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Abstract. We introduce a new notion of structural refinement, a sound
abstraction of logical implication, for the modal nu-calculus. Using new
translations between the modal nu-calculus and disjunctive modal tran-
sition systems, we show that these two specification formalisms are
structurally equivalent.
Using our translations, we also transfer the structural operations of
composition and quotient from disjunctive modal transition systems to
the modal nu-calculus. This shows that the modal nu-calculus supports
composition and decomposition of specifications.

1 Introduction

There are two conceptually different approaches for the specification and veri-
fication of properties of formal models. Logical approaches make use of logical
formulae for expressing properties and then rely on efficient model checking algo-
rithms for verifying whether or not a model satisfies a formula. Automata-based
approaches, on the other hand, exploit equivalence or refinement checking for
verifying properties, given that models and properties are specified using the
same (or a closely related) formalism.

The logical approaches have been quite successful, with a plethora of logical
formalisms available and a number of successful model checking tools. One partic-
ularly interesting such formalism is the modal µ-calculus [21], which is universal
in the sense that it generalizes most other temporal logics, yet mathematically
simple and amenable to analysis.

One central problem in the verification of formal properties is state space
explosion: when a model is composed of many components, the state space of
the combined system quickly grows too big to be analyzed. To combat this
problem, one approach is to employ compositionality. When a model consists
of several components, each component would be model checked by itself, and
then the components’ properties would be composed to yield a property which
automatically is satisfied by the combined model.

Similarly, given a global property of a model and a component of the model
that is already known to satisfy a local property, one would be able to decompose
automatically, from the global property and the local property, a new property
which the rest of the model must satisfy. We refer to [23] for a good account of
these and other features which one would wish specifications to have.

As an alternative to logical specification formalisms and with an eye to
compositionality and decomposition, automata-based behavioral specifications
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Fig. 1. An example property specified in CTL (top left), in the modal µ-calculus (below
left), as a modal equation system (third left), and as a DMTS (right).

were introduced in [22]. Here the specification formalism is a generalization
of the modeling formalism, and the satisfaction relation between models and
specifications is generalized to a refinement relation between specifications, which
resembles simulation and bisimulation and can be checked with similar algorithms.

For an example, we refer to Fig. 1 which shows the property informally
specified as “after a req(uest), no idle(ing) is allowed, but only work, until grant is
executed” using the logical formalisms of CTL [14] and the modal µ-calculus [21]
and the behavioral formalism of disjunctive modal transition systems [26].

The precise relationship between logical and behavioral specification for-
malisms has been subject to some investigation. In [22], Larsen shows that any
modal transition system can be translated to a formula in Hennessy-Milner logic
which is equivalent in the sense of admitting the same models. Conversely, Boudol
and Larsen show in [11] that any formula in Hennessy-Milner logic is equivalent
to a finite disjunction of modal transition systems.

We have picked up this work in [6], where we show that any disjunctive modal
transition system (DMTS) is equivalent to a formula in the modal ν-calculus, the
safety fragment of the modal µ-calculus which uses only maximal fixed points, and
vice versa. (Note that the modal ν-calculus is equivalent to Hennessy-Milner logic
with recursion and maximal fixed points.) Moreover, we show in [6] that DMTS
are as expressive as (non-deterministic) acceptance automata [30, 31]. Together
with the inclusions of [7], this settles the expressivity question for behavioral
specifications: they are at most as expressive as the modal ν-calculus.

In this paper, we show that not only are DMTS as expressive as the modal
ν-calculus, but the two formalisms are structurally equivalent. Introducing a new
notion of structural refinement for the modal ν-calculus (a sound abstraction of
logical implication), we show that one can freely translate between the modal
ν-calculus and DMTS, while preserving structural refinement.

DMTS form a complete specification theory [2] in that they both admit
logical operations of conjunction and disjunction and structural operations of
composition and quotient [6]. Hence they support full compositionality and
decomposition in the sense of [23]. Using our translations, we can transport these
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notions to the modal ν-calculus, thus also turning the modal ν-calculus into a
complete specification theory.

In order to arrive at our translations, we first recall DMTS and (non-determi-
nistic) acceptance automata in Section 2. We also introduce a new hybrid modal
logic, which can serve as compact representation for acceptance automata and
should be of interest in itself. Afterwards we show, using the translations intro-
duced in [6], that these formalisms are structurally equivalent.

In Section 3 we recall the modal ν-calculus and review the translations between
DMTS and the modal ν-calculus which were introduced in [6]. These in turn
are based on work by Boudol and Larsen in [11, 22], hence fairly standard. We
show that, though semantically correct, the two translations are structurally
mismatched in that they relate DMTS refinement to two different notions of
ν-calculus refinement. To fix the mismatch, we introduce a new translation from
the modal ν-calculus to DMTS and show that using this translation, the two
formalisms are structurally equivalent.

In Section 4, we use our translations to turn the modal ν-calculus into a com-
plete specification theory. We remark that all our translations and constructions
are based on a new normal form for ν-calculus expressions, and that turning
a ν-calculus expression into normal form may incur an exponential blow-up.
However, the translations and constructions preserve the normal form, so that
this translation only need be applied once in the beginning.

We also note that composition and quotient operators are used in other
logics such as e.g. spatial [13] or separation logics [32, 28]. However, in these
logics they are treated as first-class operators, i.e. as part of the formal syntax.
In our approach, on the other hand, they are defined as operations on logical
expressions which as results again yield logical expressions (without compositions
or quotients).

Note that some proofs had to be omitted from this paper; these are available
in its long version [17].

2 Structural Specification Formalisms

Let Σ be a finite set of labels. A labeled transition system (LTS) is a structure
I = (S, S0,−→) consisting of a finite set of states S, a subset S0 ⊆ S of initial
states and a transition relation −→ ⊆ S ×Σ × S.

Disjunctive modal transition systems. A disjunctive modal transition sys-
tem (DMTS) is a structure D = (S, S0, 99K,−→) consisting of finite sets S ⊇ S0

of states and initial states, a may-transition relation 99K ⊆ S × Σ × S, and a
disjunctive must-transition relation −→ ⊆ S × 2Σ×S . It is assumed that for all
(s,N) ∈ −→ and all (a, t) ∈ N , (s, a, t) ∈ 99K.

