically, using the region graph introduced in
the previous section. For a region (q, r), if f(q, r) = delay then (q, r)

τ−→G(q, r↗),
and if f(q, r) ∈ Acto then ∃(q′, r′).(q, r) a−→G(q′, r′). An outcome of f is then a run
in the region graph, such that if ρ ∈ Outcomeo((q, r), f) then ρ′ = ρ

a−→(q′, r′) ∈
Outcomeo((q, r), f) if last(ρ)

a−→G(q′, r′), and either a ∈ Acti, or a ∈ Acto and f(last(ρ))
= a, or a = τ and f(last(ρ)) = delay.

Maximum Strategies in Timed Games as Operators on Timed Specifications. We sketch
how timed games can be used to establish consistency of a timed specifications.

An immediate error occurs in a state of a specification if the specification disallows
progress of time and output transitions in a given state—such a specification will break
if the environment does not send an input. For a specification S we define the set of
immediate error states errS ⊆ StJSKsem as:

errS=
{
s
∣∣ (∃d. s 6 d−→) and ∀d∀o!∀s′. s d−→s′ implies s′ 6 o!−→

}
It follows that no immediate error states can occur in implementations, since they
verify independent progress. In [1] we show that S is consistent iff there exists a
winning strategy for output in the safety game (S,WSo(errS)). Moreover, the maximum
consistent part of S corresponds to the maximum wining strategy for output in this game.

Conjunction of two specifications is found as a maximal strategy for output in a
safety game on the product state space to avoid immediate errors. Similarly, optimistic
parallel composition of two specifications is computed as a maximum strategy for input
in a safety game over the product state space; and a quotient of two specifications is
found as a maximum strategy for output in another safety game. Optimistic composition
means that two specifications are compatible if there exists at least one environment, in
which they can avoid error states. Details can be found in [1].

3 Robust Timed I/O Specifications

We now define a robust extension of our specification theory. An essential requirement for
an implementation is to be realizable on a physical hardware, but this requires admitting
small imprecisions characteristic for physical components (computer hardware, sensors
and actuators). The requirement of realizability has already been linked to the robustness
problem in [7] in the context of model checking. In specification theories the small
deficiencies of hardware can be reflected in a strengthened satisfaction relation, which
introduces small perturbations to the timing of implementation actions, before they are
checked against the requirements of a specification—ensuring that the implementation
satisfies the specification even if its behavior is perturbed.

We first formalize the concept of perturbation. Let ϕ ∈ C(X) be a guard over the set
of clocks X . The enlarged guard dϕe∆ is constructed according to the following rules:

– Any term xi ≺ ni of ϕ with ≺∈{<,≤} is replaced by xi ≺ ni+∆
– Any term xi � ni of ϕ with �∈{>,≥} is replaced by xi � ni−∆

Similarly, the restricted guard bϕc∆ is using the two following rules:

– Any term xi ≺ ni of ϕ with ≺∈{<,≤} is replaced by xi ≺ ni−∆
– Any term xi � ni of ϕ with �∈{>,≥} is replaced by xi � ni+∆.

Notice that for a for a clock valuation u and a guard ϕ, we have that u |= ϕ implies
u |= dϕe∆, and u |= bϕc∆ implies u |= ϕ, and bdϕe∆c∆ = dbϕc∆e∆ = ϕ.

tea?

tea?

pub!

tea?

cof?

pub!

cof?

pub!

tea?
cof?

x<=3+∆

x>16-∆

x>=3-∆

lu

x<=6+∆

Idle

cof?

x=0 x=0

tea?

x>=6-∆
x=0 x=0

x<=16-∆

Fig. 2: ∆-perturbation of the researcher implementation.

Perturbed Implementation and Robust Timed I/O Specifications. We lift the perturbation
to implementation TIOAs. Given a jitter ∆, the perturbation means a ∆-enlargement of
invariants and of output edge guards. Guards on the input edges are restricted by ∆:

Definition 8. For an implementation I=(Loc, q0,Clk, E,Act, Inv) and ∆∈Q>0, the
∆-perturbation of I is the TIOA I∆ = (Loc ∪ {lu}, q0,Clk, E′,Act, Inv′), such that:

– Every edge (q, o!, ϕ, λ, q′)∈E is replaced by (q, o!, dϕe∆, λ, q′) ∈ E′,
– Every edge (q, i?, ϕ, λ, q′)∈E is replaced by (q, i?, bϕc∆, λ, q′) ∈ E′,
– Every invariant Inv(q) is replaced by Inv′(q) = dInv(q)e∆,
– ∀q∈Loc.∀i?∈Acti. (q, i?, ϕu, ∅, lu)∈E′ with ϕu = ¬

∨
(q,i?,ϕ,λ,q′)∈Ebϕc∆.

