
THÈSE DE DOCTORAT DE

CENTRALE SUPÉLEC

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Laetitia LEICHTNAM
Detecting and visualizing anomalies in heterogeneous
network events

Modeling events as graph structures and detecting communities and novelties
with machine learning

Thèse présentée et soutenue à Rennes, le 11 décembre 2020
Unité de recherche : CentraleSupélec, IRISA
Thèse N° : 2020CSUP0011

Rapporteurs avant soutenance :
Hervé Debar Professeur, Télécom SudParis
Davide Balzarotti Professeur, Eurecom

Composition du Jury :
Président : Christine Morin Directrice de Recherche, Inria, Rennes
Rapporteurs : Hervé Debar Professeur, Télécom SudParis

Davide Balzarotti Professeur, Eurecom
Examinateurs : François Lesueur Maître de conférence, INSA de Lyon

Anaël Beaugnon Docteure, ANSSI
Dir. de thèse : Eric Totel Professeur, IMT Atlantique, Rennes
Co-dir. de thèse : Ludovic Mé ARP, Inria, Rennes

Nicolas Prigent Docteur, LSTI

Abstract

According to the National Institute of Standards and Technologies (NIST), to ensure the
security of an information system it is required to identify threats, protect preventively the system,
detect security incidents, respond to attacks and recover from them. Operationally speaking,
Security Operational Centers (SOCs) are teams dedicated to the detection, response, and recovery.
Their security analysts rely on intrusion detection and analysis tools.

In this thesis, we propose to help security analysts in their tasks by proposing a new approach
to detect and display network anomalies. The goal of this thesis is twofold: detecting any security
breach in real-time and, in addition, allowing a post-mortem analysis of the techniques used by
the attackers.

A first difficulty lies in building a model to represent the various kinds of information the
analysts have to handle. In particular, it is useful to represent security data in a way that ensures
that the information is both machine-readable, for automatic treatment, and human-readable, for
analysis by a human expert. In response to these objectives, we propose a data representation
model based on a graph structure. To handle the very heterogeneous data types we have to
consider, we rely on knowledge graphs, that allow semantic linking of diverse information.

Once the model in hand, we propose two automatic treatments. The first one focuses on the
relations between the pieces of information represented by the links of the knowledge graph model.
Using community detection, we select sub-graphs representing events that are strongly related to
an alert or an IoC and thus relevant for forensic analysis. This brings information to the analyst
to explain the alert or the IoC. The second automatic treatment we propose consists in applying
novelty detection to the graph, in order to realize an anomaly-based intrusion detection system.
While traditional approaches in anomaly detection need a large volume of normal and anomalous
data to build a good learning model, novelty detection techniques need little or no anomalous data.
The difficulty here is to feed the novelty detection algorithm with a graph structure. We indeed
rely on a machine learning algorithm named autoencoder, an unsupervised learning technique that
does not take a graph but a vector as input. We thus propose a transformation of the graph into a
vector, encoding both information contained in the nodes and information related to the structure
of the graph (links between nodes). Evaluations on CICIDS 2017 and 2018 datasets show that
graph structures representation of security data handled by an autoencoder gives results that are
better than common anomaly detection methods, even those based on supervised learning. Notice
that our results are good both relatively to the detection rate (no or almost no false negatives)
and for the false alert rate (very low amount of false positives).

Even being able to minimize the number of false positives, reducing the cost of alerts interpre-
tation by analysts is also needed. The goal is here to provide the analyst with a representation of
security-relevant data that reduces the time and efforts required to analyze alerts. In response, we

III

propose an immersive visualization of the graph representation in 3D. The visualization highlights
the relations between security elements and malicious events or IOCs. It gives a good starting
point to the analysts to explore the data and reconstruct a global attack scenario.

To sum up, the general objective of this thesis being to evaluate the interest of graph structures
in the field of security data analysis, we propose an end-to-end approach consisting in a unified
view of the network data in the form of graphs, a community discovery system, an unsupervised
anomaly detection system and a visualization of the data in the form of graphs.

IV

Resumé

Pour assurer la sécurité d’un système d’information, il est nécessaire, selon le National In-
stitute of Standards and Technologies (NIST), d’identifier les menaces, de protéger le système
d’information, de détecter les incidents de sécurité, de répondre aux attaques et de revenir à un
état sain du système [18]. Les Security Operational Centers (SOC) sont constitués d’analystes de
sécurité qui œuvrent à la détection et à la réponse à incident en s’appuyant notamment sur des
outils de détection et d’analyse d’intrusions.

Pour détecter les attaques, les analystes ont à leur disposition deux types d’outils : des sys-
tèmes utilisant une approche par signature et des systèmes utilisant une approche par détection
d’anomalies. Les premiers s’appuie sur des signatures d’attaques alors que les seconds reposent sur
l’identification d’activités déviant significativement d’un comportement considéré comme normal.
Cette dernière catégorie permet notamment de détecter des attaques de types zero-day, c-à-d des
attaques jusqu’à alors inconnues. Cependant, les approches par anomalies doivent encore faire
face à de nombreux défis [136] pour répondre aux contraintes opérationnelles des SOCs. Ces défis
sont la diversité du trafic réseau observé, le manque de disponibilité de données relatives à des
attaques pour l’apprentissage, le coût important des erreurs de détection, la difficulté à interpréter
les résultats et la difficulté à évaluer les mécanismes de détection employés.

Dans cette thèse, nous proposons d’aider les analystes de sécurité en proposant une nouvelle
approche pour détecter, visualiser et interpréter les anomalies dans les échanges réseau d’un
système d’information. L’objectif de cette thèse est double : détecter les incidents de sécurité et
permettre une analyse post-mortem (forensique) des techniques utilisées par les attaquants.

Les graphes sont rarement pour la détection des intrusions de bout en bout, allant de la
représentation des données d’entrée du système de détection à la représentation visuelle des résul-
tats. Dans cette thèse, un graphe est utilisé comme donnée d’entrée pour représenter de manière
unifiée les données de sécurité issues de source hétérogènes. A la fin du traitement, un sous-graphe,
résultant du processus de détection, est identifié. Il apporte à l’analyste, d’une part, des évène-
ments correspondant à des anomalies, d’autre part, des informations liées au contexte dans lequel
ces anomalies ont été produites.

Nos problématiques de recherche s’articulent ainsi autour des trois points suivants:

La construction d’un modèle de données adapté à la sécurité. Les informations
de sécurité qui intéressent les analystes d’un SOC peuvent être de différentes nature : il peut s’agir
de rapports de sécurité, de journaux d’évènements (logs) ou d’échanges réseau.

Dans cette thèse, nous nous concentrons sur les données liées aux connexions réseau mais
nous traitons toutes les informations extraites de la couche IP à la couche Application (requête
HTTP, mail, etc.) et intégrons des données issues de sources externes telles que les indicateurs de
compromission (IoC, pour Indice of Compromise). En prenant en compte ces différentes données,

V

nous visons à améliorer la prise en compte du contexte dans l’analyse. Pour traiter ces données
très hétérogènes, nous nous sommes appuyés sur des graphes de connaissances, qui permettent
de lier sémantiquement des informations diverses. Un modèle construit sur un graphe de connais-
sances peut contenir différents types d’informations précieuses tout en permettant un traitement
automatique des données.

La détection d’intrusions. De nos jours, les algorithmes d’apprentissage automatique sont
souvent utilisés pour la détection des anomalies [47]. Les techniques actuelles de détection des
anomalies reposent souvent sur un apprentissage supervisé, qui nécessite des ensembles de données
labellisées. Chaque événement doit être analysé en profondeur pour déterminer s’il fait partie ou
non d’une attaque. La labellisation des données est donc très coûteuse et, dans les faits, les experts
en sécurité ne disposent pas souvent de données labellisées concernant leur propre système.

L’utilisation de techniques non supervisées, qui ne nécessitent pas de données labelisées, sem-
ble être une bonne alternative. Souvent, ces techniques ne sont pas aussi performantes que les
techniques supervisées en terme de précision de détection.

Dans cette thèse, nous cherchons à rivaliser avec les techniques supervisées en terme de pré-
cision de détection. Nous explorons deux techniques non supervisées. La première se concentre
sur les relations entre les éléments d’information représentés par les liens du modèle de graphe
de connaissances. À l’aide d’une technique appelée détection de communautés, nous sélectionnons
des sous-graphes représentant des événements fortement liés à une alerte ou à un IoC et donc per-
tinents pour une analyse forensique. La deuxième technique non supervisée que nous explorons
est la détection de nouveautés appliquée à notre représentation de données sous forme de graphe.

La présentation des résultats à destination des analystes de sécurité. Même
si l’on parvient à minimiser le nombre de faux positifs, il faut également réduire le coût de
l’interprétation des alertes par les analystes. L’objectif est de fournir à l’analyste une présentation
des données pertinentes pour la sécurité qui réduise le temps et les efforts nécessaires à l’analyse
des alertes. Le défi est de traiter l’important volume de données tout en facilitant l’accès aux
informations portées par le graphe.

Nous proposons dans cette thèse une visualisation immersive de la représentation du graphe.
Cette visualisation met en évidence les relations entre les éléments de sécurité et les événements
malveillants ou les IoCs. Elle donne un bon point de départ aux analystes pour explorer les don-
nées et reconstruire un scénario d’attaque en suivant les liens entre les différents objets.

L’objectif général de cette thèse est ainsi d’évaluer l’intérêt des structures de graphe dans le
domaine de l’analyse des données de sécurité. Nous proposons une approche de bout en bout,
appelée sec2graph, consistant en une vue unifiée des données du réseau sous forme de graphes,
un système de découverte de communautés, un système de détection d’anomalies non supervisé
et une visualisation des données de sécurité sous forme de graphes.

Nous donnons dans la suite de ce résumé les éléments saillants des différentes étapes de cette

VI

approche de bout en bout.

Le modèle de représentation des données de sécurité
La supervision de sécurité produit un grand nombre d’événements réseau. La diversité des

protocoles de communication génère de nombreux fichiers journaux aux formats très variés. De
plus, ces fichiers journaux ne sont pas souvent explicitement liés les uns aux autres. Il est donc
difficile d’obtenir une vue d’ensemble des activités sur le réseau.

Afin d’exploiter ce grand volume d’informations hétérogènes, les analystes de sécurité partent
généralement d’un IoC, c’est-à-dire d’un observable qui suggère qu’une compromission a peut-être
déjà eu lieu. Une adresse IP particulière ou un nom de fichier particulier trouvé dans un événe-
ment réseau sont des exemples d’IoC. Les analystes recherchent parmi tous les fichiers journaux
disponibles toute information relative à cet IoC qui pourrait aider à analyser l’incident de sécurité
qui a conduit à cet indicateur.

Pour aider les analystes dans cette analyse, il est nécessaire d’avoir une représentation des
données capable de mettre en évidence les relations entre les événements. En particulier, il est
utile de représenter les données de sécurité de manière à ce que l’information soit à la fois lisible
par la machine, pour un traitement automatique, et lisible par un humain, pour une analyse par un
expert. Nous proposons une nouvelle représentation graphique des événements réseau [85] basée
sur les objets de sécurité (SO, pour Security Object). Les SO sont les nœuds du graphe généré
et correspondent à un sous-ensemble d’attributs provenant des différents événements du réseau.
Chaque attribut est lié à un type d’information qui est important du point de vue de la sécurité.
La valeur d’un attribut est dérivée de la valeur d’un champ trouvé dans un événement de sécurité
dans les fichiers journaux analysés. Un lien entre deux SO indique que ces SO ont été trouvés
ensemble dans au moins un événement. Le graphe des objets de sécurité donne ainsi une vision
unifiée et riche de ce qui s’est passée sur le réseau. Cette représentation est inspirée du modèle
STIX (Structured Thread Information eXpression) [109].

A travers une étude de cas, nous avons montré l’utilité de la structure de graphe pour l’analyste
de sécurité. En effet, la structure du graphe met en évidence des sous-graphes fortement connectés
qui permettent à l’analyste de se concentrer sur une partie spécifique du graphe.

La découverte de communautés
Dans notre modèle, un graphe peut contenir des millions de nœuds et d’arêtes. Cependant, les

cas d’utilisation étudiées révèlent que des sous-graphes peuvent être isolés pour aider l’analyste
de sécurité à trouver des éléments d’information pertinents. Les activités normales du réseau sont
par exemple plus susceptibles d’être représentées par des communautés fortes et interconnectées
d’objets de sécurité. En revanche, les attaques consistent généralement en quelques événements
et seront généralement représentées par des SO décentralisés dans le graphe complet. Les objets
de sécurité générés à partir de valeurs d’attributs contenant des preuves de la même attaque

VII

sont, par construction, fortement liés. Par conséquent, l’identification d’une attaque dans notre
représentation par graphe consiste à identifier des sous-graphes denses entourant un objet de
sécurité du type Indicateur et isolés des grands hubs (supposés représenter des activités normales)
dans le graphe. Ces types de sous-graphes sont appelés communautés en théorie des graphes.

Nous avons proposé une stratégie pour adapté les approches de détection des communautés
à notre modèle de représentation des graphes [85]. Nous avons implémenté un prototype qui
découvre les communautés par différentes méthodes et évalué chacune d’entre elles dans la tâche
de sélection des sous-graphes pertinents pour l’analyse des sous-graphes.

Nous avons comparé les résultats de plusieurs algorithmes de détection de communautés sur
le jeu de données CICIDS 2017 pour différents types d’attaques. Les expériences ont montré
que l’approche par détection de communauté obtient de bons résultats dans la sélection d’objets
pertinents. Elles ont également montré que la génération de graphes s’adapte à de grands jeux de
données comprenant des millions d’événements. La méthode proposée offre un moyen d’analyser
une attaque à partir d’un IoC dans une démarche d’analyse forensique.

La détection de nouveautés
Comme la notion de communauté dans les graphes de SO semble distinguer clairement les

attaques du trafic normal, nous proposons d’utiliser notre modèle de graphe pour structurer les
données d’entrée d’un système de détection d’intrusion. Notre hypothèse est que les graphes de
SO fournissent une description riche de ce qui s’est passé sur le réseau, et que cette description
riche peut être exploitée efficacement par des mécanismes d’apprentissage automatique.

La détection de nouveauté est typiquement utilisée lorsque la quantité de données anor-
males disponibles est insuffisante, ce qui est notre cas car les données relatives aux attaques
sont heureusement rares. Alors que les approches traditionnelles de la détection d’anomalies né-
cessitent un volume suffisant de données normales et anormales pour construire un bon modèle
d’apprentissage, les techniques de détection de nouveautés ont besoin de peu ou pas de données
anormales pour être efficaces. Les algorithmes classiques d’apprentissage automatique ne pren-
nent pas un graphe en entrée, mais un vecteur. Le graphe doit donc d’abord être transformé en
vecteur. Il faut à la fois coder les informations contenues dans les nœuds et les informations liées
à la structure du graphe (liens entre les nœuds) d’une manière commune et unifiée.

Nous proposons un processus pour encoder efficacement les graphes d’objets de sécurité afin
qu’un autoencodeur puisse apprendre à partir de données dites normales et ensuite détecter les
activités anormales[87]. Nous proposons également différentes stratégies pour calculer un score
d’anomalie, c’est-à-dire un score qui définit à quel point les données réelles diffèrent des données
apprises lors de la phase d’apprentissage. Cette approche peut être appliquée à n’importe quel jeu
de données sans labellisation préalable des données.

En utilisant les jeux de données CICIDS2017 et CICIDS2018, nous avons montré que la
représentation des données de sécurité sous forme de graphe traitées par un autoencodeur donne
de meilleurs résultats que les méthodes courantes de détection d’anomalies de la littérature (ap-
proches supervisées et non supervisées), y compris les celles utilisant l’apprentissage profond.

VIII

La visualisation et l’exploration de graphe
Pour réduire le coût de l’interprétation des alertes par les analystes, nous cherchons à fournir à

celui-ci une représentation des données pertinentes. A cette fin, nous proposons une visualisation
immersive en 3D. Cette visualisation met en évidence les relations entre les éléments de sécurité
et les événements malveillants ou IoC. Elle donne un bon point de départ aux analystes pour
explorer les données et reconstruire un scénario d’attaque global.

Pour fournir à l’analyste une présentation des données pertinentes qui réduira le temps néces-
saire au traitement des alertes, nous nous sommes concentrés sur les techniques de visualisation
de graphes. Les défis sont de faire face à la quantité de données à représenter, de communiquer
au mieux les propriétés des données et de faciliter la phase d’interprétation.

Nous avons d’abord proposé une visualisation immersive de la représentation du graphe [88].
Cette visualisation met en évidence les relations entre les objets de sécurité et les événements
malveillants et/ou les IoCs. Elle fournit un point de départ aux analystes pour explorer les données
et reconstruire un scénario d’attaque en suivant les liens entre les nœuds. Nous avons créé un
prototype basé sur la réalité virtuelle. Ce prototype est volontairement simple et offre des contrôles
intuitifs pour que l’utilisateur puisse s’adapter rapidement.

Nous avons également proposé une représentation sous forme de dendrogramme des attributs
des objets de sécurité [86]. Les dendrogrammes sont des représentations hiérarchiques qui aident
l’analyste de sécurité à définir les critères d’agrégation des objets de sécurité et à se concentrer
uniquement sur les parties intéressantes du graphe.

Conclusion
Pour répondre aux besoins des analyse travaillant dans les SOC, nous avons exploré dans cette

thèse l’utilisation des graphes pour la représentation et l’analyse des données de sécurité.
Nous avons d’abord proposé un nouveau modèle d’événements réseau basé sur un graphe, le

graphe étant constitué d’objets de sécurité. Ce modèle, basé sur STIX, est destiné à permettre aux
analystes de relier facilement les informations pertinentes et facilite ainsi le processus d’analyse.
Afin d’améliorer l’analyse forensique, nous avons ensuite proposé un processus basé sur la détection
de communautés pour découvrir les objets liés à une attaque identifiée par un indicateur de
compromission donné. Concernant la détection d’intrusion, nous avons proposé une technique
non supervisée basée sur un autoencodeur pour détecter efficacement les anomalies en utilisant
quatre stratégies différentes. À cette fin, nous avons fourni une méthode pour coder à la fois la
structure et le contenu du graphe d’objets de sécurité. Enfin, nous avons présenté une approche
immersive de visualisation de données permettant d’explorer le graphe.

Toutes ces contributions forment une pipeline de traitement des données de sécurité modélisées
sous forme de graphe et permettent à la fois d’effectuer une analyse forensique des données ainsi
que de la détection d’intrusion non supervisée.

IX

Acknowledgement

First of all, I would like to express my gratitude to my thesis supervisors Eric Totel, Ludovic
Mé and Nicolas Prigent for their support throughout this thesis. I was able to benefit from their
advice and their wise criticism. They were always available, patient and I enjoyed debating with
them throughout these four years.
I would like to thank Christine Morin, Hervé Debar, Davide Balzarotti, François Lesueur and
Anaël Beaugnon for having taken an interest in my work and for having accepted to be members
of the jury, and especially Anaël for her detailed proofreading of this manuscript.
During these four years I was part of the CIDRE team at CentraleSupélec. I want to thank
them for giving me an academic perspective on research. I would like to thank the members of
CIDRE for the scientific and technical discussions that I had with them over the years during the
seminars. I also want to thank former CIDRE team members Damien Crémilleux and Christopher
Humphries for our discussions and wish them the best with Malizen.
The realization of this work would have been even more difficult without the support of my
colleagues and more particularly of Christelle and Pierre-Adrien who showed a great availability
and support. It would have been even more difficult to realize this work without their help. I
would also like to thank my colleagues who made me smile day after day during the writing of
this thesis.
I would also like to thank my proofreaders Antoine and Pierre for their careful reading and their
pertinent remarks.
Finally, I would like to express my deepest gratitude to my parents for their constant support and
encouragement during these years.

XI

Table of Contents

1 Introduction 1
1.1 Security Operation Centers . 2

1.1.1 SOC functionnalities . 2
1.1.2 Tools used in a SOC and relative challenges 3

1.2 Research problem and hypothesis . 4
1.2.1 How to build a data model suited to security? 4
1.2.2 How to detect intrusion? . 5
1.2.3 How to present results to an analyst? . 6

1.3 Contributions and thesis organization . 6

2 State of the art 9
Introduction . 9
2.1 Representing and handling security data with graphs 10

2.1.1 Structured models of cyber security information 10
2.1.2 Automated analysis of graphs for security supervision 18

2.2 Anomaly detection . 26
2.2.1 Features engineering . 26
2.2.2 Anomaly detection using machine learning 30

2.3 Graph visualization for security . 35
2.3.1 Visualizing homogeneous graphs . 35
2.3.2 Visualizing heterogeneous graphs . 37

Conclusion . 41

3 Security related data representation model 43
Introduction . 43
3.1 Building security object graphs from network events 44

3.1.1 From a security event to a security object graph 44
3.1.2 From heterogeneous log events to a graph of security objects 48
3.1.3 Comparison with CybOX and STIX Models 50

3.2 Model implementation . 54
3.2.1 Implementation and configuration setup 54
3.2.2 Scalability . 56

3.3 Use case and security analysis examples . 58
Conclusion . 60

XIII

TABLE OF CONTENTS

4 Community discovery 61
Introduction . 61
4.1 Discovering communities in graphs for highlighting attack-related sub-graphs . . . 62

4.1.1 Definition of the community detection problem 62
4.1.2 Common challenges of community detection 63
4.1.3 Common methods used for community detection 64

4.2 Implementation and experimental results . 67
4.2.1 Choice of the dataset . 67
4.2.2 Evaluation criteria . 68
4.2.3 Experimental results on attack detection relevance 69

4.3 Discussion . 71
4.3.1 Relevance of the results according to the method 72
4.3.2 Relevance of the results according to the type of attack 74
4.3.3 Limits of the approach and prospects for improvement 74

Conclusion . 76

5 Novelty detection 77
Introduction . 77
5.1 Encoding the graph for machine learning . 78

5.1.1 From SO attribute values to categories . 79
5.1.2 Encoding attributes using categories. 80
5.1.3 Encoding the structure of the graph. 81

5.2 Novelty detection with an autoencoder . 82
5.2.1 Using an autoencoder for novelty detection 82
5.2.2 Building the novelty detector . 83

5.3 Implementation and experimental results . 84
5.3.1 Experimental setup . 84
5.3.2 Comparison of the four strategies of sec2graph 88
5.3.3 Comparison with other work applied to the CICIDS2017 dataset 96
5.3.4 Comparison with other pieces of work applied to the CICIDS2018 dataset . 97

Conclusion . 99

6 Graph visualization and exploration 101
Introduction . 101
6.1 Security objects graph exploration with 3D graph visualization 102

6.1.1 The 3D graph visualization . 102
6.1.2 User interactivity . 106
6.1.3 Implementation as an immersive environment 107

6.2 Analyzing visual clusters . 110
6.2.1 Identifying syntactic clusters . 110
6.2.2 Displaying syntactic clusters . 111
6.2.3 Implementation as a web application . 111

XIV

TABLE OF CONTENTS

Conclusion . 113

Conclusion 115
Contributions . 115
Perspectives . 117

Bibliography 119

Appendices 136
CybOX HTTP Network Connection Instance example 136

XV

List of Figures

1.1 Overview of the sec2graph workflow . 7

2.1 STIXv2.0 Model . 13
2.2 Overview of the encoder-decoder approach as illustrated in Hamilton’s survey . . 20
2.3 An example of the MAD visual analytics prototype GUI 36
2.4 An example of the Ocelot visual analytics prototype GUI 37
2.5 An example of the Vizalert visual analytics prototype GUI 37
2.6 An example of the KAVAS visual analytics prototype GUI 38
2.7 An example of the AptHunter visual analytics prototype GUI 40
2.8 An example of the Visflowconnect visual analytics prototype GUI 40

3.1 Complete Model Representation . 46
3.2 Building a graph from one network connection as shown in the conn.log file 48
3.3 Combining multiple events in a single graph . 49
3.4 Complementing the graph built from a network connection with information rela-

tive to a FTP connection, as shown in the ftp.log file 50
3.5 Complementing the graph built from a network connection and the ftp connection

with information relative to the file access, as shown in the files.log file 51
3.6 UML diagram of the NetworkConnectionObject CybOX class 51
3.7 UML diagram of the SocketAddressObjectType CybOX class 52
3.8 A network connection in STIX v2.1 model . 53
3.9 Number of objects created by categories . 57
3.10 Time to perform graph generation according to the number of events 57
3.11 Graph representation of the CTU-Malware-Capture-Botnets-254-1 58
3.12 A Gremlin request to find 2-hop neighborhood of an IP Address object 59
3.13 A Gremlin request to find 3-hop neighborhood of an IP Address object 60

4.1 An overview of the Louvain algorithm . 65
4.2 Precision per attack’s type for different community detection algorithm 70
4.3 Recall per attack’s type for different community detection algorithm 71
4.4 Communities built by Louvain algorithm for various types of attacks 72
4.5 Communities build by three different community detection algorithm in the case

of Infiltration attack . 73
4.6 Community selected by the Louvain algorithm for the Heartbleed attack 75

5.1 Feeding the autoencoder: from graph to vector . 79

XVI

LIST OF FIGURES

5.2 Structure of the autoencoder for simple strategy applied to the CICIDS2018 dataset 86
5.3 Structure of the autoencoder for neighborhood strategy for the CICIDS2018 dataset 87
5.4 False Positive Rate (FPR) according to the value of the detection threshold for

simple_max strategy (left) and simple_mean strategy (right) on the CICIDS2017
dataset. 89

5.5 Values of Recall (top figure) and Precision (bottom figure) for the range of variation
of the threshold leading to a significant evolution of these values. 90

5.6 Comparing detection strategies. 92
5.7 Recall for different types of attack according to different strategies applied on CI-

CIDS2017 dataset. 93
5.8 Recall for different types of attack according to different strategies applied on CI-

CIDS2018 dataset. 95

6.1 Our representation of CTU-Malware-Capture-Botnets-254-1 dataset 104
6.2 Our representation of selected clusters in dataset CTU-Malware-Capture-Botnets-

253-1 . 105
6.3 Our Track Node tool . 108
6.4 The dendrogram built on the objects with the highest degree 112
6.5 Global Interface of our visualization tool . 113
6.6 Results of nodes aggregation performed by the analyst 114

XVII

List of Tables

2.1 Description of common security standards and inventories 11
2.2 Comparison of graph encoding techniques . 22

3.1 The field types description and security objects for network connections 47
3.2 Description of Zeek log files . 55

4.1 Description of the CICIDS2017 dataset and number of security events generated
per day. 68

4.2 Synthesis of Recall, Precision and F1-score results per community discovery algorithm 69

5.1 Comparison of False Positive Rate (FPR) and Recall results (in %) for different
strategies applied on CICIDS2017 and CICIDS2018 dataset 91

5.2 Comparison of Recall, False Positive Rate (FPR), Accuracy, Precision, and F1-score
results (in %) for supervised approaches of literature and sec2graph 97

5.3 Comparison of True Negative Rate (TNR) and Recall (RC) for each type of attack
and for different methods (in %) and for sec2graph 98

XVIII

Chapter 1

Introduction

Contents
1.1 Security Operation Centers . 2

1.1.1 SOC functionnalities . 2
1.1.2 Tools used in a SOC and relative challenges 3

1.2 Research problem and hypothesis 4
1.2.1 How to build a data model suited to security? 4
1.2.2 How to detect intrusion? . 5
1.2.3 How to present results to an analyst? 6

1.3 Contributions and thesis organization 6

Information systems are omnipresent in all sectors of activity. These systems are the target
of increasingly numerous and complex attacks. There is therefore an ever growing need for better
and more reliable security.

The National Institute of Standards and Technologies (NIST) defined in the Cyber Security
Framework (CSF) [18] five so called “core functions” that are required to ensure the security of an
information system: identify threats against the system, protect the system against these threats,
detect security violation, respond to these attacks and recover from them.

In this thesis, we focus on the detection and response aspects. We indeed seek to detect any
security violation in real time and, in addition, to allow post-mortem analysis of the attackers’
modus operandi (forensic analysis), which is according to the NIST part of the work to real-
ize to respond to attacks. From an operational point of view, the teams dedicated to detection
and forensic analysis belong to Security Operational Centers (SOCs). In this chapter, we first
present SOCs, insisting on the challenges they face. We then position our research relatively to
the functionalities that are classically offered by a SOC. Finally, we list our contributions.

1

Chapter 1 – Introduction

1.1 Security Operation Centers
In this section, we present the functionalities needed in a SOC, the tools that enable imple-

menting these functionalities, and the challenges these tools face. We limit here our analysis to the
type of detection and the types of tools explored in this thesis, i.e. anomaly detection by machine
learning.

1.1.1 SOC functionnalities
Onwubiko [111] advocates that SOC operations must focus on proactive, protective and con-

tinuous security oversight. This includes the ability to collect information about threats, to detect
cyber attacks and, in turn, to implement appropriate response and recovery plans to contain,
counter and mitigate cyber incidents. According to this reference, a SOC should thus offer these
functionalities:

1. Gain general information about threats and about the system under protection (OS, appli-
cations, etc.). The sources of these pieces of information can be both internal and external.
For example, internal devices may generate logs, events and alerts, while external sources
may provide inputs about possible threats. An example of an external source is a list of
Indicators of Compromise (IoC). An IOC is an observation on a network or operating
system that indicates a computer intrusion. Examples of IOCs are: a virus signature, ma-
licious file hashes, particular IP addresses, URLs or domain names of botnet command
and control servers. Once indicators have been identified in an incident response process,
they can be used for attack detection.

2. Centralize and analyze the information relative to threats and relative to the system to
detect potential suspicious behaviors. This analysis may need some pre-processing such as
normalization of logs, events, network information, IoC and other metrics.

3. Detect attacks. This detection is performed by Intrusion Detection Systems (IDS).
4. Display and analyze security-related data. This should be performed in real-time (at worst

near real-time) with the help of visualization tools like dashboards. Dashboards are built
to structure information visually so that analysts can quickly spot an incident.

5. Respond to detected attacks. This involves remediation plans and the execution of appro-
priate procedures defined in an incident response manual, e.g, forensic analysis to precisely
determine how the attack was performed.

6. Recover from the detected attacks. This consists in restoring the system to a safe state.
This ensures service continuity and disaster recovery capability.

Our work focuses on the centralize, detect, display, and respond functionalities. These func-
tionalities indeed correspond to the analyst’s need to obtain the most relevant information in order
to better assess and respond to the situation. Getting all relevant information is usually called
“situation awareness”. The most common definition of situation awareness is given by Endsley in
[45]: “Situation awareness is the perception of the elements in the environment within a volume

2

1.1. Security Operation Centers

of time and space, the comprehension of their meaning, and the projection of their status in the
near future”. This definition is not specific to cyber security but Barford [14] has given specific
requirements for cyber security: ”be aware of the current situation, be aware of the impact of the
attack, be aware of how situations evolve, be aware of actors (adversaries) behaviors, be aware
of why and how the current situation is caused, be aware of the quality of the collected situation
awareness information and the decisions derived from this information and assess plausible futures
of the current situation”. In this thesis, we explore ways to achieve this situation awareness.