As customary, we write s
a
99K t instead of (s, a, t) ∈ 99K, s −→ N instead of

(s,N) ∈ −→, s
a
99K if there exists t for which s

a
99K t, and s

a
X99K if there does not.

The intuition is that may-transitions s
a
99K t specify which transitions are per-

mitted in an implementation, whereas a must-transitions s −→ N stipulates a dis-
junctive requirement: at least one of the choices (a, t) ∈ N must be implemented.
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A DMTS (S, S0, 99K,−→) is an implementation if −→ = {(s, {(a, t)}) | s a
99K t};

DMTS implementations are precisely LTS.
DMTS were introduced in [26] in the context of equation solving, or quotient,

for specifications and are used e.g. in [5] for LTL model checking. They are a
natural closure of modal transition systems (MTS) [22] in which all disjunctive
must-transitions s −→ N lead to singletons N = {(a, t)}.

Let D1 = (S1, S
0
1 , 99K1,−→1), D2 = (S2, S

0
2 , 99K2,−→2) be DMTS. A relation

R ⊆ S1 × S2 is a modal refinement if it holds for all (s1, s2) ∈ R that
– for all s1

a
99K t1 there is t2 ∈ S2 with s2

a
99K t2 and (t1, t2) ∈ R, and

– for all s2 −→ N2 there is s1 −→ N1 such that for each (a, t1) ∈ N1 there is
(a, t2) ∈ N2 with (t1, t2) ∈ R.

We say that D1 modally refines D2, denoted D1 ≤m D2, whenever there exists
a modal refinement R such that for all s01 ∈ S0

1 , there exists s02 ∈ S0
2 for which

(s01, s
0
2) ∈ R. We write D1 ≡m D2 if D1 ≤m D2 and D2 ≤m D1. For states

s1 ∈ S1, s2 ∈ S2, we write s1 ≤m s2 if the DMTS (S1, {s1}, 99K1,−→1) ≤m
(S2, {s2}, 99K2,−→2).

Note that modal refinement is reflexive and transitive, i.e. a preorder on
DMTS. Also, the relation on states ≤m ⊆ S1 × S2 defined above is itself a modal
refinement, indeed the maximal modal refinement under the subset ordering.

The set of implementations of an DMTS D is JDK = {I ≤m D | I implement-
ation}. This is, thus, the set of all LTS which satisfy the specification given
by the DMTS D. We say that D1 thoroughly refines D2, and write D1 ≤th D2,
if JD1K ⊆ JD2K. We write D1 ≡th D2 if D1 ≤th D2 and D2 ≤th D1. For states
s1 ∈ S1, s2 ∈ S2, we write Js1K = J(S1, {s1}, 99K1,−→1)K and s1 ≤th s2 if
Js1K ⊆ Js2K.

The below proposition, which follows directly from transitivity of modal
refinement, shows that modal refinement is sound with respect to thorough
refinement; in the context of specification theories, this is what one would expect,
and we only include it for completeness of presentation. It can be shown that
modal refinement is also complete for deterministic DMTS [8], but we will not
need this here.

Proposition 1. For all DMTS D1, D2, D1 ≤m D2 implies D1 ≤th D2. ut

We introduce a new construction on DMTS which will be of interest for
us; intuitively, it adds all possible may-transitions without changing the imple-
mentation semantics. The may-completion of a DMTS D = (S, S0, 99K,−→) is
mc(D) = (S, S0, 99Kmc,−→) with

99Kmc = {(s, a, t′) ⊆ S ×Σ × S | ∃(s, a, t) ∈ 99K : t′ ≤th t}.

Note that to compute the may-completion of a DMTS, one has to decide thorough
refinements, hence this computation (or, more precisely, deciding whether a given
DMTS is may-complete) is EXPTIME-complete [9]. We show an example of a
may-completion in Fig. 2.

Proposition 2. For any DMTS D, D ≤m mc(D) and D ≡th mc(D).
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Fig. 2. A MTS D (left) and its may-completion mc(D) (right). In mc(D), the semantic
inclusions which lead to extra may-transitions are depicted with dotted arrows.

Proof. It is always the case that D ≤m D, and adding may transitions on the right
side preserves modal refinement. Therefore it is immediate that D ≤m mc(D),
hence also D ≤th mc(D).

To prove that mc(D) ≤th D, we consider an implementation I ≤m mc(D);
we must prove that I ≤m D. Write D = (S, S0, 99K,−→), I = (I, I0, 99KI ,−→I)
and mc(D) = (S, S0, 99Kmc,−→). Let R ⊆ I × S be the largest modal refinement
between I and mc(D). We now prove that R is also a modal refinement between
I and D. For all (i, d) ∈ R:
– For all i

a
99KI i′, there exists d′ ∈ S such that d

a
99Kmc d

′ and (i′, d′) ∈ R.
Then by definition of 99Kmc, there exists d′′ ∈ S such that d

a
99K d′′ and

Jd′K ⊆ Jd′′K. (i′, d′) ∈ R implies i′ ∈ Jd′K, which implies i′ ∈ Jd′′K. This means
that i′ ≤m d′′, and since R is the largest refinement relation in I × S it must
be the case that (i′, d′′) ∈ R.

– The case of must transitions follows immediately, since must transitions are
exactly the same in D and mc(D). ut

Example 3. The example in Fig. 2 shows that generally, mc(D) 6≤m D. First,
t3 ≤th t1: For an implementation I = (I, I0,−→) ∈ Jt3K with modal refinement
R ⊆ I × {t3, u3, v3}, define R′ ⊆ I × {t1, u1, u2, v1} by

R′ = {(i, t1) | (i, t3) ∈ R} ∪ {(i, v1) | (i, v3) ∈ R}

∪ {(i, u1) | (i, u3) ∈ R, i
a−→}

∪ {(i, u2) | (i, u3) ∈ R, i
aX−→},

then R′ is a modal refinement I ≤m t1. Similarly, t′3 ≤th t
′
1 in mc(D).

On the other hand, t3 6≤m t1 (and similarly, t′3 6≤m t′1), because neither
u3 ≤m u1 nor u3 ≤m u2. Now in the modal refinement game between mc(D) and
D, the may-transition s′

a
99K t′3 has to be matched by s

a
99K t1, but then t′3 6≤m t1,

hence mc(D) 6≤m D.
Also, the may-completion does not necessarily preserve modal refinement:

Consider the DMTS D from Fig. 2 and D1 from Fig. 3, and note first that
mc(D1) = D1. It is easy to see that D ≤m D1 (just match states in D with their
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Fig. 3. DMTS D1, D2 from Example 3.

double-prime cousins in D1), but mc(D) 6≤m mc(D1) = D1: the may-transition
s′

a
99K t′3 has to be matched by s′′

a
99K t′′1 and t′3 6≤m t′′1 .

