
A Formal Modeling and Analysis Framework for Software
Product Line of Preemptive Real-Time Systems

Jin Hyun Kim, Axel Legay
Louis-Marie Traonouez

INRIA/IRISA, France
{jin-hyun.kim,axel.legay}@inria.fr
louis-marie.traonouez@inria.fr

Mathieu Acher
University of Rennes 1

France
mathieu.acher@irisa.fr

Sungwon Kang
KAIST

Daejeon, Republic of Korea
sungwon.kang@kaist.ac.kr

ABSTRACT
This paper presents a formal analysis framework to ana-
lyze a family of platform products w.r.t. real-time prop-
erties. First, we propose an extension of the widely-used
feature model, called Property Feature Model (PFM), that
distinguishes features and properties explicitly Second, we
present formal behavioral models of components of a real-
time scheduling unit such that all real-time scheduling units
implied by a PFM are automatically composed to be ana-
lyzed against the properties given by the PFM. We apply
our approach to the verification of the schedulability of a
family of scheduling units using the symbolic and statistical
model checkers of Uppaal.

CCS Concepts
•Software and its engineering Ñ Software verifica-
tion and validation; Formal software verification; Soft-
ware creation and management;

Keywords
Software Product Line Engineering, Scheduling Systems,
Model Checking, Platform-constrained

1. INTRODUCTION
Software Product Line Engineering (SPLE) allows reusing
software assets by managing the commonality and variability
of products. Real-time software products (such as real-time
operating systems) are a class of systems for which SPLE
techniques have not drawn much attention from researchers,
despite the need to efficiently reuse and customize real-time
artifacts. A real-time system is a time and resource-constrained
system, thus it is indispensable to check if a complete sys-
tem guarantees its composability over timing requirements
concerning resource constraints whenever it is deployed with
varying sets of resources. The same constraints hold for a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.

©2016 ACM. ISBN 978-1-4503-3738-0.
DOI: http://dx.doi.org/10.1145/0000000.0000000

Figure 1: Our formal SPLE framework

Software Product Line (SPL) of real-time system, such that
all the products generated from the SPL should satisfy var-
ious real-time properties.

The overall challenge is to analyze a family of real-time sys-
tems (rather than a single one), depending on varying sets
of resources. Two main issues are raised for the verifica-
tion of an SPL of real-time systems. 1) The specification
method must link individual features of an SPL to the corre-
sponding real-time properties that must be verified. 2) The
analysis method must verify all products generated from an
SPL against all real-time properties imposed upon individ-
ual features of each product. If the products of an SPL
are safety-critical, this analysis method should be rigorous
enough to guarantee the safety of all the products.

This paper proposes a formal SPLE framework for real-time
scheduling units1 and demonstrates its efficiency and feasi-
bility. It focuses on the formal analysis of real-time proper-
ties of an SPL in terms of resource sharing with time depen-
dent functionalities. Our framework is depicted in Figure 1.
It provides a structural description method of the variabil-
ity and the properties of a real time system, and behavioral
models to verify the properties using formal techniques and
the tools Uppaal symbolic model checker (MC) [2] and Up-
paal statistical model checker (SMC) [6].

The rest of the paper is organized as follows: Section 2
presents a new extension of a feature model, Property Fea-
ture Model (PFM). In Section 3, we provide feature behav-
ioral models of the components of a scheduling unit. In
Section 4, we present the results from a case study. Finally
Section 5 discusses related work and Section 6 concludes this
paper.

1A scheduling unit consists of tasks and a scheduling mech-
anism.

1

2. PROPERTY FEATURE MODEL
We analyze SPLs of real-time systems with respect to the fol-
lowing 3 properties: deadlock-freedom, schedulability, and
performance. Inspired by [8,10], we propose a new extension
of feature model called Property Feature Model (PFM) that
distinguishes between features and properties using property-
specific operators. It states two pieces of important infor-
mation: the scope of a property and a list of properties that
individual features must satisfy.

Syntax for PFM. A PFM is described using the similar
notations of a FM. The root of a PFM is a feature, that
has child features or properties. A property node can have
another property node as its child, but not a feature node. A
property can be represented by the composition of multiple
properties.

Figure 2: Property-specific operators PFM

Figure 2 shows property-specific operators of a PFM in graph-
ical notations. Similar to the optional feature of a feature
model, an optional property of a PFM can represent two
products: one that satisfies the property and one that does
not. Feature and property nodes can be quantified or given
parameters for their products.