I∆ is not necessarily action deterministic, as output guards are enlarged. However it is
input-enabled, since by construction (the last case above), any input not accepted after
restricting input guards is redirected to the universal location lu. Also I0 equals I.

In essence, we weaken the constraints on output edges, and strengthen the constraints
on input edges. This is consistent with the game semantics of specifications: perturbation
makes the game harder to win for the verifier. Since the gaps created by strengthening
input guards are closed by edges to the universal location, the implementation becomes
less predictable. If an input arrives close to the deadline, the environment cannot be
certain if it will be handled precisely as specified. Enlargement of output guards has a
similar effect. The environment of the specification has to be ready that outputs will
arrive slightly after the deadlines.

Such considerations are out of place in classical robustness theories for model check-
ing, but are crucial when moving to models, where input and output transitions are
distinguished. For example, in [7] the authors propose a robust semantics for timed au-
tomata. Their maximal progress assumption is equivalent to the output urgency condition
of our implementations. However, in [7] both input and output guards are increased,
which is suitable for the one-player setting, but incompatible with the contravariant
nature of two-player games. Such enlargement would not be monotonic with respect to
the alternating refinement (Def. 4), while the perturbation of Def. 8 is monotonic.

We are now ready to define our notion of robust satisfaction:

Definition 9. An implementation I robustly satisfies a specification S given a delay
∆ ∈ Q≥0, denoted I sat∆ S, iff I∆ ≤ S. We write JSK∆mod for the set of all ∆-robust
implementations of S, such that JSK∆mod = {I | I sat∆ S ∧ I is an implementation}.

Property 1. Let I be an implementation and 0 ≤ ∆1 < ∆2. Then I ≤ I∆1 ≤ I∆2 .

In addition, we obtain the following by transitivity of the refinement:

Property 2. Let S be a specification and ∆1 ≤ ∆2, then JSK∆2

mod ⊆ JSK∆1

mod ⊆ JSKmod.

Property 3. Let S and T be specifications and 0≤∆, then S≤T =⇒ JSK∆mod⊆JT K∆mod.

We now turn to the problem of deciding whether a specification is robustly consistent:

Definition 10. Let S be a specification and ∆ ∈ Q>0, then S is ∆-robust consistent if
there exists an implementation I such that I sat∆ S.

Like in the non-robust case, deciding consistency and performing operations on
specifications are reducible to solving games. But now, we will need to make the games
aware of the robustness conditions. In the rest of this section, we propose a definition
for such games. Then, in Sections 4 and 5, we show how they can be used to perform
classical operations on specifications.

Example 2. Figure 2 presents the ∆-perturbation of the researcher implementation
presented in Fig. 1b. One can check that this implementation robustly satisfies the
specification of Fig. 1a for any ∆ ∈]0, 1].

Robust Timed Games for Timed I/O Specifications. We first define robust strategies that
guarantee winning even if subject to bounded timing perturbations. We then propose a
technique for finding such strategies. We start with the construction of syntactic outcome
that represents game outcomes as TIOAs. We rely on the region graph construction in
the definition of syntactic outcome, but any stable partitioning of the state-space could
serve this purpose, and would be more efficient in practice.

Definition 11. Let A = (Loc, q0,Clk, E,Act, Inv) be a TIOA and f a strategy over
A for output. The TIOA Af = (RA, (q0, r0),Clk ∪ {z}, Ê,Act ∪ {τ}, Înv) is built by
decorating the region graph G = (RA,−→G) ofA, using the original clocks ofA and an
additional clock z to impose output urgency. For each region (q, r), the incident edges
and the invariant are defined as follows:

– Înv(q, r) = Inv(q) ∧ (r ∨ r↗);
– If (q, r) τ−→G(q, r↗) then ((q, r), τ, r↗, {z}, (q, r↗)) ∈ Ê;
– For each edge (q, i?, ϕ, λ, q′)∈E, if (q, r) i?−→G(q′, r′) then ((q, r), i?, ϕ, λ ∪ {z},
(q′, r′)) ∈ Ê;

– If f(q, r) = o!, then Înv(q, r) = r ∧ {z=0}, and for each edge (q, o!, ϕ, λ, q′)∈E,
if (q, r) o!−→G(q′, r′), then ((q, r), o!, ϕ, λ ∪ {z}, (q′, r′)) ∈ Ê.