Lastly, the may-completion can also create modal refinement: Considering
the DMTS D2 from Fig. 3, we see that D2 6≤m D, but mc(D2) = D2 ≤m mc(D).

Acceptance automata. A (non-deterministic) acceptance automaton (AA) is
a structure A = (S, S0,Tran), with S ⊇ S0 finite sets of states and initial states
and Tran : S → 22

Σ×S
an assignment of transition constraints. We assume that

for all s0 ∈ S0, Tran(s0) 6= ∅.
An AA is an implementation if it holds for all s ∈ S that Tran(s) = {M}

is a singleton; hence also AA implementations are precisely LTS. Acceptance
automata were first introduced in [30] (see also [31], where a slightly different
language-based approach is taken), based on the notion of acceptance trees
in [20]; however, there they are restricted to be deterministic. We employ no
such restriction here. The following notion of modal refinement for AA was also
introduced in [30].

Let A1 = (S1, S
0
1 ,Tran1) and A2 = (S2, S

0
2 ,Tran2) be AA. A relation R ⊆

S1×S2 is a modal refinement if it holds for all (s1, s2) ∈ R and allM1 ∈ Tran1(s1)
that there exists M2 ∈ Tran2(s2) such that
– ∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
– ∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R.

As for DMTS, we write A1 ≤m A2 whenever there exists a modal refinement
R such that for all s01 ∈ S0

1 , there exists s02 ∈ S0
2 for which (s01, s

0
2) ∈ R. Sets of

implementations and thorough refinement are defined as for DMTS. Note that as
both AA and DMTS implementations are LTS, it makes sense to use thorough
refinement and equivalence across formalisms, writing e.g. A ≡th D for an AA A
and a DMTS D.

Hybrid modal logic. We introduce a hybrid modal logic which can serve as
compact representation of AA. This logic is closely related to the Boolean modal
transition systems of [7] and hybrid in the sense of [29, 10]: it contains nominals,
and the semantics of a nominal is given as all sets which contain the nominal.

For a finite set X of nominals, let L(X) be the set of formulae generated
by the abstract syntax L(X) 3 φ := tt | ff | 〈a〉x | ¬φ | φ ∧ φ, for a ∈ Σ and
x ∈ X. The semantics of a formula is a set of subsets of Σ ×X, given as follows:
LttM = 2Σ×X , LffM = ∅, L¬φM = 2Σ×X \ LφM, L〈a〉xM = {M ⊆ Σ ×X | (a, x) ∈M},
and Lφ ∧ ψM = LφM ∩ LψM. We also define disjunction φ1 ∨ φ2 = ¬(φ1 ∧ φ2).
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An L-expression is a structure E = (X,X0, Φ) consisting of finite sets X0 ⊆ X
of variables and a mapping Φ : X → L(X). Such an expression is an implementa-
tion if LΦ(x)M = {M} is a singleton for each x ∈ X. It can easily be shown that
L-implementations precisely correspond to LTS.

Let E1 = (X1, X
0
1 , Φ1) and E2 = (X2, X

0
2 , Φ2) be L-expressions. A relation

R ⊆ X1 × X2 is a modal refinement if it holds for all (x1, x2) ∈ R and all
M1 ∈ LΦ1(x1)M that there exists M2 ∈ LΦ2(x2)M such that
– ∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
– ∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R.

Again, we write E1 ≤m E2 whenever there exists such a modal refinement R
such that for all x01 ∈ X0

1 , there exists x02 ∈ X0
2 for which (x01, x

0
2) ∈ R. Sets of

implementations and thorough refinement are defined as for DMTS.

Structural equivalence. We proceed to show that the three formalisms intro-
duced in this section are structurally equivalent. Using the translations between
AA and DMTS discovered in [6] and new translations between AA and hybrid
logic, we show that these respect modal refinement.

The translations al, la between AA and our hybrid logic are straightforward:
For an AA A = (S, S0,Tran) and all s ∈ S, let

Φ(s) =
∨

M∈Tran(s)

( ∧
(a,t)∈M

〈a〉t ∧
∧

(b,u)/∈M

¬〈b〉u
)

and define the L-expression al(A) = (S, S0, Φ).
For an L-expression E = (X,X0, Φ) and all x ∈ X, let Tran(x) = LΦ(x)M and

define the AA la(E) = (X,X0,Tran).
The translations da, ad between DMTS and AA were discovered in [6]. For a

DMTS D = (S, S0, 99K,−→) and all s ∈ S, let

Tran(s) = {M ⊆ Σ × S | ∀(a, t) ∈M : s
a
99K t, ∀s −→ N : N ∩M 6= ∅}

and define the AA da(D) = (S, S0,Tran).1
For an AA A = (S, S0,Tran), define the DMTS ad(A) = (D,D0, 99K,−→) as

follows:

D = {M ∈ Tran(s) | s ∈ S}
D0 = {M0 ∈ Tran(s0) | s0 ∈ S0}
−→ =

{(
M, {(a,M ′) |M ′ ∈ Tran(t)}

) ∣∣ (a, t) ∈M}
99K = {(M,a,M ′) | ∃M −→ N : (a,M ′) ∈ N}

Note that the state spaces of A and ad(A) are not the same; the one of ad(A)
may be exponentially larger. The following lemma shows that this explosion is
unavoidable:

Lemma 4. There exists a one-state AA A for which any DMTS D ≡th A has
at least 2n−1 states, where n is the size of the alphabet Σ.
1 Note that there is an error in the corresponding formula in [6].
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We notice that LTS are preserved by all translations: for any LTS I, al(I) =
la(I) = da(I) = ad(I) = I. In [6] it is shown that the translations between
AA and DMTS respect sets of implementations, i.e. that da(D) ≡th D and
ad(A) ≡th A for all DMTS D and all AA A. The next theorem shows that
these and the other presented translations respect modal refinement, hence these
formalisms are not only semantically equivalent, but structurally equivalent.