1.1.2 Tools used in a SOC and relative challenges
People working in a SOC (i.e., security analysts) use procedures and technologies to detect

security policy violations in real time and realize forensic analysis of security incidents. In this
purpose, analysts use Intrusion Detection Systems (IDS) and System Information and Event
Management (SIEM). IDSes are tools dedicated to the identification of possible security incidents.
They log information about these incidents and report them through alerts. SIEMs centralize alerts
and logs to facilitate aggregation and correlation from multiple information system components.

Meeting Badford’s requirements with these tools is not easy in an operational context, espe-
cially when all detection operations must be carried out in real time. This is especially true for
the requirement “be aware of the current situation”. Indeed, intrusion detection systems are cur-
rently not totally reliable: in addition to the problem of missed attacks, the analysis of potential
false alarms can be tedious and time-consuming for the analysts. To detect attack, operators have
two kinds of intrusion detection system at their disposal: misuse detection systems and anomaly
detection systems. The first ones depend on the manual or automatic generation of detection
rules whereas the second depends on the identification of activities that differ significantly from
behaviors defined as normal. Misuse detection systems detect only known attacks and are thus
inefficient to detect zero-day attacks. To handle these disadvantages, extensive research has been
performed on anomaly detection that may detect previously unseen attacks. Nowadays, anomaly
detection extensively uses machine learning. We follow this path in this thesis, focusing on this
form of detection and using machine learning techniques.

Anomaly detection nevertheless presents several drawbacks. In [136], the authors stated that
anomaly detection is rarely employed in “real world” operations because the tools borrowed from
the machine learning community are not well-adapted to intrusion detection. They inventory the
main operational constraints that this type of detection methods must meet to ensure adequacy.
The main challenges identified by the authors are the following:

Diversity of network traffic Network traffic is often very diverse, which leads to problems
in detecting anomalies in operational environments. The most fundamental characteristics
of the network, such as the number of connections, their duration, or the type of protocols,
can show immense variability, which can make them unpredictable. Moreover, traffic diver-
sity can be seen in each layer of the OSI Model from the data link layer to the application
layer. The model must be able to take into account the diversity of these characteristics.

Low amount of attack-related data Anomaly detection can be seen as a classification

3

Chapter 1 – Introduction

problem with two classes, normal and abnormal. The learning phase of machine learning
algorithms needs a significant amount of data for each class. However, attacks often rep-
resent only a very small portion of network traffic and can be relatively silent, making
them very difficult to learn. Moreover, one of the aims of anomaly detection is to find
novel attacks, that cannot by definition be learned. To perform well, those algorithm must
therefore have a perfect model of normality.

High cost of errors In intrusion detection, the cost of false positives is very high. False
positives require spending a lot of time examining reported incidents only to determine if
they really reflect malicious activity. Axelsson introduced in [10] the concept of base-rate
fallacy for intrusion detection. He stated that even a very small rate of false positives can
quickly make an intrusion detection system unusable. False negatives, on the other hand,
can cause serious damage to an organization: even a single missed attack can compromise
an entire information system.

Interpretation of the results by the analyst There is a need to interpret the results
from the analyst’s point of view. The analyst is indeed the key to go from anomaly detec-
tion to intrusion detection. He or she must be able to identify the decisive criteria for the
raising of an anomaly, for instance when an event violates the security policy.

Evaluation difficulties Evaluation are performed with public datasets as sources. These
datasets are often not representative of real data. As a result, methods tested on such
datasets may work very well with forged datasets but may perform poorly on a real one.

In this thesis, we propose machine learning algorithms for security anomaly detection while
responding to the challenges mentioned above.

In the next section, we present our research problem and the hypothesis we made to answer
it.

1.2 Research problem and hypothesis
To respond to the challenges previously identified and respond to the requirements of situation

awareness, we explore in this work the use of graphs for security data representation, analysis and
visualisation. Our hypothesis is that graph representation can help SOC analysts in each of these
tasks.

Relatively to these three tasks, our research questions are the following.

1.2.1 How to build a data model suited to security?
Before entering into the structuring of data and the selection of relevant information, it is

necessary to study the different data sources and their contribution to the detection of attacks.

4

1.2. Research problem and hypothesis

Security information of interest to analysts can be split in four main families: static external
data, dynamic external data, static internal data, and dynamic internal data.

Static external data refers to all cyber security-related information from an external source. It
includes IoC like the IP address of a suspected command and control server, a suspicious domain
name, or a URL that references malicious content. It also includes threat intelligence reports that
describe the Tactics, Techniques, and Procedures (TTPs) of attackers: actors, types of systems and
information being targeted, and other threat-related information that provides greater situation
awareness to an organization. Security alerts are also valuable external sources of information.
They take the form of bulletins and vulnerability notes about current vulnerabilities, exploits, and
other security issues. Dynamic external data refers to data coming from supervised systems that
are not part of the information system to protect, such as honeypots. These systems can provide
useful information on attack techniques. Static internal data contains all internal information
that relates to the information system to be protected. This includes machines, applications,
deployed configurations or detection procedures for instance. Dynamic internal data corresponds
to all time-stamped events that have occurred on the information system. In this category, we
find system and application event logs, intrusion detection system alerts, etc. Intrusion detection
systems often focus on specific information in data such as the duration of a network connection
or the number of packets for network events or domain name queries in DNS logs. However, the
correlation of all these events is more useful to detect intrusion.

The difficulty lies in building a model that can represent these various kinds of information.
It is also necessary to represent security data in a way that ensures that the information is both
human-readable and machine-readable. By readable, we mean that a human or a process can
analyze, interpret, integrate new knowledge and deduce how to react to the information received.

In this thesis, we focus on data related to network connections but we handle all pieces of
information extracted from the IP layer to the Application layer (http request, mail, etc.) and
integrate external data information such as IoCs. To process this very heterogeneous data, we
relied on knowledge graphs, that allow semantic linking of diverse information. A model built on
a knowledge graph can contain different types of valuable information while allowing automatic
processing of the data.

1.2.2 How to detect intrusion?
Nowadays, machine learning algorithms are often used for anomaly detection [47]. Current

anomaly detection techniques often build on supervised learning, which needs labeled datasets
during the learning phase. However, security experts often do not have labeled datasets of their
own events and labeling data is very expensive [2]. Each event must be thoroughly analyzed to
determine if it is part of an attack.

The use of unsupervised techniques, that do not require labeled data, seems to be a good
alternative.

In this thesis, we explore two unsupervised techniques to detect intrusion, analyze data related
to intrusions and deal with the challenges described in Section 1.1.2. The first one focuses on

5

Chapter 1 – Introduction

the relations between the pieces of information represented by the links of the knowledge graph
model. Using a technique called community detection, we select sub-graphs representing events
that are strongly related to an alert or an IoC and thus relevant for forensic analysis. The second
unsupervised technique we explore consists in applying novelty detection to anomaly detection.
Novelty detection is typically used when the quantity of available abnormal data is insufficient.
This is our case as attack-related data is rare. While traditional approaches to anomaly detection
need a sufficient volume of normal and anomalous data to build a good learning model, novelty
detection techniques need little or no anomalous data to be efficient. A challenge is to give a graph
structure as an input to the algorithm. Classical machine learning algorithms indeed do not take
a graph, but a vector, as an input. The graph must therefore be transformed into a vector. This is
challenging as one must both encode information contained in the nodes and information related
to the structure of the graph (links between nodes) in a common unified manner.

1.2.3 How to present results to an analyst?
Even being able to minimize the number of false positives, reducing the cost of alerts interpre-

tation by analysts is also needed. The goal is to provide the analyst with a presentation of security
relevant data that reduces the time and efforts required to analyse alerts. The challenge is to deal
with the huge amount of data to be represented while making it easy to access the information
carried by the nodes and links.

We propose in this thesis an immersive visualization of the graph representation. The visual-
ization highlights the relations between security elements and malicious events or IOCs. It gives
a good starting point to the analysts to explore the data and reconstruct an attack scenario by
following the links between the nodes.

To summarize, the key hypothesis of this thesis is that graphs are a powerful structure for cyber
security able to dramatically enhance cyber situation awareness. We also advocate that graphs
can help improving anomaly detection and interpreting alerts with the help of visualization.

1.3 Contributions and thesis organization
While graphs are often used in sociological studies, they are rarely used for intrusion detection,

from the input of the detection system to its output. In our work, a graph is used as an input to
represent in a unified way the heterogeneous data to be analyzed. A sub-graph is identified as an
output, which brings to the analyst, on the one hand, alerts corresponding to anomalies and, on
the other hand, information related to the context in which these anomalies were produced.

The general objective of this thesis is to evaluate the interest of such graph structures in the
field of security data analysis. We propose an end-to-end approach, called sec2graph, consisting
of a unified view of the network data in the form of graphs, a community discovery system, an
unsupervised anomaly detection system and a visualization of the data in the form of graphs.
Figure 1.1 shows the whole workflow from the collection of network event logs to the detection of

6

1.3. Contributions and thesis organization

anomalies and the discovery of interesting substructures with visualization. Each process of the
workflow corresponds to one chapter, as described in the following.

Figure 1.1 – Overview of the sec2graph workflow

Chapter 1 In this chapter, the state of the art, we present data models and ontologies used
in the security field. We also review graph and machine learning techniques usages for
computer security. Finally, we provide a state of the art on graph visualization techniques
for SOC analysts.

Chapter 2 In Chapter 2, we propose a data representation model based on a graph structure.
This is our first contribution. It corresponds to the Graph Builder process on Figure 1.1.
We explain the different design choices we made, especially having in mind that our model
should be usable by machines but also by humans. To illustrate our approach, we show
how known attacks can be represented using our model.

Chapter 3 This chapter aims at demonstrating the usefulness of graph representation for
community discovery. This is our second contribution, which corresponds to the Commu-
nity discovery process in the Figure 1.1. We apply well-known graph algorithms to discover
strongly related pieces of data and select among them the one that are linked to alerts and
indicators of compromise. The content of this chapter has been published at the WTMC
workshop [85].

Chapter 4 Chapter 4 explains how we process graph-structured data with an autoencoder
to detect anomalies. This is our third contribution, which corresponds to the Graph En-
coder and Novelty Detector processes illustrated in the Figure 1.1. We also compare in
this chapter the results we obtained to those obtained by classical anomaly detection ap-
proaches. This comparison is based on experiments we conducted on two different datasets
(CICIDS 2017 and 2018). The content of this chapter has been published at the DIMVA
conference [87].

Chapter 5 Chapter 5 deals with the visualization of security data in the form of graphs. This
is our fourth and last contribution, which corresponds to the Data Visualization process in

7

Chapter 1 – Introduction

the Figure 1.1. We propose an immersive approach allowing the analyst to process the data
in an “exploratory way”: the analyst can move within the graph both in space and time.
The content of this chapter has been partially published at the Vizsec symposium [88].

Chapter 6 This last chapter concludes this thesis with a summary of our outcomes, a dis-
cussion about the fulfilment of our objectives, and various perspectives for the future.

8

Chapter 2

State of the art

Contents
Introduction . 9

2.1 Representing and handling security data with graphs 10

2.1.1 Structured models of cyber security information 10

2.1.2 Automated analysis of graphs for security supervision 18

2.2 Anomaly detection . 26

2.2.1 Features engineering . 26

2.2.2 Anomaly detection using machine learning 30

2.3 Graph visualization for security 35

2.3.1 Visualizing homogeneous graphs 35

2.3.2 Visualizing heterogeneous graphs 37

Conclusion . 41

Introduction

This thesis mainly addresses three research areas: graph analysis, anomaly detection and
visualization. Therefore, we retained these three major areas in this state of the art.

The first part deals with the way heterogeneous security-related pieces of data are collected
and linked through different representation models. Then, we review approaches that use graphs
for intrusion detection and attack analysis. As it is classical in intrusion detection, data is ex-
ploited either to find particular already-known patterns that are characteristic of a given attack
(misuse detection) or to identify unusual behavior that indicates the presence of a known or un-
known attack (anomaly detection). In this thesis, we focus on this second approach. Finally, we
consider the visualization-related proposals that were made to detect and correlate events that
are symptomatic of an attack.

9

Chapter 2 – State of the art

2.1 Representing and handling security data with
graphs

In any security data-oriented process, the first step consists in selecting and reorganizing data
to obtain the most relevant pieces of information. The goal of this step is to represent this data
coming from heterogeneous sources of information in a common way. In this section, we present
the main existing standards describing which information is useful for security analysis and how
it can be represented. Then, we present examples of security ontologies to model security events.
Finally, we conclude on the limitations of the models we identified in the literature, and we present
what motivated our contributions.

2.1.1 Structured models of cyber security information
Security analysts face a huge volume of data to process. Furthermore, some pieces of infor-

mation are difficult to use as they are not well structured, making their analysis difficult. Based
on this observation, many initiatives emerged that are aimed to standardizing the way security
data is represented, regardless of the data sources. To promote information sharing and improve
attack detection capabilities, some initiatives from international groups have become standards.

2.1.1.1 The MITRE standards

Considerable efforts have been devoted to categorize security information and standardize data
formats and exchange protocols, most notably through the Making Security Measurable (MSM)
[100] initiative led by MITRE (MIT Research Establishment). The main goal of MSM 1 consists
in “improving the measurability of security through registries of baseline security data, providing
standardized languages as means for accurately communicating the information, defining proper
usage, and helping establish community approaches for standardized processes.” To this end, the
MITRE proposed several standards listed in table 2.1.

The CVE [99], CCE [98], CWE [101], CPE [32], OVAL [13], ATT&CK [139] and CAPEC [15]
frameworks make it possible to standardize the structure of a given type of security information, for
example vulnerabilities for CVE. The goal of these standards is to provide the various stakeholders
with a common way to describe pieces of data, for example vulnerabilities. More precisely, the
CVE standard includes a description of the vulnerability, a score for criticity, the release and
revision date and one or more references to external documentation. This allows the security
community to keep up to date about all known vulnerabilies in one common inventory. Similarly,
the CCE [98] standard refers to configuration requirements. For example, the CCE entry CCE-
5402-3 refers to the following security recommandation: “The SSH login banner should be set
appropriately.” The CWE standard, proposes a classification of software weaknesses commonly
found in implementations. For example, CWE-267 refers to implementations that allows a privilege

1. https://makingsecuritymeasurable.mitre.org/

10

2.1. Representing and handling security data with graphs

Standard Description
Common Vulnerabilities and Exposures (CVE) [99]. Standard identifiers for publicly known vulnerabilities.
Common Configuration Enumeration (CCE) [98]. Standard identifiers for configuration issues.
Common Weakness Enumeration (CWE) [101]. Standard identifiers for software weakness types in architecture,

design, or implementation that lead to vulnerabilities.
Common Platform Enumeration (CPE) [32]. Standard identifiers for platforms, operating systems, and appli-

cation packages.
Open Vulnerability and Assessment Language
(OVAL [13].

A language for determining vulnerability and configuration is-
sues on computer systems.

Adversarial Tactics, Techniques and Common Knowl-
edge (ATT&CK) [139].

A knowledge base of adversary tactics and techniques based on
real-world observations.

Common Attack Pattern Enumeration and Configura-
tion (CAPEC) [15].

A catalog of common attack patterns and a comprehensive
schema for describing related attacks and sharing information
about them.

Malware Attribute Enumeration and Characterization
(MAEC) [73].

A language to describe malware in terms of attack patterns,
detritus, and actions.

Cyber Observables eXpression (CybOX) [17]. A standardized language for encoding information about events
observed in an operational domain.

Structured Threat Information eXpression
(STIX) [126].

A standardized language for encoding information about attack
campaigns.

Table 2.1 – Description of common security standards and inventories

entity to perform unsafe actions. The CPE standard [32] inventories common platform, operating
systems and software versions. OVAL [13] describes information about the configurations set up
in a machine and it security state. CAPEC [15] and ATT&CK [139] are two approaches that
organize knowledge about adversarial behavior. ATT&CK describes common tactics, techniques
and procedures used by the attackers organized in several categories such as the reconnaissance
phase which consist in collecting information about an information system. CAPEC is focused on
application security and describes the common attributes and techniques employed by adversaries
to exploit known weaknesses in cyber-enabled capabilities (e.g., SQL Injection, XSS, etc.)

All these common standards handle pieces of data that are often strongly connected. For ex-
ample, the CPE and CVE standards include information about products, the first one to describe
the products in themselves and the second one to describe their known vulnerabilities. However,
it is difficult to link pieces of information of both these standards, since, for instance, the names
of the products referenced in the CVE descriptions are embedded in a text field. In addition, the
CPE name of a product is not necessarily used.

Entity-association models. The CybOX [17] and MAEC [73] models have tackled this
problem by proposing entity-association models that make it possible to represent information
of varied natures (entities) and to represent links between these pieces of information as associa-
tions. In other words, they propose graph-based structures to link information of different types
(vulnerability, software, attack campaign, etc.).

CybOx [17] is a standardized language for representing information about cyber-observables.
It is intended to be flexible enough to allow to describe both cases of observables that have been
measured in an operational context as well as more abstract models for potential observables that
could be targets. It offers a total of 81 basic objects such as the Linux Package object or the GUI
Window object. However, the diversity of the proposed objects and the complexity of its schema

11

Chapter 2 – State of the art

(deep hierarchical tree) made its application difficult.
MAEC [73] is a structured language for representing information about malware based upon

attributes such as relations between malware samples and their behaviors. MAEC aims at:
• enabling correlation, integration, and automation;
• improving human-to-human, human-to-tool, tool-to-tool, and tool-to-human communica-

tion about malware;
• allowing for the faster development of countermeasures by enabling the ability to leverage

responses to previously observed malware instances;
• reducing potential duplication of malware analysis efforts by researchers.

While these two standards were regularly updated, they both have evolved and merged in a
new graph-based model called STIX.

STIX is a language format used to exchange CTI. The version 2.0 of STIX is based on the
MAEC and CAPEC standards and integrates the CybOX standard in a restructured form (18
new objects containing more information against 81 objects and without the complexity of the
deep hierarchical tree architecture). STIXv2.0 represents information related to attack targets,
attackers (adversaries), their modus operandi (TTPs), indicators of compromise (IoC) that could
reveal an attack, IoC observed in the logs, exploitable vulnerabilities and remediation procedures.
STIXv2.0 also allows to represent the relations between all these pieces of information. STIXv2.0
is thus a connected graph of nodes (the objects describing security-related pieces of information)
and edges (the relations). It allows us to describe events as a collection of heterogeneous objects
in a standardized way, which was not possible with the previous standards 2.

In details, STIXv2.0 is made of STIX Domain Objects and STIX Cyber-observable Objects
defining the nodes, and STIX relations (including both external STIX Relationship Objects and
embedded relations) defining the edges. The STIX v2.0 model is shown in Figure 2.1.

STIX Domain Objects (SDO), shown on the right side of the figure, are objects representing key
CTI concepts such as an attacker’s identity or modus operandi. Attack Pattern, Vulnerability or
Indicator are example of SDO. The Indicator object is particularly interesting because it contains
a pattern that can be used to detect suspicious or malicious activity or can refer to the signature
rule of an IDS. It is thus the key object to link expert knowledge on observed data about an
attack.

STIX Cyber-observable Objects (SCO), shown on the left side of the figure, are objects that
represent observed facts about a network or host that may be related to a CTI concept to form a
more complete understanding of the observed threat. The information about the actual compro-
mise indices observed in the logs is particularly relevant to our work.

STIX Relationship Objects (SRO) are the set of all relations between SDO or between an SDO
and an SCO. They are depicted in grey in Figure 2.1. Note that the Sighting object, shown in
purple in the middle of the figure between the SDO and SRO, is also a SRO in STIX model. This
particular object denotes that something in CTI (e.g., an indicator, malware, tool, threat actor,
etc.) was identified.

When this thesis began, STIX 2.0 did not contain any SRO links between cyber-observables

2. notice that the CybOX model was a first attempt to do this

12

2.1. Representing and handling security data with graphs

Figure 2.1 – STIXv2.0 Model

(SCO). My proposal was to add these links. While refining STIX for the 2.1 specification, the com-
mittee reached consensus that the STIX 2.0 graph model (with links only between SDO and SRO,
and between SDO) was insufficient to support critical CTI use cases. Consequently, in STIX 2.1,
they introduce seven types of relations between these types of cyber-observable Objects: domain-
name, ipv4-addr, ipv6-addr, mac-addr and autonomous-system. This modification published on
March 20, 2020 is closer to the model proposed in this thesis but the number of relations be-
tween cyber-observables is still very restricted. In this thesis, we propose a larger number of links
between cyber-observables.

STIX is the first significant unified language able to represent both external threat intelligence
and internal observables. However, it is not designed to represent all possible objects that can be
found in network events but only those that are already identified as related to an attack. Moreover,
only a few relations between SCOs are described. As will be presented later, our approach is similar
to STIX and CybOX as it merges different types of security-related pieces of data in a unique
model with a graph-based structure. However, our proposal differs from STIX and CybOx by
allowing to represent all events in a forensic analysis perspective.

2.1.1.2 Cyber threat intelligence models and platforms

While the MITRE Consortium provides several standards on which we based our data model
and notably the CybOX and the STIXv2 model, we were also interested in platforms to share
IoC to identify objects and relations of interest. We discuss here the most used and referenced

13

Chapter 2 – State of the art

tools and models, that are OpenIOC [55], IDMEF [37]/IODEF [36], OTX Alienvault [112] and
MISP [153]. In addition, we describe the OpenCTI [6] proposition.

OpenIOC [55] is focused on describing technical characteristics of a given threat through an
extensible XML schema. It offers a comprehensive vocabulary for describing low level attributes.
To that end, it is made of 1211 different terms like the DNS Host that can be used to find malicious
hostnames that an infected host attempted to resolve or the Service Name often used to look for
known malicious services. These IoC terms can then be used as an input to configure various
IT security monitoring and detection tools like anti-virus, IDS, firewalls, etc. This standard is
actually similar to the first version of CybOX which used an XML format to describe security
events and malware (what Barnum [16] calls “cyber-observable”). This format shares with ours
the idea of describing data through cyber-observables.

IODEF and IDMEF. The IETF normalized two RFCs related to the description of se-
curity incidents: the IODEF (Incident Object Description and Exchange) format [36] defined
in RFC5070 and updated in RFC7970 and the IDMEF (Intrusion Detection Message Exchange
Format) format [37] defined in RFC4765 and RFC4766.

IDMEF [37] defines information that should be issued by intrusion detection systems in their
alerts. It is an object-oriented model that consists in 33 classes containing 108 fields. IDMEF
proposes to standardize the way alerts are written by enriching the alerts with information allow-
ing the analyst to understand the context of the attack. This model can be used to describe the
source of an attack, the target or the exploited vulnerabilities. It is notably used by the Prelude
SIEM [120]. In France, IDMEF and IODEF are the models recommended in the state administra-
tion to ensure interoperability of the different services [143]. In our case, we propose a model to
normalize the way network events are described independently of their malicious nature. Indeed,
we consider that a network event can be linked to an attack without having triggered an alert.

IODEF [36] aims at facilitating the exchange of information between Computer Security Inci-
dent Response Teams (CSIRTs). IODEF extends IDMEF to the description of incidents as higher
level elements, while being able to include or reference an IDMEF alert as initial information
about a security incident.

OTX (AlienVault Open Threat Exchange) [112] is an online platform for sharing information
about cyber-threats, malware or fraud campaigns. OTX offers corresponding Indicator for these
threats, malware and fraud campaigns. OTX supports the following indicators: Classless Inter-
Domain Routing (CIDR) rules, CVE, five different formats of FileHash, FilePath, IP addresses,
Mutex name, NIDS rules, URI, URL, YARA rules, Domain, Email, and Hostname. Notice that,
these indicators can be found in the STIX Cyber Observables objects. In addition, there are detec-
tion rules (YARA rules, NIDS rules) found in the STIX Indicator object as well as vulnerabilities
(CVE) found in a dedicated Vulnerability object of the STIX model. These similarities between
these two models show that these types of objects are of particular importance in the detection
of attacks.

MISP (Malware Information Sharing Platform) [153] is an online platform for collecting and
sharing IoCs. The main motivation of MISP is to offer a comprehensive set of information, and to

14

2.1. Representing and handling security data with graphs

allow the user to decide by him-/herself the level of granularity of information that he/she wants
to share and import. It is for instance possible to collect information that are only related to a
given APT, or to selectively share information with some specific partners. The MISP core format
is a simple format used to exchange events and attributes. It consists in 165 attributes, each one
corresponding to one or more of the 16 categories proposed by MISP. Among these attributes, 40
attributes belong to the category of particular interest to us, the Network Activity category. For
example, port, ip-dst, ip-src, domain and email-body belong to the Network Activity category.
MISP objects are added to the MISP attributes to allow advanced attribute combinations. For
example, the MISP network connection object is composed of eleven attributes: community-id, dst-
port, first-packet-seen, hostname-dst, hostname-src, ip-dst, ip-src, layer3-protocol, layer4-protocol,
layer7-protocol, and src-port. A series of relations are also defined along with the objects which
can be used to create relations between objects.

To build our model, we selected some types of Indicator/Object proposed by OTX and MISP.
We limited ourselves to those types that are widely used by analysts and, of course, to those
types that are adapted to the data we could collect, namely network traffic. For example, we find
in our model objects such as IP address, Port, Filename or Email. As these objects where not
sufficient to represented the relations between them, we created more complex objects, composed
of other objects to express the observed data. For example, the NetworkConnection object is a
composition of source and destination addresses among others. This composition is expressed by
a relation in our model.

Released more recently by the French ANSSI, OpenCTI [6] is an open source platform allow-
ing organizations to manage their cyber-threat intelligence knowledge and observables. The goal
of OpenCTI is to model the full understanding of a threat or campaign without limitation. To
that end, it proposed mechanism to structure, store, organize and visualize technical and non-
technical information about cyber-threats. The pieces of data are structured using a knowledge
schema based on the STIXv2 standards. The model is composed of hierarchical entities and re-
lations. In their roadmap (to the best of our knowledge this model has not been implemented),
three objectives are directly linked to the notion of graph model: the exploitation of the hyper-
graph potential, the implementation of a graph exploration engine, and the optimal use of graph
traversing and search algorithms. The OpenCTI roadmap shows the interest for SOCs to exploit
the potential of graphs in security event analysis and threat detection. Our work is consistent
with it.

2.1.1.3 Security ontologies

An ontology is a consensual, formalized textual specification of conceptualizations [58]. It pro-
vides common and shared knowledge about a domain and can be communicated to people and
application software. Previous standards and models do not always meet the needs of security
analysts, so many models and ontologies have been developed to better address these issues. In
the following, we discuss four different approaches.

15

Chapter 2 – State of the art

Lu et al. [96] propose an ontology that contains the information modelled by STIX, but
also additional information useful to the analyst. While STIX allows situational awareness by
providing information related to IoC and observables, it does not provide information on activities
not linked to an IoC, even if this activity could be informative. For example, some small pieces
of information captured on networks can be valuable in the presence of other elements. This is
why the authors integrate information from network sensors (for example Snort alerts) in their
ontology and emphasize the recognition of attacks. This approach allows mixing internal data with
vulnerability data but has not been tested on a large scale. The authors indeed only present two
queries over the ontology involving Snort alerts and vulnerabilities. In addition, this approach is
only tested using a subset of the Skaion dataset (the IDS Snort alerts for the CGI buffer overflow
attack). By contrast, we tested our approach by taking into account all the metadata of network
sessions on a large volume of data. Moreover, our approach is based on an automatic anomaly
detection process while [96] is based on manual query. We believe that automation allows to take
into account many possible relations between objects, when the manual approach is necessarily
limited to the relations that come to the mind of the analyst.

Some approaches merged several standards and ontologies to get the most of each model.
Following this path, CoCoa [111] is an ontology designed for SOC analysts. It proposes a model
based on a knowledge-graph that links internal and external sources of information. It can handle
five types of threat intelligence and information sources: events and logs, network information,
structured digital feed, semi- and un-structured feed, and threat intelligence. The authors argue
that the model allows for a proactive monitoring and the detection of threats that would not have
ordinarily been detected through only events and logs. Their ontology can also be used to identify
the techniques, tactics and procedures of an attack through the analysis of the knowledge graph.

Similarly, the Unified Cybersecurity Ontology (UCO) [142] and the graph SEPSES [69] are
intended to integrate information from external sources to improve situation awareness. Both
these ontologies integrate heterogeneous data from diverse sources (CAPEC, CVE), but the UCO
integrates a whole knowledge schema from cybersecurity systems models (e.g. CybOX and STIX)
and cybersecurity standards (e.g. CAPEC, CVE). Both these pieces of work describe use cases
to demonstrate the possibilities of graph reasoning. As in our approach, the authors of CoCoa,
UCO and SEPSES aimed at highlighting the links between internal data, such as logs, and data
from external sources. Related publications show that these ontologies can actually be queried
for security analyses, thus being compliant with the NIST cybersecurity framework [18]. Our
approach is rigorously similar, as it proposes a data model and uses it to automate security
analysis. However, the authors of these ontologies do not provide feedback on experiments with
a large volume of data. They only describe manually crafted queries on the knowledge graph,
without any form of automation. They also do not explain how they extract interesting data in
internal events. By contrast, our approach is fully automated and has been tested on the CICIDS
dataset. In addition, our objective is intrusion detection, by contrast with theirs that consists in
analyzing an attack after it was discovered. Nevertheless, we advocate that it would be possible
for us to add information to our model so as to not only detect, but allow a deeper analysis of an
already detected attack.

16

2.1. Representing and handling security data with graphs

Ekelhart’s approach. The three previous approaches focus on creating links between pieces
of information from different external data sources or between events and external knowledge
databases (e.g. vulnerabilities). In-depth analysis of log information to link events from various
sources (e.g. firewall, syslog, web server log, database log) and establish causal chains has remained
largely a tedious manual process until now. Eklehart et al. [43] focuses on an automatic process
to create links between events. The approach they propose consists in linking together events that
share similar information (e.g. two events, regardless of their nature, that refer to the same user,
or the same file). The authors have implemented their solution and tested it on real data, using
SPARQL queries to build links. Our approach is similar but focuses on network events instead of
system events. Beyond this difference in the nature of the events we consider, our implementation
choices (gremlin queries and a graph-oriented database) make our tool more scalable.

The issue of representing events and more broadly security data is not specific to SOCs.
Forensic analysts have adapted some of the models presented above, adding specific elements that
are often related to the legal context which is of course crucial in forensics. Considerations carried
out in the forensic field have contributed to improve the models for the SOCs and vice versa. For
example, Casey et al. [29] propose the DFAX (Digital Forensic Analysis eXpression) model, based
on CybOX in which information relative to the actions of the attacker and those of the analyst
(the later to control data integrity) is added.

In [30], an evolution of the DFAX model called CASE is presented. This new model is more
flexible and can be used in many contexts. The extensibility of the model is important as new
protocols and new applications can quickly outdate a model. The model is by construction ex-
tensible as it is possible to add new object types according to the needs and to the data used as
inputs.