This construction captures the semantic outcome of the game in the following sense:

Proposition 1. Let (A,W) be a timed safety game and f be a strategy for output. Then
a run ρ in the region graph G of A is in Outcomeo((q, r), f) iff ρ is an untimed run of
Af starting from region (q, r).

In a robust timed game we seek strategies that remain winning after perturbation by
a delay ∆. The perturbation is defined on the syntactic outcome of the strategy, by
enlarging the guards for the actions of the verifier. We write dAeo∆ (resp. dAei∆) for the
TIOA where the guards of the output (resp. input) player and the invariants have been
enlarged by ∆.

Definition 12. For a timed game (A,W), a strategy f for output is ∆-robust winning if
it is winning when the moves of output are perturbed, i.e. Runs(JdAfeo∆Ksem) ⊆W . 5

As proposed in [2], robust timed games for a bounded delay can be reduced to
classical timed games by a syntactic transformation of the game automaton. Here, we
propose a modified version of the construction that respects the duality between inputs
and outputs:

Definition 13. Let A = (Loc, q0,Clk, E,Act, Inv) be TIOA and a ∆ ∈ Q>0, the robust
game automatonA∆rob = (L̃oc, q0,Clk∪ {y}, Ẽ, Ãct, Ĩnv) uses an additional clock y and
is constructed according to the following rules:

– Loc ⊆ L̃oc, and for each location q ∈ Loc and each edge e = (q, o!, ϕ, λ, q′) ∈ E,
two locations qαe and qβe are added in L̃oc. The invariant of q is unchanged; the
invariants of qαe and qβe are y ≤ ∆.

– For each action o! ∈ Acto, an additional action o? is added in Ãcti.
– Each edge e′ = (q, i?, ϕ, λ, q′) ∈ E gives rise to the following edges in Ẽ:
(q, i?, ϕ, λ ∪ {y}, q′), (qαe , i?, ϕ, λ ∪ {y}, q′) and (qβe , i?, ϕ, λ ∪ {y}, q′).

– Each edge e = (q, o!, ϕ, λ, q′) ∈ E gives rise to the following edges in Ẽ:
(q, o!, ϕc2∆, {y}, qαe), (qαe , o!, {y = ∆}, {y}, qβe), (qαe , o?, {y ≤ ∆}, λ ∪ {y}, q′)
and (qβe , o?, {y ≤ ∆}, λ∪{y}, q′), where ϕc2∆ is constructed from ϕ by restricting
upper bound constraints by 2∆.

The construction is demonstrated in Fig 3. The output player can propose a move in the
time interval bϕc∆ (which is done in two steps: first playing o! in the time interval ϕc2∆
and then a second firing after ∆ time units), but the input player can perturb this move
by choosing a smaller or greater delay to perform the action.

The construction shall serve as a tool for deciding robust consistency, synthesizing a
robust implementation, and other operations of the specification theory with robustness.

Theorem 1. For a timed safety game (A,W), if f is a winning strategy for output in
the robust game (A∆rob,W), then the following strategy f ′ is a ∆-robust winning strategy
for output in the game (A,W): ∀(q, r) ∈ RA, f ′(q, r) = o! if ∃e.f(qαe , r̃) = o!, where
r̃ is a region ofRA∆rob

, and r its projection onRA 6, otherwise f ′(q, r) = delay.

5 Technically, we assume that runs in Runs(JdAfeo∆Ksem) abstract τ transitions
6 To this end the region graph of A must be computed with ∆ as the lowest constant.

q

Inv(q)

q1

q2

o!

ϕo, λo

i? ϕi, λi

(a) TIOA A

q

Inv(q)

qα

y ≤ ∆

qβ

y ≤ ∆

q1

q2

o!