Theorem 5. For all AA A1, A2, DMTS D1,D2 and L-expressions E1, E2:

1. A1 ≤m A2 iff al(A1) ≤m al(A2),
2. E1 ≤m E2 iff la(E1) ≤m la(E2),
3. D1 ≤m D2 iff da(D1) ≤m da(D2), and
4. A1 ≤m A2 iff ad(A1) ≤m ad(A2).

Proof (sketch). We give a few hints about the proofs of the equivalences; the
details can be found in [17]. The first two equivalences follow easily from the
definitions, once one notices that for both translations, LΦ(x)M = Tran(x) for all
x ∈ X. For the third equivalence, we can show that a DMTS modal refinement
D1 ≤m D2 is also an AA modal refinement da(D1) ≤m da(D2) and vice versa.

The fourth equivalence is slightly more tricky, as the state space changes. If
R ⊆ S1 × S2 is an AA modal refinement relation witnessing A1 ≤m A2, then
we can construct a DMTS modal refinement R′ ⊆ D1 × D2, which witnesses
ad(A1) ≤m ad(A2), by

R′ = {(M1,M2) | ∃(s1, s2) ∈ R :M1 ∈ Tran1(s1),M2 ∈ Tran(s2),

∀(a, t1) ∈M1 : ∃(a, t2) ∈M2 : (t1, t2) ∈ R,
∀(a, t2) ∈M2 : ∃(a, t1) ∈M1 : (t1, t2) ∈ R}.

Conversely, if R ⊆ D1 ×D2 is a DMTS modal refinement witnessing ad(A1) ≤m
ad(A2), then R′ ⊆ S1 × S2 given by

R′ = {(s1, s2) | ∀M1 ∈ Tran1(s1) : ∃M2 ∈ Tran2(s2) : (M1,M2) ∈ R}

is an AA modal refinement. ut

The result on thorough equivalence from [6] now easily follows:

Corollary 6. For all AA A, DMTS D and L-expressions E, al(A) ≡th A,
la(E) ≡th E, da(D) ≡th D, and ad(A) ≡th A. ut

Also soundness of modal refinement for AA and hybrid logic follows directly
from Theorem 5:

Corollary 7. For all AA A1 and A2, A1 ≤m A2 implies A1 ≤th A2. For all
L-expressions E1 and E2, E1 ≤m E2 implies E1 ≤th E2. ut
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3 The Modal ν-Calculus

We wish to extend the structural equivalences of the previous section to the
modal ν-calculus. Using translations between AA, DMTS and ν-calculus based
on work in [22, 11], it has been shown in [6] that ν-calculus and DMTS/AA are
semantically equivalent. We will see below that there is a mismatch between
the translations from [6] (and hence between the translations in [22, 11]) which
precludes structural equivalence and then proceed to propose a new translation
which fixes the mismatch.

Syntax and semantics. We first recall the syntax and semantics of the modal
ν-calculus, the fragment of the modal µ-calculus [33, 21] with only maximal
fixed points. Instead of an explicit maximal fixed point operator, we use the
representation by equation systems in Hennessy-Milner logic developed in [24].

For a finite setX of variables, letH(X) be the set of Hennessy-Milner formulae,
generated by the abstract syntaxH(X) 3 φ ::= tt | ff | x | 〈a〉φ | [a]φ | φ∧φ | φ∨φ,
for a ∈ Σ and x ∈ X.

A declaration is a mapping ∆ : X → H(X); we recall the maximal fixed
point semantics of declarations from [24]. Let (S, S0,−→) be an LTS, then an
assignment is a mapping σ : X → 2S . The set of assignments forms a complete
lattice with order σ1 v σ2 iff σ1(x) ⊆ σ2(x) for all x ∈ X and lowest upper bound(⊔

i∈I σi
)
(x) =

⋃
i∈I σi(x).

The semantics of a formula is a subset of S, given relative to an assignment σ,
defined as follows: LttMσ = S, LffMσ = ∅, LxMσ = σ(x), Lφ ∧ ψMσ = LφMσ ∩ LψMσ,
Lφ ∨ ψMσ = LφMσ ∪ LψMσ, and

L〈a〉φMσ = {s ∈ S | ∃s a−→ s′ : s′ ∈ LφMσ},

L[a]φMσ = {s ∈ S | ∀s a−→ s′ : s′ ∈ LφMσ}.

The semantics of a declaration ∆ is then the assignment defined by

L∆M =
⊔
{σ : X → 2S | ∀x ∈ X : σ(x) ⊆ L∆(x)Mσ};

the maximal (pre)fixed point of ∆.
A ν-calculus expression is a structure N = (X,X0, ∆), with X0 ⊆ X sets of

variables and ∆ : X → H(X) a declaration. We say that an LTS I = (S, S0,−→)
implements (or models) the expression, and write I |= N , if it holds that for
all s0 ∈ S0, there is x0 ∈ X0 such that s0 ∈ L∆M(x0). We write JN K for the set
of implementations (models) of a ν-calculus expression N . As for DMTS, we
write JxK = J(X, {x}, ∆)K for x ∈ X, and thorough refinement of expressions and
states is defined accordingly.

The following lemma introduces a normal form for ν-calculus expressions:

Lemma 8. For any ν-calculus expression N1 = (X1, X
0
1 , ∆1), there exists an-

other expression N2 = (X2, X
0
2 , ∆2) with JN1K = JN2K and such that for any

x ∈ X, ∆2(x) is of the form

∆2(x) =
∧
i∈I

( ∨
j∈Ji

〈aij〉xij
)
∧
∧
a∈Σ

[a]
( ∨
j∈Ja

ya,j

)
(1)
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for finite (possibly empty) index sets I, Ji, Ja, for i ∈ I and a ∈ Σ, and all
xij , ya,j ∈ X2. Additionally, for all i ∈ I and j ∈ Ji, there exists j′ ∈ Jaij for
which xij ≤th yaij ,j′ .

As this is a type of conjunctive normal form, it is clear that translating a
ν-calculus expression into normal form may incur an exponential blow-up.

We introduce some notation for ν-calculus expressions in normal form which
will make our life easier later. Let N = (X,X0, ∆) be such an expression and
x ∈ X, with∆(x) =

∧
i∈I
(∨

j∈Ji〈aij〉xij
)
∧
∧
a∈Σ [a]

(∨
j∈Ja ya,j

)
as in the lemma.