These references show that the graph structure is useful in post-mortem security analysis.
DFAX [29] takes advantage of the comparison between information graphs constructed at different
times. In addition, the ease of evolving the graph model by adding objects and links is highlighted
by [30]. We want to show in this thesis that, similarly to forensics, graphs can be useful in the
context of intrusion detection.

In this section, we showed that a number of ontologies have emerged to represent security data
and facilitate manual or automatic security data processing. The aim of these representations is
to improve situational awareness. The heterogeneity of the data sources, however, makes this task
difficult. One of the tracks often favoured is the use of knowledge graphs that allows events to be
placed in a context by linking them to other events or by linking them to knowledge from external
sources. The STIX model is often used as the basis of these pieces of work.

Our approach is also based on this model, but, as we will show later, we will especially develop
the links between internal events.

17

Chapter 2 – State of the art

2.1.2 Automated analysis of graphs for security supervision
In this section, we first present work related to graphs encoding, i.e., how a human-readable

graph can be transformed into a computer-readable one to enable a given processing or making
it more efficient. In a second time, we present pieces of work relative to classical treatments that
can be applied to graphs. If these treatments come from various domains, we remind that this
thesis focuses on the domain of security supervision.

2.1.2.1 Definitions

In this section we give important definitions and notations that will be used to discuss the
pieces of work presented in the next sections.

Definition 1 (Graph). A graph G = (V,E) is a collection V of n vertices v1, v2, ..., vn together
with a set E of edges.

A graph can be directed, in which case there is a source and destination for each edge, or
undirected. We distinguish homogeneous graphs which are graphs where all nodes in G are of the
same type and all edges are of the same type, and heterogeneous graphs that have multiple types
of edges and/or multiple types of nodes.

Definition 2 (First-order Proximity). The first-order proximity captures the direct neighbor
relations between vertices. It is the local pairwise proximity between two connected vertices. For
each pair of vertices (vi, vj), if (vi, vj) ∈ E, the first-order proximity between vi and vj is 1;
otherwise, the first-order proximity between vi and vj is 0.

First-order Proximity is often represented in an intuitive way by an adjacency matrix. The
adjacency matrix A of G is an n ∗ n matrix where Ai,j = 1 if there is an edge between vi and vj ,
and Ai,j = 0 otherwise.

Definition 3 (n-order Proximity). The n-order proximity captures the n-step relations between
each pair of vertices. For each pair of vertices (vi, vj), the n-order proximity (n ≥ 2) is the number
of n-length paths between vi and vj .

In the following, we first present the challenges that are inherent to graph representation.
Then, we present some techniques that have been proposed to that end.

2.1.2.2 Encoding the structure of a graph

How a graph is encoded depends on how it will be processed afterwards. Classical approaches
such as data blocks linked by references or adjacency matrices are often used as a basis and are
adapted to allow an easier or a more efficient processing. In particular, when the graph is too
large, it is not necessarily desirable or even possible to encode all the information in the graph;
it is then necessary to choose judiciously the information to be kept. In this section, we present
some general requirements for graph encoding, and then give some examples.

18

2.1. Representing and handling security data with graphs

Requirements for the encoding. In [164], the authors identify four challenges inherent
to graph representation: structure preserving, content preserving, data sparsity and scalability. In
addition to these challenges, Hamilton et al. [61] raise, among others, the problem of improving
interpretability.

In relation with this thesis, we were especially interested in the three following issues: structure
and content preserving, scalability and interoperability. Since we build our own graph, we left
aside the data sparsity problem which refers to a problem of non-completeness of the graph (node
relations or attributes).

Dealing with structure and content preserving, graph encoding must ensure that the outputs
for two identical graphs are identical, and that, with respect to which feature is considered impor-
tant, graphs that are similar/close to one another lead to similar/close outputs of the encoding.
Generally speaking, any characteristic of the original graph (global structure, local structure, at-
tributes of a node or edge) that is important in the sense of the field of application (and therefore
of future processing), must be found in the result of the encoding.

For sec2graph, we have chosen to focus on the close neighborhood (local structures), our
interest being to learn the normal links between events that are closed to each other. In addition,
the values of the attributes of the nodes and edges involved in these local structures are taken
into account in the encoding we propose (see Chapter 5).

Dealing with scalability, real-world graphs may consist in millions or billions of vertices. The
potentially very large size of the graphs to encode is therefore a challenge for the graph encoding
task. The result of the encoding of the nodes and edges must, nevertheless, be such that the
processing to be applied afterwards can be applied in a time and/or memory efficient manner.
However, the encoding algorithm itself should not be too time- and memory-consuming. In our
case, the encoding should be carried out in near real time to allow the SOC to react as quickly
as possible in case of an attack. As will be shown later, we ensure the efficiency of the encoding
by considering only local structures of the input graph and do not seek to preserve the overall
structure of the graph (see Chapter 5).

Dealing with interpretability [61], researchers must ensure that their encoding methods are
truly representing relevant graph information, and not just exploiting statistical tendencies. We
advocate that it is especially important for the domain of cybersecurity, where results of the
treatments performed on the output of the encoding to detect an attack must be explainable for
a security analyst.

For each piece of work that was performed during this thesis, we evaluated our proposal with
respect to these criteria. More details will be found in the relevant chapters.

Encoding techniques. Graphs are particularly difficult to represent in an efficient way be-
cause their representation can be costly in terms of memory but also costly in terms of processing
time during their analysis. The adjacency matrix is a well-known example of graph representa-

19

Chapter 2 – State of the art

tion. This representation is a matrix of size n2, with n the number of nodes in the graph. In
our case, manipulated graphs can quickly have millions of nodes which becomes computationally
expensive. Moreover, this representation only allows to represent the local structure of a graph
(direct neighborhood of nodes). The attributes of nodes and edges are not taken into account and
the computation of the global neighborhood of nodes (k-order proximity with k ≥ 2) requires
matrices operations.

To solve this problem, many approaches propose to encode the graph in a compact form while
adapting the encoding of the graph to the processing that will be applied to it. This is often done
using a learning algorithm [61]. The objective is to learn which characteristics of the graph are the
most interesting for the processing applied to the graph and thus to keep only a limited number
of characteristics. The general idea is based on a learning algorithm based on an encoder and a
decoder. This principle described in Hamilton’s survey [61] is illustrated in Figure 2.2.

Figure 2.2 – Overview of the encoder-decoder approach as illustrated in Hamilton’s survey
.

First, all the information on a node of the graph that are identified as useful are concatenated.
For instance, this can be its attributes, information about its neighbors, or structural information
such as node centrality or position in the graph. The encoder computes from this vector vi a
vector zi of reduced dimension. Next, a decoder rebuilds user-specified information from the small
zi vector. This may be information about the local neighborhood of the vi node (e.g., the identity
of its neighbors) or a classification label associated with the vi node (e.g., a community label).
By jointly optimizing the encoder and decoder in successive iterations, the system learns which
characteristics of the graph are important for graph analysis while providing encoding of the graph
in a small vector space (the zi vector).

There are three main kinds of techniques for encoding a graph: matrix factorization-based
techniques, random-walk-based techniques, and deep learning techniques. We present each of
them in the following. Then, we detail which techniques fulfill the requirements mentioned in the
previous section, as well as their advantages and disadvantages.

Factorization-based algorithms represent the connections between nodes in the form of a ma-
trix and factorize this matrix to obtain an encoding. Among others, the matrices used to represent
the connections include node adjacency matrix, Laplacian matrix and node transition probability

20

2.1. Representing and handling security data with graphs

matrix. GraRep [28] is a technique for learning vertex representations of weighted graphs. This
technique learns low dimensional vectors to represent vertices appearing in a graph and inte-
grates global structural information of the graph. It uses the transition probability matrix. HOPE
(High-Order Proximity preserved Embedding) [113] embeds a graph into a vector space where
the structure and the inherent properties of the graph are preserved. HOPE can preserve n-order
proximity of large scale graphs. These techniques make it possible to preserve the structure of the
graph in its representation but not its content. Moreover, matrix calculation is often expensive,
making these techniques poorly scalable.

Random walks have been used to approximate many properties in the graph including node
similarity. A random walk is defined as a random path that connects two nodes in the graph. By
traversing the neighborhood of a node in a random way, the algorithm builds an encoding of this
node according to the attributes of the encountered nodes. As they perform a random sampling
of the input graph, random walk-based algorithms are especially useful when the graph is too
large to be taken as a whole. Encoding techniques using random walks on graphs to obtain node
representations have been proposed in DeepWalk [116] and node2vec [57].

DeepWalk [116] generates multiple random walks to retrieve the neighborhood attributes and
integrates them into the encoding. This technique preserves n-order proximity between nodes by
maximizing the probability of observing the last k nodes and the next k nodes in the random
walk centered at one node.

Similarly, node2vec 3 [57] preserves n-order proximity between nodes by maximizing the prob-
ability of occurrence of subsequent nodes in fixed length random walks. It differs from DeepWalk
by using biased-random walks that include both breadth-first search (walk in the nearest neigh-
borhood of the node) and depth-first search (walk going as far as possible from the origin node)
strategies. Choosing the right balance between these two strategies allows node2vec to preserve
the structure of the community as well as the similarity between nodes.

Deep neural networks have also been used to encode graphs. Generally speaking, the idea is to
build an encoder and a decoder so that the output preserves certain characteristics of the input
or so that the output is equal to the input. Auto-encoders are then generally used for the later.

Deep autoencoders are especially interesting for dimension reduction as they are able to model
non-linear structures in the data.

In Structural Deep Network Embedding (SDNE), Wang et al. [154] proposed to use deep
autoencoders to preserve the first- and second-order network proximity. The approach consists
in linking two neural-based learning processes. The first one is unsupervised and aims to make
its output equal to its input. It preserves the local structures of the graph that is encoded (i.e.,
the encoding allows for reconstructing the neighborhood of a given node). The second one is
supervised and ensures that the encoding of two nodes with similar neighborhoods are themselves
similar.

Deep Neural Networks for Learning Graph Representations (DNGR) [27] combines random
walks with deep autoencoder. The model consists in three components: random walks, positive

3. Other very close propositions also exist: Struct2vec [124], [160]

21

Chapter 2 – State of the art

point-wise mutual information (PPMI) calculation and stacked denoising autoencoders. Random
walks are used on the input graph to generate a probabilistic co-occurence matrix, analogous to
similarity matrix in HOPE. This matrix is transformed into a PPMI matrix (which measures
the likelihood of co-occurrence of two elements) which is used in input of a stacked denoising
autoencoder to obtain the encoding. A stacked denoising autoencoder improves the robustness of
the encoding process in presence of noise in the graph. It also allows to capture the underlying
structure required for tasks such as link prediction and node classification. These two methods take
as input the global neighborhood of each node. This practice can be computationally expensive
and thus sub-optimal for large graphs, limiting the scalabilty of the approach.

Graph Convolutional Networks (GCNs) [72] tackle the scalability problem by defining a con-
volution operator on graph. This supervised algorithm iteratively aggregates the encodings of a
sampling of neighbors for a node (a function mixes the current encoding with the previous one
to obtain the new encoding). Aggregating encodings of only local neighborhoods makes the ap-
proach scalable while multiple iterations allow the learned encoding of a node to characterize
global neighborhood.

GraphSAGE [61] is also a general inductive framework that leverages node feature information
(e.g., text attributes) to efficiently generate node encodings for previously unseen data. It is
actually close to GCN, forming individual encodings for each node and generating encodings by
sampling and aggregating the features of a node’s local neighborhood.

DeepGL [128] is a general inductive graph representation learning framework for learning deep
node and edge features that generalize across-networks. DeepGL starts by deriving a set of basic
graph characteristics called graphlet features and automatically learns a multi-layer representation
of the graph where each successive layer uses the output of the previous layer to learn the char-
acteristics of a higher order. DeepGL naturally supports attributed graphs. In addition, DeepGL
is scalable for large networks through efficient parallel implementation.

Table 2.2 summarizes the advantages and disadvantages of each types of techniques describe
above relatively to the three first requirements, i.e. structure-preserving, content-preserving and
scalability. The interpretability cannot be evaluated here as it mainly depends on the task that
follows the encoding.

Types References Advantages Disadvantages
Factorization-
based

GraRep [28]
HOPE [113] - capture local and global structure - high time and memory cost, not scalable

- do not capture the content

Random Walk
DeepWalk [116]
node2vec [57]
struct2vec [124]

- relatively efficient
- capture local structure

- do not capture global structure
- do not capture the content

Deep Learning

GCN [72]
DNGR [27]
SDNE [154]
DeepGL [128]
GraphSAGE [61]

- capture non-linearity in features
- capture local and global structure
- capture the content

- high time cost

Table 2.2 – Comparison of graph encoding techniques

To summarize, factorization-based techniques only capture the structure of the graph. Their
scalability is a major bottleneck because carrying out factorization on a matrix with millions of

22

2.1. Representing and handling security data with graphs

rows and columns is memory intensive and computationally expensive. Random walk approaches
are relatively efficient but again they do not capture the content and they only capture local
structure. Deep learning methods can both preserve the structure and the content. They also
have the ability to capture non-linearity, but their computational time cost is usually high.

Of all the methods seen previously, deep learning methods correspond most to our needs
because they retain both the structure and the content of the graph. The efficiency problems of
these methods can be reduced by using sampling strategies. In addition, as we will see in the
section on anomaly detection, the deep learning methods can be directly used in the context
of anomaly detection, reducing the total cost of pre-processing and processing. In our case, we
have chosen for Sec2graph to use an edge-based encoding that preserves first and second-order
proximity. The content is also preserved and our method is scalable up to billions of nodes by
using sampling strategies.

2.1.2.3 Graphs analysis

The most common objectives for graph analysis are community or cluster identification, node
classification, link prediction and root cause analysis. In the remainder of this section, we present
pieces of work related to each of these objectives. Note that the work presented in this section
does not necessarily focus on security but is relevant to a number of application domains, ranging
from social science to biology.

Community and cluster detection. A community is a set of nodes that are linked together
by many edges. Accordingly, two communities are distinct if only few edges link the vertices of
the two sets of nodes. A cluster is a set of nodes in which members are similar, i.e, they both
share the same attributes values and have similar neighborhood structures. Accordingly, nodes
of two distinct clusters have few similarities, both in term of attributes values and in term of
neighborhood.

As many practical issues can be solved thanks to communities or clusters identification, espe-
cially in the context of social networks, revealing the underlying community structure of complex
graphs has become a crucial and interdisciplinary topic. In [49], the authors review community de-
tection techniques in graphs. They state that the main purpose of community algorithms is to try
to infer properties and relations between vertices, which are not available from direct observation
measurements.

Examples of graph community detection for cybersecurity are presented in [40] and [115]. Ding
et al. [40] define a network intrusion as an attempt to enter in a community of hosts to which one
host does not belong. This suggests that in a network, intrusion attempts may be detected by
looking for communications that does not respect community boundaries. Based on this principle,
the authors build an intrusion detection mechanisms that looks for flows that do not respect
those communities. Their results suggest that community-based methods are useful for network
intrusion detection system.

23

Chapter 2 – State of the art

Hercule [115] represents inter-log similarities within a graph of log events. In this representa-
tion, a node represents a log event and an edge represents a predefined similarity relation between
two logs events. Community techniques are then applied on the graph to identify the set of events
related to a given attack. The identification of information related to a known attack occurrence
is performed thanks to an indicator of compromise. Experiments on APT attacks show that the
system performs well in this task (accuracy of 88% on average), and once the events related to an
attack have been identified, it allows a forensic analysis on it.

Examples of graph clustering are presented in [51] and [140]. BotTrack [51] creates a depen-
dency graph between hosts to identify malicious network connections generated by peer-to-peer
botnets. A clustering technique is then used to identify the network traffic containing a given
order placed by a master to a collection of zombies. Clustering is also used in a second step to
identify the attacks launched by the zombies. BotTrack uses for this a clustering method called
DBscan in conjunction with the Pagerank algorithm to detect bots. This method is able to de-
tect stealthy botnets using peer-to-peer communication infrastructures and not exhibiting large
volumes of traffic.

Studiawan et al. [140] propose a method to detect an anomaly in the access control logs of
an operating system based on a clustering method. The logs are first pre-processed and then
clustered using an enhanced version of the MajorClust algorithm. A score that takes into account
factors such as the total number of cluster members, the frequency of events in the log file, and
the waiting time between specific activities is then presented to the security analyst.

Node classification. In most cases, node classification is realized through a semi-supervised
training, where labels are only available for a small proportion of nodes. The goal is to label the
complete graph based only on a small training data set. Common applications of semi-supervised
node classification include classifying proteins according to their biological function and classifying
documents or individuals into different categories/communities.

Hamilton et al. [60] introduced the task of classifying nodes in an inductive manner, i.e. where
the goal is to classify nodes that were not seen during training, for example by classifying new
documents in evolving information graphs.

Many security and privacy issues can also be modeled as a graph classification problem, where
the nodes of the graph are simultaneously classified by collective classification [145, 138, 91].
State-of-the-art classification methods for this type of graph-based security and privacy analysis
follow the following paradigm: assign weights to the edges of the graph, iteratively propagate the
reputation scores of the nodes in the weighted graph, and use the final reputation scores to classify
the nodes in the graph.

Aesop [145] and Marmite [138] use this technique to propagate known malicious reputation of
some file to unknown ones and thus detect potential malware. Aesop builds an homogeneous graph
with nodes representing files and edges representing the presence of two files on the same host.
The label propagation is performed by the belief-propagation algorithm. The graph in Marmite
is an heterogeneous graph made up of file, fqdn, url and ip nodes that represents how files are
downloaded (by which hosts and from which servers). The label propagation is performed by the

24

2.1. Representing and handling security data with graphs

Bayesian-Label propagation algorithm.
Li et al. [91] performed a study on the topological relations among hosts in malicious Web

infrastructures. They discovered that these hosts are often connected to other malicious hosts and
do not receive traffic from legitimate sites. The authors developed a graph-based approach that
relies on a small set of known malicious hosts as seeds to detect dedicated malicious hosts in a
large scale.

While classification is often applied on nodes, two variants exist, namely edge classification
and subgraphs classification. For example, Grover et al. [57] explain how feature representations
of individual nodes can be extended to pairs of nodes (i.e. edges) for edge classification. Sher-
vashidze [133] proposes a graph classification method based on the Weisfeiler-Lehman test of
isomorphism on graphs.

Link prediction. The goal of link prediction is to predict missing edges, or edges that are
likely to appear in the future. Link prediction is at the core of recommendation systems, including
predicting missing friendship links in social networks or affinities between users and movies. More
generally, link prediction is closely related to statistical relational learning [78], where a common
task is to predict missing relations between entities in a knowledge graph.

Heard et al. [62] propose to model the normal traffic behavior of an IP address for anomaly
detection. Normal network traffic is made of automated and human behaviors. The difficulty is
to separate regular automated tasks permitted by the client from malware sending regular com-
munications to a controller or trying to scan the internal network. The article presents a Fourier
analysis technique to predict communications (edges) between two hosts and detect anomalies
(unpredicted edges).

Metelli et al. [103] propose a Bayesian model and anomaly detection method for characterising
graph structure and modelling likely-new edge formation. Arrivals of new edges in the graph
represent connections between a pair of client and server not previously observed that in some
cases might suggest the presence of intruders or malwares.

Root cause analysis. A graph structure allows to link nodes indirectly (see n-order Proximity
definition in Section 2.1.2.1). Thus, depending on the semantics of the links, the exploration of
the neighborhood of a node of interest allows to find dependency or cause and effect relations
between nodes indirectly related. When a graph represents temporal events, it is also possible to
find sequences of strongly linked events. In the security field, this consists in finding the source of
an attack (root cause) and each steps related to it (attack graph).

King and Chen [71] propose to reconstruct a chain of events in a dependency graph to perform
intrusion analysis. Starting from a single point of detection (for example, a suspicious file), their
tool, BackTracker, identifies files and processes that may have affected that point of detection and
displays the event chains in a dependency graph. Similarly, Hossein et al. [65] use sequences of
system calls to build attack graphs and detect the root cause and the attack steps. Milajerdi et
al. [104] use audit logs to reconstruct the history of attacks using traces from common Advanced
Persistent Threat attacks. Kobayashi et al. [76] use syslog events to infer causality between

25

Chapter 2 – State of the art

security system events. These proposals are however limited since they only consider one type of
event format. This contrasts with [159] in which the authors propose to discover causal dependency
in heterogeneous events to detect multi-step attacks.

Conclusion on graphs analysis. In this section, we showed that graph analysis techniques
have very frequently been applied in the analysis of graphs representing security data. Community
detection, node classification, link prediction and graph traversals have successfully been used to
detect attacks or malicious hosts/files. In this thesis, we focus on two graph analysis techniques
which are community detection and node classification. Community detection will allow us to
detect all events related to the same attack. For the classification of nodes, we actually use one
of its variants, namely the edge classification to detect anomalies in the edges of our graph. The
detection of anomalies is detailed in the next section.

2.2 Anomaly detection
Intrusion detection techniques are classically distinguished between approaches based on the

knowledge of attacks (misuse detection) and approaches based on the knowledge of the normal
and expected behavior of the system (anomaly detection). Both have advantages and disadvan-
tages [38].

In this thesis, we focus on the detection of anomalies. Anomaly detection consists in identifying
previously unknown patterns in data. Indeed, we are particularly trying to identify new forms of
attacks (zero days) while coping with the fact that attackers often evade detection through subtle
modifications of their tools and modus operandi.

While many approaches have been proposed for this purpose, we rely in this thesis on machine
learning. As we saw in section 2.1.2.2, encoding of input data is an important step before its
processing in this context.

In this section, we first present the existing approaches for data encoding (features engi-
neering). Then, we present approaches for anomaly detection using machine learning (including
statistical methods).

2.2.1 Features engineering
The input data of a machine learning algorithm is generally structured through a given number

of features (i.e., attributes). Machine learning algorithms require features with specific character-
istics to work properly. Hence, there is a need for a number of pre-processing steps applied on
data: selection of relevant part of data, normalization, cleaning, outlier identification, etc. This
serie of steps in refereed to as “feature engineering”.

Apruzzesse et al. [7] show that features engineering is an important task in cyber-security
by evaluating the performance of an intrusion detection classifier when trained with different
features and different data sets. In fact, the main difficulty in machine learning is that network
traffic cannot be used directly as an input. It is necessary to build feature vectors constructed from

26

2.2. Anomaly detection

it. Thus, feature engineering is an essential task to efficiently process data. According to [102],
feature engineering is more complicated when dealing with network monitoring (the domain of
this thesis), because of the diversity of data types in raw data packets and derived data fields.
In addition, the very specific nature of the data requires a high expertise in security in order to
properly choose the features while minimizing any potential loss of information.

Features engineering can be split in two processes: features selection and features processing.
In the remaining of this section, we first review features selection in studies relative to security.
Then, we review features processing.

2.2.1.1 Features selection

In the following, we describe some commonly used techniques to select and represent security
features for network analysis. That is why we only deal here with techniques related to the selection
of network data attributes. We identify two tendencies of data pre-processing for anomaly based
network intrusion detection system, namely network packet header analysis and payload analysis.

Onut et al. [110] identify three kinds of packet header analysis techniques depending on the
type of network features being used: basic features derived directly from packet headers, single
connection-derived features and multiple connection-derived features.

Basic feature selection is used by NIDS such as PHAD [97] and SPADE [137] that use IP or
UDP/TCP headers fields as inputs. PHAD is thus able to detect probe and DoS, while SPADE
is able to detect network scans or port scans.

Single connection features are time-based statistical measures, such as session duration or the
number of network packets exchanged during a connection. They are useful to detect unusual data
flows. Early et al. [42] detect when a protocol is not used as intended, or in a way that significantly
deviates from the normal behavior using features extracted from flow session. Similarly, Estevez
et al. [46] wants to detect anomalies in the use of protocols in computer networks with a quan-
tification of the TCP header space and the use of a Markov chain. Quantification is the process
of constraining an input from a continuous set of values (such as real numbers) to a discrete set
(such as integers). The normal use of the protocol is then modeled using a Markov chain, using
sequences of observations as inputs.

Multiple connection-derived features are constructed by monitoring basic features over mul-
tiple flows or connections. This technique is used for example in [80]. Lakhina et al. use entropy
to detect anomalies spanning multiple connections. Entropy captures changes in the distribution
of traffic characteristics in a single value, and the observation of entropy time series over multiple
characteristics reveals unusual traffic behaviors.

Many attacks consist in inserting exploit code in the payload of network packets. It is therefore
interesting to look for anomalies in the payload. PAYL [155] builds a byte-frequency distribution
model of network traffic payloads. The result is a feature vector containing the relative frequency
count of each of the 256 possible bytes in the payload. To exploit this type of feature, PAYL uses
the Mahalanobis distance to compare the supervised traffic to a model previously learned and

27

Chapter 2 – State of the art

raises an anomaly if the distance is too high. This method is applied to detect zero-day worms
which can produce an unusual byte-frequency distribution.

In [75], the authors use features crafted by security experts like string length histograms, string
entropy and flags indicating the existence of special characters in strings.

Due to the complexity of payload analysis, many techniques focus on small subsets of the
payload, like the HTTP request. Kruegel et al. [79] constructs six features based on the HTTP
queries containing attributes. These six features are based on attribute length, attribute character
distribution, structural inference, token finder and attribute presence or absence.

Zeek (formerly Bro) [114] uses packet parsers to rebuild the traffic embedded in the IP/ICMP
packets, to allow selection of specific features of this embedded traffic (for example, an HTTP
request).

Maxwell et al. [102] present several feature engineering techniques for machine learning-based
classifiers. The features selected by these various techniques are used as input for the same clas-
sifier. The main result of this study is that no automatic feature selection technique can achieve
better classification results. One conclusion to be drawn from this is that human expertise is
actually required for the features selection task. This is also what [141] shows when presenting a
comparison of the features selection methods used in nineteen studies related to security.

In this thesis, we used the ability of the Zeek NIDS decoder to parse and extract information
contained both in the header and in the payload. For example, Zeek can extract the TCP flags
but also the MIME type, the name or the hash of a transferred file or the URL requested in an
HTTP transaction. That way, we do not loose information from the payload and are still able to
detect anomalies from the header if the network traffic is encrypted.

2.2.1.2 Features processing

Once a set of basic set of features is built, these features must be prepared to be handled by
the machine learning algorithms. Some feature processing techniques consider each feature indi-
vidually and heavily depends on the type of the feature. Three kinds of data are to be considered:
numerical ones, categorical ones and one type that is specific to the domain of network security, IP
addresses. Other feature processing methods consider all features in order to select only relevant
ones for the data analysis step.

Numerical data. In [82, 26, 89], the authors used a technique called Z-score standardization
for numerical values such as the size of a network packet. This method consists in computing the
standard deviations. It ensures that all numeric attributes in a dataset have the same scale, thus
preventing one attribute from being erroneously more prevalent than another. Another method
consists in using clustering algorithms to group numerical values in clusters. Gaussian Mixture
Model are a well known method to cluster numerical data [150]. A Gaussian mixture model is
a probabilistic model that assumes all the data points are generated from a mixture of a finite

28

2.2. Anomaly detection

number of Gaussian distributions with unknown parameters. The method consists in assigning
each numerical value to one Gaussian to split the data into different groups. Categorical data
pre-processing is then performed. We use this last technique in this thesis as it allows to consider
all features as a category.

Categorical data. In [82], the authors use the method of one-hot encoding for categorical
values. This method consists in creating one feature for each different value that was seen. One
limitation of this method is that it can result in very large features vectors. To solve this problem,
the authors of [82] and [26] select only the most frequent values to create the features vector.
This practice however heavily relies on the samples that are used. Hernandez et al. [64] compare
four engineering techniques. The first one, indicator variables method (e.g. one-hot encoding) uses
a binary feature for each value of the feature. Such data conversion results in a dataset which
dimensionality strongly depends on the numbers of values representing the features and does not
depend on the number of classes. The second one, the conditional probability method replaces
each observed value with an array of the conditional probabilities of obtaining each class given
the fact that the attribute has a particular value. The third method is based on a decision tree
system that converts each value of a feature into a real number. These methods are compared
with the most commonly used mapping which simply replaces values with subsequent natural
numbers (e.g. label encoding). The experiment in the paper shows that the accuracy obtained
for the classification of attack types is improved for both methods specially for Probe and DOS
classes. However, these methods were only tested against classification task whereas our task is to
detect anomalies with unsupervised methods. As will be shown later, we have chosen the one-hot
encoding method which is simple and allows to quickly interpret the results by retrieving the
original values.

IP adresses. IP addresses are somewhat peculiar data midway between numerical and cate-
gorical data. Indeed, two “close” IP addresses can belong to the same subnet. However, comparing
two IP addresses not belonging to the same subnet does not make sense. The challenge is to encode
the fact that two adresses might belong to the same subnet without prior knowledge. The authors
of [33] were interested in this problem and compared three techniques, a 32-bit vector represen-
tation, a 4-Bytes representation and an extended-Byte representation (method where cross-octet
information is incorporated). The last method was the best in the task of classifying malicious
IP addresses. As will be shown later, and since our task is to detect anomalies by learning the
normal behavior of the internal devices, we focused during this thesis on the most-used internal
IP address and encodes them with the one-hot encoding technique.

Features selection In [135], the authors use four different methods to deal with feature
selection and encoding: leave-out single-value attributes, namespace correlation, data correlation
(Pearson [52]), and feature selection. The first method, leave-out single-value, consists simply in
removing all single-valued attributes from the set of selected features. The second method is a
namespace correlation: some entity attributes may refer to the same piece of information although

29

Chapter 2 – State of the art

their names are different. The method simply consists in removind duplicates. Similarly, highly
correlated attributes are removed with the use of the third method, data correlation. The de-
tection of these correlations is carried out using Pearson’s techniques. Finally, the authors use a
combination of random forest, neural network and Bayes classifier to select the relevant features
with the fourth method feature selection.

There is no consensus about the best way to select and then process and encode the features
extracted from security events. Some authors have been able to demonstrate the relevance of some
particular attributes to detect specific attacks with a supervised approach and have achieved good
results for specific datasets.

However there is little proof that the approach is transferable to other datasets. Moreover, our
objective being to propose an unsupervised method, we decided to encode the results according
to two criteria: scalability, and the ability to be processed by anomaly detection algorithms. As
the information processed is heterogeneous, we have chosen a binary encoding that is suitable for
the different types of information encountered.

2.2.2 Anomaly detection using machine learning
The term anomaly has several definitions. Generally speaking, Barnett and Lewis [118] define

an anomaly as an “observation (or a sub-set of observations) which appears to be inconsistent
with the remainder of that set of data”. In the security field, the NIST defined anomaly-based
detection as “the process of comparing definitions of what activity is considered normal against
observed events to identify significant deviation” [130]. Anomaly-based techniques, also known as
profile-based or anomaly detection, are based on the creation of a baseline profile representing
normal/expected behavior, and on the fact that any observed deviation of current activity from
this profile is considered an anomaly. We distinguish here four main families of anomaly detection
methods, namely statistics-based, clustering-based, classification-based and deep learning-based
methods. Notice that some pieces of work combine techniques from two families to build an hybrid
approach. We present below these four families, as well as a few hybrid approaches.