Figure 3 shows an example of PFM. The SPL has the root
feature SS representing a scheduling unit. It is composed
of two mandatory features Task1 and CPU1, one optional
feature Task2, and one mandatory property “Not Deadlock.”
The feature CPU1 is mandatory and quantified by two sched-
ulers, FP (Fixed-Priority) or EDF (Earliest Deadline First).
The property node denoted by Not Deadlock states a global
property that requires that the root feature SS is never in
deadlock when it operates. The property node denoted by
Schedulable imposed upon Task2 is a mandatory and local
property specifying that Task2 can never miss its deadline.

A PFM can be represented by a propositional logic formula
with Boolean variables [3]. Each Boolean variable corre-
sponds to a single feature f stating whether the feature is
included or not or the satisfiability relation f (p. We allow
numeric and arrayed features in propositional logic formulas,
like F[A, B, C], instead of Boolean variables [9].

Definition 1. PFM “ tF ,P,Ñ,(, ψF u such that

‚ F = tf0, ..., fnu is a set of features, f0 being the root
feature,

‚ P = tp1, ..., pmu is a set of properties,

‚ Ñ P 2F is a parent to child feature relation that en-
codes the feature structure of the PFM,

‚ (P FˆP is a satisfiability relation (f (p) meaning
that a feature f satisfies a property p.

‚ ψF is a propositional logic formula over features and
properties that represents the constraints of the PFM.

Figure 3: An SPL of a scheduling unit

Figure 4: The refined PFM of a scheduling unit

Notice that ψF includes both a relation between parent and
child features and a relation between features that are not
in the parent-child relation. In the case where a feature is
in association with another feature that is neither parent
nor child, an additional proposition logic formula is given to
define such a relation.

Product Configuration. A product generated from a PFM
is set of included features that satisfy the constraints of the
PFM. We define a product condition that is used to describe
requirements of product features requested by the customer.
A product condition ρF is a propositional formula that is a
conjunction of condition variables corresponding to individ-
ual features in tf0, f1, ..., fnu. It is defined by the following
grammar:
ρF ::“ c | c | ρF ^ ρF | e

e ::“ x ““ d | x ą d | x ă d | x ď d | x ě d | xrf s

f ::“ d, f | d

where c is a Boolean variable, x is a numeric or constant
variable that are not allowed to contain negation, and d is a
numeric or constant value. A product condition is checked
against the PFM to see if the proposed products are pro-
ducible from the PFM specified by the product condition.
This check can be performed by SMT-solvers [5, 7, 9].

To derive products from a PFM, we define a (product) con-
figuration that is a set of condition variables that imply the
inclusion, exclusion, or valuation of the corresponding fea-
tures. Compared to a product condition, it is used to gen-
erate all possible products of an SPL, which should satisfy
all product conditions that customers require.

Definition 2. (Configuration): A configuration γ is a
set of condition variables ci P ttrue, false, vu, each corre-
sponding to a feature fi P F or a property pi P P, such
that

‚ ci “ true represents the inclusion of fi or pi,

‚ ci “ false represents the exclusion of fi or pi,

‚ ci “ v represents the assignment of fi to a value v in
any type.

2

For a given PFM, a configuration of a product is created
by assigning ci to one of true, false or a value v, where
ci has a corresponding feature or property in the PFM. A
configuration γ is “determined” if no variable ci remains un-
determined, i.e. not included in γ. Then |γ| is equal to
|F | ` |P|.

Definition 3. (Propositional Logic Formula Projection):
The projection of ψF over a configuration γ, denoted by
ψF |γ , returns the formula ψF in which every variable vi cor-
responding to a feature fi or a property pi has been substi-
tuted with the value of the corresponding condition variable
ci in γ [9].

A configuration γ is said to be “valid” if ψF |γ , holds, i.e. the
configuration is producible from a feature model ψF . Oth-
erwise, the configuration γ is said to be “invalid.” Formally,
a product is a valid and determined configuration.