Define ♦(x) = {{(aij , xij) | j ∈ Ji} | i ∈ I} and, for each a ∈ Σ, �a(x) = {ya,j |
j ∈ Ja}. Note that now ∆(x) =

∧
N∈♦(x)

(∨
(a,y)∈N 〈a〉y

)
∧
∧
a∈Σ [a]

(∨
y∈�a(x) y

)
.

Refinement. In order to expose our structural equivalence, we need to introduce
a notion of modal refinement for the modal ν-calculus. For reasons which will
become apparent later, we define two different such notions:

Let N1 = (X1, X
0
1 , ∆1), N2 = (X2, X

0
2 , ∆2) be ν-calculus expressions in

normal form and R ⊆ X1 ×X2. The relation R is a modal refinement if it holds
for all (x1, x2) ∈ R that

1. for all a ∈ Σ and every y1 ∈ �a1(x1), there is y2 ∈ �a2(x2) for which
(y1, y2) ∈ R, and

2. for all N2 ∈ ♦2(x2) there is N1 ∈ ♦1(x1) such that for each (a, y1) ∈ N1,
there exists (a, y2) ∈ N2 with (y1, y2) ∈ R.

R is a modal-thorough refinement if, instead of 1., it holds that

1′. for all a ∈ Σ, all y1 ∈ �a1(x1) and every y′1 ∈ X1 with y′1 ≤th y1, there is
y2 ∈ �a2(x2) and y′2 ∈ X2 such that y′2 ≤th y2 and (y′1, y

′
2) ∈ R.

We say that N1 refines N2 whenever there exists such a refinement R such that for
every x01 ∈ X0

1 there exists x02 ∈ X0
2 for which (x01, x

0
2) ∈ R. We write N1 ≤m N2

in case of modal and N1 ≤mt N2 in case of modal-thorough refinement.
We remark that whereas modal refinement for ν-calculus expressions is a

simple and entirely syntactic notion, modal-thorough refinement involves semantic
inclusions of states. Using results in [9], this implies that modal refinement can be
decided in time polynomial in the size of the (normal-form) expressions, whereas
deciding modal-thorough refinement is EXPTIME-complete.

Translation from DMTS to ν-calculus. Our translation from DMTS to
ν-calculus is new, but similar to the translation from AA to ν-calculus given
in [6]. This in turn is based on the characteristic formulae of [22] (see also [1]).

For a DMTS D = (S, S0, 99K,−→) and all s ∈ S, we define ♦(s) = {N | s −→
N} and, for each a ∈ Σ, �a(s) = {t | s a

99K t}. Then, let

∆(s) =
∧

N∈♦(s)

( ∨
(a,t)∈N

〈a〉t
)
∧
∧
a∈Σ

[a]
( ∨
t∈�a(s)

t
)

and define the (normal-form) ν-calculus expression dh(D) = (S, S0, ∆).
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Note how the formula precisely expresses that we demand at least one of every
choice of disjunctive must-transitions (first part) and permit all may-transitions
(second part); this is also the intuition of the characteristic formulae of [22]. Using
results of [6] (which introduces a very similar translation from AA to ν-calculus
expressions), we see that dh(D) ≡th D for all DMTS D.

Theorem 9. For all DMTS D1 and D2, D1 ≤m D2 iff dh(D1) ≤m dh(D2).

Proof. For the forward direction, let R ⊆ S1×S2 be a modal refinement between
D1 = (S1, S

0
1 , 99K1,−→1) and D2 = (S2, S

0
2 , 99K2,−→2); we show that R is also

a modal refinement between dh(D1) = (S1, S
0
1 , ∆1) and dh(D2) = (S2, S

0
2 , ∆2).

Let (s1, s2) ∈ R.
– Let a ∈ Σ and t1 ∈ �a1(s1), then s1

a
99K1 t1, which implies that there is

t2 ∈ S2 for which s2
a
99K2 t2 and (t1, t2) ∈ R. By definition of �a2 , t2 ∈ �a2(s2).

– Let N2 ∈ ♦2(s2), then s2 −→2 N2, which implies that there exists s1 −→1 N1

such that ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ R. By definition of �a1 ,
N1 ∈ �a1(s1).
For the other direction, let R ⊆ S1 × S2 be a modal refinement between

dh(D1) and dh(D2), we show that R is also a modal refinement between D1 and
D2. Let (s1, s2) ∈ R.
– For all s1

a
99K1 t1, t1 ∈ �a1(s1), which implies that there is t2 ∈ �a2(s2) with

(t1, t2) ∈ R, and by definition of �a2 , s2
a
99K2 t2.

– For all s2 −→2 N2, N2 ∈ ♦2(s2), which implies that there is N1 ∈ ♦1(s1)
such that ∀(a, t1) ∈ N1 : ∃(a, t2) ∈ N2 : (t1, t2) ∈ R, and by definition of �a1 ,
s1 −→1 N1. ut

Old translation from ν-calculus to DMTS. We recall the translation from
ν-calculus to DMTS given in [6], which is based on a translation from Hennessy-
Milner formulae (without recursion and fixed points) to sets of acyclic MTS
in [11]. For a ν-calculus expression N = (X,X0, ∆) in normal form, let

99K = {(x, a, y′) ∈ X ×Σ ×X | ∃y ∈ �a(x) : y′ ≤th y},
−→ = {(x,N) | x ∈ X,N ∈ ♦(x)}.

and define the DMTS hdt(N ) = (X,X0, 99K,−→).
Note how this translates diamonds to disjunctive must-transitions directly,

but for boxes takes semantic inclusions into account: for a subformula [a]y, may-
transitions are created to all variables which are semantically below y. This
is consistent with the interpretation of formulae-as-properties: [a]y means “for
any a-transition, ∆(y) must hold”; but ∆(y) holds for all variables which are
semantically below y.

It follows from results in [6] (which uses a slightly different normal form for
ν-calculus expressions) that hdt(N ) ≡th N for all ν-calculus expressions N .

Theorem 10. For all ν-calculus expressions, N1 ≤mt N2 iff hdt(N1) ≤m hdt(N2).
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Proof. For the forward direction, let R ⊆ X1×X2 be a modal-thorough refinement
between N1 = (X1, X

0
1 , ∆1) and N2 = (X2, X

0
2 , ∆2). We show that R is also

a modal refinement between hdt(N1) = (X1, X
0
1 , 99K1,−→2) and hdt(N2) =

(X2, X
0
2 , 99K2,−→2). Let (x1, x2) ∈ R.