2.2.2.1 Statistical methods

Statistical methods are widely used for anomaly detection. From a very general point of view,
the principle consists in building a model of the behavior of the monitored system from statistics
on data generated by this system.

Many different approaches have been used. We present here two kinds of methods. The first
one is based on the detection of the exceeding of a determined threshold. The second one is based
on data compression. We propose two examples for this last method, the wavelet analysis and the
principal component analysis.

Anomalies are related to abrupt changes in the data. Most often, thresholds are defined for
certain observed features. If a threshold is exceeded, a change is considered to have occurred.
As we have seen in section 2.2.1.1, Wang et al. [155] propose a statistics-based method based on

30

2.2. Anomaly detection

the computing of the Mahalanobis distance over a feature vector containing the relative frequency
count of 256 possible bytes. In details, the Mahalonobis distance is used to determine the similarity
between a series of known and unknown data. The authors use it during the detection phase to
calculate the similarity of new data against a pre-computed profile. The detector compares this
measure against a threshold and generates an alert when the computed distance exceeds this
threshold.

The main idea of compression methods for anomaly detection is to use a projection space
of smaller dimension and then reconstruct the data in the original space. The difference be-
tween the input and output data, called the reconstruction error, is then used to identify the
anomalies in a dataset. Wavelet analysis consists in modeling non-stationary dataseries. Such
data series may contain signals that can vary in amplitude and frequency. Data series are mod-
eled using wavelets, which are powerful basis functions localized in time and frequency. Hamdi
and Boudriga [59] propose an anomaly detection method using wavelets. It relies on identifying
attack-related anomalies by differentiating between dangerous and non-threatening anomalies.
This task was achieved based on the concept of period observation, where wavelet theory was
used to decompose one-dimensional signals in order to analyze both their spectral frequencies and
time localization. Principal Component Analysis (PCA) is a method to convert a set of obser-
vations to a set of linearly uncorrelated variables called principal components. In the converted
principal components, the largest possible variance is held by the first component and each subse-
quent component holds the following highest variance. The PCA is often used as a tool to analyze
data and make predictive models. Lakhina et al. [81] were the first to explore this method in the
security field. They addressed the anomaly diagnosis problem in network wide-traffic by using
PCA to separate network connections into normal and anomalous subspaces. The main idea was
that PCA results in a reduced subspace of k variables (principal components) which corresponds
to normal network traffic behavior, while the remaining subspace consists in anomalies or noise.
Then, every new traffic measurement is projected onto these subspaces so that different thresholds
can be set to classify these measurements as normal or anomalous. Their work was responsible
for the massive attention on PCA-based approaches for anomaly detection received in the last
decade.

2.2.2.2 Clustering methods

Clustering analysis aims at identifying groups of similar entities. These groups are also called
classes or clusters. Entities belonging to one cluster are similar by construction while entities from
two different clusters are dissimilar. Clustering techniques can be used for outlier detection that
consists in identifying values which are too far away from any cluster. Two main methods are used
in cluster analysis, KNN that is supervised, and K-means that is unsupervised.

The K-Nearest-Neighbor (KNN) method consists in defining a membership class for each
observation. An observation is classified according to the majority result of the membership class
statistics of its k closest neighbors. Liao et al. [93] uses KNN to classify the behavior of a program
as normal or intrusive. The program behavior is represented by the frequencies of system calls.

31

Chapter 2 – State of the art

Each program is then classified using the KNN classifier.

2.2.2.3 Classification-based methods

Classification is widely used in the anomaly detection field. The main idea can be summarized
in two steps. First, during a training phase, a classifier is built using labeled training data. Then,
during a testing phase, this classifier is used to classify any new instance of data.

According to the number of labels in the training dataset, classification-based anomaly detec-
tion techniques can be either one-class (actually there are two classes: normal data and abnormal
data) or multi-class. In the first case, the abnormal data will be considered as an attack. In the
second case any new traffic classified in one of the abnormal classes will be considered as an attack.

Here again, numerous approaches have been proposed in the literature. We present here the
most-frequently used ones.

Naïve Bayes classifier. Naïve Bayes classifiers are a simple probabilistic classifiers commonly
used for network intrusion detection problems. It is based on the assumption that all of the features
of an observation independently contribute to the probability that this observation belongs to a
particular class. This classifier computes the probability of a certain instance belonging to a
singular class and keep the class with the highest probability.

Klassen et al. [74] proposed a Naïve Bayesian approach to detect in real time black holes,
selective forwarding and DDoS attacks. The system monitors packets sent from nodes to detect any
abnormality. The classifier first assumes that data are normally distributed. Then, the probability
of a sample belonging to a class is calculated by a normal distribution probability procedure.

Tao et al. [94] also use a Naïve Bayesian approach. They combine it with a time slicing
function and exploit the relation between time and network traffic. Their research is based on the
hypothesis that network traffic changes at distinct times and that some traffic does not occur at
a particular time.

Support Vector Machine. SVM is an efficient tool widely used for multiclass classifica-
tion. It is a classifier based on finding a separation hyperplane in the feature space between two
classes so that the distance between the hyperplane and the nearest data points of each class is
maximized. However, the number of dimensions considered affects the performance of SVM-based
IDS. Another issue is that SVM treats different features of data equally while many features are
redundant or less important. SVM is also computationally expensive. In order to mitigate this
problem, dimension reduction techniques are often applied to extract important features. For ex-
ample, [90] proposed a SVM-based intrusion detection system based on a hierarchical clustering
algorithm to preprocess the dataset before SVM training. This reduces the number of features to
be considered by the SVM classifier.

Decision tree. A decision tree is a decision support tool representing a set of choices in the
graphical form of a tree. The various possible decisions are located at the end of the branches

32

2.2. Anomaly detection

(the “leaves” of the tree), and are reached based on decisions made at each step. Random forest
is a classification method used for classification or regression tasks. It is considered a learning
method in which the decision tree is taken as the basic classifier. The random forest comprises a
set of classifiers made of trees, each tree being randomly constructed, independent and identically
distributed. Each tree in the set results in a vote for the most popular input vector class. Zhang
and Zulkernine [165] proposed an anomaly-based approach using a Random Forest classifier. The
model is trained to classify flows into the network service classes HTTP, FTP, POP, SMTP, and
telnet. The method considers a flow that is wrongly classified as an outlier. That can also be the
case if the value of an anomaly function is greater than a threshold.

2.2.2.4 Deep learning

Artificial Neural Networks (ANNs) are machine learning algorithms inspired by the central
nervous system. They are made of layers of neurons connected by adaptive weights. An ANN with
one hidden layer is able to produce any non-linear continuous founction. A Deep Neural Network
(DNN) is an ANN with a number of layers superior to three. The goal of a DNN is to learn
more complex functions. In this stacked format, the lower layers learn easy features while the
upper layers analyze the output of previous layers and learn missing, difficult, or hidden features.
Well-known types of deep neural network are Recurrent Neural Networks (RNN), Convolutional
Neural Networks (CNN) and AutoEncoders (AE).

A recurrent neural network (RNN) extends the capabilities of a traditional neural network,
which can only take fixed-length data inputs, to handle input sequences of variable lengths. The
RNN processes inputs one element at a time, using the output of the hidden units as an additional
input for the next element. Yin et al. [162] attempt to integrate an RNN in an IDS for supervised
classification learning (RNN-IDS). They study the performance of the model in binary classifica-
tion and multiclass classification, and they find that the RNN-IDS model gets a better accuracy
compared to methods such as SVM, Random Forest or Naive Bayes. The long-short-term memory
(LSTM) units are introduced to enable RNNs to manage problems that require long-term memo-
ries. LSTM units contain a structure called a memory cell that accumulates information. Kim et
al. [70] apply this technique to the KDD Cup 1999 dataset.

A convolutional neural network (CNN) is a neural network meant to process input stored in
arrays. Input example is an image, which is a two-dimensional array of pixels. Wang et al. [156]
use a CNN for malware traffic classification by taking traffic data as images. This method needs no
hand-designed features but directly takes raw traffic as an input of the classifier. Raw traffic data
in pcap format is processed to be transformed into CNN input data following the four following
steps: traffic split, traffic clearing, image generation and IDX conversion.

Finally, autoencoders are a class of unsupervised neural networks in which the neural network
takes a vector as an input and tries to match the output to that same vector. By taking the
input, changing its dimensionality, and reconstructing the input, one can create a higher or lower
dimensionality representation of the data. These types of neural networks learn compressed data
encoding in an unsupervised manner. Additionally, they can be trained one layer at a time,

33

Chapter 2 – State of the art

reducing the computational resources required to build an effective model. To our knowledge,
only [11] and [105] proposed a fully-unsupervised approach. The authors of [11] use two types
of auto-encoders (namely stochastic denoising auto-encoder and deep auto-encoder) to detect
anomalies in the NSL-KDD dataset. The authors of [105] propose to remedy the problems of data
with little or no security label by proposing an unsupervised and a semi-supervised approach.
The idea is to use an auto-encoder in association with a classification algorithm for the semi-
supervised approach. The latter is then trained on a restricted portion of labeled data. In the
unsupervised approach, the auto-encoder is used alone. The study was carried out on the NSL-
KDD and CICIDS2017 datasets. The results are good only in the semi-supervised approach, even
if the unsupervised approach seems to isolate some attacks.

2.2.2.5 Combination of several approaches

The examples seen above use only one technique to detect anomalies. However, some research
focus on coupling different techniques to improve the performance of their intrusion detection
system. The most common approach is to use an unsupervised method to sort the data first,
followed by a supervised method to reduce the number of false positives. This approach makes it
possible to take advantage of the best of both methods: on one hand, there is no need to label a
large set of data, and on the other hand, the number of false positives is reduced.

In [151] the authors present an analyst-in-the-loop security system, where the analyst expertise
is put together with state-of-the-art machine learning to build an end-to-end active learning
system. The system has four key features: a behavioral analytics platform, an ensemble of outlier
detection methods, a mechanism to obtain feedback from security analysts, and a supervised
learning module. The outlier detection methods are a matrix decomposition-based outlier detector,
an autoencoder and a density-based outlier detection. An outlier score combining the three scores
obtained from the unsupervised algorithm is then computed. The supervised learning module is
based on a random forest.

DeepLog [41] uses deep learning (LSTM) and classic mining (density clustering) approaches
to detect anomalies in system logs. In addition, the authors propose a process to incrementally
update the DeepLog model in an online fashion so that it can be adapted to new log patterns
over time. Furthermore, DeepLog constructs its model in an online fashion so that it can adapt
to new log patterns over time. Finally, users can diagnose the detected anomaly and perform root
cause analysis.

Two studies [3, 122] add a supervised layer to the unsupervised output of the autoencoder.
The general idea is to use the auto-encoder to identify normal traffic. Traffic that is not considered
normal by the auto-encoder is then provided to a supervised classification device, trained on data
labeled to identify attacks.

Finally, Lee and Park [84] propose AE-CGAN (autoencoder-conditional GAN), an intrusion
detection system based on autoencoders and random forest for situations in which there are
significant imbalances between normal and abnormal traffic. Based on the unsupervised learning
models autoencoder (AE) and the generative adversarial networks (GAN) model they propose to

34

2.3. Graph visualization for security

oversample rare classes based on the GAN model in order to solve the performance degradation
caused by data imbalance after processing the characteristics of the data to a lower level using
the autoencoder model.

In this section, we presented the state of the art of machine learning applied to anomaly detec-
tion. The latest studies show that algorithms based on deep learning are generally more accurate
in detecting anomalies than more traditional machine learning methods as they can learn more
complex models. However, they often require more computation and are less interpretable. There is
also no real consensus on the use of supervised or unsupervised methods, some using both methods
at the same time. In our work, we choose to use a deep autoencoder. This method does not need
labelled data but a particular attention must be taken to tune some hyper-parameters. Moreover,
as our input data are graph-structured data, the pre-processing steps are very important.

2.3 Graph visualization for security
While detection algorithms play an important role in intrusion detection, human expertise re-

mains a fundamental element in incident response and in the analysis of alerts. Indeed, completely
eliminating false positives seems impossible, and even if it was, the analyst would still need to
understand the events to propose an appropriate response to the incident. This is why it is im-
portant to help analysts in their decision making by proposing relevant visualizations. Numerous
proposals have been made to visualize either raw data (pcap files for instance) or pre-computed
data (alerts and result from automatic analysis). Also, those visualizations can be used either to
simply display the information at hand in an efficient manner (reporting) or to allow the analyst
to interact with it to go deeper in the analysis (visual analytics).

As this work focuses on network security events, the scope of this thesis is limited to the
visualization of network communications or alerts. We also focus on representations that allow to
compare and correlate various events to detect malicious intents.

To that end, visualizing relations in security data is common. A graph structure is well suited
to encode logical links between various types of events. As a consequence, and with notable
exceptions such as [35, 66, 158], link graphs are often used for visualizing relations among similar
entities (e.g. network nodes or users) or various types of entities (e.g., the various features of an
alert coming from an IDS or from a pcap file).

In this section, we first present the pieces of work on visualization of homogeneous graphs, i.e.
graphs for which all nodes correspond to the same type of entities. We then present the pieces of
work representing heterogeneous graphs.

2.3.1 Visualizing homogeneous graphs
A graph with a single type of node and a single type of edge is called homogeneous. In network

security, this type of graphs are often used to represent the communication between host machines.
In this section, we introduce some homogeneous graph visualization specifically design to highlight
attacks on network systems.

35

Chapter 2 – State of the art

Percival [5] allows the security analyst to understand the security status of the network and
to monitor security events occurring on the system. The proposed visualization allows to follow
the actual progress of the attack according to the remediation measures executed. It also provides
an overview of the possible evolutions of the attacks. The network topology view is typical of an
homogeneous graph visualization: each node represents a device of the network and each edge is
a step of an attack path between two network devices. As such, Percival is mainly a report tool
that allows the analysts to assess the risks on his/her network. It evolved to MAD [4]. Compared
to Percival, a color code has been added to provide information about the attributes of the nodes
and the edges. While the represented graph is still homogeneous, this addition provides visual
analytics capabilities (see Figure 2.3).

Figure 2.3 – An example of the MAD visual analytics prototype GUI

In [8], Arendt et al. describe the user-centric design and development of a decision support
visualization for active network defense. The tool, named Ocelot, helps cyberanalysts in assessing
threats about computers affected by a malware and quarantined healthy parts of a network. The
web-based visualization prototype integrates and visualizes multiple data sources through the use
of a hybrid space partitioning tree and node link diagram. A screenshot of the application is shown
in Figure 2.4.

VisAlert [95] is designed specifically for understanding the nature, time and location of events.
At the center of this visualization is a graph in which nodes are network devices. They can be
organized either as a map indicating a geographical location or a a graph indicating the topology
of a network. Around this central visualization, a serie of concentric rings corresponds to time
windows of events. The rings are also equally divided into parts that show the types of events,
such as alerts from intrusion detection systems for example.

36

2.3. Graph visualization for security

Figure 2.4 – An example of the Ocelot visual analytics prototype GUI

Figure 2.5 – The Vizalert alerts are mapped onto a colored slice of a ring corresponding
to its type, from oldest to youngest. To show where the alert occurred, the space inside
the ring houses a spatial visualization to which each alert is linked

2.3.2 Visualizing heterogeneous graphs
A graph with two or more types of node and/or two or more types of edge is called hetero-

geneous. In security, heterogeneous graphs are used to display high dimensional types of data or
complex systems. In this section, we introduce heterogeneous graph display designed to help a
security analyst to get an overview of the security in complex networks.

In [148], a visual analytics tool provides a simplified representation of the most important

37

Chapter 2 – State of the art

elements of a security data set and their relations. The visualization technique is designed to
address two common shortcomings of existing graph visualization techniques: scalability of visu-
alization and comprehensibility of results. The main goal of this visual analytics tool is to provide
security analysts with an effective way to reason interactively about various attacks. The tool was
tested to analyze spam campaigns, with the ultimate goal of getting a better comprehension of
the root causes behind the structure and the organization of those attacks. First, a force-directed
algorithms is used to visualize clusters of security events, allowing the security analyst to easily
inspect the relation and shared connections among a group of events. A visual cluster is created ei-
ther when different security events share many (low weight) connections to the same set of nodes
representing feature values or when they have large weight edges to a small number of nodes.
Then, the tools replace nodes and edges with a more abstract graph visualization and create a
network visualization that require less screen real estate. It makes easier to understand in the
global context of the network and the role of each node. This visual representation of security
events still conveys two pieces of information to the security analyst: the volume of security events
associated with a single feature value and the volume of security events that are linked to two or
more feature values.

In [25], the authors propose a visualization that allows security experts to analyze and enrich
semi-structured intelligence information on cyber threats. They demonstrate the feasibility of
their concept through the visualization of data described using the STIX model. They create an
interactive visualization that allows security experts to extract knowledge and information from
incident documentation. They also enable the exchange of explicit and implicit knowledge between
security experts. To visualize the data, the authors use a force-directed graph scheme. They also
provide interactive features that allow security experts to adjust the presentation themselves,
addressing the problem of node-link graphs consisting in their limited extensibility in terms of
large numbers of strongly connected nodes.

Figure 2.6 – KAVAS [25], a Knowledge-Assisted Visual Analytics concept for the Struc-
tured Threat Information eXpression

Cygraph [108] is a tool to maintain situational awareness in the presence of cyberattacks and
to focus on protecting critical assets. It provides a graph knowledge base about vulnerability,
threat indicators, and mission dependencies within a network environment. Cygraph provides
various modes of interaction with its visualization interface, including graph queries, expand-

38

2.3. Graph visualization for security

ing/pivoting/filtering queries, visual synthesis, and dynamic graph evolution over time. CyGraph
also supports visual grouping of graph nodes, based on property values or by manual selection.
It integrates multiple graph layers (network infrastructure, cyber defensive posture and threats,
..) that define subsets of the overall model space, with relationships within and across each graph
layer. CyGraph is mainly based on attack graphs and targets mainly traditional network systems.

APT-Hunter [134] is a visualization tool that helps security analysts to explore login data for
discovering patterns and detecting malicious logins. It also helps security analysts to integrate
their knowledge about the organization and the network to discover malicious login events in an
enterprise network. It is based on the observation that a characteristic pattern of an attacker
who stole credentials deviates from benign patterns and can be used to detect malicious logins.
Using APT-Hunter, security analysts can iteratively discover suspicious and benign login patterns
with the help of an interactive node-link visualization tool. The three objectives that drive the
design of the platform are: enhancing the recognition of login patterns, enabling the expression
and matching of login patterns, and enabling the selection and filtering of login events. The
APT-Hunter user interface consists of five panels: Search, Filter, Alert, Details, Visualizer. The
Visualizer is the most important panel. It represents the login data using a node-link diagram. In
this visualization, nodes represent computers and links show login events from the sources to the
destinations. Users can interact with nodes to locate them on the screen or to see more details
about them. Some details about computers and logins are encoded using icons and color of the
nodes and links. Icons of the nodes show the type and role (e.g., web-server, domain controller)
of the computers. The color of the link shows if it is a suspicious login. In addition, geolocation
of the nodes is shown by the placement of all the computers in the same location next to each
other and grouped by a colored canvas. The visualizer enables the recognition of login patterns
and abnormalities. A screenshot of the panel is shown is Figure 2.7.

An important challenge in generating link graphs is defining the layout [152], i.e., the position
of the nodes and the connection to be drawn for each edge. One of the criteria for a well laid-
out graph is that edges must not overlap, since overlapping edges make it hard to read a graph.
Another criteria is the number of nodes that can be visualized simultaneously. Too many nodes
will make the graph illegible. Finally, the interpretability of the results is the third important
criteria.

The three types of visualization presented above all use a force-based graph layout. To deal
with the scalability and readability problem, they use two techniques: they either let the user filter
interactively the information to be displayed [25, 134] or they aggregate the displayed nodes [148].
[25] and [134] use different types of icons and colors to identify different type of nodes. Finally,
in [148], the size of the aggregation node represents the number of aggregated nodes.

Parallel coordinates are used for plotting multivariate data. They are very useful for comparing
many variables and representing the relations between them. In parallel coordinates, each variable
is given its own axis and all the axes are set in parallel. VisFlowConnect [163] (see Figure 2.8)
uses this technique for NetFlow datasets visualization, aiming security situational awareness. The
goal of this tool is to help a security analyst to detect and investigate anomalous traffic between
a local network and external domains. Central to the design is a parallel coordinates view that

39

Chapter 2 – State of the art

Figure 2.7 – An example of the AptHunter visual analytics prototype GUI

Figure 2.8 – In VisFlowConnect [163], parallel coordinates visualization shows Netflow
records per source address, destination port and destination address.

displays NetFlow records as links between two machines or domains while employing a variety of
visual cues to assist the user. VisFlowConnect also provides several filtering options that can be
employed to hide uninteresting or innocuous traffic.

We have seen in this section that there are numerous way to visually represent security data
and that the goal of this visualization is mostly to help the analyst to better understand the
situation and to better find anomalies in the data by looking for anomalous patterns. As our
model is based on a graph structured model, we focused on graph visualization panel. Previous

40

2.3. Graph visualization for security

pieces of work show us that occlusion and scalability is often a problem with using graph, for
which different proposals have been made.

Conclusion
In this state of the art, we first described the work on structuring security data in all its

forms. While all authors seem to agree on the need to standardize data into a single model, there
is currently no single model that prevails over the others, even if the STIX model, which enables to
represent heterogeneous data in the form of object graphs, is particularly influential. Our proposal
is to adapt this model to network event analysis. We describe it in Chapter 2.

Automatic analysis often requires a pre-processing step for the data features so that the
data can be properly processed. This step, called feature engineering, requires technical expertise
to properly choose the parameters to be taken into account for attack detection or to learn
methods on the data. In addition, the graph approach requires special attention to allow both
node attributes and structure to be retained in our input data.

We then explored the main trends in graph analysis methods and we saw how graphs are used
in the security domain. Our contribution is the discovery of sub-graphs of interest representing
attacks using community detection algorithms. We present this aspect in Chapter 3.

We then show the classical methods of anomaly detection. Chapter 4 shows our contribution
on the detection of anomalies within a graph using an auto-encoder.

Finally, we present the work about allows visualizing network events and information and
how they help security experts in their analysis. Then we specifically treated graph visualization
techniques and detailed the constraints inherent to graphs to ensure scalability and interpretability
of the represented data. Our contribution consists in the interactive and immersive representation
of graphs representing network security events. We present it in Chapter 5.

41

Chapter 3

Security related data representation
model

Contents
Introduction . 43
3.1 Building security object graphs from network events 44

3.1.1 From a security event to a security object graph 44
3.1.2 From heterogeneous log events to a graph of security objects . 48
3.1.3 Comparison with CybOX and STIX Models 50

3.2 Model implementation . 54
3.2.1 Implementation and configuration setup 54
3.2.2 Scalability . 56

3.3 Use case and security analysis examples 58
Conclusion . 60

Introduction
Security monitoring produces a large number of network events. The diversity of communica-

tion protocols generates numerous log files with a wide variety of formats. In addition, these log
files are often not explicitly linked to each other. It is therefore difficult to obtain an overall view
of activities on the network.

In order to exploit this large volume of heterogeneous information, security analysts usually
start from an indicator of compromise (IoC), i.e., an observable that suggests that a compromise
may have already occurred. Examples of such IoC are a particular IP address or a particular
file name found in some network event. Analysts look among all the available log files for any
information related to this IoC that could help analyzing the security incident that led to this
indicator. This approach is referred to as forensic analysis.

To help analysts in this forensic analysis, there is an important need for a representation
of data able to highlight relations between events. In this chapter, we propose a new graph-
based representation of network events based on Security Objects (SO). SOs are the nodes of

43

Chapter 3 – Security related data representation model

the generated graph and correspond to a subset of attributes coming from the various network
events. Each attribute is related to a type of information that is important from a security point
of view. The value of an attribute is derived from the value of a field found in a security event
in the analyzed log files. As will be made clearer later in this chapter, a link between two SOs
indicate that theses SOs have been found together in at least one event. By construction of the
graph, security objects present in several events appears only once in the graph. This allows to
create links between these events. The SO graph thus gives a unified and rich vision about what
happened on the network, which is much more interesting for the analyst than a collection of
heterogeneous and unrelated log files.

This chapter is organized as follows: Section 3.1 describes the security graph model we have
designed to handle network information. Then, we present in Section 3.2 the implementation and
some results on the scalability of our graph approach. Finally, Section 3.3 leverages a use case
where the graph traversal can help the analysts to understand an attack.

The content of this chapter has been published at the IEEE Euro S&P Workshop on Traffic
Measurements for Cybersecurity 2020 (WTMC2020) [85].

3.1 Building security object graphs from network events
In this section, we propose a restructuring of event logs coming from network sources to

emphasize subsets of attributes that are of interest from a security perspective. To do so, we use
a graph structure noted G = (V,E), with V being the set of nodes and E being the set of edges.

In this section, we first define nodes V as security objects and present how we build the set of
edges E among security objects to capture the semantics of a given event. Then, we explain how
we build the global graph representing all security events present in our log files.

3.1.1 From a security event to a security object graph
Each log file can be described as a sequence of n ordered events {e1, e2, ..., en} where ei is

an event resulting from the observation of an action in the network. Each logged event is made
of several fields that differ depending on its type. For each type of event e, we select the fields
corresponding to key information and create one or several Security Objects according to the field
we find. A SO is thus a set of attributes, each attribute corresponding to a particular event field.

By construction, the set of SO attributes is included in the set of events attributes and the
following properties are true:

• for a given event, the SO attribute sets are disjoint, this means that we do not add
redundancy in the graph with our representation. In relational databases, normalization
is performed to avoid redundancies and thus save memory space, facilitate updates and
ensure data consistency [68]. With this property, we get the same advantages for our graph
model.

• SOs can only retain a subset of the attributes of the event, which means that an SO is
not a self-contained unit. We need several SOs to reconstruct the information contained in

44

3.1. Building security object graphs from network events

one event. This property justifies our implementation choices for the community detection
module in Chapter 4 and the anomaly detection module in Chapter 5.

Each event leads to a set of security objects. To preserve information related to a given event,
links are created between security objects coming from this event. Let l ∈ E be a link between
two nodes s and d. l is defined by the quadruplet (s, d, ltime, ltype). ltype corresponds to the type
of the link and ltime refers to the timestamp of the event. For example, if a network connection is
logged at timestamp t0, a NetworkConnection object is created and linked to an IPAddress: this
link is of type has_src_address and has its attribute timestamp set to t0.

The semantic of these links is derived from the CybOX model [16]. The various SO categories,
their respective attributes and their links are represented in Figure 3.1. For clarity, colors and
symbols are used in the figure to identify the various categories of SOs.

The types of nodes that compose our graph is of course a crucial element in relation to our
objective, that is to provide the analyst with a better vision of security insthey may highlight.
Following this idea, Network objects (¨ in grey) such as IP addresses or port numbers can highlight
possible port scans or malware spreading from host to host. Network Services objects (ª in blue)
such as DNS represent common targets as they can paralyze a whole network. Well known attacks
on these systems are DHCP Spoofing or DNS Poisoning and Spoofing. File Transfer objects
(n in yellow) such as file checksum or mail objects are valuable to detect an attack campaign
based on malware spreading. Application Services objects (l in purple) allow to capture specific
characteristics of popular application such as http_referrer that can be symptomatic of a CSRF
attack [23]. Security Services objects (« in orange) such as invalid certificate can be indicators for
a Man-In-the-Middle attack or a brute-force attack. Finally, Alerts objects (© in red) represent
potential attacks detected by an IDS or protocol anomalies detected in the monitored network.
We include in this category the Indicator SO that corresponds to an Indicator of Compromise
i.e., an artifact observed on a network that indicates an intrusion with high confidence, as well as
the Weird SOs that corresponds to an alert issued by an anomaly detector.

45

Chapter 3 – Security related data representation model

♠

♠

♠

♠

♣

♣

♣
♣

♣

♣

♥

♥

♥

♥ ♥

♦

♦

♦

Fi
gu

re
3.
1
–
C
om

pl
et
e
M
od

el
R
ep
re
se
nt
at
io
n

46

3.1. Building security object graphs from network events

To show how we derive our SOs and their links from an event type and its attributes, we
consider an event from the conn.log file with all its fields. All the fields, their types, their
descriptions and the associated SO types are given in Table 3.1.

Fields Type Description security object
ts time timestamp of first packet ∅
uid string unique identifier of connection NetworkConnection
id.orig addr source IP address IPAddress
id.orig_p port source port number NetworkConnection
id.resp_h addr destination IP address IPAddress
id.resp_p port destination port number Port
proto enum transport layer protocol of connection NetworkConnection
service string application protocol ID sent over connection ∅
duration interval how long connection lasted NetworkConnection
orig_bytes count number of payload bytes originator sent NetworkConnection
resp_bytes count number of paylod responder sent NetworkConnection
conn_state string connection state NetworkConnection
local_orig bool value=true if connection originated locally deleted
local_resp bool value=true if connection responded locally deleted
missed_bytes count number of bytes missing (loss packets) NetworkConnection
history string connection state history NetworkConnection
orig_pkts count number of packets originator sent NetworkConnection
orig_ip_bytes count number of originator IP bytes NetworkConnection
resp_pkts count number of packets responder sent NetworkConnection
resp_ip_bytes count number of responder IP bytes NetworkConnection
tunnel_parents set[string] if tunneled, connection uid of encapsulating parents ∅

Table 3.1 – The field types description and security objects for network connections

Network connections are at the basis of our model. In a conn.log file, the uid is the unique
identifier of a network connection Therefore, to represent a conn.log network connection, we first
build a NetworkConnection SO using the conn.log event uid value as its own uid attribute.

The id.orig_h, id.orig_p, id.resp_h and id.resp_p fields are the addresses and port numbers.
IP addresses are arguably very important pieces of information that are often seen in Indicator
of Compromise sharing platforms. The destination port number is also useful to link two events
sharing the same service and can therefore be relevant to identify specific types of attacks. However,
the source port is often set dynamically and is not often representative of any link between two
elements. As a consequence, in our graph model, we collect the id.orig_h and id.resp_h addresses
as two new IPAddress objects. We also collect the destination port number in a new Port object.
However, as the source port is not as relevant as the others, we let it as an attribute in the
NetworkConnection object.

As the fields proto, duration, orig_bytes, resp_bytes, conn_state, misssed_bytes, history,
orig_pkts, orig_ip_bytes, resp_pkts and resp_ip_bytes define the characteristics of the connec-
tion, we collect them as attributes in the NetworkConnection object.

local_orig and local_resp are fields that indicate respectively if the source or the destination
adresses are part of the local subnet, this information being configured in the Zeek configuration.
As we did not define the local subnets, these fields are always empty and can be deleted from our
model. If local subnets were to be defined in the configuration, it will be interesting to add these
fields to the IPAddress object as they are directly related to this SO. This aspect has been left for
future work.