ϕoc2∆, y := 0

i?
ϕi, λi ∪ {y}

o!

y = ∆, y := 0

o?, y ≤ ∆,λo ∪ {y}

i? ϕi, λi ∪ {y}

o?

y ≤ ∆,λo ∪ {y}

i?, ϕi, λi ∪ {y}

(b) Robust game automaton A∆rob

Fig. 3: Construction of the robust game automation A∆rob from an original automaton A.

Our method and our notion of robust strategy guarantees non-zenoness for the
synthesized strategies. Indeed by allowing the opponent to perturb the verifier by ∆
or −∆ we impose that the verifier only performs non-null delay actions. Later, in the
context of timed specifications, this ensures realizability of implementations. Also non-
Zeno environements are used as witnesses of compatibility in optimistic composition,
which could have happened in [1], which ignored Zeno-problems altogether.

4 Robust Consistency and Conjunction

We now provide a method to decide the ∆-robust consistency of a specification and
synthesize robust implementations by solving a robust timed safety game, in which the
output player must avoid a set of immediate error states. From there, the computation of a
robust strategy gives a method to synthesize a robust implementation of the specification.

Intuitively a specification is ∆-robust with respect to input i?, if between enabling of
any two i? edges at least 2∆ time passes, during which the reaction to i? is unspecified.
So, if the two transitions triggers ∆-too-late and ∆-too-early (respectively), there is no
risk that the reaction is resolved non-deterministically in the specification.

In our input-enabled setup, lack of reaction is modeled using transitions to the
universal (unpredictable) state. Formally, we say that ∆-robust specifications should
admit ∆-latency of inputs. A state (q, u) verifies the ∆-latency condition for inputs, iff
for each edge e = (q, i?, ϕ, c, q′), where q′ 6= lu and e is enabled in (q, u) we have:

∀d ∈ [0, 2∆].∀e′ = (q, i?, ϕ, c, q′′).

if e′ 6= e and (q, u)
d−→(q, u+ d) and e′ is enabled in (q, u+ d) then q′′ = lu

For a specification S , the safety objective for the robust consistency game is to avoid
the set of states of error states errS∆ such that (q, u) ∈ errS∆ iff (q, u) violates independent
progress or ∆-latency for inputs, so:

– Violates independent progress: (∃d ∈ R≥0.(q, u)
d9) and (∀d∀o!.(q, u) d−→(q, u +

d)⇒ (q, u+ d)
o!9),

– Violates ∆-latency of inputs: ∃e = (q, i?, ϕ, c, q′), q′ 6= lu, enabled in (q, u), such
that ∃d ∈ [0, 2∆].(q, u)

d−→(q, u+d) and ∃e′ = (q, i?, ϕ, c, q′′) enabled in (q, u+d),
with e′ 6= e and q′′ 6= lu.

Observe that errS ⊆ errS∆, because the error condition with robustness is weaker than in
the classical case (cf. page 7).

The robust safety game (S,WSo(errS∆)) can be solved with the method presented
in the previous section, and a winning strategy f for the game can be synthesized. Let
Sf be the syntactic outcome of f in S. We build from a robust implementation If by
applying the following transformation to Sf :

– When we apply a ∆-perturbation on If , a state ((q, r), u) can be reached even if
u 6∈ r∨ r↗. However due to the region partitioning, the inputs available in Sf might
not be firable from r ∨ r↗. Then, in order to check the robust satisfaction relation
between (If)∆ and S , we add additional input edges to If : for each location (q, r)
in Sf , for each edge e = ((q, r), i?, ϕ, λ ∪ {z}, (q∗, r∗)) (with q∗ 6= lu), and for
each location (q′, r′) linked to (q, r) by a sequence of τ transitions, we add an edge
e′ = ((q′, r′), i?, ϕ, λ ∪ {z}, (q∗, r∗)).

– To support restriction of input guards in (If)∆, we replaced in If all guards ϕ
of edges e = ((q, r), i?, ϕ, λ ∪ {z}, (q′, r′)) with q′ 6= lu by their elargement
dϕe∆. Guards on edges to the lu location are adjusted in order to maintain action
determinism and input-enableness.

Note that this construction adds many input edges to the implementation, out of which
many are never enabled. This simplifies the construction and the proof of correctness.
In practice, to efficiently synthesize implementations, coarser abstractions like zones
should be used, that do not include τ transitions and thus avoid multiplying input edges.

Theorem 2. For a specification S and a robust winning strategy f in the ∆-robust
consistency game, we have that If is a ∆-robust implementation of S, i.e. If sat∆ S.