– Let x1
a
99K1 y′1. By definition of 99K1, there is y1 ∈ �a1(x1) for which y′1 ≤th y1.

Then by modal-thorough refinement, this implies that there exists y2 ∈ �a2(x2)
and y′2 ∈ X2 such that y′2 ≤th y2 and (y′1, y

′
2) ∈ R. By definition of 99K2 we

have x2
a
99K2 y′2.

– Let x2 −→2 N2, then we have N2 ∈ ♦2(x2). By modal-thorough refinement,
this implies that there is N1 ∈ ♦1(x1) such that ∀(a, y1) ∈ N1 : ∃(a, y2) ∈
N2 : (y1, y2) ∈ R. By definition of −→1, x1 −→1 N1.
Now to the proof that hdt(N1) ≤m hdt(N2) implies N1 ≤mt N2. We have a

modal refinement (in the DMTS sense) R ⊆ X1 ×X2. We must show that R is
also a modal-thorough refinement. Let (x1, x2) ∈ R.
– Let a ∈ Σ, y1 ∈ �a1(x1) and y′1 ∈ X1 such that y′1 ≤th y1. Then by definition

of 99K1, x1
a
99K1 y′1. By modal refinement, this implies that there exists

x2
a
99K2 y′2 with (y′1, y

′
2) ∈ R. Finally, by definition of 99K2, there exists

y2 ∈ �a2(x2) such that y′2 ≤th y2.
– Let N2 ∈ ♦2(x2), then by definition of −→2, x2 −→2 N2. Then, by modal

refinement, this implies that there exists x1 −→1 N1 such that ∀(a, y1) ∈
N1 : ∃(a, y2) ∈ N2 : (y1, y2) ∈ R. By definition of −→1, N1 ∈ �a1(x1). ut

Discussion. Notice how Theorems 9 and 10 expose a mismatch between the
translations: dh relates DMTS refinement to ν-calculus modal refinement, whereas
hdt relates it to modal-thorough refinement. Both translations are well-grounded
in the literature and well-understood, cf. [6, 11, 22], but this mismatch has not
been discovered up to now. Given that the above theorems can be understood
as universal properties of the translations, it means that there is no notion of
refinement for ν-calculus which is consistent with them both.

The following lemma, easily shown by inspection, shows that this discrepancy
is related to the may-completion for DMTS:

Lemma 11. For any DMTS D, mc(D) = hdt(dh(D)). ut

As a corollary, we see that modal refinement and modal-thorough refinement
for ν-calculus are incomparable: Referring back to Example 3, we have D ≤m D1,
hence by Theorem 9, dh(D) ≤m dh(D1). On the other hand, we know that
mc(D) 6≤m mc(D1), i.e. by Lemma 11, hdt(dh(D)) 6≤m hdt(dh(D1)), and then by
Theorem 10, dh(D) 6≤mt dh(D1).

To expose an example where modal-thorough refinement holds, but modal re-
finement does not, we note that mc(D2) ≤m mc(D) implies, again using Lemma 11
and Theorem 10, that dh(D2) ≤mt dh(D). On the other hand, we know that
D2 6≤m D, so by Theorem 9, dh(D2) 6≤m dh(D).

New translation from ν-calculus to DMTS. We now show that the mis-
match between DMTS and ν-calculus expressions can be fixed by introducing a
new, simpler translation from ν-calculus to DMTS.
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For a ν-calculus expression N = (X,X0, ∆) in normal form, let

99K = {(x, a, y) ∈ X ×Σ ×X | y ∈ �a(x)},
−→ = {(x,N) | x ∈ X,N ∈ ♦(x)}.

and define the DMTS hd(N ) = (X,X0, 99K,−→). This is a simple syntactic
translation: boxes are translated to disjunctive must-transitions and diamonds to
may-transitions.

Theorem 12. For all ν-calculus expressions, N1 ≤m N2 iff hd(N1) ≤m hd(N2).

Proof. Let R ⊆ X1 ×X2 be a modal refinement between N1 = (X1, X
0
1 , ∆1) and

N2 = (X2, X
0
2 , ∆2); we show that R is also a modal refinement between hd(N1) =

(S1, S
0
1 , 99K1,−→1) and hd(N2) = (S2, S

0
2 , 99K2,−→2). Let (x1, x2) ∈ R.

– Let x1
a
99K1 y1, then y1 ∈ �a1(x1), which implies that there exists y2 ∈ �a2(x2)

for which (y1, y2) ∈ R, and by definition of 99K2, x2
a
99K2 y2.

– Let x2 −→2 N2, then N2 ∈ ♦2(x2), hence there is N1 ∈ ♦1(x1) such that
∀(a, y1) ∈ N1 : ∃(a, y2) ∈ N2 : (y1, y2) ∈ R, and by definition of −→1,
x1 −→1 N1.
Now let R ⊆ X1×X2 be a modal refinement between hd(N1) and hd(N2), we

show that R is also a modal refinement between N1 and N2. Let (x1, x2) ∈ R,
– Let a ∈ Σ and y1 ∈ �a1(x1). Then x1

a
99K1 y1, which implies that there is

y2 ∈ X2 for which x2
a
99K2 y2 and (y1, y2) ∈ R, and by definition of 99K2,

t2 ∈ �a2(s2).
– Let N2 ∈ ♦2(x2), then x2 −→2 N2, so there is x1 −→1 N1 such that ∀(a, y1) ∈
N1 : ∃(a, y2) ∈ N2 : (y1, y2) ∈ R. By definition of −→1, N1 ∈ �a1(x1). ut

We finish the section by proving that also for the syntactic translation
hd(N ) ≡th N for all ν-calculus expressions; this shows that our translation
can serve as a replacement for the partly-semantic hdt translation from [6, 11].
First we remark that dh and hd are inverses to each other:

Proposition 13. For any ν-calculus expression N , dh(hd(N )) = N ; for any
DMTS D, hd(dh(D)) = D. ut

Corollary 14. For all ν-calculus expressions N , hd(N ) ≡th N . ut

4 The Modal ν-Calculus as a Specification Theory

Now that we have exposed a close structural correspondence between the modal
ν-calculus and DMTS, we can transfer the operations which make DMTS a
complete specification theory to the ν-calculus.