47

Chapter 3 – Security related data representation model

service and tunnel are particular fields. If they are set, they refer to another object. For
example, if the value of the field service is set, it means that Zeek was able to decode the service
and has created another event in an other log file. Similarly, if the the field tunnel is set, it refers
to an other network connection that encapsulated the network connection we consider. We will
see how we handle relations with other events in the next section.

Finally, timestamp ts is added as an attribute of each link to keep the chronology of the events.
Once all the SOs have been extracted from an event, we build a graph representing it based

on the model on Figure 3.1. Figure 3.2 shows the graph representing a network connection. It is
made of four SOs: a source IP Address SO, a destination IP Address SO, a Destination Port
SO and the NetworkConnection SO itself. This last SO captures attributes corresponding to the
fields we identified as less important to create relations between events. The relations linking all
these SOs together are has_src_address, has_dst_address and has_dst_port.

conn.log ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto service duration orig_bytes resp_bytes conn_state
local_orig local_resp missed_bytes history orig_pkts orig_ip_bytes resp_pkts resp_ip_bytes tun-
nel_parents

Figure 3.2 – Building a graph from one network connection as shown in the conn.log file

This example is based on a network event coming from Zeek, but the model can be extended
to other type of events by following the same building process.

In this section, we explained how to build an SO graph from a single event. In the next section,
we describe how to iterate this process to build a graph representing multiple events coming from
multiple sources.

3.1.2 From heterogeneous log events to a graph of security ob-
jects

After having explained in the previous section how we create a graph for a single event, we
present in this section how we build a single graph from multiple events coming from multiple
sources.

Building a single graph from multiple events is performed as follows: for each event, and
according to its type, we extract the SOs and the links between them as described in the previous
section. In other words, we first build a subgraph representing this event. We then take each SO
of the subgraph. If this SO already exists in the global graph (for instance, the same IPAddress
was already identified in a previous event), we replace the SO in the new subgraph by the SO

48

3.1. Building security object graphs from network events

that already exists in the global graph. Therefore, if an event contains an SO that was already
found in a previous event, the subgraph that represent it will be linked to the global graph trough
this SO. In detail, we have selected nine types of objects to link events together. These are IP
addresses, domain names, destination ports, file names, URIs, MAC addresses, email addresses as
well as connection and file transfer identifiers (often assigned by network analyzers). We insist on
the fact that it is the type of each object that is taken into account. Thus, an IP address object
present in a connection log as the source address and in a DNS resolution as the requested IP
address will make the link between the two events regardless of its meaning in the log. The only
exception is the port, which must be a destination port. Indeed, a correlation rule between two
events with a source port and a destination port is of little interest from a security point of view.
The choice of these objects comes partly from the study of the types of IoCs frequently used and
partly from the experience of security analysts.

Our approach also allows to collect events coming from different log types in the same graph.
As an example, let’s consider three log events extracted from the Zeek [114] analysis of the
CICIDS2017 dataset [131]. The three log events represent the same FTP connection analyzed by
different modules of the Intrusion Detection System. The first event e1 comes from the conn.log
file. It is a report on the TCP network connection from the IP address 192.168.10.15 to the IP
address 192.168.10.50 on port 21. The second event e2 comes from the ftp.log file. It provides
details about the FTP reply. The third event e3 corresponds to file transfer details. A graph for
each of these three events is represented on the left on Figure 3.3. We represent the global graph
composed of six SOs and obtained from the three previously described sub-graphs on the right
on Figure 3.3: the first event is surrounded by a solid blue line (e1), the second is surrounded by
a dotted red line (e2) and the third is surrounded by a small yellow dotted line (e3). e1 and e2
share a reference to the same NetworkConnection SO (same uid value) and e2 and e3 share the
same FileTransfer SO (same fuid value).

Figure 3.3 – Combining multiple events in a single graph

49

Chapter 3 – Security related data representation model

In order to build the global graph encompassing the various log types, we simply apply the
same process to the different events coming from them. We first repeat the process with another
type of log file, namely ftp.log that groups specific information about FTP connections. The
fields of this type of event are written in the table at the top of Figure 3.4. In this type of log, we
extract the uid and fuid fields, respectively the network connection identifier and the identifier
of a file transfer. We build two new objects, the FTP object and the FileTransfer object that we
attach on the ones already built as shown on Figure 3.4.

ftp.log ts uid id.orig_h id.orig_p id.resp_h id.resp_p user password command arg mime_type file_size reply_code
reply_msg data_channel.passive data_channel.orig_h data_channel.resp_h data_channel.resp_p fuid

Figure 3.4 – Complementing the graph built from a network connection with information
relative to a FTP connection, as shown in the ftp.log file

Similarly, we extract the fuid and conn_uids fields from the files.log file that groups
every piece of information about file transfer and add the relevant attributes to the FileTransfer
SO. We also add a new is_file_transfer edge between the NetworkConnection SO and the
FileTransfer SO.

By combining the different log files, the graph enables to deduce relationships between events
coming from different log types and thus, as will be shown in Section 3.3, to learn more complex
patterns.

3.1.3 Comparison with CybOX and STIX Models
The CybOX and STIX models provide a solid basis for the representation of security events in

graphical form. However, these models are mainly intended to describe compromise indicators for
knowledge sharing with the cyber community. In this section, we indicate how our model differs
from these standards.

3.1.3.1 Comparison with CybOX model

As described in the Chapter 2, CybOx [17] is a standardized language for representing infor-
mation about cyber observables. It offers a total of 81 basic objects including 26 objects linked

50

3.1. Building security object graphs from network events

files.log ts fuid tx_hosts rx_hosts conn_uids source depth analyzers mime_type filename duration local_orig is_orig
seen_bytes total_bytes missing_bytes overflow_bytes timedout parent_fuid md5 sha1 sha256 extracted
extracted_cutoffextracted _size

Figure 3.5 – Complementing the graph built from a network connection and the ftp
connection with information relative to the file access, as shown in the files.log file

to network connections as, for example, Address, DNS Query, HTTP Session or X509 Certificate.
However, the complexity of this schema (deep hierarchical tree) makes its application difficult.

For example, a simple network connection in CybOX is described by a total of seven linked
instance of four different objects: an instance of theNetworkConnectionObject itself, two instances
of the SocketAddressObject, two instances of the PortObject and two instances of the AddressOb-
ject. If the network connection is an HTTP session or a DNS request, an additional object, the
Layer7Connection object has to be added. The UML diagram of CybOX NetworkConnectionObject
is depicted in Figure 3.6. It is extracted from the OASIS specifications of the NetworkConnec-
tionObject [21].

Figure 3.6 – UML diagram of the NetworkConnectionObject CybOX class

The SocketAddressObject is itself the composition of two objects, the PortObject and the
AddressObject. The UML of the SocketAddressObject is represented in Figure 3.7. It is extracted
from the OASIS specifications of the SocketAddressObject [22].

51

Chapter 3 – Security related data representation model

Figure 3.7 – UML diagram of the SocketAddressObjectType CybOX class

The subgraph induced for a simple network connection has a depth of three (i.e., three hops in
maximum to reach a node from another node), whereas our representation of a network connection
only has four SOs and a depth of two. Moreover, it requires up to 13 objects to describe an HTTP
session with CybOX, and the induced graph has a depth of six. A complete example representing
an HTTP Network Connection instance in CybOX language is given in Annex 6.2.3.

While CybOX comes in a variety of objects, it can extensively describe only two types of
application protocols. It only proposes to describe DNS queries and HTTP sessions. In our model,
we propose to represent not only HTTP and DNS, but also SSH, FTP, Kerberos, SMTP, SNMP,
DCE/RPC and DHCP sessions.

Network communications offer lots of protocol likely to be used by attackers. The choice of
describing more protocols was thus made in the Sec2Graph model to be able to distinguish as
precisely as possible attacks from normal events. In addition, in order to be as silent as possible,
the attackers adapt themselves to the attacked network and try to blend in with the current
traffic to avoid detection. Taking into account detailed information about the protocols used can
help to distinguish these attacks from normal traffic. For example, knowing the exact version of
OpenSSH can distinguish a regular user from an attacker. Moreover, in our case, we want to
perform graph analysis like graph traversals. The deep hierarchy complicates the graph traversal,
sometimes requiring to cross a large number of nodes before reaching the desired one. A deep
hierarchy also induces a higher number of nodes. The Sec2Graph model was tuned to provide a
model able to represent several millions of events.

The complexity of CybOX was one of the reason why STIX integrated it in its own model
with some simplifications. We present STIX in the next section.

3.1.3.2 Comparison with STIX model

STIXv2 integrates part of the objects of the CybOX standard in an enriched form. In STIXv2,
there are less objects corresponding to observables than in CybOX but these objects contain more
information since some CybOX objects have been merged into a single STIX object.

In total, STIXv2 integrates ten cyber-observables objects related to network connections in-
cluding Domain, Email Address, Email Message, File, IPv4 Address, IPv6 Address, MAC Address,
Network Traffic, User and X509 Certificate.

Moreover, the structure of the STIX relational graph is less complex than in CybOX. STIXv2.0
does not contain any links between objects representing cyber-observables and even if the com-

52

3.1. Building security object graphs from network events

mittee introduced in STIXv2.1 1 seven relations between cyber observable Objects, the hierarchy
between the object is not as deep as in CybOX.

For example, a network connection in STIXv2.1 is represented in json in Figure 3.8. STIXv2.1
represents a network connection with three instances of objects, an instance of the network-traffic
object and two instances of the ipv4-addr object. Unlike CybOX and Sec2graph, it does not
represent port as specific objects but as attributes of the network-traffic object. In our model,
we choose to represent destination port in a separate object because this information is useful to
detect port scan attacks or non-standard port usage.

{
" type " : " ipv4−addr " ,
" spec_vers ion " : " 2 . 1 " ,
" id " : " ipv4−addr−−4d22aae0−2bf9−5427−8819− e4 f6abf20a53 " ,
" va lue " : " 1 98 . 5 1 . 1 00 . 2 "

}
{

" type " : " ipv4−addr " ,
" spec_vers ion " : " 2 . 1 " ,
" id " : " ipv4−addr−−f f 26c055 −6336−5bc5−b98d−13d6226742dd " ,
" va lue " : " 1 98 . 5 1 . 1 00 . 3 "

}
{

" type " : " network−t r a f f i c " ,
" spec_vers ion " : " 2 . 1 " ,
" id " : " network−t r a f f i c −−2568d22a−8998−58eb−99ec−3c8ca74f527d " ,
" s r c_re f " : " ipv4−addr−−4d22aae0−2bf9−5427−8819− e4 f6abf20a53 " ,
" dst_re f " : " ipv4−addr−−f f 26c055 −6336−5bc5−b98d−13d6226742dd " ,
" p r o t o c o l s " : [

" tcp "
] ,
" src_port " : 2487 ,
" dst_port " : 1723 ,

}

Figure 3.8 – A network connection in STIX v2.1 model

STIXv2.1 is closer to the model proposed in this thesis than STIXv2.0, but the number of
relations between cyber-observables is still restricted and STIXv2.1 cannot extensively describe
application protocols. STIXv2.1 does not allow a detailed description of the protocols that are
used and of all the attributes related to them. Indeed, STIX focuses on the sharing of IoC, not on
the description of every details of network connections. It aims to provide to security analysts an
overall context of an attack with specific IoC. In this thesis, we want a detailed view of the network
communications in a system and each attribute has its importance. We assume that an attack
can take place without a IoC being present nor an alert being raised. Indeed, even if they are
important elements, IoCs can be outdated as attackers change their IP address or domain name
to evade detection for example. Similarly, attackers can bypass a misuse-based IDS by modifying
their attack protocol or by using an unknown technique. Our model therefore takes into account

1. This modification was published on March 20, 2020

53

Chapter 3 – Security related data representation model

the IoC and alerts from IDSs, but also describe the connections in sufficient detail for an analyst
to be able to spot anomalies that reveal attacks.

3.2 Model implementation
Our implementation fulfills two requirements: first, it is scalable and second, it makes infor-

mation analysis easier for security analysts. In this section, we first describe the technical choices
we made to meet the scalability requirement, test the implementation resulting from these choices
on a large dataset and present a use case illustrating information searching and linking by the
security analyst.

3.2.1 Implementation and configuration setup
In this section, we describe our implementation choices regarding data acquisition, extraction

of data of interest, link building and data storage. These implementation choices have in common
that they make possible to use our tool in a real-world environment where it must be able to
manage millions of events in a reasonable time.

3.2.1.1 Data acquisition

We chose to use three heterogeneous types of data, two internal types of data producing
real-time data on network activities and alerting on potential attacks and an external static type
of data providing information on indicators of compromise. We have chosen these types of data
because they are frequently used in SOCs and allow us to validate the fact that our model adapts
to the data used.

The first type of internal data is the Zeek Intrusion Detection System (formerly Bro)[114].
Zeek is an NIDS that inspects in depth all traffic on a link or in network capture files for signs
of suspicious activity. It provides a set of log files that records a network’s activity in high-level
terms. These logs include a record of every connection seen on the wire, as well as application-
layer transcripts such as HTTP sessions with the requested URIs. Zeek writes this information
into tab-separated log files.

We use this system because it is able to generate heterogeneous and detailed information in a
structured format from a network capture. This information can then be used for forensic analysis
and/or to obtain a status report on a network.

All Zeek log files used in this thesis are listed in Table 3.2. Zeek provides also other types of
files such as radius.log. However, as we do not use datasets including radius connection, we do
not integrate them into our model. Once again, if needed, those types of information can easily
be added by extending the model with new classes of security objects and new links.

For all the datasets used in this thesis, we provided Zeek with a capture file and used the
generated log files as sources of our processing pipeline.

54

3.2. Model implementation

File Description
conn.log IP, TCP, UDP, ICMP connection detail
dns.log DNS query/response details
files.log File analysis results
ftp.log FTP request/reply details
http.log HTTP request/reply details
ssh.log SSH handshakes
ssl.log SSL handshakes
weird.log Anomalies and protocol violations
x509.log x509 Certificate Analyzer Output
syslog.log Syslog messages
dhcp.log DHCP lease activity
kerberos.log Kerberos authentication
smtp.log SMTP transactions
snmp.log SNMP communications
tunnel.log Details of encapsulating tunnels
rdp.log Remote Desktop Protocol (RDP)

Table 3.2 – Description of Zeek log files

The second type of internal data is Suricata 2 alerts. Suricata is another NIDS which provides
signature-based alerts. It also proposes, as Zeek, metadata about the protocol headers in a json
file. At the begin of this thesis, Zeek protocol parsers and loggers capabilities were more complete
than the ones of Suricata. However, at time of writing, Suricata released its version 5.0.0 (October,
15th 2019) that added RDP, SNMP, FTP and SIP parsers and loggers to its capabilities, making
it comparable to Zeek. We generated Suricata alerts based on the open-source set of rules from
Emerging Threats 3. Suricata can generate many false positives but they are a good source of
information for the initial step in a forensic analysis. We integrated them as Indicator objects in
our model and linked them to the network connections that triggered the alert.

We finally used the OTX database as an external static source of IoC. Each IoC is an instance
of the class Indicator. We kept 6 types of IoC: IP addresses, URI, Domain, Email and FileHash.
These IoCs can indeed directly be linked to the SOs of our model IPAddress, URI, Domain, Mail,
and File.

These three types of data provide three common sources of data seen in a SOC: network
connection data, IDS alerts and threat intelligence data. This ensures that the proposed model
is applicable to data used in a real-world environment. Other data sources could have been used,
such as system logs but, in the context of this thesis, we have restricted the type of data handled
to network data.

3.2.1.2 Data extraction and entity linking

To parse and extract fields from the chosen data sources, we uses the Gremlin language.
Gremlin is a graph traversal language [127] used to retrieve data from a graph and modify them
efficiently.

2. https://suricata-ids.org/
3. https://rules.emergingthreats.net/

55

Chapter 3 – Security related data representation model

In our implementation, for each file and for each record of that file, we extract relevant
attributes and create SOs according to the structure defined in the Sec2graph model presented in
Figure 3.1.

For the SOs IPAddress, DestinationPort, File, URI, Mail, Domain and Mac, we defined a
specific method getOrCreate and defined the attributes of these objects as primary key. This
allowed us to efficiently find if an instance of an object already exists. If so, a new link to the
requested instance was created, else we created that object and then the associated link. The
graph can be built dynamically without waiting that all objects are created to build the links.
This is very important in SOC to be able to handle real-time data processing. However, as a
counterpart, this step is time-consuming. The use of indexes is therefore necessary.

3.2.1.3 Data storage

Networks handle millions or billions of connections everyday. The database we choose to
represent all these connections must thus allow to process a high volume of data without latency.

For our graph database, we used Janusgraph [132] with Elasticsearch [44] as an indexer and
Cassandra [31] as a backend. JanusGraph is a scalable graph database optimized for storing and
querying graphs. Elasticsearch indexing capabilities are used to speed up query processing. The
method getOrCreate is indeed time consuming if there is no index as it requires to search in all
instances of an object if a specific instance was already created. Cassandra was chosen because
it ensures the isolation property. Transactions are often executed concurrently to handle the
volume of ingested data. The isolation property (in case of transactional databases) ensures that
concurrent execution of transactions leaves the database in the same state that would have been
obtained if the transactions were executed sequentially. This ensure that two identical instances
of one object are not created concurrently.

3.2.2 Scalability
To evaluate the scalability of our proposal, we chose to use the CICIDS2017 dataset [131]

that is made of five pcap and csv files encompassing more than two million network sessions.
This dataset was generated at the Canadian Cybersecurity Institute at the University of New
Brunswick and contains five days (Monday to Friday) of mixed traffic, benign and attacks such
as DoS DDoS, BruteForce, XSS, SQL injection, infiltration, port scan, and botnet activities.

Normal traffic was generated using the CIC-B-Profile [131] system that can reproduce the
behavior of 25 users using various protocols (FTP, SSH, HTTP, HTTPS and SMTP). Attacks
were executed using classic tools such as Metasploit and Nmap.

According to [54], the CICIDS2017 dataset is the most recent one that models a complete
network configuration with components such as firewalls, routers, modems, and a variety of op-
erating systems such as Windows, Ubuntu Linux or Macintosh and that has been used in several
studies. The protocols in the capture (e.g., HTTP, HTTPS, FTP, SSH) are representative of the
protocols that are used in a real network and a variety of common attacks are covered.

56

3.2. Model implementation

The generation of the complete graph took about 4 hours to generate a graph representing
more than 6.2 millions events using the graph-oriented database Janusgraph and a script in gremlin
language. The details of the distribution of nodes per classes is given in Figure 3.9. To decompose
each log event in nodes and vertices, each log event is parsed based on several attributes composing
the system objects. Each system object is compared to existing system objects in the database. If
the system object already exists, we only add relationships to the existing system object.If not,
we create the node and the edges according to the model presented in Figure 3.1. Verifying that
there was no object duplication was the most computation-expensive operation.

Objects Count
NetworkConnection 2 119 243
IPAddress 30 105
Port 4 254
Dcerpc 917
Dns 1 957 596
Dpd 10
Domain 36 500
FileTransfer 622 666
Filename 182

Objects Count
Ftp 5 293
Kerberos 3 016
Http 521 172
Ssh 8 254
Ssl 332 768
URI 155 931
Weird 153 262
X509 295 512

Figure 3.9 – Number of objects created by categories

We argue that the computation time for graphs of millions of nodes is reasonable. Moreover,
a large part of the algorithm can be computed in parallel and optimization can be made on the
storage back-end and on the indexer. Figure 3.10 shows the time required to generate a graph
according to the number of events. To draw this curve, we measured the time elapsed from the
beginning of the generation to see if the generation time linear or proportional to the number
of nodes/edges in the graph. The trend curve associated to the measures indicates that the time
complexity is polynomial with the following equation: f(x) = 4.8e−10x2+0.0027x+387. Therefore,
the algorithm runs in time O(n2).

Figure 3.10 – Time to perform graph generation according to the number of events

The generation of graphs with millions of nodes representing 56 hours of network traffic only
took 4 hours. Our graph generation algorithm is therefore scalable, its execution time being much
shorter than the production time of the corresponding events.

57

Chapter 3 – Security related data representation model

3.3 Use case and security analysis examples
In this case study, we use a dataset made of logs from Zeek that were generated in the

Stratosphere Labs as part of the Malware Capture Facility Project 4 in CVUT University, Prague,
Czech Republic. The objective of this project is to store long-lived real botnet traffic and to
generate labeled netflow files.

The dataset CTU-Malware-Capture-Botnets-254-1 describes a probable attack of type Wan-
naCry Ransomware. WannaCry is a self-replicating ransomware malware. In May 2017, it was used
in a massive global cyber attack, affecting more than 300,000 computers in over 150 countries.The
infected host is 192.168.1.123. We also discover two malicious addresses that are associated to the
Wannacry campaign according to the IoC sharing platform OTX, 128.31.0.39 and 193.23.244.244.

Figure 3.11 – Graph representation of the CTU-Malware-Capture-Botnets-254-1 on
Gephi [19].

The graph in Figure 3.11 represents the graph built from the Zeek files in the dataset. The
three main types of edges are drawn in pink has_dst_address, in green has_dst_port and in blue
has_src_address. The potential victim is at the center of the graph (192.168.1.123). The graph
structure allows to split the network connections on several groups by forming subgraphs densely
connected. Five subgraphs can be identified:

4. S. Garcia. Malware Capture Facility Project, 2017.

58

3.3. Use case and security analysis examples

• The first subgraph (a) corresponds to ICMP connections (port number equals to 1) to our
target IP 192.168.1.123 and from the gateway address of the network 192.168.1.2.

• The second subgraph (b) corresponds to connections to a suspicious IP address related to
the Wannacry attack (128.31.0.39).

• The third subgraph (c) corresponds to connections to the anycast address of Google Public
DNS.

• The fourth subgraph (d) corresponds to multiple rejected connections on port number 443
originating from our potential victim.

• The fifth subgraph (e) corresponds to SSL connections through port 9001.
Security analysts are particularly interested by the two groups where IoC were found , i.e.

subgraphs (b) and (d).
Instead of looking at all events containing a reference to the IP address 128.31.0.39, the

graph structure allows to simply request the neighborhood of the nodes to discover security
objects directly related to the malicious IP address directly (only one connection) and indirectly
(2 and 3-hops away). The query in gremlin and the associated results on the 2-hops and 3-hops
neighborhood of the IP address are given respectively in Figure 3.12 and Figure 3.13. The results
indicate that the connection is an SSL connection and that a certificate has been transfered. An
analyst can directly identify the issuer of the certificate and decide if further action is needed.

gremlin> g .V() . has (’ address_value ’ , ’ 1 2 8 . 3 1 . 0 . 3 9 ’) . in () . out () . valueMap () . unique ()
==>[address_value : [1 9 2 . 1 6 8 . 1 . 1 2 3]]
==>[address_value : [1 2 8 . 3 1 . 0 . 3 9]]
==>[port_value : [9 1 0 1]]
==>[f i l e t r an s f e r_ove r f l ow_by t e s : [0] , f i l e t r an s f e r_ t imedou t : [F] , f i l e t r a n s f e r_dep th : [0] ,
f i l e t r a n s f e r_ i s_ o r i g : [F] , f i l e t r an s f e r_s e en_by t e s : [5 8 1] , f i l e t r a n s f e r_du r a t i o n : [0 . 0 0 0 0 0 0] ,
f i l e t rans fer_mime_type : [a pp l i c a t i on /pkix−c e r t] , f u i d : [FYL9oq3frxxLLwnLZ3] ,
f i l e t r a n s f e r_ an a l y z e r s : [SHA1,MD5, X509] , f i l e t r a n s f e r_ t o t a l_by t e s : [−] ,
f i l e t r a n s f e r_ l o c a l_ o r i g : [F] , f i l e t r an s f e r_mi s s i n g_by t e s : [0]]
==>[ss l_curve : [secp256r1] , s s l_c l i e n t_sub j e c t : [−] , s s l_ l a s t_a l e r t : [−] ,
s s l_ c l i e n t_ i s s u e r : [−] , s s l_ve r s i on : [TLSv12] ,
s s l_c iphe r : [TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256] ,
s s l_ e s t ab l i s h ed : [T] , s s l_ sub j e c t : [CN=www. f4mn3leykgi5kkmd . net] , s s l_se s s i on_ id : [F] ,
s s l_ i s s u e r : [CN=www. sn lb igdcqpx5 . com]]

Figure 3.12 – A Gremlin request to find 2-hop neighborhood of an IP Address object

The analysis of the subgraph (d) shows that the subgraphs are solely composed of rejected
connections on port 443 to five different IP address coming from the supposed victim. Each time,
they were 3 attempts for each destination address. This behavior is not dangerous by itself and
the port used is often used legitimately but depending on the policy of the information system,
it can be seen as an anomaly and requires to isolate the machine.

This use case shows that the analysis with a graph representation of security objects can make
the analysts work easier by exhibiting links that otherwise should have been made visible. It also
shows the importance of grouping nodes. In the next chapter, we explore further splitting the
graph with the automatic detection of dense subgraphs called communities.

59

Chapter 3 – Security related data representation model

gremlin> g .V() . has (’ address_value ’ , ’ 1 2 8 . 3 1 . 0 . 3 9 ’) . in () . out () . out () . valueMap () . unique ()
==>[c e r t i f i c a t e_v e r s i o n : [3] , c e r t i f i c a t e_ s u b j e c t : [CN=www. f4mn3leykgi5kkmd . net] ,
c e r t i f i c a t e_ s i g_a l g : [sha256WithRSAEncryption] , bas ic_constra ints_path_len : [−] ,
c e r t i f i c a t e_key_type : [r sa] , c e r t i f i c a t e_key_ l eng th : [2 0 4 8] ,
c e r t i f i c a t e_no t_va l i d_be f o r e : [1 488931200 . 000000] , c e r t i f i c a t e_key_a l g : [r saEncrypt ion] ,
c e r t i f i c a t e _ s e r i a l : [7 3 9 7D93AA2CF2686] , c e r t i f i c a t e_exponen t : [6 5 5 3 7] ,
bas i c_const ra int s_ca : [−] , c e r t i f i c a t e_cu r v e : [−] ,
c e r t i f i c a t e_no t_va l i d_a f t e r : [1 497311999 . 000000] ,
c e r t i f i c a t e_ i s s u e r : [CN=www. sn lb igdcqpx5 . com]]
==>[domain_value : [www. ofgvaqpqbfqdzenmlroe . com]]

Figure 3.13 – A Gremlin request to find 3-hop neighborhood of an IP Address object

Conclusion
In this chapter, we presented a new data model based on the STIX model that allows to

represent network connections as a graph of security objects. The objective of this graph model
is to allow analysts to link useful pieces of information and thus make the analysis process easier.

We described the process to build the graph from network events and external sources of
information such as IoC databases. We compared our model with CybOX and STIX model. We
then provided details on the implementation and showed that our approach is scalable and can be
used within a SOC. We also showed the usefulness of the graph structure for the security analyst
through a case study.

We finally have shown that the graph structure highlights strongly connected sub-graphs that
allow the analyst to focus on a specific part of the graph.

In the following, we will show how to use the graph structure to automatically display the
most relevant elements to the analyst.

60

Chapter 4

Community discovery

Contents
Introduction . 61

4.1 Discovering communities in graphs for highlighting attack-
related sub-graphs . 62

4.1.1 Definition of the community detection problem 62

4.1.2 Common challenges of community detection 63

4.1.3 Common methods used for community detection 64

4.2 Implementation and experimental results 67

4.2.1 Choice of the dataset . 67

4.2.2 Evaluation criteria . 68

4.2.3 Experimental results on attack detection relevance 69

4.3 Discussion . 71

4.3.1 Relevance of the results according to the method 72

4.3.2 Relevance of the results according to the type of attack 74

4.3.3 Limits of the approach and prospects for improvement 74

Conclusion . 76

Introduction
In our model, a graph can contain millions of nodes and edges. However, the use case presented

in Chapter 3 reveals that subgraphs could be isolated to help the security analyst to find relevant
pieces of information. Normal network activities are for instance more likely to be represented by
strong, interconnected communities of security objects (SOs). By contrast, attacks typically consist
of a few events and will generally be represented by decentralized SOs in the graph. SOs generated
from attribute values containing evidence of the same attack are, by construction, strongly linked.
Accordingly, identifying an attack in our graphical representation consists in identifying dense
sub-graphs surrounding an SO being of the Indicator type and isolated from large hubs (assumed

61

Chapter 4 – Community discovery

to be normal activities) in the graph. These types of subgraphs are called communities in graph
theory.

In this chapter, we explore the use of community detection methods and the challenges induced
by these methods. We propose a strategy to tackle these challenges and adapt the community
detection approach to our graph representation model.

This chapter presents the following contributions:
• We present the problem of community detection and the challenges this problem raises.
• We present how community detection algorithms could solve our problem of identifying

relevant sub-graphs and how we have adapted the algorithms to our graph model.
• We compare the results of several community detection algorithms on the CICIDS 2017

dataset for different types of attacks. We evaluate our results based on the relevance of
selected subgraphs and show that the community detection approach achieves good results
in the task of selecting relevant objects.

• We discuss the relevance of the results according to the algorithm and the type of attacks
and highlight the limits and potentials for improvement of our approach.

This chapter is organized as follows. Section 4.1 presents the problem of community detection
and its challenges and explains how community detection techniques can help in isolating relevant
subgraphs for security analysis. Section 4.2 presents experimentations with several community de-
tection algorithms on the CICIDS 2017 dataset. Finally, Section 4.3 discusses the results obtained
and exposes the limitations of the approach.

The experimental results presented in this chapter have been published in 2020 at the IEEE
Euro S&P Workshop on Traffic Measurements for Cybersecurity (WTMC2020) [85].

4.1 Discovering communities in graphs for highlight-
ing attack-related sub-graphs

In this section, we first present the problem of community detection and introduce modularity
measure. We also describe some challenges related to community detection in graph analysis.
Finally, we present some common techniques used in community detection with their advantages
and drawbacks.

4.1.1 Definition of the community detection problem
In the social analysis domain, research has been carried out to identify people strongly con-

nected to similar people but relatively isolated from others. These groups of people are called
communities and techniques to find them are named community detection algorithms [49].

In relation to our work, the identification of communities can provide insight into how the
graph is organized, allowing to focus on regions of the graph that are isolated and may reveal an
anomaly.

62

4.1. Discovering communities in graphs for highlighting attack-related sub-graphs

An indicator or alert is used as a signal to identify communities of interest. All indicators do
not have the same confidence index. Alerts, on their side, can be false positives. Nevertheless,
the presence of more than one of these indicators as well as the presence of one or several alerts
within a community may indicate an attack. The selection of elements close to an indicator or
alert within the graph can make the analysis by security experts easier and help eliminate false
positives.

For example, it is useful to identify the role of nodes in the communities to which they
belong. Central nodes can be distinguished from those located at the border of communities, that
themselves can serve as bridges between communities. In the context of an attack, central nodes
can be clues of reconnaissance phase (port scan), and bridge nodes can show the means by which
an attack can be spread to a whole information system. In a graph containing millions of nodes,
identifying the role of nodes without splitting the graph in communities is very difficult.