Now, we define a non-deterministic decision process that al-
lows to construct all the products of a PFM compatible with
the product condition ρF expressed by the customer. The
process starts from the configuration γ0 “ tc0 “ trueu that
only includes the root feature of the PFM, and it recursively
extends this configuration until all the features and all the
properties have been determined. Therefore, from a config-
uration γ a new configuration γ1 is produced by extending γ
with a feature condition ci, according to the following rules:

1. γ1
“ γ Y ci,

2. Dcj P γ such that either fj Ñ fi, which means that fi is
a child feature of fj that has already been determined
to be included, or pi (fj , which means that pi is a
property of fj already determined,

3. ψF |γ1 and ρF |γ1 hold.

The first rule produces a new configuration by including the
condition variable ci corresponding to the decision on the
feature fi or the property pi. The second rule restricts the
decision process to make it follow the order from parent
to child defined in the PFM. The last rule checks if a new
configuration (γ1) satisfies both feature constraints (ψF) and
customer’s requests (ρF).

3. FEATURE BEHAVIORAL MODEL
A SPL of a scheduling unit is analyzed to see if the products
generated from the SPL satisfy their properties. To this
end, all products from an SPL are represented by behavioral
models of real-time scheduling units. We model them using
TA and SWA such that properties of an SPL can be analyzed
using the behavioral models.

The scheduling units that we consider in this paper are pre-
emptive, so that the execution of a task can be interrupted
by other tasks according to a scheduling policy. Figure 5
shows the feature behavioral model of a real-time task with
preemption, inspired by the work in [4]. We have extended
this model with variables that encode the enabling, disabling
or valuation of the features.

The SWA task model in Figure 5 is a generic model that
can be configured to execute any configuration of task pro-
ducible from the PFM. It captures the behavior of a task

Figure 5: A SWA task model for a family of tasks

after the feature variables have been configured at initial-
ization. For instance, the location DetermineFeatureInitOffset

has two out-going transitions: one to DlyOffset, and the other
to DetermineFeaturePrdOffset. The transitions are labeled with
a guard that distinguishes a feature and the property of a
task is determined by a set of enabled guards. Thus, the
transition guard tfeature[tid].f ioffset is set to true if the fea-
ture InitOffset is included, but set to false when the feature
is excluded.

While executing, the task may be preempted by the resource
scheduler. The preemption is implemented by a stopwatch
clock t et[tid] that can stop and resume [4]. It represents
the remaining execution time of the task tid and it should
progress only when the CPU resource is available to the task.
This stopwatch t et[tid] is constrained by an invariant that
is associated with a function isSched().

4. EVALUATION
This section presents results of analyzing the SPL of Fig-
ure 4. Using Uppaal MC we check the schedulability of the
tasks and deadlock freedom as well. Uppaal SMC is used to
estimate the worst-case execution time of tasks, individually.

In addition to the feature behavioral models of tasks and
resources, we provide a configuration template that gener-
ates configurations of real-time systems out of a given PFM
before the execution of the system. A configuration tem-
plate simulates the non-deterministic decision process pre-
sented in Section 2 and selects features from a PFM in a
non-deterministic way to make a configuration of the sys-
tem under analysis

The running example of Figure 4 has only 2 tasks and no
constraints over configurations. The feature Task1 has 6 con-
figurations, the feature Task2 has 12 configurations, and the

3

Table 1: Timing analysis results for the SPL in Figure 4

Feature Query for Property Results Time
SS A[] not deadlock Yes 28.43s

Task1 E[ă“10000;100](max:t rspt[1]) 6.80 3.22s
Task2 A[] (tstat[2].status ! “ MISSDLINE) Yes 29.85s

feature CPU1 has 4 configurations. SS has 24 configurations
without Task2, and 288 configurations with Task2.
Table 1 shows the results of analyzing the properties in-
cluded in the SPL. First, the property of SS “Not Dead-
lock” is formulated as the Computation Tree Logic (CTL)
query “A[] not deadlock” stating that the system is deadlock-
free. The property is proven to hold in the system. Second,
the schedulability of Task2 is analyzed. The CTL query,
“A[] (tstat[2].status ! “ MISSDLINE)”, is used as a specifica-
tion, meaning that the state variable tstat[2].status can never
be the same as “MISSDLINE” while the system is running.
Uppaal MC verified that Task2 never misses the deadline.
Third, we analyzed the performance, i.e. the response time
of a task, of configurations from the SPL. The property
RT<=7 upon Task1 in the SPL is represented by a SMC
query, E[ă“10000;100](max:t rspt[1]), requiring Uppaal SMC

to compute the average of the maximum value of t rspt[1] for
10,000 simulation times by 100 simulation rounds.