Conjunction. A conjunction of two specifications captures the intersection of their
implementation sets. The following conjunction operator has been proposed in [1]:

Definition 14. Let S = (LocS, qS0,ClkS, ES,Act, InvS) and T = (LocT, qT0 ,ClkT, ET,Act,
InvT) be specifications that share the same alphabet of actions Act. We define their con-
junction, denoted S∧T , as the TIOA (Loc, q0,Clk, E,Act, Inv) where Loc = LocS×LocT ,
q0 = (qS0 , q

T
0), Clk = ClkS]ClkT , Inv((qs, qt))= Inv(qs)∧Inv(qt), and the set of edges

is defined by the following rule: if (qs, a, ϕs, cs, q′s) ∈ES and (qt, a, ϕt, ct, q
′
t) ∈ET

then ((qs, qt), a, ϕs∧ϕt, cs ∪ ct, (q′s, q′t)) ∈E.

It turns out that this operator is robust, in the sense of precisely characterizing also
the intersection of the sets of robust implementations. So not only conjunction is the
greatest lower bound with respect to implementation semantics, but also with respect to
the robust implementation semantics. More precisely:

Theorem 3. For specifications S, T and ∆ ∈ Q>0: JS∧T K∆mod = JSK∆mod ∩ JT K∆mod

The theorem is a direct extension for robust implemenations of Theorem 6 in [1].
We remark that due to the monotonicity of the refinement (Property 1), we can use
two different delays ∆1 and ∆2, such that JSK∆1

mod ∩ JT K
∆2

mod ⊇ JS∧T Kmax(∆1,∆2)
mod . So

requirements with different precision can be conjoined, by considering the smaller jitter.
Robustness of the operator in Def. 14 is very fortunate. Thanks to this large parts of

implementation of theory of [1] can be reused. We have experimented on small examples
asking simple robust consistency questions by applying constructions manually and
using non-robust version of ECDAR [15], obtaining promising results.

5 Robust Compatibility, Composition and Quotient

We lift the composition and quotient operators [1] to the robust setting. Composition is
used to build systems from smaller units, while quotient is used to synthesize specifica-
tions of missing components in a larger design, for example for controller synthesis.

Parallel Composition. Two specifications S , T can be composed only iff ActSo ∩ActTo =
∅. Parallel composition is obtained by a product, where the inputs of one specification
synchronize with the outputs of the other:

Definition 15 (Parallel Composition). Let S = (LocS , qS0 ,ClkS , ES ,ActS , InvS) and
T = (LocT , qT0 ,ClkT , ET ,ActT , InvT) be two composable specifications. We define
their parallel product, denoted S ‖ T , as the TIOA (Loc, q0,Clk, E,Act, Inv) where
Loc = LocS×LocT , q0 = (qS0 , q

T
0), Clk = ClkS]ClkT , Inv(qs, qt) = Inv(qs)∧ Inv(qt),

and the set of edges is defined by the three following rules:

– if (qs, a, ϕs, cs, q′s) ∈ ES with a ∈ ActS\ActT then each qt ∈ LocT gives rise to an
edge ((qs, qt), a, ϕs, cs, (q

′
s, qt)) ∈ E;

– if (qt, a, ϕt, ct, q′t) ∈ ET with a ∈ ActT \ActS then each qs ∈ LocS gives rise to an
edge ((qs, qt), a, ϕt, ct, (qs, q

′
t)) ∈ E;

– if (qs, a, ϕs, cs, q′s) ∈ ES and (qt, a, ϕt, ct, q
′
t) ∈ ET with a ∈ ActS ∩ ActT then

this gives rise to an edge ((qs, qt), a, ϕs ∧ ϕt, cs ∪ ct, (q′′s , q′t)) ∈ E.

Robustness distributes over parallel composition in the following fashion:

Lemma 1. For any implementations I , J and a delay ∆ ∈ Q>0: (I ‖J)∆ ≤ I∆ ‖J∆

We model incompatibility by introducing a predicate describing undesirable states
denoted by the set und. For example, a communication failure in the input-enabled setting
can be modeled, by redirecting an input edge to an undesirable location. In general any
reachability objective, for example given by a temporal logics property, can serve as
the set of undesirable behaviors und. It is important that such behaviors are avoided
during the composition. For doing so, we propose to follow the optimistic approach to
composition introduced in [10] that is two specifications can be composed if there exists
at least one environment in which they can work together. In the robustness setting we
consider imprecise environments by applying a ∆-perturbation to their outputs. Then, in
what follows, we say that a specification is ∆-robust useful if there exists an imprecise
environment E that avoids the undesirable states, whatever the specification does.