Community detection algorithms are often based on the modularity maximization method
first presented by Newman and Girvan in [107]. Its objective is to evaluate the quality of a graph
partition. Modularity Q is defined as follows:

Q = 1
2m

∑
i,j

[Aij −
kikj

2m]δ(ci, cj)

where Ai,j represents the weight of the edge between oi and oj , ki =
∑

j Aij is the sum of the
weights of the edges attached to vertex oi, ci is the community to which vertex oi is assigned,
the δ-function δ(u, v) is 1 if u = v and 0 otherwise and m = 1

2
∑

ij Aij . The maximization of the
modularity measure allows separating the nodes into communities. Graphs with high modularity
have dense connections between the nodes within the same community, but sparse connections
between nodes in different communities.

4.1.2 Common challenges of community detection
While community detection is useful for understanding the structure of a graph, it introduces

a number of challenges presented below.

Overlapping problem. Community detection algorithms often split a graph into disjoints
communities but sometimes two communities can overlap. The overlapping problem refers to
nodes that can belong to multiple communities. In this case, the node will be randomly assigned
to one or the other community.

In our case, it means also that while an analyst wants to retrieve events linked to an indicator,
the partitioning does not guarantee that all the objects representing an event are in the same
community.

To overcome this difficulty, we add an additional step at the end of the community detection
algorithm: if events are partially represented due to missing objects in a community, we add these
missing objects to the community. We obtain a division of our graphs into smaller sub-graphs and

63

Chapter 4 – Community discovery

keep only the community containing the bigger number of alerts or IoCs.

Scalability problem. Finding communities in a graph is an NP-difficult problem. Rigorously
accurate community detection algorithms can only be applied to small graphs, the computation
time being too large for graphs with millions of nodes.

It is therefore common to use approximation algorithms, i.e. methods that do not provide an
exact solution to the problem, but only an approximate solution, with the advantage of lower
complexity. Approximation algorithms are often non-deterministic, as they provide different solu-
tions to the same problem, for different initial conditions (like the order of nodes/edges) and/or
different parameters of the algorithm (like the size of communities). The objective of these al-
gorithms is to provide a solution that differs only slightly from the optimal solution while being
computationally fast.

As our graph contains millions of nodes and edges, the only possible choice is to use approx-
imation algorithms, and therefore non-deterministic algorithms. As the quality of the partition
is not our main goal, if the approximation provide relevant elements for forensic analysis in a
reasonable time, we consider that the algorithm achieves its goal.

Validation problem. As Fortunato points out [50], there is no universal protocol to validate
the results of community detection algorithms and compare their performance.

The quality of partitioning is often measured using the modularity measure. However, de-
pending on the structure of the graphs, the number of edges, and the centrality of the nodes,
this measure is not necessarily well suited. For example, the size of communities can also be an
important factor to take into account depending on the field of study.

The goal of our approach is not to maximize the modularity measure but to extract subgraphs
useful for forensic analysis. To validate the communities found by the different algorithms, we thus
choose our own criteria, that expresses the number of useful objects selected in a given community
in the case of attack analysis. We detail how we evaluate this in Section 4.2.

4.1.3 Common methods used for community detection
We detail three classical methods of community detection in graphs, i.e., the Fast Greedy

algorithm, the Louvain algorithm, and the Label Propagation algorithm.

Fast Greedy algorithm. The Fast Greedy community detection algorithm by Clauset et
al. [34] is an agglomerative hierarchical clustering method that optimizes the modularity measure.
It merges individual nodes into communities in a way that greedily maximizes the modularity score
of the graph by considering a simplified formula of the modularity equation. This algorithm runs
almost in linear time on sparse graphs.

The simplified formula of the modularity equation proposed by Clauset et al. et al. is the
following:

Q =
∑

i

(eij − e2
i)

64

4.1. Discovering communities in graphs for highlighting attack-related sub-graphs

where eij is the fraction of edges in the network that connects the communities ci and cj and
ei =

∑
j eij .

The workflow is as follows:
1. Start with k = n communities (every node is its own community, n being the number of

nodes in the graph).
2. Calculate ∆Q the change in modularity for every pair of communities.
3. Merge the two communities having the greatest increase (or the smallest decrease) in Q.
4. Repeat steps 2 and 3 until all nodes are contained in one single community.
The final node partition is selected by calculating Q at every split, and selecting the final

number of communities to match the maximum value of Q. The modularity of the graph is
computed at each merge, and the level with the highest Q is selected.

Louvain algorithm. The Louvain algorithm [24] is a widely used greedy optimization method
for modularity maximization that runs in time O(n log n) and is therefore more suitable for large
graphs. In addition, it does not require to specify in advance the number of communities to
be found. The Louvain algorithm works as follows: first, it searches for small communities by
optimizing modularity locally. Then, it groups the nodes belonging to the same community and
builds a new graph whose nodes are the communities. These steps are repeated iteratively until a
maximum modularity is achieved.

Figure 4.1 – An overview of the Louvain algorithm (extract from [24])

The algorithm can be described as follows:
Phase 1

1. Begin with n communities (every node is its own community, n being the number of nodes
in the graph).

65

Chapter 4 – Community discovery

2. Consider each node ni sequentially, calculate ∆Q, the change in modularity made by
moving ni to the community of each of its neighbors nj .
• Make the move associated with the maximum gain if the gain is positive.
• If there is no possible improvement in modularity, ni remains in its community.

3. Repeat step 2 until no further improvement can be made.
Phase 2
1. Begin by creating a new network where the nodes are the communities output from the

first phase:
• Weight the edges between these new nodes with the sum of the edges between the

members of the corresponding communities; edges within communities are now self-
loops.

• Reapply Phase 1 to this network.
2. Repeat Phase 2 until no more changes increase modularity.
This process is explained in Figure 4.1 extracted from [24]. Phase 1 corresponds to the Modu-

larity Optimization operation and Phase 2 corresponds to the Community Aggregation operation.
In phase 1 at step 2, nodes are considered sequentially. This may affect the final result because

the output depends on the order of the nodes being considered. The authors argue that this does
not significantly influence the modularity obtained but does influence computation time. Moreover,
Blondel et al. [24] compare their method with the Fast Greedy algorithm and show that they
surpassed the Fast Greedy algorithm which has a tendency to produce too large communities
while being slower.

Label Propagation algorithm. Another commonly used technique for community detec-
tion is the Label Propagation technique[123]. It computes communities by propagating labels
throughout the graph. The intuition behind this algorithm is that a single label can quickly be-
come dominant in a group of densely connected nodes, but it will be difficult for it to reach a
weakly connected region. Labels will remain within a group of densely connected nodes, and nodes
that end up with the same label at the end of the algorithm can be considered part of the same
community. This algorithm does not require prior information about the communities. Initially,
each vertex is assigned a different label. After that, each vertex chooses the dominant label in its
neighborhood in each iteration. Ties are broken randomly and the order in which the vertices are
updated is randomized before every iteration. In more details, the Label Propagation algorithm
works as follows:

1. Every node begins with a unique label.
2. Modify in a random sequential order the label of each node to be that of the majority of

its neighbors.
3. Repeat step 2 until each node has the label of the majority of its neighbors.

In the end, the unique labels define the communities in the network. As for the Louvain al-
gorithm, and because of the random selection in step 2, this algorithm does not have a unique

66

4.2. Implementation and experimental results

solution. In [106], the authors compare the Label Propagation algorithm and the Louvain algo-
rithm. They found that if the Label Propagation algorithm is slightly faster than the Louvain
algorithm, the Louvain algorithm has better results in finding communities.

We should mention that we studied three other community detection algorithms (Infomap [129],
Spinglass [146] and Walktrap [119]). The first one generates too many small communities and the
two others are too slow.

As the results of partitioning can depend on the nature of the graph, we choose to evaluate the
relevance of community detection in the forensic analysis task with the three methods we described
in this section: the Fast Greedy algorithm, the Louvain algorithm, and the Label Propagation
method.

4.2 Implementation and experimental results
To implement the community detection, we used the python-louvain library 1 for the Louvain

algorithm and the igraph library 2 for the Fast Greedy algorithm and for the Label Propagation
algorithm. We also used the networkx library 3 for the graph processing. We kept the default
parameter for each algorithm. All our experiments were carried out with a Linux computer with
8 GB of RAM.

Results were evaluated through the criteria of attack detection relevance: our approach
must allow reducing the number of objects to analyse without removing relevant information for
the analyst such that he or she can obtain all the objects related to an Indicator.

In the following sections, we first introduce the dataset we used and evaluate the relevance of
our approach with three community detection algorithms, i.e., the Louvain algorithm, the Label
Propagation algorithm and Fast Greedy algorithm. We then discuss the strength and limits of our
approach.

4.2.1 Choice of the dataset
We choose to use the CICIDS 2017 dataset [131] presented in Section 3.2 to perform the

community detection since the protocols in the capture (e.g., HTTP, HTTPS, FTP, SSH) are
representative of protocols used in a real network and a variety of common attacks are covered,
allowing us to evaluate our method on a realistic dataset. Recall that this dataset contains five
days (Monday to Friday) of mixed traffic, benign and attacks such as DoS, DDoS, BruteForce,
XSS, SQL injection, infiltration, port scan, and botnet activities. The data set is also labeled,
allowing us to quantify the effectiveness of our method. As in the previous chapter, we used the
Zeek IDS tool to generate log files from the capture files. Details about the dataset and the number
of generated events are presented in Table 4.1.

1. https://github.com/taynaud/python-louvain
2. https://github.com/igraph/python-igraph
3. https://networkx.github.io/

67

Chapter 4 – Community discovery

In addition, we generated alerts with the Suricata IDS using the EmergingThreats rules pack-
age. Indicator objects referring to these IDS alerts act as nodes of interest and allow us to select
communities of interest.

Date Attacks Nb of packets Nb of alerts
/IoC

Nb of Zeek
events

Monday ∅ 11.709.971 79 1.162.527
Tuesday BruteForce: FTP Patator, SSH

Patator
11.551.954 2.511 995.213

Wednesday DoS/DDoS: Slowloris,
Slowhttptest, Hulk and Golden-
Eye, Heartbleed Attack

13.788.878 77 1.474.868

Thursday Web Attacks: Web Brute Force,
XSS and SQL Injection. Infiltra-
tion attacks: exploit metasploit,
Cool disk

9.322.025 25.973 1.019.783

Friday DDoS LOIT, Botnet ARES,
PortScans

9.997.874 365 1.374.021

Table 4.1 – Description of the CICIDS2017 dataset and number of security events gener-
ated per day.

4.2.2 Evaluation criteria
The evaluation criteria is the relevance of attack detection, and thus the relevance of the objects

selected by the community detection algorithms. To our best knowledge, there is no previous
evaluation of data reduction and attack analysis with a graph-based model on the CICIDS2017
dataset.

We define False Positives (FP), False Negatives (FN), True Negatives (TN), and True Positives
(TP) as follows: FP are edges wrongly selected, FN are edges that do not appear in the selected
graph but that are part of an attack, TN are edges not selected in the graph and that are not
being part of an attack and finally, TP are edges correctly selected. Note that these definitions of
true/false positive/negative do not correspond to those used in intrusion detection. Indeed, our
goal here is communities detection and our definitions make it possible to evaluate the results of
the three tested algorithms.

To compute these values, we need to know which links in our graph correspond to events
generated by an attack and which links correspond to normal traffic. In the CICIDS2017 dataset,
an event is labeled with the type of attack. We use the labels as follows: if an event is part of
an attack, we add an “attack” attribute equals to ’1’ to all links in the subgraph representing
that event. Otherwise, we add an “attack” attribute equals to ’0’. The feature attack is then used
to compare the set of edges selected by the community detection algorithm and the set of edges
having the attack attribute set to ’1’.

To evaluate the efficiency of the model and the community detection methods, three common
measures are used: Precision, Recall and F1-score. These measures are based on the FN, FP, TN
and TP scores.

68

4.2. Implementation and experimental results

• Precision corresponds to the ratio of correctly retained edges divided by the set of retained
edges. It tends to 1 if only malicious edge are added to the selected graph.

Precision = TP

TP + FP

• Recall corresponds to the percentage of correctly retained edges divided by the set of
truly malicious edges. It tends to 1 if no malicious edge is forgotten.

Recall = TP

TP + FN

• Finally, the F1-score takes into account both precision and recall. While accuracy mea-
sures the proportion of all correctly labeled edges over all edges, we choose to use the F1-
score metric that is more suitable when there is an imbalanced class distribution (which
is often the case in the security field) and when the reduction of false negative and false
positive is more important.

F1− score = 2 ∗ Precision ∗Recall
Precision+Recall

4.2.3 Experimental results on attack detection relevance
To evaluate whether our proposal is able to correctly retain relevant objects and relations,

we built seven graphs, each one corresponding to half a day of traffic involving attacks. The
attacks retained for the evaluation are: FTP brute force, SSH brute force, Heartbleed, Web attack,
Infiltration attack, ARES Botnet and Portscan.

We then performed community discoveries on each graph and retained communities containing
IDS alerts. As mentionned earlier, we used the implementation of Fast Greedy [34], Louvain [24]
and Label Propagation [123] algorithms to evaluate the ability of each algorithm to select relevant
sub-graphs containing events related to an attack.

Algorithm Recall Precision F1-score
Fast Greedy 0,683 0,382 0,490
Louvain 0,943 0,633 0,757
Label Propagation 0,969 0,778 0,863

Table 4.2 – Synthesis of Recall, Precision and F1-score results per community discovery
algorithm

The results of Precision, Recall, and F1-score computation presented in Table 4.2 shows that
the Label Propagation method is the best method for Precision, Recall, and F1 before the Louvain
algorithm and the Fast Greedy method from Clauset et al. The results for Recall are particularly
good (0.969) indicating that the graph model associated with the Label Propagation method

69

Chapter 4 – Community discovery

makes the majority of events related to an attack to be selected within the same community.
This is an interesting result because it shows that computing communities allows to identify an
important part of the information related to an attack.

Moreover, the Precision results for the same algorithm (0.778) show that it allows to isolate
well the events related to an attack from the normal events. Again this is an interesting result
because it shows that the communities that are computed does not overwhelm the analyst with
useless information not linked to an attack.

In Figures 4.2 and 4.3, we compare the results of Precision and Recall for each type of attack
and for each algorithm.

Figure 4.2 – Precision per attack’s type for different community detection algorithm

For Precision, the Label Propagation algorithm performs well on all types of attack (precision
greater than 0.9) except for FTPPatator and Heartbleed. Moreover, it is the only algorithm
that performs well on Infiltration and ARES attack. The Louvain algorithm performs well on
FTPPatator, SSHPatator, Web attack, and Portscan. The Fast Greedy algorithm only performs
well on the SSHPAtator attack. The Heartbleed attack is the only attack for which no algorithm
has shown good results. Indeed, only 29 edges of the graph are related to this attack out of the
132.646 edges representing network connections that take place during the attack. The Louvain
algorithm was the most precise in selecting 4.852 edges, i.e., 3,6% of the total edges of the graph.

For Recall, the Louvain algorithm performs well on all types of attack (recall greater than
0.8) and is only outperformed by the Label Propagation algorithm for the Web attack and the
PortScan and by the Fast Greedy algorithm for the Infiltration attack. The fact that these attacks
are massive explains why the Label Propagation algorithm shows globally better results than

70

4.3. Discussion

Figure 4.3 – Recall per attack’s type for different community detection algorithm

Louvain. However, the Label Propagation shows only average results for the Heartbleed attack
(0.621) and Infiltration (0.669). The Louvain algorithm is thus a better choice to consider multiple
types of attack.

We note that the fact that we represent the data as a graph brings an additional advantage
as it allows us to graphically present results to the analyst. Hence, in Figure 4.4, we show, as an
example, the communities selected with the Louvain algorithm. Blue lines correspond to the edges
having the attack feature set to ’1’, i.e. correctly selected edges. Red lines correspond to the edges
with the attack feature set to ’0’, i.e, the erroneously selected edges. The displayed subgraphs
show that the objects build upon the same attack are densely connected. Brute-force (ftp and
ssh), web, botnet, and port scan attacks can easily be identified in the set of selected edges while
they would have been obfuscated in the whole graph composed of millions of edges. The infiltration
attack and the Heartbleed attacks are more difficult to identify in the communities selected by
the Louvain algorithm. We surrounded the part representing these attacks with a black rectangle.
In Section 4.3.2, we explain why such a result is observed, focusing on the Heartbleed attack.

4.3 Discussion
In this section, we propose to analyze the results obtained in the previous section along two

axes: the relevance of the results according to the chosen method and the relevance of the results
according to the type of attack that is observed.

71

Chapter 4 – Community discovery

Figure 4.4 – Communities built by Louvain algorithm for various types of attacks. Blue
lines corresponds to correctly selected edges (attack-related) and red lines corresponds to
wrongly selected edges (normal)

4.3.1 Relevance of the results according to the method

The Fast Greedy algorithm obtains the worst Precision score since it tends to partition graphs
into big communities [24]. However, in the security field, attacks are often exceptions compared to
normal traffic. Even for massive attacks such as Scan or Brute Force, the partitioning of the Fast
Greedy algorithm is not adapted and never reaches a Precision score of 0.5. More surprisingly,
even if the communities that are selected are big, the Recall is also the smallest. In particular, the
Fast Greedy algorithm gives bad results for Scan and SSH Brute Force while the structure of the
corresponding sub-graphs corresponds well to the definition of a community. Blondel et al. [24]
found that the partitioning quality of Clauset et al. for different types of graphs is medium. We
obtain the same result here for massive attacks.

Generally speaking, the Label Propagation method obtains the best results for Precision and
Recall. However, the Louvain algorithm has a Recall greater than 0.8 for every attack type. To
expose on an example the difference between the partitioning of the algorithms, we focus on the
Infiltration attack, where the Label Propagation obtains a Precision score of 0.99 whereas the
Fast Greedy algorithm and the Louvain algorithm obtain values less than 0.01. Meanwhile, the

72

4.3. Discussion

Label Propagation method obtains the worst Recall score compared to the two other methods.
In Figure 4.5, we compare the communities selected for the Infiltration attack by (a), the Fast

Greedy algorithm, (b), the Louvain algorithm, and (c), the Label Propagation algorithm. Blue
lines corresponds to correctly selected edges (attack-related) and red lines corresponds to wrongly
selected edges (normal). The rectangle indicates the part of the sub-graph containing the attacks
when they are not clearly visible.

Figure 4.5 – Communities build by three different community detection algorithm in
the case of Infiltration attack. Blue lines corresponds to correctly selected edges (attack-
related) and red lines corresponds to wrongly selected edges (normal)

In this experiment, the Fast Greedy method selected 16.224 edges while the Louvain method
selected 14.193 edges and the Label Propagation method only selected 96 edges. Visually, we
can distinguish several sub-structures within the community selected by the Fast Greedy algo-
rithm, while the one selected by the Louvain algorithm seems more densely connected. The Label
Propagation algorithm community is very dense but more than 47 edges corresponding to the
Infiltration attack have not been correctly selected.

In forensic analysis, when the attack is silent, it may be preferable to have a little more data to
assess the context of the attack and compare it with normal traffic. In addition, analysts have one
or more indicators within the community to guide them in their analysis. Community detection
can thus allow the pre-selection of data to reduce the amount of data to be analyzed. Conversely,
an analyst can start from a smaller community and then, using neighborhood queries, expand his
or her research.

In brief, the Label Propagation algorithm is a better choice when the goal is to eliminate a
large number of false positives and the Louvain algorithm is a better choice when the goal is to
not miss any attacks. Of course, these results are related to the data that we used. They will
therefore have to be confirmed by the same study on other data. As both methods run only in a
few minutes, both methods can be proposed to the analyst.

73

Chapter 4 – Community discovery

4.3.2 Relevance of the results according to the type of attack
Figure 4.4, represents the communities selected by the Louvain algorithm for all types of at-

tacks. Blue lines corresponds to correctly selected edges (attack-related) and red lines corresponds
to wrongly selected edges (normal). The rectangle indicates the part of the sub-graph containing
the attacks when they are not clearly visible. In five out of seven cases (FTP Bruteforce, SSH
brute-force, ARES, Scan, and Web attacks), the attack forms a substructure that is quite distinct
from the rest of the data, thus validating our hypothesis that attacks can form communities iso-
lated from the rest of the graph. However, this hypothesis is not verified in the case of Heartbleed
and Infiltration attacks.

We focus here on the Heartbleed attack, for which none of the methods succeeded in high-
lighting the security objects related to the attack in a significant way. In Figure 4.6, we see that
29 edges, out of the 4.857 retained by the Louvain algorithm, are related to the Heartbleed at-
tack. The entire graph contains 132,646 edges, therefore the reduction factor between the selected
sub-graph and the complete graph is 27. The figure shows that there is one central node in the
community and that this central node is one of the security objects related to the attack. The
fact that the attack is concentrated on a few edges and that one of its nodes has a high centrality
measure means that the subgraph cannot be isolated in one community.

By contrast, for massive attacks like Bruteforce or Scan, there is a high concentration of nodes
around one or two nodes. For example, the Port object with the port_value ’21’ for the FTP brute-
force attack is central for all nodes related to a connexion attempt on this port. Moreover, despite
the fact that this port is common to many other connections that are considered normal, its
combination with a source IP address makes it possible to isolate brute-force attempts from the
rest of the graph.

In all cases, the community detection approach allows us to reduce the number of events to
consider for forensic analysis. For massive events, the attack forms a recognizable community.
For silent attacks, the structure does not allow by itself to isolate the attack subgraphs but it
constitutes the first step to focus on a specific part of the graph.

4.3.3 Limits of the approach and prospects for improvement
In the following, we summarize the limitations of the community detection approach and

propose prospects for improvement.
The main hypothesis of this chapter is that attacks are dense sub-graphs isolated in the global

graph. We showed that the structure alone can isolate large attacks such as scans, DoS, or brute
force attacks. It also allows isolating more discrete attacks forming isolated structures. However,
discrete attacks such as Heartbleed or the Infiltration remain more difficult to isolate if the SOs
that represent them are also present in normal events.

To overcome this first limitation, two strategies can be considered: the first is to recursively
run community detection until a subgraph manageable for forensic analysis is found. The second
is to adjust the parameters of the algorithm to control the size of communities. We indeed use
the default parameters for all algorithms but some adjustments can be made to control how the

74

4.3. Discussion

Figure 4.6 – Community selected by the Louvain algorithm for the Heartbleed attack. Blue
lines corresponds to correctly selected edges (attack-related) and red lines corresponds to
wrongly selected edges (normal)

partition is made. However, both approaches require actions from the analyst to control the pa-
rameters. In the first case, he or she must stop the iterations at the right time, and in the second
case, he or she must determine the size of the communities.

A second limitation is that no selection criteria allows to select the communities most likely
to contain objects related to an attack among all the discovered communities. The strategy we
adopted is to select communities containing indicators of compromise or intrusion detection system
alerts. However, this assumes that alerts or indicators have already been detected by third-party
systems.

The two approaches suggested above to overcome the first limitation do not solve this second
limitations. This thus brings us to a third strategy. The community detection approach only
considered so far the structure of the graph without considering the content of the graph, i.e. the
attributes of nodes and edges. In the next chapter, we will be interested in the properties of each

75

Chapter 4 – Community discovery

object in order to group the objects into communities not only using the structure of the graph
but also by focusing on the properties of each node. In addition, we will use the structure and
content of the graph to detect anomalies and thus eliminate the need for indicators or alerts.

Conclusion
In this chapter, we proposed a process based on community detection to discover security

objects linked to an attack identified through an indicator of compromise. We implemented a
prototype that discovers communities through different methods and evaluated each of them in
the task of selecting relevant subgraphs for subgraphs analysis.

Experiments have shown that this approach allows identifying a very large part of the events
related to a given attack, including potential hidden side-events.

Experiments also showed that the graph generation scales to large datasets including millions
of events. As long as an analyst is able to discover an IoC, the proposed method offers a way to
analyze the corresponding attack.

We finally showed in this chapter that our approach allows distinguishing information related
to normal events from information related to an attack on certain conditions. However, the entry
point for this distinction is an IoC. This is why our contribution is related to forensic analysis
and not to intrusion detection. However, as the notion of community in graphs of SOs seems to
clearly distinguish attacks from normal traffic, we propose in the next chapter to use our graph
model to structure input data for an intrusion detection system. Our hypothesis is that graphs of
SOs provide a rich description of what happened on the network, and that this rich description
could be efficiently exploitable by machine learning mechanisms.

76

Chapter 5

Novelty detection

Contents
Introduction . 77

5.1 Encoding the graph for machine learning 78

5.1.1 From SO attribute values to categories 79

5.1.2 Encoding attributes using categories. 80

5.1.3 Encoding the structure of the graph. 81

5.2 Novelty detection with an autoencoder 82

5.2.1 Using an autoencoder for novelty detection 82

5.2.2 Building the novelty detector 83

5.3 Implementation and experimental results 84

5.3.1 Experimental setup . 84

5.3.2 Comparison of the four strategies of sec2graph 88

5.3.3 Comparison with other work applied to the CICIDS2017 dataset 96

5.3.4 Comparison with other pieces of work applied to the CICIDS2018
dataset . 97

Conclusion . 99

Introduction
To address the limitations of the community detection technique seen in the previous chapter,

we investigate in this chapter anomaly detection methods applied to graphs.
These methods often built on supervised machine learning techniques, that require labeled

data during the learning phase. However, security experts often do not have such labeled data
sets from their event logs, and data labeling is expensive [2].

We thus propose to use an unsupervised anomaly detection technique called “novelty detec-
tion” based on an autoencoder. It is generally used when the amount of abnormal data available
is insufficient to build explicit models for abnormal classes [117].

77

Chapter 5 – Novelty detection

In this chapter, we propose a process to efficiently encode security object graphs so that an
autoencoder can learn normal patterns and then detect abnormal activities. We also propose
different strategies to compute an “anomaly score”, i.e., a score that defines how much actual
data differ from data learned in the learning phase.

This chapter thus presents the following contributions:
• A method to efficiently encode graph-structured data into values suited to a machine

learning algorithm.
• An autoencoder that detects anomalies on graph-structured data with different strategies.
• Experimental results on the CICIDS2017 dataset, showing the effectiveness of our unsu-

pervised method compared to supervised methods.
• Experimental results on the CICIDS2018 dataset, showing the effectiveness of our method

compared to other deep learning approaches.
The rest of the chapter is organized as follows. Section 5.1 presents the way we encode both the

content and the structure of security object graphs. Section 5.2 presents the building of our novelty
detector based on an autoencoder and the detection strategies we chose. Section 5.3 presents the
results obtained during the experimentations we performed on the CICIDS2017 and CICIDS2018
datasets.

The experimental results on the CICIDS2017 dataset presented in this chapter were pub-
lished at the international conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA2020) [87].

5.1 Encoding the graph for machine learning
Preprocessing is often the first step in machine learning techniques. It consists in preparing

the data so that it can be used as input for the machine learning algorithm.
To the best of our knowledge, there does not exist a method to encode multi-attributes and

heterogeneous graphs that could be considered as generically efficient. For example, an adjacency
matrix is inefficient for large graphs. It also carries no information on nodes and edges. In our
case, the encoding method must encode both the structure of the graph (i.e., the relations between
the nodes) and the specific information associated with the nodes and the edges. Moreover, the
result of the encoding should be of reasonable size while containing enough information to detect
anomalies. Since there does not exist a single best method to encode our graph, we had to design
one tailored to our specific case.

We first remind that our objective is to detect anomalies. A given SO can be linked to several
events, normal or abnormal. An edge, by contrast, is only related to the event that led to its
construction. Therefore, it is not so much the SOs themselves that can be abnormal (an IP address
or a port are not abnormal a priori), but the edges that link the SOs together. Consequently, we
chose to encode our graph by encoding each of its edges. To preserve the context of the event
related to this edge, we chose the following pieces of information to encode an edge: the type of
the edge, information about the source node and about the destination node, information about
the neighborhood of the source node, and information about the neighborhood of the destination

78

5.1. Encoding the graph for machine learning

node. It should be mentioned that, due to the design of our model, a security event cannot be
represented, by construction, by a subgraph exhibiting a diameter greater than three. Indeed, the
translation method that we defined to convert events to subgraphs never produces a subgraph
that has a path between two nodes made of more than three edges.

We need a representation that takes also into account the structure of the graph and the
types of the edges. Figure 5.1 illustrates the process to encode an edge in a vector that can be
used as an input for an autoencoder. To encode the edge e in the center of the figure, we first
encode its attribute edge_type. Then, we add the encoding of the source node s represented in
blue and the encoding of the destination node d represented in red. Finally, we add the encoding
of Neighbors(s) contained in the blue oval and Neighbors(d) represented in the red dotted oval.
The vector at the bottom of the figure is the result of the concatenation of all these encodings.

Figure 5.1 – Feeding the autoencoder: from graph to vector

In this section, for the sake of clarity, we first present the possible values of the various SO
attributes we have to handle, how we encode them into categories, and finally how we create the
vector corresponding to a given edge.

5.1.1 From SO attribute values to categories
Our graph exhibit different kinds of attributes that can have either categorical (version num-

bers, protocol types, etc.) or continuous (essentially size or duration) values. Anomaly detection

79

Chapter 5 – Novelty detection

requires to encode these two types of attributes in a unified way (see section 5.2). Therefore,
categories must be determined for each attribute, even for continuous ones.

For each categorical attribute, we count the number of occurrences of each category, for example
the number of times the value “tcp” appears for the attribute “protocol”. For single-value attributes
such as port_value, the number of occurrences is by construction always equal to one, since we
create only one Port SO for a given port number. Single-value attributes are therefore distinguished
by counting the number of edges of the node carrying it. Indeed, we consider that the more a
node with a given value is linked to other nodes, the more significant this value is for determining
the normal behavior of the information system. In both cases, we sort values of attributes in
descending order and keep the N most represented values that account cumulatively for 90% of
the total number of occurrences or number of edges. Indeed, we consider that values present less
than 10% of the time are not significant for determining the normal behavior of the information
system. They must be discarded to avoid overfitting. We name categories the remaining values.
If we have more than 20 categories, we only keep the 20 most represented categories, so that the
vector we will have to build remains of reasonable size.

To build categories from continuous attributes values, considering intervals (e.g. [0:10[, [10:20[,
etc.) is not an option because this would not take into account the statistical distribution of
values and would not be useful for the autoencoder. Therefore, we categorize the continuous data
according to the distribution of the attribute values. Since data samples do not necessarily follow
a usual probability law, but a law whose density function is a mixed density, we use the classical
Gaussian Mixture Model (GMM), assuming that the values of the attributes follow a mixture of a
finite number of Gaussian distributions. It has been shown that GMM gives a good approximation
of densities [56]. GMM has also already been used for anomaly detection [121, 12].