Refinement and implementations. As for DMTS and AA, we can define
an embedding of LTS into the modal ν-calculus so that implementation |= and
refinement ≤m coincide. We say that a ν-calculus expression (X,X0, ∆) in normal
form is an implementation if ♦(x) = {{(a, y)} | y ∈ �a(x), a ∈ Σ} for all x ∈ X.
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The ν-calculus translation of a LTS (S, S0,−→) is the expression (S, S0, ∆)

in normal form with ♦(s) = {{(a, t)} | s a−→ t} and �a(s) = {t | s a−→ t}. This
defines a bijection between LTS and ν-calculus implementations.

Theorem 15. For any LTS I and any ν-calculus expression N , I |= N iff
I ≤m N .

Proof. I |= N is the same as I ∈ JN K, which by Corollary 14 is equivalent
to I ∈ Jhd(N )K. By definition, this is the same as I ≤m hd(N ), which using
Theorem 12 is equivalent to I ≤m N . ut

Using transitivity, this implies that modal refinement for ν-calculus is sound:

Corollary 16. For all ν-calculus expressions, N1 ≤m N2 implies N1 ≤th N2.�

Disjunction and conjunction. As for DMTS, disjunction of ν-calculus expres-
sions is straight-forward. Given ν-calculus expressions N1 = (X1, X

0
1 , ∆1), N2 =

(X2, X
0
2 , ∆2) in normal form, their disjunction is N1∨N2 = (X1∪X2, X

0
1 ∪X0

2 , ∆)
with ∆(x1) = ∆1(x1) for x1 ∈ X1 and ∆(x2) = ∆2(x2) for x2 ∈ X2.

The conjunction of ν-calculus expressions like above is N1 ∧N2 = (X,X0, ∆)
defined by X = X1×X2, X0 = X0

1 ×X0
2 , �a(x1, x2) = �a1(x1)×�a2(x2) for each

(x1, x2) ∈ X, a ∈ Σ, and for each (x1, x2) ∈ X,

♦(x1, x2) =
{
{(a, (y1, y2)) | (a, y1) ∈ N1, (y1, y2) ∈ �a(x1, x2)}

∣∣ N1 ∈ ♦1(x1)
}

∪
{
{(a, (y1, y2)) | (a, y2) ∈ N2, (y1, y2) ∈ �a(x1, x2)}

∣∣ N2 ∈ ♦2(x2)
}
.

Note that both N1 ∨ N2 and N1 ∧ N2 are again ν-calculus expressions in
normal form.

Theorem 17. For all ν-calculus expressions N1, N2, N3 in normal form,
– N1 ∨N2 ≤m N3 iff N1 ≤m N3 and N2 ≤m N3,
– N1 ≤m N2 ∧N3 iff N1 ≤m N2 and N1 ≤m N3,
– JN1 ∨N2K = JN1K ∪ JN2K, and JN1 ∧N2K = JN1K ∩ JN2K.

Theorem 18. With operations ∨ and ∧, the class of ν-calculus expressions
forms a bounded distributive lattice up to ≡m.

The bottom element (up to ≡m) in the lattice is the empty ν-calculus ex-
pression ⊥ = (∅, ∅, ∅), and the top element (up to ≡m) is > = ({s}, {s}, ∆) with
∆(s) = tt.

Structural composition. The structural composition operator for a specifi-
cation theory is to mimic, at specification level, the structural composition of
implementations. That is to say, if ‖ is a composition operator for implemen-
tations (LTS), then the goal is to extend ‖ to specifications such that for all
specifications S1, S2,

JS1 ‖ S2K =
{
I1 ‖ I2 | I1 ∈ JS1K, I2 ∈ JS2K

}
. (2)

For simplicity, we use CSP-style synchronization for structural composition
of LTS, however, our results readily carry over to other types of composition.
Analogously to the situation for MTS [8], we have the following negative result:
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Theorem 19. There is no operator ‖ for the ν-calculus which satisfies (2).

Proof. We first note that due to Theorem 17, it is the case that implementation
sets of ν-calculus expressions are closed under disjunction: for any ν-calculus
expression N and I1, I2 ∈ JN K, also I1 ∨ I2 ∈ JN K.

Now assume there were an operator as in the theorem, then because of
the translations, (2) would also hold for DMTS. Hence for all DMTS D1, D2,
{I1 ‖ I2 | I1 ∈ JD1K, I2 ∈ JD2K} would be closed under disjunction. But Example
7.8 in [8] exhibits two DMTS (actually, MTS) for which this is not the case, a
contradiction. ut

Given that we cannot have (2), the revised goal is to have a sound composition
operator for which the right-to-left inclusion holds in (2). We can obtain one such
from the structural composition of AA introduced in [6]. We hence define, for
ν-calculus expressions N1 = (X1, X

0
1 , ∆1), N2 = (X2, X

0
2 , ∆2) in normal form,

N1 ‖ N2 = ah(ha(N1) ‖A ha(N2)), where ‖A is AA composition and we write
ah = dh ◦ ad and ha = da ◦ hd for the composed translations.

Notice that the involved translation from AA to DMTS may lead to an
exponential blow-up. Unraveling the definition gives us the following explicit
expression for N1 ‖ N2 = (X,X0, ∆):
– X =

{
{(a, (y1, y2)) | ∀i ∈ {1, 2} : (a, yi) ∈ Mi}

∣∣ ∀i ∈ {1, 2} : Mi ⊆
Σ ×Xi,∃xi ∈ Xi : ∀(a, y′i) ∈Mi : y

′
i ∈ �ai (xi),∀Ni ∈ ♦i(xi) : Ni ∩Mi 6= ∅

}
,

– X0 =
{
{(a, (y1, y2)) | ∀i ∈ {1, 2} : (a, yi) ∈ Mi}

∣∣ ∀i ∈ {1, 2} : Mi ⊆
Σ ×Xi,∃xi ∈ X0

i : ∀(a, y′i) ∈Mi : y
′
i ∈ �ai (xi),∀Ni ∈ ♦i(xi) : Ni ∩Mi 6= ∅

}
,

– ♦(x) =
{
{(a, {(b, (z1, z2)) | ∀i ∈ {1, 2} : (b, zi) ∈ Mi} | ∀i ∈ {1, 2} :

Mi ⊆ Σ × Xi,∀(a, z′i) ∈ Mi : z
′
i ∈ �bi(yi),∀Ni ∈ ♦i(yi) : Ni ∩Mi 6= ∅}

∣∣
(a, (y1, y2)) ∈ x

}
for each x ∈ X, and

– �a(x) = {y | ∃N ∈ ♦(x) : (a, y) ∈ N}.