Figure 6: Probability distribution of Task1’s response time

Uppaal SMC produces a probability distribution, as the an-
swer to the query, shown in Figure 6. It shows that the
response times of the task is at most 6.80 time units during
the simulation and validates that the worst-case response
time of Task1 is less than 7. Table 2 shows the analysis re-
sults of another case-study containing 5 real-time tasks and
2 resource schedulers.

Table 2: Timing analysis results

Feature Query for Property Results Time
SS A[] not deadlock Yes 25,322.8 s

Task1 E[ă“10000;100](max:t rspt[1]) 66.6 0.28s
Task4 E[ă“10000;100](max:t rspt[4]) 71.75 0.31s
SS A[] not miss deadline Yes 25,134.51 s
SS Pr [<=1000000] <>

miss deadline

[0,0.0199955] 302.51 s

5. RELATED WORK
The formalism of feature models (FM) in this paper relies on
the basic and classical constructs of [1]. Our extension of FM
was inspired by Kang et al. [8] that criticizes the existing FM
by saying that it often specifies one or more concerns of SPL
in one FM. Related to the quality of an SPL, they proposed
an attribute-based FM where only qualities of products are

separately given as a FM. However, such a representation
makes it hard to explicitly figure out the relationship be-
tween a feature and the associated quality attributes (i.e.
properties). For this reason, this paper extended FM with
the related properties so that a verification property is as-
sociated to a feature in one FM through specific operators.

6. CONCLUSIONS
SPLE aims to provide efficient engineering solutions for build-
ing multiple products that share common features. This
paper proposed a formal framework dedicated to the veri-
fication of SPLs that should satisfy schedulability proper-
ties. Specifically, we proposed a new formalism for variabil-
ity modeling, called PFM, to define feature models together
with feature properties, and defined the notion of product
condition that represents customer’s product requests. We
formally defined the semantics of PFM so that the SPL mod-
eled in the PFM can automatically generate valid configu-
rations in compliance with customer’s requests. In order to
analyze the configured products against feature properties,
we proposed behavioral models that capture the features
of real-time scheduling units defined in the PFM. We then
showed how a set of scheduling units in an SPL specifica-
tion can be automatically verified against the set of required
properties by leveraging efficient model checking methods.
Throughout the paper we illustrated the formal framework
with a family of scheduling units and showed the applicabil-
ity and efficiency of our techniques.

As future work we plan to investigate the scalability of our
proposal w.r.t. large, variability-intensive scheduling sys-
tems. We also want to include a wider range of schedulabil-
ity properties in our verification process.

7. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. B. France. Familiar:

A domain-specific language for large scale management of
feature models. SCP, 78(6), 2013.

[2] G. Behrmann, A. David, K. G. Larsen, J. H̊aakansson,
P. Pettersson, W. Yi, and M. Hendriks. UPPAAL 4.0. In
Proc. of QEST, pages 125–126, 2006.

[3] D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated
analysis of feature models 20 years later: a literature
review. Information Systems, 35(6), 2010.

[4] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen,
M. Mikucionis, U. Nyman, and A. Skou. Hierarchical
scheduling framework based on compositional analysis
using uppaal. In Proc. of FACS, pages 61–78, 2013.

[5] M. Cordy, P. Schobbens, P. Heymans, and A. Legay.
Beyond boolean product-line model checking: dealing with
feature attributes and multi-features. In Proc. of ICSE,
pages 472–481, 2013.

[6] A. David, K. Larsen, A. Legay, M. Mikučionis, and
D. Poulsen. UPPAAL SMC tutorial. STTT, 17(4):1–19,
2015.

[7] V. Ganesh. Decision Procedures for Bit-vectors, Arrays and
Integers. PhD thesis, Stanford, CA, USA, 2007.

[8] K. Kang and H. Lee. Variability modeling. In Syst. and
Software Variability Manage., pages 25–42. 2013.

[9] H. Sabouri, M. Jaghoori, F. de Boer, and R. Khosravi.
Scheduling and analysis of real-time software families. In
Proc. of COMPSAC, pages 680–689, July 2012.

[10] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A
classification and survey of analysis strategies for software
product lines. ACM Comput. Surv., 47(1):6:1–6:45, June
2014.

4