Definition 16. A specification S is ∆-robust useful if there exists an environment E such
that no undesirable states are reached in JdEeo∆ ‖ SKsem.

To check robust usefulness we solve the robust game (S,WSi(und)), and determine
if the input player has a robust strategy f that avoids the undesirable states. Let Sf be the
syntactic outcome of f in S . We build from Sf a robust environment Ef by permuting the
input and output players, such that each input in Sf becomes an output, and conversely.

Theorem 4. If there exists a robust winning strategy f in the ∆-robust usefulness game
for a specification S, then S is ∆-robust useful in the environment Ef .

Finally, two specifications are compatible if their composition is useful.

Definition 17. Two composable specifications S and T are ∆-robust compatible iff
S ‖ T is ∆-robust useful.

It is important that the robust theory does not modify the definition of the operations
themself. This means that all the important properties of composition introduced in
[1] remain valid. This is illustrated with the independent implementability property in
Theorem 5, which follows from Lemma 1 and Thm. 10 in [1].

Theorem 5. Let S and T be composable specifications and let I and J be ∆-robust
implementations of S and T (resp.), i.e. I sat∆ S and J sat∆ S , then I ‖ J sat∆ S ‖
T . Moreover if S and T are ∆-compatible then I and J are also ∆-compatible.

Due to the monotonicity of perturbations with respect to the refinement, two dif-
ferent delays can be used to implement specifications S and T . For two implemen-
tations I sat∆1

S and J sat∆2
T of the parallel components, their composition

satisfies the composition of specifications with the smaller of the two precisions:
I ‖ J satmin(∆1,∆2) S ‖ T .

Quotient. Quotient is a dual operator to composition, such that for a large specification
T and a small one S , T S is the specification of the components that composed with
S will refine T . In other words, T S specifies the component that still needs to be
implemented after having an implementation of S, in order to build an implementation
of T . One possible application is when T is a system specification, and S is the plant,
then a robust controller for a safety objective can be achieved by finding a ∆-consistent
implementation of the quotient T S.

To apply quotienting, we require that ActS ⊆ ActT and ActSo ⊆ ActTo . The construc-
tion of a quotient requires the use of a universal location lu, as well as an inconsistent
location l∅ that forbids any outputs and forbids elapsing of time.

Definition 18 (Quotient). Let T = (LocT , qT0 ,ClkT , ET ,ActT , InvT) and S = (LocS ,
qS0 ,ClkS , ES ,ActS , InvS) with ActS ⊆ ActT and ActSo ⊆ ActTo . Their quotient, denoted
T S, is the TIOA (Loc, q0,Clk, E,Act, Inv) where Loc = LocT × LocS ∪ {lu, l∅},
q0 = (qT0 , q

S
0), Clk = ClkT] ClkS] {xnew}, Act = Acti] Acto with Acti = ActTi ∪

ActSo ∪{inew} and ActTo \ActSo , Inv(qt, qs) = Inv(lu) = true and Inv(l∅) = {xnew ≤ 0},
and the set E of edges is defined by the following rules:

– ∀qt ∈ LocT .∀qs ∈ LocS .∀a ∈ Act.∃((qt, qs), a,¬InvS(qs), {xnew}, lu) ∈ E,
– ∀qt ∈ LocT .∀qs ∈ LocS .∃((qt, qs), inew,¬Inv(qt) ∧ Inv(qs), {xnew}, l∅) ∈ E,
– if (qt, a, ϕt, ct, q′t) ∈ ET and (qs, a, ϕs, cs, q

′
s) ∈ ES , then ∃((qt, qs), a, ϕT ∧

ϕS , ct ∪ cs, (q′t, q′s)) ∈ E,
– ∀(qs, a, ϕs, cs, q′s) ∈ ES with a ∈ ActSo , ∃((qt, qs), a, ϕS ∧¬GT , {xnew}, l∅) ∈ E,

where GT =
∨
{ϕt | (qt, a, ϕt, ct, q′t)},

– ∀(qt, a, ϕt, ct, q′t) ∈ ET with a 6∈ ActS , ∃((qt, qs), a, ϕT , ct, (q′t, q′s)) ∈ E,
– ∀(qt, a, ϕt, ct, q′t) ∈ ET with a ∈ ActSo , ∃((qt, qs), a,¬GT , {}, lu) ∈ E, where
GT =

∨
{ϕs | (qs, a, ϕs, cs, q′s)},

– ∀a ∈ Acti.∃(l∅, a, xnew = 0, ∅, l∅) ∈ E,
– ∀a ∈ Act.∃(lu, a, true, ∅, lu) ∈ E.