Two methods exist to infer the Gaussian equation and classify the data. The first one, the
expectation-maximization algorithm (EM), is the fastest algorithm for learning mixture models
but it requires to define the number of Gaussians components to infer [39]. The second method
uses a variational inference algorithm [9]. It does not require to define the number of components
but it requires hyperparameters that might need experimental tuning via cross-validation. There-
fore, we chose the EM algorithm to control the number of Gaussian and hence control the number
of dimensions of our vector, allowing to associate one dimension to one component. The num-
ber of Gaussian distributions is determined by the classical Bayes Information Criterion (BIC).
The method consists in successively computing mixtures of Gaussians in increasing numbers and
choosing the one with the lowest BIC. In practice, we do not mix more than eight Gaussians,
because we found in our datasets that the BIC is never significantly smaller with more than eight
Gaussians. The result is a mixture of no more than eight Gaussians, which brings us down to a
case with no more than eight categories.

5.1.2 Encoding attributes using categories.
Once we have determined all the categories for our dataset, we can encode the nodes as binary

vectors. We proceed as follows.

80

5.1. Encoding the graph for machine learning

Each attribute is decomposed into categories according to the process described above. For
each node and each attribute, we distinguish three cases: either the node has the attribute and
its value corresponds to one of the categories of the attribute, or the node has the attribute but
its value does not correspond to one of the categories, or the node does not have the attribute.
In the first case, the one-hot-encoding technique is used: for each node of the graph, we build
a binary vector x of size N + 1, N corresponding to the number of categories. Each bit of this
vector corresponds to a given category and is thus set to ’1’ if the attribute value of the nodes is
of this category. It is set to zero otherwise. A last bit with the value ’0’ is added to this vector
to represent the category “other”. In the second case, each bit is assigned the value ’0’ and a last
bit is added to ’1’ for the “other” category. Finally, in the last case, all the bits are assigned the
value ’0’. This method makes it possible to encode all the nodes in a uniform way, despite their
heterogeneity. We build a vector for each attribute and we then concatenate all these vectors into
a binary vector corresponding to the encoding of the node.

5.1.3 Encoding the structure of the graph.

We encode an edge as a vector resulting of the concatenation of information on (a) the type of
this edge, (b) the attributes of its source node, (c) the attributes of its destination node, (c) infor-
mation about the neighborhoods of its source node and (e) information about the neighborhood
of its destination:

• (a): there are 18 types of edges. For each edge, we encode its type using the same one-hot
encoding technique that we use to encode the node’s attributes.

• (b) and (c): we use the encodings of the source node and the destination node computed
as showed previously.

• (d) and (e): for each source node and destination node, we select randomly 10.000 neighbors
and compute the mean of their encoding vector. We choose 10.000 nodes because the
mean does not change significantly above and this allows us to reduce the computational
complexity.

Thus, considering that a l edge between s and d is of type etype, that the s node has N(s)
neighbors and the d node has N(d) neighbors, we randomly select 10,000 nodes in N(s) and N(d)
in order to constitute a representative sample of the neighborhood N(s)sample and N(d)sample.
Recall that we already have the encoding of each of these nodes in the form of a binary vector,
each having the same size.

We define, then mean(−→encN(s)sample
) and mean(−→encN(d)sample

) as the bitwise average of the
vectors encoding each node of N(s)sample and N(d)sample respectively. We thus obtain a compact
representation of the neighborhood of the node that is sufficient for the processing we intend to
perform on the graph, i.e. the detection of anomalies. In this compact representation, each element
of each vector takes a value between 0 and 1, but each element corresponds to a category of a
certain attribute. Therefore, this vector of values between 0 and 1 gives an idea of the distribution
of the categories in the considered neighborhood.

81

Chapter 5 – Novelty detection

5.2 Novelty detection with an autoencoder
Novelty detection refers to the detection of data that was not seen during the learning phase,

i.e., when the model was first built. This technique is generally used to detect anomalies when
there is not enough data to build explicit models for abnormal classes. In the case of intrusion
detection, thus novelty detection is especially well-suited since it is impossible to obtain a sample
of all existing or future attack variants.

As it is classical for anomaly detection, our approach is based on the assumption that during
the learning process the data contains no or very few traces of attacks and that attack-related
data deviate sufficiently from the normal data to be detected as novelty.

In this section, we explain how autoencoders allows novelty detection. Then, we explain how
we used an autoencoder to detect anomalies in a graph made of security objects.

5.2.1 Using an autoencoder for novelty detection
An artificial neural network (ANN) is an ensemble of “neurons” stacked in multiple layers:

an input layer, one or several hidden layers, and one output layer, each composed of neurons. The
goal of an ANN is to learn a specific function of x such as for a given training dataset x composed
of n features such as x = {x1, x2, ...xn}, we get a result hW,b(x). This result can be for example the
probability that an image represents a cat. This function depends on two trainable parameters,
the weight W and the bias b.

The training of an ANN is based on two steps that are repeated: the forward propagation
and the backward propagation. In the forward propagation, the units of each layer are computed
according to the units of the previous layer until we reach the output units, except for the first
layer where the entry is the input vector x. In the backward propagation, batch gradient descent
is used to update the weight W and the bias b according to the result of a loss function so that
the model can improve. Forward and backward propagation steps are repeated several times or
until the loss function reaches a minimum.

An autoencoder [83] is a specific type of ANN that learns a representation (encoding) of a set of
pieces of data, typically for dimensionality reduction. To do this, the autoencoder learns a function
that sets the outputs of the network to be equal to its inputs. An autoencoder is made of two
parts: an encoder and a decoder. The encoder aims to compress input data into a low-dimensional
representation, and the decoder tries to generate from the reduced encoding a representation that
is as close as possible to its original input. The loss function L of an autoencoder is the average
of the reconstruction errors on each dimension of the vector. It is defined as follows, with x the
input of the autoencoder, x̂ the predicted output and xi (respectively x̂i) the i-th dimension of
vector x (respectively x̂):

L(x, x̂) = 1
n

n∑
i=1
‖xi − x̂i‖2

Anomaly detection methods based on autoencoders use them to first learn the “normal” behav-
ior by using dataset with benign data. Then, it is assumed that attacks will generate “abnormal”

82

5.2. Novelty detection with an autoencoder

observations that the autoencoder has never seen. Therefore, it will not be able to reconstruct the
data. As a consequence, if the difference between the input and the output of the autoencoder,
called reconstruction error, is above a given threshold, one can deduce that an anomaly is present
in the data. The way the threshold is determined is of course a problem that we will discuss later.

5.2.2 Building the novelty detector
To detect anomalies in a graph of security objects, we first tailored the loss function to this

objective. Then, we considered two detection strategies and determined detection thresholds ac-
cordingly. This is explained in the two following sections.

5.2.2.1 Tailoring the loss function

The vectors whose construction was explained in section 5.2 are used as input to our au-
toencoder. Recall that these vectors encode the following information: edge type, source node
attributes, destination node attributes, source node neighborhood, and destination node neigh-
borhood. The first three pieces of information are encoded by binary vectors while the last two are
encoded by vectors whose components are between 0 and 1. In a similar case, the authors of [20]
showed that it was desirable to have, on the one hand, a single encoding function (that makes it
possible to take into account possible correlations between the different types of encoding) and,
on the other hand, a decoding function that is specific to each type of information (binary vs.
between 0 and 1) or specific to each piece of information. Here, keeping in mind that the output of
our autoencoder will be provided to a security analyst, we have chosen to have a decoding function
specific to each piece of information. Indeed, we need to be able to calculate a reconstruction error
for each piece of information, that indicates to the analyst the potential anomaly thus revealed.

Our autoencoder therefore has five outputs and uses two types of loss functions: binary cross-
entropy, a loss function adapted to binary values, and mean-square error, a loss function adapted
to continuous values. The result is made of five error values between 0 and 1 to help the analyst
diagnose possible anomalies. However, we still need to determine whether there is an anomaly.
To do this, we calculate an overall error that is the sum of these five errors and raise an anomaly
alert if this overall error reaches a certain threshold according to the strategies we define in the
next section.

5.2.2.2 Detection strategies and according thresholds

While classical approaches seek to identify anomalies linked to events, our approach seeks to
identify anomalies related to the links between objects. To refer to the case of anomalies on events,
we have considered two strategies called max and mean.

The max strategy consists in considering as abnormal any event containing at least one link
exceeding a detection threshold. The mean strategy consists in computing the mean of the recon-
struction errors of all the links associated with an event. If this average exceeds our detection
threshold, the event is considered abnormal. In other words, the first strategy supposes that the

83

Chapter 5 – Novelty detection

anomaly is mostly carried by one link of the subgraph representing an attack event, whereas the
second strategy assumes that the anomaly is carried by all the links of the same event. The mean
strategy takes into account both strong local anomalies and the sum of weak signals. The max
strategy could outperform the mean strategy only if a link with a low anomaly score compensates
for the anomaly of a link with a high score.

In both cases, the detection threshold is set experimentally (see 5.3.2.1). Of course, the lower
it is, the more alerts are generated, but the greater the risk of false positives. The analyst sets the
value of the threshold according to context, lowering its value if it is more important for him or
her not to miss any attack than to have to eliminate a large number of false positives.

Notice that to determine the influence of the neighborhood of an edge on the detection of
anomalies, we also introduced a complementary strategy that consists in considering only the three
following types of information: edge type, source node attributes and destination node attributes.
In this configuration, we have only binary vectors. The autoencoder has therefore three outputs,
one for each type of information, and uses only one type of loss function, the binary cross-entropy
function.

In the following, the first strategy taking into account the five types of information includ-
ing the respective neighborhoods of the source and destination nodes is called the neighborhood
strategy. The strategy taking into account only the first three types of information without the
neighborhood is be called the simple strategy.

5.3 Implementation and experimental results

This section presents our implementation choices, experiments, and analysis. We first describe
the technologies we used, the datasets, and the evaluation criteria in Section 5.3.1. We then show
how to carefully choose a threshold value for the anomaly detection in Section 5.3.2.1. Finally, we
compare the results obtained by our approach to other approaches based on supervised anomaly
detection algorithms (in Section 5.3.3) and on deep learning algorithms (in Section 5.3.4).

5.3.1 Experimental setup

As for the community detection implementation seen in Chapter 4, we chose the Python lan-
guage and used the Gremlin API [127] for the construction of the graph from the event logs and the
manipulation of the graph. In addition, we used the Python Keras library for the implementation
of the autoencoder.

We used a Janusgraph database with an external index backend, Elasticsearch, and a Cassan-
dra storage backend to store the graph data. We chose these technologies for scalability as they
are adapted to large graph databases. Experiments were performed on a Debian 9 machine with
64 GB of RAM.

84

5.3. Implementation and experimental results

5.3.1.1 Choice of the datasets

Our experiments are based on two datasets: CICIDS2017 [131] and CICIDS2018 1.
The CICIDS2017 dataset is presented in Section 3.2. Recall that this dataset contains five days

(Monday to Friday) of mixed traffic, benign and attacks. The CICIDS2018 dataset was generated
at the Canadian Cybersecurity Institute. It is made of ten pcap files encompassing about sixteen
millions of events. It contains ten days of mixed traffic, benign and attacks such as DoS (Slowloris,
Hulk, Goldeneye), DDoS, BruteForce, XSS, SQL injection, infiltration, and botnet activities. For
both datasets, the normal traffic was generated using the CIC-B-Profile [131] system, which can
reproduce the behavior of 25 users using various protocols (FTP, SSH, HTTP, HTTPS, and
SMTP). Attacks were executed using classic tools such as Metasploit and Nmap.

The CICIDS2017 and CICIDS2018 datasets are the most recent ones that model a complete
network configuration with a wide variety of components. The protocols in the capture (e.g.,
HTTP, HTTPS, FTP, SSH) are representative of the protocols that are used in a real network,
and a variety of common attacks are covered allowing to evaluate our method on realistic datasets.
These datasets are also labeled, allowing to quantify the efficiency of the method. Furthermore,
they have been used in previous work on anomaly detection, allowing us to compare our model with
state of the art approaches. CICIDS2017 has been used mostly for supervised anomaly detection
approaches [131, 1], while CICIDS2018 has been used on a study on deep learning methods for
anomaly detection [48].

As in the two previous chapters, we used the Zeek IDS tool to generate log files from the
capture files. As the CICIDS2018 dataset is large, we randomly selected 10% of the dataset (that
is 1.600.000 network connections in total) to perform our evaluation and built our model on
200.000 network connections to be consistent with the study of Ferrag et al. and thus to compare
our approach with the approaches presented in this study.

5.3.1.2 Structure of the autoencoders

The structure of the autoencoder depends on the strategy used (neighborhood or simple strat-
egy) as well as on the dataset, as both have an impact on the size of the input layers.

As for the strategy type, we used either an input vector containing only the information
relative to the type of edges, the attributes of the source node, and the attributes of the destination
node, or the whole vector containing in addition the information relative to the attributes of the
neighborhood of the source and destination nodes.

Dealing with the datasets, the diversity of the network communication influences the number
of attributes: the more varied the communications are, the more attributes will be needed to
describe them and the larger our encoding vector will be.

For example, the structure of our autoencoder for the simple strategy on the CICIDS2018 is
depicted in Figure 5.2. The sizes of both the input layer and the output layers (20+2*276=572
neurons) come from the sizes of our vectors (recall that the output vector should be equal to
the input vector). The number of neurons in each layer and the number of hidden layers was

1. https://www.unb.ca/cic/datasets/ids-2018.html

85

https://www.unb.ca/cic/datasets/ids-2018.html

Chapter 5 – Novelty detection

determined by experimentation, trying different values looking for a minimum value for the re-
construction error. The autoencoder has three hidden layers: the diversity of the SOs in the graph
leads to very diverse encoding and thus this number of hidden layers is suited for learning complex
relations between the different bits of the vectors. The intermediate layer between the encoder
and the decoder has a size of 125: since the input vectors are sparse, we chose a little number of
neurons for this layer. We choose a number of epochs (the number of iterations of the forward and
backpropagation phase) of 100 as experiments show that the reconstruction error did not decrease
significantly for a larger number of epochs. We choose the Adam optimizer with a learning rate of
0.001 to back-propagate the reconstruction error as it is well-adapted when more than one hidden
layer is used.

Figure 5.2 – Structure of the autoencoder for simple strategy applied to the CICIDS2018
dataset

The structure of the autoencoder for the neighborhood strategy on the CICIDS2018 is de-
picted in Figure 5.3. The sizes of both the input layer and the output layers are 1124 neurons
(20+4*276=1124 neurons). We added one hidden layer and doubled the size of the intermediate
layer compared to the autoencoder of the simple strategy to take into account the new input layer
size.

Similarly, we created two autoencoders for the CICIDS2017 dataset. The autoencoder for the
simple strategy has an input layer of size 678 (20+2*329=678 neurons) and 3 hidden layers and the
autoencoder for the neighborhood strategy has an input layer of 1336 (20+2*329=1334 neurons)
and 4 hidden layers. We adapted the size of the hidden layers proportionally to the size of the
input layers to have a structure similar to the CICIDS2018 autoencoders.

To train the CICIDS2017 autoencoders, we used the data captured on Monday for the learning
phase, as it is entirely normal. Since there is no full day without attacks in the CICIDS2018
dataset, we used 12 one-hour samples containing no attacks. These two datasets are synthetic.
The creators have injected attacks at precise and documented moments. An attack-free sample
can therefore be found. We should mention that being certain that a sample from a real-life data
does not contain malicious events is still an open issue.

CICIDS2017 and CICIDS2018 are arguably two of the most realistic and reasonably large

86

5.3. Implementation and experimental results

Figure 5.3 – Structure of the autoencoder for neighborhood strategy for the CICIDS2018
dataset

synthetic datasets. Nevertheless, CICIDS are labeled datasets. This allowed us to not consider
the events generated by the attacks during our learning phases. In reality, of course, we would
have unlabeled data potentially containing (fortunately rare) unidentified attacks. These attacks
would therefore enter into the learning process, weakening the constructed model. We believe that
our approach, based on an autoencoder, on the one hand, not considering the rarest categories
(attribute values), on the other hand, allows to overpass this difficulty. Autoencoders indeed learn
a general model, not taking into account particular cases such as the (rare) attacks. Future work
on a learning dataset with a low attack proportion would nevertheless be necessary to validate
this hypothesis. We unfortunately did not have enough time during this thesis to perform the
related experiments, nor to define what would be a “small proportion of attacks”. These aspects
are left as future work.

For our experiments, the CICIDS datasets are split into training sets and validation sets with
a validation split of 0.1. This allows us to validate the model on unseen data and thus prevent
overfitting. Depending on the various parameters we have, the learning phases took about five
hours. In the second phase (anomaly detection phase), we used the whole datasets (Monday to
Friday for the CICIDS2017 dataset and the ten days for the CICIDS2018 dataset) to evaluate the
detection capacity of our approach.

87

Chapter 5 – Novelty detection

5.3.1.3 Defining detection evaluation criteria

All the results presented in this chapter are related to events. These are processed by one-
hour shifts. For each time slot, we build a graph, then the vectors to feed the autoencoder, and
finally we evaluate the novelty of each vector. We thus define False Positives (FP), False Negatives
(FN), True Negatives (TN), and True Positives (TP) as follows: FP are network connection events
wrongly selected, FN are network connection events that do not appear in the selected objects but
that are part of an attack, TN are network connection events not selected in the graph and that
are not being part of an attack and finally, TP are network connection events correctly selected.

In addition to the number of true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN), we evaluate our results through the following standard metrics: Precision,
Recall, F1-score, False Positive Rate (FPR), True Negative Rate (TNR) and Accuracy. We already
presented Precision, Recall and F1-score in Section 4.2.2.

TNR is the proportion of normal events correctly classified among all normal events.

TNR = TN

FP + TN

FPR the proportion of normal events incorrectly classified among all normal events.

FPR = FP

FP + TN

Accuracy is the number of events correctly classified (as an anomaly or as normal events)
divided by the total number of events.

Accuracy = TP + TN

TP + FN + TN + FP

5.3.2 Comparison of the four strategies of sec2graph
To determine the most effective way to apply our approach to intrusion detection, we first need

to compare the detection strategies defined previously. In this section, we therefore first propose
a process to define the optimal detection threshold for each strategy on each dataset. Then, to
validate the so defined values, we study the effect of the threshold values on the detection of
various types of attacks. Finally, we compare experimentally the four possible strategies on both
datasets to define the best strategy to use.

5.3.2.1 Defining an optimal threshold

In this section, we present the experiments conducted to determine the threshold value to
be used as the detection threshold. As noted above, an analyst would set this threshold value
according to context, lowering the threshold value if it is more important not to miss any attack

88

5.3. Implementation and experimental results

than to have to eliminate a large number of false positives. We consider that minimizing false
positives is crucial.

To determine the value of the threshold, we proceed as follows: first, we will consider all the
events during a time slot without attack, i.e., Monday for the CICIDS2017 dataset, and the 12
first one-hour slots without attack for the CICIDS2017 dataset. As we seek for the lowest possible
false-positive rate, we determine with this data the rate of false positives according to the detection
threshold. The curve in Figure 5.4 shows the evolution of the FPR as a function of the detection
threshold for strategies simple_max (left) and simple_mean (right) on the CICIDS2017 dataset.
A threshold of 0.0016 leads to an FPR of 0.44% for the simple_max strategy while a threshold
of 0.0014 leads to an FPR of 0.42% for the simple_mean strategy. For both strategies, we see in
the figure that the FPR does not decrease significantly when we increase the detection threshold
above 0.0016 for the simple_max strategy and above 0.0014 for the simple_mean strategy. Also,
increasing the detection threshold too much can induce a high false-negative rate.

We conclude that a threshold higher than 0.0018 for the simple_max strategy and a threshold
higher than 0.0014 for the simple_mean strategy should be chosen.

Similarly, we determined an optimal threshold value of 0.004 for the neighborhood_max strat-
egy and an optimal threshold value of 0.001 for the neighborhood_mean strategy. This threshold
gives us respectively an FPR of 1.92% for the neighborhood_max strategy and an FPR of 1.05%
for the neighborhood_mean strategy.

Figure 5.4 – False Positive Rate (FPR) according to the value of the detection threshold
for simple_max strategy (left) and simple_mean strategy (right) on the CICIDS2017
dataset.

For the CICIDS2018 dataset, we follow exactly the same approach, for the four different
strategies. We determined an optimal threshold value of 0.0018 for the simple_max strategy,
0.001 for the simple_mean strategy, 0.0036 for the neighborhood_max strategy, and 0.001 for
the neighborhood_mean strategy. This threshold gives us respectively an FPR of 0.46% for the
simple_max strategy, an FPR of 0.26% for the simple_mean strategy, an FPR of 0.46% for the
neighborhood_max strategy, and an FPR of 0.34% for the neighborhood_mean strategy.

89

Chapter 5 – Novelty detection

Figure 5.5 – Values of Recall (top figure) and Precision (bottom figure) for the range of
variation of the threshold leading to a significant evolution of these values.

5.3.2.2 Validating threshold values

In the previous section, we determined threshold values for our 2 datasets and 4 strategies.
Here we seek to validate the values obtained in each of these 8 cases. Indeed, the threshold values
determined above allow to minimize false positives; we must now verify that the different types of
attacks present in the datasets are indeed detected. We give here the example of the simple_mean
strategy applied to the CICIDS2017 dataset, for which a threshold higher than 0.0018 should be
retained. We only illustrate the validation process for this case, but the same applies to the other
cases.

We consider the time slots during which each attack occurs. For example, the FTP Patator
attack takes place on Tuesday from 9:20 to 10:20, so we consider the data between 9:00 and 11:00.

90

5.3. Implementation and experimental results

During these time slots in which the attacks take place, we want the maximum number of events
related to the attacks to be detected as anomalies while keeping the number of false positives as
low as possible. In other words, we want to maximize precision and recall. The Figure 5.5 gives
the values of recall and precision as a function of the detection threshold for the different types of
attacks in the CICIDS2017 dataset. We have made this threshold vary over the entire range for
which this variation has a significant impact on recall and precision.

On the curve at the top of the figure, it can be seen that a quasi-optimal recall can be obtained
(between 0.95 and 1) for a threshold value of 0.0018. On the curve of the bottom of the figure,
we can also see that for this threshold value, the precision is between 0.86 and 1.00, excepted for
the Heartbleed attack (0.048). Increasing the threshold further does not significantly increase the
precision, but does significantly decrease the recall for the Botnet attack. We, therefore, conclude
that we can set the threshold value to 0.0018.

In the case of Heartbleed, the low precision can be explained by the silent nature of this
attack. Indeed, if we detect 100% of the events related to the attack for a threshold of 0.003, this
represents only eight network connections compared to the nearly 93.000 network connections
that took place during the attack.

5.3.2.3 Comparison of the different strategies

An optimal value for the detection threshold for each of the four strategies has been defined.
It permits to compare each of these strategies on the CICIDS2017 and CICIDS2018 datasets.

We chose to compare the results of our four strategies against two criteria, namely the False
Positive Rate(FPR, the rate of false positives that analysts have to deal with) and the Recall rate
(the attack detection rate).

With our approach, an alert can be raised for each event contributing to an attack. As a result,
an attack which generates a significant proportion of events relatively to the rest of the traffic will
greatly influence precision. On the other hand, an attack that generates few events will have little
influence on precision. The overall precision that can be observed is therefore dependent on the
nature of the attacks present in the dataset. In order to make our evaluation as generic as possible
and not depend on this volume, we do not take into account the precision in our comparison.

The results for the CICIDS2017 dataset are presented in Table 5.1 and the results for CI-
CIDS2018 dataset are presented in Table 5.1.

Evaluation criteria FPR (2017) Recall (2017) FPR (2018) Recall (2018)
Better if smaller greater smaller greater

Strategy
Simple_Max 0.441 60.72 0.462 84.46
Neighborhood_Max 1.929 89.55 0.455 84.44
Neighborhood_Mean 1.049 99.66 0.338 100
Simple_Mean 0.420 99.98 0.257 100

Table 5.1 – Comparison of False Positive Rate (FPR) and Recall results (in %) for different
strategies applied on CICIDS2017 and CICIDS2018 dataset

A good detection rate (Recall) is an essential criterion for the evaluation of our approach, as

91

Chapter 5 – Novelty detection

we want to limit as much as possible the risks associated to non-detected attacks. When the Recall
rate is almost identical for two strategies, the false positive rate allows to pick up the best one.
Based on the Recall, the strategies neighborhood_mean and simple_mean obtain the best scores
on the CICIDS2017 dataset with respectively 99.66% and 99.98%. However, the simple_mean
strategy obtains the best FPR rate (0.420% compared to 1.049%). The best strategy to apply
with the CICIDS2017 is therefore the simple_mean strategy.

For the CICIDS2018 dataset, the strategies neighborhood_mean and simple_mean obtain also
the best scores with a score of 100% for both of them. The simple_mean obtains the best FPR
rate (0.257% compared to 0.338%) even if they are close. The best strategy to apply with the
CICIDS2018 is therefore, as for the CICIDS2017 strategy, the simple_mean strategy.

Note that the neighborhood_max and simple_max strategies give very similar results for the
Recall value as well as for the FPR value on the CICIDS2018 dataset whereas, the neighbor-
hood_max strategy clearly overpasses the simple_max strategy on the CICIDS2017 dataset, at
the expense of a bigger FPR. Contrary to the two strategies mean, it is therefore difficult to con-
clude for the moment on the two strategies max. We have therefore carried out a more detailed
comparison by considering these two max strategies, but also the two mean strategies, for the
different types of attacks present in the 2017 and 2018 datasets.

Figure 5.6 presents the methodology we followed to compare, for each dataset, the Recall rate
obtained with the different strategies according to the type of attack.

Figure 5.6 – Comparing detection strategies.

We first verify if mean strategies give better results than max strategies for each type of at-
tack. The comparison 1 therefore focuses globally on the results of the two strategies mean and
the two strategies max. Then, in a second step, we evaluate the impact of taking into account for
the detection the neighborhood of the nodes in the graph, for each type of attack. We therefore
compare, on the one hand, the simple_mean and neighborhood_mean strategies (comparison 2a),
on the other hand the strategies simple_max and neighborhood_max (comparison 2b). The Fig-
ure 5.6 already indicates in a synthetic way the conclusions we draw from these three comparisons
(in brackets next to the numbers of these comparisons): mean strategies give better results for all

92

5.3. Implementation and experimental results

types of attacks, except for the web attack contained in the 2017 dataset. Taking into account
the neighborhood on max strategies gives results depending on the type of attack with the 2017
dataset. On the other hand, these results are equivalent for the 2018 dataset. Taking into account
the neighborhood gives similar results for both mean strategies on the two datasets.

The results obtained for the three comparisons (1, 2a, and 2b) are given below: Figure 5.7
corresponds to the 2017 dataset and Figure 5.8 to dataset 2018. We discuss successively each of
the three comparisons for each of the two datasets.

Figure 5.7 – Recall for different types of attack according to different strategies applied
on CICIDS2017 dataset.

Comparison 1: max versus mean. On Figure 5.7, we see that the two mean strategies
are always equal or better than the two max strategies except for the web attack where the
simple_max strategy overpasses all strategies. We interpret this result as follows: mean strategies
are more able at highlighting small novelties on several links, novelties which taken together
constitute an anomaly. The max strategies, since they focus on the most abnormal links, are on
the other hand only able to detect an important novelty on these links. For thewWeb attack of
the 2017 dataset, we see that despite the fact that the simple_max strategy works better than
others, the detection rates of the other strategies are greater than 90%. Our explanation is that
some links corresponding to the web attack are very close to the learned model, thus lowering
the average novelty score. However, mean strategies remain preferable in most cases and offer a
detection rate for the web attack that is quite acceptable.

Comparison 2a: simple_mean versus neighborhood_mean. There is no signifi-
cant difference between the results of the neighborhood_mean strategy and of the simple_mean
strategy, except for the botnet attack where the simple_mean strategy is significantly better

93

Chapter 5 – Novelty detection

than the neighborhood_mean strategy. Generally speaking, it seems that taking the neighborhood
into account does not bring anything in terms of detection. However, taking the neighborhood
into account does not degrade the results either. In the botnet case, taking the neighborhood
into account seems to have decreased the novelty score for attack-related edges. We remind that
the part of the vector encoding the neighborhood contains continuous values between 0 and 1,
whereas the part encoding edge type, source node attributes and destination node attributes
contains binary values. The neural network may need more layers or more neurons per layer to
learn these continuous values. This would also explain why the FPR is generally higher for the
neighborhood_mean strategy than for the simple_mean strategy. More neurons or more layers
would however require more computing resources. Based on all these considerations, we conclude
that the simple_mean strategy, which has excellent results, is better than the neighborhood_mean
strategy for the CICIDS2017 dataset.

Comparison 2b: simple_max versus neighborhood_max. A comparison of the
results obtained by the simple_max strategy and the neighborhood_max strategy does not clearly
favour one strategy over the other. Indeed, the simple_max strategy is better for SSHBruteforce,
Heartbleed, Web, and Infiltration attacks but worst for DoS, Botnet, and Scan attacks. This
variability of the results can be explained as follows: if the reconstruction error of an attack is
carried essentially by the neighborhood, the strategy neighborhood_max will be more efficient
whereas if it is carried on the attributes of the source node, destination node or edge type, the
strategy simple_max can then be the most efficient.

Actually, as the model depends on the dataset to learn the normal behavior and takes as input
hundreds of attributes, it is difficult to explain these differences without analyzing the reconstruc-
tion error on each attribute for all these attacks. A more complete analysis of the attack-by-attack
results taking into account the results for each dimension of the encoding vector would be neces-
sary to decide on the best strategy to adopt. To realize such an analysis, Ribeiro [125] proposes
a method consisting in varying the inputs of deep learning models to observe the evolution of the
output results. We left this study as a future work.

We now come to the 2018 dataset (see Figure 5.8). We only represent in this figure at-
tacks where there are differences between the strategies, namely FTPBruteForce, DoSSlowHTTP,
DDoSLOICHTTP, DDoSLoicUDP, DDOSHOIC, BruteForceWeb, BruteForceXSS, and Infiltra-
tion 2.

Comparison 1: max versus mean. We observe on Figure 5.8 that as for the CICIDS2017
dataset, the two mean strategies are always as good or better than the two max strategies.
Indeed, as already highlighted with the 2017 dataset, Mean strategies are more able to highlight
small novelties on several links, novelties which together constitute an anomaly. In the case of

2. There is no difference in the Recall values for the following attacks: SSHBruteforce, DoSGoldenEye,
DoSSlowloris, DoSHulk, SQLInjection, and Botnet. All strategies have a Recall score of 100% for these
attacks.

94

5.3. Implementation and experimental results

Figure 5.8 – Recall for different types of attack according to different strategies applied
on CICIDS2018 dataset.

FTPBruteforce, DoSSlowHTTP, and Infiltration attacks, we are exactly in this situation and the
mean strategies surpasses even more the max strategies.

Comparison 2a: simple_mean versus neighborhood_mean. There is no significant
difference between the results of the simple_max and of the neighborhood_max strategy for the
CICIDS2018 dataset. As said for the comparison using the 2017 dataset, taking the neighborhood
into account does not bring anything in terms of detection. However, taking the neighborhood into
account does not degrade the results either. Nevertheless, a smaller encoding being preferable, the
strategy simple_mean has to be chosen.