Theorem 20. For all ν-calculus expressions N1, N2, N3, N4 in normal form,
N1 ≤m N3 and N2 ≤m N4 imply N1 ‖ N2 ≤m N3 ‖ N4.

Proof. This follows directly from the analogous property for AA [6] and the
translation theorems 5, 9 and 12. ut

This implies the right-to-left inclusion in (2), i.e.
{
I1 ‖ I2 | I1 ∈ JN1K, I2 ∈

JN2K
}
⊆ JN1 ‖ N2K. It also entails independent implementability, in that the

structural composition of the two refined specifications N1, N2 is a refinement of
the composition of the original specifications N3, N4. Fig. 4 shows an example of
the DMTS analogue of this structural composition.

Quotient. The quotient operator / for a specification theory is used to synthesize
specifications for components of a structural composition. Hence it is to have the
property, for all specifications S, S1 and all implementations I1, I2, that

I1 ∈ JS1K and I2 ∈ JS / S1K imply I1 ‖ I2 ∈ JSK. (3)

Furthermore, S / S1 is to be as permissive as possible.
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s′ t′

u′
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a

Fig. 4. DMTS D1, D2 and the reachable parts of their structural composition D1 ‖ D2.
Here, s′ = {(a, (t1, t2)), (a, (t1, u2))}, t′ = {(a, (t1, t2))} and u′ = ∅. Note that D1 ‖ D2

has two initial states.

We can again obtain such a quotient operator for ν-calculus from the one
for AA introduced in [6]. Hence we define, for ν-calculus expressions N1, N2 in
normal form, N1 / N2 = ah(ha(N1) /A ha(N2)), where /A is AA quotient. We
recall the construction of /A from [6]:

Let A1 = (S1, S
0
1 ,Tran1), A2 = (S2, S

0
2 ,Tran2) be AA and define A1 /AA2 =

(S, {s0},Tran), with S = 2S1×S2 , s0 = {(s01, s02) | s01 ∈ S0
1 , s

0
2 ∈ S0

2}, and Tran
given as follows:

Let Tran(∅) = 2Σ×{∅}. For s = {(s11, s12), . . . , (sn1 , sn2 )} ∈ S, say that a ∈ Σ
is permissible from s if it holds for all i = 1, . . . , n that there is M1 ∈ Tran1(si1)
and t1 ∈ S1 for which (a, t1) ∈ M1, or else there is no M2 ∈ Tran2(si2) and no
t2 ∈ S2 for which (a, t2) ∈M2.

For a permissible from s and i ∈ {1, . . . , n}, let {ti,12 , . . . , ti,mi2 } = {t2 ∈
S2 | ∃M2 ∈ Tran2(si2) : (a, t2) ∈ M2} be an enumeration of the possible states
in S2 after an a-transition and define pta(s) =

{
{(ti,j1 , ti,j2 ) | i = 1, . . . , n, j =

1, . . . ,mi}
∣∣ ∀i : ∀j : ∃M1 ∈ Tran1(si1) : (a, ti,j1 ) ∈ M1

}
, the set of all sets of

possible assignments of next-a states from si1 to next-a states from si2.
Now let pt(s) = {(a, t) | t ∈ pta(s), a admissible from s} and define Tran(s) =

{M ⊆ pt(s) | ∀i = 1, . . . , n : ∀M2 ∈ Tran2(si2) : M . M2 ∈ Tran1(si1)}. Here
. is the composition-projection operator defined by M . M2 = {(a, t . t2) |
(a, t) ∈M, (a, t2) ∈M2} and t . t2 = {(t11, t12), . . . , (tk1 , tk2)} . ti2 = ti1 (note that by
construction, there is precisely one pair in t whose second component is ti2).

Theorem 21. For all ν-calculus expressions N , N1, N2 in normal form, N2 ≤m
N / N1 iff N1 ‖ N2 ≤m N .

Proof. From the analogous property for AA [6] and Theorems 5, 9 and 12. ut
As a corollary, we get (3): If I2 ∈ JN /N1K, i.e. I2 ≤m N /N1, then N1‖I2 ≤m

N , which using I1 ≤m N1 and Theorem 20 implies I1 ‖ I2 ≤m N1 ‖ I2 ≤m N .
The reverse implication in Theorem 21 implies that N / N1 is as permissive as
possible.

Theorem 22. With operations ∧, ∨, ‖ and /, the class of ν-calculus expressions
forms a commutative residuated lattice up to ≡m.

The unit of ‖ (up to ≡m) is the ν-calculus expression corresponding to the
LTS U = ({u}, {u}, {(u, a, u) | a ∈ Σ}). We refer to [19] for a good reference on
commutative residuated lattices.
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5 Conclusion and Further Work

Using new translations between the modal ν-calculus and DMTS, we have exposed
a structural equivalence between these two specification formalisms. This means
that both types of specifications can be freely mixed; there is no more any need to
decide, whether due to personal preference or for technical reasons, between one
and the other. Of course, the modal ν-calculus can only express safety properties;
for more expressivity, one has to turn to more expressive logics, and no behavioral
analogue to these stronger logics is known (neither is it likely to exist, we believe).

Our constructions of composition and quotient for the modal ν-calculus
expect (and return) ν-calculus expressions in normal form, and it is an interesting
question whether they can be defined for general ν-calculus expressions. (For
disjunction and conjunction this is of course trivial.) Larsen’s [23] has composition
and quotient operators for Hennessy-Milner logic (restricted to “deterministic
context systems”), but we know of no extension (other than ours) to more general
logics.

We also note that our hybrid modal logic appears related to the Boolean
equation systems [27, 25] which are used in some µ-calculus model checking
algorithms. The precise relation between the modal ν-calculus, our L-expressions
and Boolean equation systems should be worked out. Similarly, acceptance
automata bear some similarity to the modal automata of [12].

Lastly, we should note that we have in [4, 3] introduced quantitative specifi-
cation theories for weighted modal transition systems. These are well-suited for
specification and analysis of systems with quantitative information, in that they
replace the standard Boolean notion of refinement with a robust distance-based
notion. We are working on an extension of these quantitative formalisms to
DMTS, and hence to the modal ν-calculus, which should relate our work to other
approaches at quantitative model checking such as e.g. [16, 15, 18].
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