As stated in Thm. 12 of [1], the quotient gives a maximal (the weakest) specification
for a missing component. This theorem can be generalized to specifications that are lo-
cally consistent (see [1]), and used to argue for completeness of the quotient construction
in the robust case. It turns out that this very operator is also maximal for the specification
of a robust missing component, in the following sense:

Theorem 6. Let S and T be two specifications such that the quotient T S is defined
and let J be an implementation, then

S ‖ J∆ ≤ T iff J sat∆ T S

6 Concluding Remarks

We have presented a compositional framework for reasoning about robustness of timed
I/O specifications. Our theory builds on the results presented in [1] combined together
with a new robust timed game for robust specification theories. We extend the construc-
tion of [2] to the setting of specification theories, to solve robust games by reducing them
to problems on classical timed games. This construction can easily be implemented in
tools such as ECDAR. Our approach can be used to synthesize an implementation that is
robust with respect to a given specification, and to combine or compare specifications in
a robust manner. Our approach can potentially be applied to lift any game-based timed
specification theory to a robust setting.

In the future, we will consider the parametric extension of our theory, that is to
synthesize the value of the perturbation for which consistency holds. The emptiness
problem that decides if there exists a robust delay has already been studied in the case of
1-player games in different works [6,8,16,17]. A quantitative analysis of this problem
has only been studied in [18].

References

1. David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: Timed I/O automata: a
complete specification theory for real-time systems. In: HSCC, ACM (2010) 91–100

2. Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Timed parity games: Complexity and robustness.
In: FORMATS. Volume 5215 of LNCS., Springer (2008) 124–140

3. The COMBEST Consortium: Combest http://www.combest.eu.com.
4. The SPEEDS Consortium: Speeds http://www.speeds.eu.com.
5. Badouel, E., Benveniste, A., Caillaud, B., Henzinger, T., Legay, A., Passerone, R.: Contract

theories for embedded systems : A white paper. Research report, IRISA/INRIA Rennes
(2009)

6. Puri, A.: Dynamical properties of timed automata. In: Formal Techniques in Real-Time and
Fault-Tolerant Systems. Volume 1486 of LNCS. Springer (1998) 210–227

7. Wulf, M.D., Doyen, L., Raskin, J.F.: Almost ASAP semantics: from timed models to timed
implementations. Formal Aspects of Computing 17(3) (2005) 319–341

8. Wulf, M., Doyen, L., Markey, N., Raskin, J.F.: Robust safety of timed automata. Formal
Methods in System Design 33 (2008) 45–84

9. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2) (1994) 183–235
10. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE. (2001)

109–120
11. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: In Engineering Theories of

Software Intensive Systems, Marktoberdorf Summer School. (2004)
12. Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-fly algorithm for checking

alternating timed simulation. In: FORMATS. Volume 5813 of LNCS., Springer (2009) 73–87
13. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems

(an extended abstract). In: STACS. (1995) 229–242
14. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for

the analysis of timed games. In: CONCUR. Volume 3653 of LNCS., Springer (2005) 66–80
15. David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: ECDAR: An environment for

compositional design and analysis of real time systems. In: ATVA. Volume 6252 of LNCS.,
Springer (2010) 365–370

16. Bouyer, P., Markey, N., Reynier, P.A.: Robust model-checking of linear-time properties in
timed automata. In: LATIN. Volume 3887 of LNCS., Springer (2006) 238–249

17. Bouyer, P., Markey, N., Reynier, P.A.: Robust analysis of timed automata via channel machines.
In: FOSSACS’08. Volume 4962 of LNCS., Springer (2008) 157–171

18. Jaubert, R., Reynier, P.A.: Quantitative robustness analysis of flat timed automata. In:
FOSSACS. Volume 6604 of LNCS., Springer (2011) 229–244