Comparison 2b: simple_max versus neighborhood_max. Here also, there is no sig-
nificant difference between the results of the simple_mean strategy and of the neighborhood_mean
strategy for the CICIDS2018 dataset. Our interpretation is here the same than for comparison
2a, and for the same reason (a smaller encoding being preferable), the strategy simple_mean has
to be chosen.

Conclusion on the six comparisons. To conclude on the best strategy to chose, we pick
the simple_mean strategy for both datasets, as it gives the best results in terms of Recall for
both cases. The neighborhood_mean strategy is very close to the simple_mean strategy but it is
computationally less efficient as it takes a bigger vector as input than the simple_mean strategy.

It is important to note here that this evaluation and the conclusions we draw are relevant
only in relation to the datasets we used, i.e., the 2017 and 2018 CICIDS datasets. It would be
interesting to realize another evaluation on a dataset containing more silent attacks to see if the

95

Chapter 5 – Novelty detection

neighborhood_mean strategy provides a better detection rate or if it induces a decrease of the
detection rate.

5.3.3 Comparison with other work applied to the CICIDS2017
dataset

We saw in the previous sub-section that the simple_mean strategy was the one that, given the
datasets used, gave the best results. In this section, we now compare the results of this strategy
with those obtained by other researchers on the CICIDS 2017 dataset. Notice that comparisons
on the basis of the 2018 dataset are presented in the next subsection.

In order to allow a relevant analysis of the different results, we have selected for our comparison
three pieces of work [131, 1, 105] that use evaluation criteria close to ours. Other similar pieces
of work exists but we have not retained it for our comparison because it presents poorer results
relative to our evaluation criteria. In addition to this, [166] use the criterion of accuracy. Using
this unique criterion alone does not give a good idea of the quality of detection. We have therefore
also excluded this work from our comparison.

The authors in [131] compares the results of seven supervised classical machine learning al-
gorithms applied to the CICIDS 2017 dataset. These algorithms, all supervised, are: K-Nearest
Neighbors (KNN), Random Forest (RF), ID3, Adaboost, Multilayer perceptron (MLP), Naive-
Bayes (NB), and Quadratic Discriminant Analysis (QDA). Ahmin et al. [1] compares the results of
twelve classical or more recent classification algorithms: DecisionTree and rules, WISARD, Forest
PA, J48 consolidated, LibSVM, FURIA, REP Tree, NaiveBayes, Jrip, J48, MLP, and Random-
Forest. Since the last two algorithms were used in both studies, we retained for our comparison
only the best results achieved. The authors in [105] proposes SU-IDS, a semi-supervised method
(this is only a part of the dataset which is labelled) based on an autoencoder and a classification
method. The proportion of data that is labeled varies from 0.5% to 100%. On our side, we use a
totally unsupervised approach: the SU-IDS configuration closest to ours is therefore the one where
the least amount of data is labeled, i.e. 0.5%. We thus compare ourselves with this configuration.

All these algorithms were tested using a dataset containing 80 features selected according to
their relevance for the detection of attacks using the CICFlowMeter tool [131]. In the case of the
first seven algorithms listed above, the authors trained their algorithms on a specifically chosen
subset of the 80 attributes using a Random Forest Regressor. These attributes were chosen because
they were most likely to help detect the attacks in the dataset and thus improved the performance
of the algorithms for these specific types of attacks. In our case, we used all the features contained
in Zeek event logs without making a prior selection according to their relevance for each attack to
be detected. This is due to the fact that our objective is to measure the ability of the autoencoder to
choose the most relevant features to represent a normal behavior in our dataset without targeting
specific types of attack.

Table 5.2 gives a comparison of the classical learning machine algorithms listed above against
our approach, sec2graph, with the optimal value previously determined for the detection threshold.
The values in this table shows that sec2graph, although being an unsupervised approach, achieves

96

5.3. Implementation and experimental results

Evaluation criteria FPR Recall Precision Accuracy F1-score
Better if smaller greater greater greater greater

Algorithm
KNN - 96 96 - 96
RF - 97 98 - 97
ID3 - 98 98 - 98
Adaboost - 84 77 - 77
MLP - 83 77 - 76
NaiveBayes - 84 88 - 84
QDA - 88 97 - 92
DecisionTree + Rules 1.145 94.475 - 96.665 -
WISARD 2.865 48.175 - 72.655 -
Forest PA 3.550 92.920 - 94.685 -
J48consolidated 6.645 92.020 - 92.688 -
LIBSVM 5.130 54.595 - 74.733 -
FURIA 3.165 90.500 - 93.668 -
REP Tree 4.835 91.640 - 93.403 -
NaiveBayes 33.455 82.510 - 74.528 -
Jrip 4.470 93.400 - 94.465 -
J48 5.040 91.990 - 93.475 -
SU-IDS (0.5% supervised) 5 93.68 - 93.68
sec2graph (simple_mean) 0.420 99.978 98.534 99.668 99.251
Rank 1/12 1/19 1/8 1/12 1/8

Table 5.2 – Comparison of Recall, False Positive Rate (FPR), Accuracy, Precision, and
F1-score results (in %) for supervised approaches of literature and sec2graph

better performances compared to those obtained by supervised or semi-supervised approaches.
Given the strategy we have adopted to set the detection threshold, we achieve the best performance
in terms of recall, with 99.978% of attack events correctly marked as abnormal (all attacks tested
generate marked events). This corresponds to 119 network connections wrongly classified as normal
(FN) out of 533.366 network connections related to an attack. With an FPR of 0,42% for the
CICIDS2017, the sec2graph approach presents the best results. Indeed, of the 2.422.396 network
connections, 1.881.096 were correctly classified as normal (TN) and 7.934 were wrongly classified
as abnormal (FP).

Moreover, sec2graph is also the best in terms of precision, which means that the analyst will not
be drowned by false positives: 98.534% of alerts are indeed true positives. In addition, contrary to
the three pieces of work to which we compare ourselves here, we did not select attributes according
to the type of attacks we wanted to detect. We thus believe that our approach should be more
able to work for new kinds of attacks.

5.3.4 Comparison with other pieces of work applied to the CI-
CIDS2018 dataset

At the time of this comparison, Ferrag et al. [48] are the only one dealing with the CICIDS2018
dataset. In this piece of work, they compare the results of seven supervised and unsupervised
deep learning algorithms. The supervised algorithms used in this study are: Deep Neural Net-
work (DNN), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN). The
unsupervised algorithms used are: Restricted Boltzmann Machine (RBM), Deep Belief Network

97

Chapter 5 – Novelty detection

(DBN), Deep Boltzmann Machine (DBM) and Auto-Encoder (AE). All these algorithms were
tested on a dataset restrained to 80 features selected according to their relevance for the detection
of attacks. Over the 15 450 706 network connections present in the dataset, 231 127 were used to
build the models and 57 782 to test it. In comparison, we build our model on 200 000 network
connections and tested it on 1 600 000 network connections.

Table 5.3 provides a comparison of the deep learning algorithms listed above against sec2graph,
using the previously determined optimal value for the detection threshold and the simple_mean
strategy.

DNN RNN CNN RBM DBN DBM DA sec2graph
(simple_mean)

TNR for 96.915 98.112 98.914 97.316 98.212 96.215 98.101 99.743
RC for SSH-Bruteforce 100 100 100 100 100 100 100 100
RC for FTP-BruteForce 100 100 100 100 100 100 100 100
RC for Brute Force-XSS 83.265 92.182 92.101 83.164 92.281 92.103 95.223 100
RC for Brute Force-Web 82.223 91.322 91.002 82.221 91.427 91.254 95.311 100
RC for SQL Injection 100 100 100 100 100 100 100 100
RC for DoS-Hulk 93.333 94.912 94.012 91.323 91.712 93.072 92.112 100
RC for DoS-SlowHTTPTest 94.513 96.123 96.023 93.313 95.273 95.993 94.191 100
RC for DoS-Slowloris 98.140 98.220 98.120 97.040 97.010 97.112 97.120 100
RC for DoS-GoldenEye 92.110 98.330 98.221 92.010 97.130 97.421 96.222 100
RC for DDOS-LOIC-UDP 97.348 97.118 97.888 96.148 96.122 96.654 96.445 100
RC for DDOS-LOIC-HTTP 97.222 98.122 98.991 96.178 97.612 97.121 97.102 100
RC for Botnet 96.420 98.101 98.982 96.188 97.221 97.812 97.717 100
RC for Infiltration 97.518 97.874 97.762 96.411 96.712 96.168 97.818 100

Table 5.3 – Comparison of True Negative Rate (TNR) and Recall (RC) for each type of
attack and for different methods (in %) and for sec2graph. Sec2graph ranks at the first
place for each criteria

The values in this Table 5.3 show that the sec2graph approach with the simple_mean strategy
offers a 100% detection rate for all types of attacks while having a false positive rate of only
100− 99.743 ≈ 0.25%, which is the best results among the panel of tested algorithms. Indeed, of
the 1.773.761 network connections, 1.639.966 were correctly classified as normal (TN) and 4.225
were wrongly classified as abnormal (FP). We explain this result as follows: by taking into account
more features in a graph structure, we are able to detect more attack-related events than the other
approaches and reduce the FPR.

It should be mentioned that our auto-encoder takes as input for the simple_mean strategy
a vector having 572 dimensions and three hidden layers, while the auto-encoder of Ferrag et al.
[48]has only one hidden layer composed of 100 nodes. It takes about 47 minutes to Ferrag et al.
to build their model, considering batch size of 1000 and 100 epochs. On similar condition, our
autoencoder is more precise but it takes about three hours to learn the model. We consider that
this difference of time in the construction of the model, is not a problem as it is realized only
once a priori. Even in the case where the model would have to be rebuilt due to changes in the
information system, we consider that periodically taking a few hours to build the model is not
penalizing. Indeed, changes in an information system are not very frequent and therefore it will
not be necessary to reconstruct the model too often. In addition, the autoencoder can learn on
new data without starting from the ground up.

98

5.3. Implementation and experimental results

Conclusion
We proposed in this chapter an unsupervised technique based on an autoencoder to efficiently

detect anomalies using four different strategies to compute the anomaly score, assuming that
this dataset contains no attack. This approach can be applied to any dataset without prior data
labeling.

Using the CICIDS2017 and CICIDS2018 datasets, we showed that graph structures represen-
tation of security data handled by an autoencoder gives better results than common anomaly
detection methods (supervised and unsupervised), including deep learning ones.

However, some anomalies characterized by a temporal property are not well suitable for detec-
tion by our approach. An example of such an anomaly could be the presence of a given number of
events of a certain type (e.g., file access) in a short time window (thus characterizing a high speed
data leak). This type of anomaly can of course be important to detect. To further improve our de-
tection results on these kind of anomalies, another kind of autoencoder (LSTM autoencoder [161])
could be used. LSTM autoencoders would allow to take temporal links between events in addition
to logical links we already consider.

Another limitation of our approach is relative to evolving traffic. We tested our algorithm
on cases where normal traffic does not evolve. In real environments, network activities, devices
and behaviors may change over time. Since autoencoders allow for iterative learning, it would
be possible to use new data to evolve the model and learn new behaviors. Nevertheless, to cope
with evolving traffic generated by new activities, devices or behaviors, changing the number of
layers and neurons of the autoencoder may be needed. More precisely, if the number of categories
changes due to the evolution of the traffic, it would be necessary to start learning from scratch.

While dealing with millions of events each day is difficult for analysts in a SOC, our graph
approach allows to consider a large number of events at once. Moreover, the use of an autoencoder
allows a better interpretation of the results. We defined a global reconstruction error corresponding
to the sum of reconstruction errors for each dimension of the input vector. By considering the
error for each dimension, it should be possible to interpret more precisely the anomaly.

To improve the usability and interpretability of the results by a security analyst, techniques
to understand what the model has learnt [125] could also be used. To that aim, data visualization
is an interesting path to explore to help the analyst to accurately eliminate false positives or to
discover global attack scenarios.

In the next chapter, we thus propose a visualization tool allowing to represent subgraphs (that
could correspond to anomalies) in the global graph built from the log files.

99

Chapter 6

Graph visualization and exploration

Contents
Introduction . 101

6.1 Security objects graph exploration with 3D graph visualization102

6.1.1 The 3D graph visualization . 102

6.1.2 User interactivity . 106

6.1.3 Implementation as an immersive environment 107

6.2 Analyzing visual clusters . 110

6.2.1 Identifying syntactic clusters 110

6.2.2 Displaying syntactic clusters 111

6.2.3 Implementation as a web application 111

Conclusion . 113

Introduction
To provide the analyst with a presentation of relevant data that will reduce the time required

to process alerts, we focused in this chapter on graph visualization techniques. The challenges
are to deal with the amount of data that should be represented, to best communicate the data
properties and to ease the interpretation phase.

In this chapter, we first propose an immersive visualization of the graph representation. This
visualization highlights the relations between security objects and malicious events and/or IoCs.
It provides a starting point for the analysts to explore the data and rebuild an attack scenario by
following the links between the nodes. We also propose a dendrogram representation of security
object attributes. Dendrograms are hierarchical representations that help the security analyst to
define the criteria to aggregate security objects and to focus only on interesting parts of the graph.

This chapter presents the following contributions:
• A prototype for immersive visualization of the security object graph in 3D.
• An implementation of a dendrogram visualization that enables the analyst to aggregate

the security objects of the graph.

101

Chapter 6 – Graph visualization and exploration

The rest of the chapter is organized as follows. Section 6.1 presents the design choices and
the prototype of the security object graph visualization. Section 6.2 presents the design and
implementation of hierarchical clustering with dendrograms. Finally, Section 6.2.3 concludes this
chapter.

The content of this chapter has been published at the International Symposium on Visualiza-
tion for Cyber Security in 2017 (VizSec2017) [88] and in 2018 (VizSec2018) [86].

6.1 Security objects graph exploration with 3D graph
visualization

In this section, we present the 3D graph visualization of the graph representation of security
objects presented in Chapter 3. First, we present the design choices we made for our prototype, in
particular regarding the graph layout. We then detail the choices made in terms of user interaction.
More specifically, we address the problems of navigation in time and space. Finally, we present a
prototype explicitly design for virtual reality devices.

6.1.1 The 3D graph visualization
The representation of a graph is not trivial. In this section, we first present the challenges

with graph representations and the technical choices made in relation to our constraints and our
objectives.

6.1.1.1 Challenges with graph representations

Automatically representing a graph can be described simply: given a set of nodes and a set of
edges, compute the position of the nodes and the curve to be drawn for each edge. The arrangement
of nodes and edges in a drawing affects its understandability, usability, cost-effectiveness, and
aesthetics [144]. There are no well-defined criteria to evaluate a graph drawing algorithm, but
generally the success of graph drawing techniques is measured by aesthetic criteria and by their
computational efficiency.

The term aesthetic refers to criteria that evaluate some aspects of readability. Among the
aesthetic criteria, it is commonly accepted that the representation must minimize crossing edges,
distribute nodes equitably in space, make edge lengths uniform and that the symmetries that
exist must appear in the visualization [53].

The size of the graph to view is a key factor in graph visualization regarding both aesthetic
and efficiency. Comprehension and detailed analysis of data in graph structures is easiest when the
size of the displayed graph is small. Large graphs pose several difficult problems. If the number of
elements is large, it can compromise performance or even reach the limits of the graphical interface.
Even if it is possible to display the elements of the graph, its readability and usability can be
questioned if the display does not allow to distinguish nodes and edges. Moreover, displaying

102

6.1. Security objects graph exploration with 3D graph visualization

an entire large graph may give an indication of the overall structure but makes it difficult to
comprehend. Generally, drawing a graph containing more than a thousand nodes becomes very
difficult [63]. Because the layout is so dense, interaction with the graphs become difficult and
occlusions make it impossible to navigate in the graph and analyze it. Consequently, a first step
in the visualization process is often to reduce the size of the graph to display. We proposed in
Chapter 4 and Chapter 5 two methods based respectively on community detection and anomaly
detection to reduce the size of the graph to display and analyze. It should be mentioned that
we will present two other methods in this chapter to reduce the data to display, respectively in
Section 6.1.2 and Section 6.2.

These issues of scalability, aesthetics and computation cost are all the more important for
forensic analysis. The analyst must be able to easily see the substructures and follow the links
between security objects. In addition, he or she must be able to interact with the data in order
to display the relevant details.

6.1.1.2 The graph layout choice

Force-based graph drawing algorithms are the most used techniques [77] among graph drawing
algorithms for large graphs because they do not require the graph to have specific properties such
as planarity 1.

Force-based graph drawing techniques assigns forces among the set of edges and the set of
nodes, according to their relative positions and then uses these forces to simulate the motion of
the nodes and edges. Once the forces on the nodes and edges of a graph have been defined, the
behavior of the entire graph is simulated as if it was a physical system: the forces are applied to
the nodes, pulling them closer together or pushing them further apart. This is repeated iteratively
until the system comes to a mechanical equilibrium state, i.e. when their relative positions do
not change anymore from one iteration to the next. As a result, all the edges are of more or less
equal length and there are as few crossing edges as possible. Graphs drawn with a force-based
layout also tend to be more readable, and are able to display symmetries [53] that can be useful
for forensic detection. For this reason, we used them to display our graph of security objects.

In our early experiments, we first tried to generate 2D graph representations with a force-based
algorithm. However, we had to deal with the fact that numerous lines were crossing one another
and that this representation was very difficult to understand. Indeed, our graphs are large and
dense. As a consequence, we decided to create 3D graph representations using Unity [149], even
if we were aware of the the well-known occultation problem they can cause. The force-directed
graph drawing algorithm could easily be extend to a third dimension that gives more space and
ease the problem of displaying large structures. Furthermore, the user can navigate to find a view
without occlusions as we will see in Section 6.1.2.

While the force-based algorithm makes graphs more readable, it is expensive in computing
time. However, the fact that the algorithm is based on successive iterations makes it possible to

1. Planarity is a property exhibited by graphs that can be displayed on a flat layout without having
edges that cross one-another.

103

Chapter 6 – Graph visualization and exploration

achieve an intermediate visual rendering: the graph is displayed, while the position of the nodes is
not yet stabilized to allow the analyst to start his or her analysis and interpretation of the results.
He or she can also stop the calculation at any time to interact with the data.

In our representation, nodes of the graph were first represented as colored sphere. To reduce
occlusion, we then used wire-frame colored spheres instead of full spheres to represent the security
objects. A color code was used to distinguish the type of each object. For instance, a blue node
represents an IP address, a white node is used for a network connection, etc. The palette used
is designed for being used by color-blind people 2. Edges are represented as white straight-line
between the nodes.

6.1.1.3 Example of security object graph visualization

In this case study, we use two datasets made of logs from Bro IDS that were generated in the
Stratosphere Labs as part of the Malware Capture Facility Project. The objective of this project
is to store long-lived real botnet traffic and to generate labeled netflows files.

Figure 6.1 – Our representation of CTU-Malware-Capture-Botnets-254-1 dataset

The CTU-Malware-Capture-Botnets-254-1 dataset describes a possible Wannacry attack. The
Wannacry attack exploits a samba vulnerability. It should also be mentioned that each piece

2. M. Krzywinski. 15-color palettes for color blindness: http://mkweb.bcgsc.ca/colorblind/img/
colorblindness.palettes.v11.pdf, retrieved September 2020

104

http://mkweb.bcgsc.ca/colorblind/img/colorblindness.palettes.v11.pdf
http://mkweb.bcgsc.ca/colorblind/img/colorblindness.palettes.v11.pdf

6.1. Security objects graph exploration with 3D graph visualization

of Wannacry malware was programmed to check for a given domain name and to stop when
an answer would be obtained. In this capture, a port scan is performed but the vulnerability
cannot be exploited because the targeted servers do not provide the required samba service. The
capture lasted one hour. Bro output files were generated from this capture. The infected host is
192.168.1.123.

Figure 6.1 shows on the left the representation of the address scan on port 445/tcp. This port
is represented in the middle. All rejected network connection attempts can be seen around the
port security object.

Figure 6.2 – Our representation of selected clusters in dataset CTU-Malware-Capture-
Botnets-253-1. The white ellipses indicate Alerts and Indicators

CTU-Malware-Capture-Botnets-253-1 also describes a Wannacry attack. Due to a problem in
the DNS server provider, the domain did not resolved the killswitch IP, and therefore the infection
went on. The capture lasted 895 seconds. The infected host was 192.168.1.120. This capture used
a MITM proxy on all TLS ports and a redirection to a honeypot on port 445/tcp.

105

Chapter 6 – Graph visualization and exploration

This time, we have added external IoC data related to the Wannacry attack. We also used our
community detection method to display only the clusters containing IoCs. In this capture, thanks
to our proposal, we detected the killswitch
www.ifferfsodp9ifjaposdfjhgosurijfaewrwergwea.com. We also discovered two malicious ad-
dresses, 193.23.244.244 and 81.30.158.223 that were associated to the Wannacry campaign. The
representation also shows a scan on port 445/tcp. We focus in Figure 6.2 on clusters with the
killswitch and IoCs. In the visualization, the points of interest are concentrated on three clusters.
The first cluster concentrates two alerts and one IoC referring to an IP address, the second con-
centrates three alerts and one IoC referring to an IP address. The last one, but also the more
dense contains only one IoC, the killswitch. This domain is directly linked with 9 DNSResquest
objects. By following the paths coming from the malicious DNS requests, two more DNS requests
coming from the same socket can be identified.

6.1.2 User interactivity
This visualization tool is to be used by security analysts. Thus, interactions have to be oriented

toward their specific use-cases. In a first part, we tried to identify the main interactions required for
the exploration and manipulation of the 3D graph environment and identify mainly the navigation
through time and space.

6.1.2.1 Navigation through time

Our tool proposes three modes:
• The static mode.
• The dynamic mode.
• The vanishing mode.

The static mode does not take time into account. It shows the whole graph without taking
into account the temporal aspects. It proposes an overview of the elements constituting the graph.

The dynamic mode allows to visualize the construction of the graph as events occur. This makes
it possible to understand what happened and to deduce possible temporal causality between the
events. The construction of the graph is based on the timestamp of the events. Each link generated
from this event contains the timestamp attribute to know when it should appear in the view. New
nodes and edges are added to the graph and linked to pre-existing nodes as they appear in the
events. The positions of the nodes in the display space are then automatically readjusted. The user
can choose the speed of appearance of the elements of the graph. The timestamp of the first event
in the graph is used as the original timestamp. By default the speed corresponds to the real speed
of appearance of the events: If ten seconds separate two events, the subgraph representing the first
element will be displayed ten seconds later. The subgraph of the second event will appear either
disconnected or linked to the first subgraph if the subgraphs contain common objects according
to the construction principle seen in Chapter 3. The user can use the interface to increase the
speed of events.

106

6.1. Security objects graph exploration with 3D graph visualization

The vanishing mode also makes it possible to make the events disappear after a certain period
of time. So if an edge corresponds to an event that occurred more than x minutes ago, x being
user-defined, this edge disappears. At this time, if a node has no more links, it is removed from
the display. This allows to keep only nodes linked to more recent events. This third visualization
avoids cluttering up the graph, by progressively removing old elements.

6.1.2.2 Navigation through space

The force-based layout makes global graph analysis easier by distancing isolated sub-graphs
and concentrating densely connected nodes. Highly connected data may represent normal behav-
iors or massive attacks while isolated sub-graphs can be anomalies that can be interesting to
analyze. However, our first experiments showed that it was still mandatory to propose navigation
through space.

Zoom and pan are traditional interactions in visualization. They are mandatory when large
graph structures are explored [63]. They allow the analyst to adjust the desired level of detail.
Zooming allows to focus on a sub-section of the graph and analyze the security objects and links
one by one while pan allows to see the overall structure of the graph. Navigation also allows us to
reduce the occlusion constraints related to the use of 3D. So even with large, densely connected
graphs, it is possible to navigate and see every part of them.

The analyst can also click on any node to obtain more information on the related point of
interest. The information displayed are the attributes of the nodes such as the address_value for
an IPAddress, or the number of packets for a NetworkConnection for instance.

We took advantage of Unity to implement these features. The navigation through space was
developed to immerse the analyst in the data. This immersion was further developed by using
virtual reality.

6.1.3 Implementation as an immersive environment
3D graph visualization has significant difficulties. Perceptual and navigational conflicts are

caused by the discrepancy of using 2D screens and 2D input devices to interact with a 3D world.
Virtual reality helps solving this issue. Immersive environments help the user to understand and
explore complex structures. Considering the benefits this could bring to graph exploration and
analysis, we used virtual reality to create various tools for the user to explore and manipulate the
data.

Inputs in immersive environments are often more limited than on a desktop setup (e.g., a
traditional keyboard). Therefore, users must be offered a way to choose among the set of available
interactions that he or she will be using. A system of carousel on the controller, shown at the
bottom of Figure 6.3, gives the possibility top switch mode by sliding on the pad. The space
navigation controls are however available at all time.

This new use-case-specific interactions have been developed considering the security analyst
point of view and workflow:

• Repulse neighbors to isolate a particular object.

107

Chapter 6 – Graph visualization and exploration

• Information display about targeted objects.
• Tracking nodes to rebuild a scenario.

Navigation in 3D is achieved either by head motion or virtual flying, following the direction
of the controller. Simplified surrounding limits motion sickness that could be induced by smooth
artificial locomotion. Another aspect of navigation is the scaling of the scene. By giving the
possibility of changing the scale of the graph, the analyst can easily experience a complete view of
the graph and recognize patterns or zoom on a specific zone to analyze a small cluster of objects.
These two options, directly related to space navigation, are separated from the other tools, and
are always available to the user, no matter the chosen interaction mode.

As our data are also temporal, an interaction mode on the carousel allows the analyst to
control either the playback time, that can be negative if necessary, or directly change the position
of the cursor on a timeline using the controller. When the analyst wants to stop and analyse the
graph at a precise timestamp, a freeze option is available to stop time and movements induced by
the force-directed layout. Stopping completely the graph this way allows the analyst to get points
of reference, thus enhancing the navigation.

Figure 6.3 – Our Track Node tool: one panel to display the list of selected nodes, one to
display the detailed information of one node, and visual feedback of a selected node in
the background

The analyst interacts with the security objects by selecting nodes using a laser pointer attached
to the controller. A first tool named Information on the carousel allows the analyst to get directly
the information about a security object upon selection. All the information about the node is

108

6.1. Security objects graph exploration with 3D graph visualization

displayed as text on a screen attached to the controller, and the analyst can scroll through it.
An arrow pointing at the selected security object acts as visual feedback for the user. This is a
very simple tool used to discover the data, get a first idea of both the structure and the events
represented through the graph visualization.

Further study requires a more substantial tool. This second tool named Track Node allows the
analyst to select several nodes that are enlarged in the graph and glow with a yellow light. The
analyst is given two panels, one similar to the previous tool, displaying the information about
a security object, and another to display the list of the selected security objects with a short
description. He or she can scroll through the list and choose one of them. This security object
will then have its detailed information displayed on the second screen, and the same arrow as the
Information tool will point at it. This way, the analyst can select a list of relevant security objects
and study their detailed information in order to understand the impact of a set of logged events
on the actual attack. The Track Nodes tool is showed in Figure 6.3, with the two screens and a
selected security object, that is larger and surrounded with a yellow light and a pointing arrow.

Such selection method can lack precision when selected nodes are far away from the analyst. If
the high mobility offered by our navigation tools and the freedom of movement would be generally
enough to solve this issue, the problem remains in the case of a crowded environment. To cope
with this issue, the Repulse tool allows to increase and decrease the norm of the repulsion force
acting on a pointed node, spreading the nodes and giving access to the potentially hidden ones.

We performed our experiments on a computer having the following characteristics: Intel i7-
8700 CPU, NVIDIA GTX 1080 GPU and 32GB RAM. An HTC Vive headset was used for VR,
and the tool was implemented using the Unity Editor 2017.1.1f1.

We identified several technical constraints: first, virtual reality requires a high and, more
importantly, stable frame rate to ensure comfortable experience. It is generally accepted that our
eyes need at least about 45 frames per second to get a fluid rendering. Second, the Vive controllers
have a limited number of input buttons: a 1-axis trigger, a 2-axis touch pad, and 2 buttons. Third,
usual head up display of information is difficult because of the Vive lenses optical effects on the
border of the screen space.

The first challenge comes mainly from the force model used for the graph representation that
has a computation complexity of O(n2) in the worst case. Therefore, given the amount of nodes we
are working with, it requires a lot of resources. We adapted the data structure and used methods
to limit the amount of computation. The graph data is parsed from a XML file, to create Unity 3D
objects, designated as Node and Link. The Link objects contain the timestamps and the reference
of the two linked Node objects. The rest of the information is stored in the Node objects; the color
of the Node object will notably represent the type of security object. The force-oriented layout
is separated into two forces. An attraction force is applied between two linked nodes, depending
on the distance between these two nodes. The other force is a repulsion force applied by each
node on each other, depending on the distance between them. It is to be noted that interactions
between distant nodes are insignificant. Thus, a list of each node closest neighbors is stored as
attribute of the Node object and updated regularly. Only the nodes in the list will be considered
for the repulsion force computation applied on a node. This reduces the average-case computation

109

Chapter 6 – Graph visualization and exploration

complexity and thus the amount of required computation, at the cost of a little more memory
use. Finally, we use different threads for force computation and rendering. A slightly lower refresh
rate in the force computation thread is not detrimental to the layout, and this separation ensures
that it will not disturb the rendering. Eventually, we managed to respect the 45 frames per second
criterion with about a thousand node.

The two last constraints, related to user interaction, were solved using the user interactions
presented in the previous section. First, our implementation uses a carousel to change interaction
mode, allowing to artificially multiply the controller inputs, solving the first challenge. Second,
since the information display had to be attached to an object that the user can focus on, we chose
to attach it to the virtual representation of the controller itself, solving the second challenge (cf.
Figure 6.3).

6.2 Analyzing visual clusters
We have presented in Section 6.1 an interactive 3D representation of graphs of security objects.

Following the use of this tool on several datasets, we found that the graphs were frequently made
of “visual clusters” of similar security objects grouped around a common node. Visual clusters are
interesting for two reasons:

• On the one hand, they may represent a normal behavior that is frequently repeated. Their
analysis allows in this case to identify the characteristics of this normal behavior (i.e., the
similar attributes of the nodes forming this cluster) to better identify them afterwards and
eliminate them from the analysis, making it faster.

• On the other hand, they can represent massive attacks such as scans, DoS, DDoS or brute
force attacks that should be analyzed.

Another advantage is that these visual clusters can easily be identified visually by the analyst.
However, when a node has a lot of links and thus neighbors, visual clusters remain difficult to
analyze.

To cope with this limitation, a possible strategy, as previously done, is to identify new sub-
clusters among these visual clusters. These new sub-clusters, named “syntactic clusters” to dis-
tinguish them from the visual clusters, should be composed of nodes sharing the same values for
a given subset of attributes. These syntactic clusters will both help the analyst to eliminate some
groups of nodes corresponding to normal behavior, and to identify anomalies that will in turn be
analyzed.

6.2.1 Identifying syntactic clusters
A good tool to identify syntactic clusters is hierarchical clustering [67], that works as follows:

1. Start with k = n communities (every node is its own clusters, n being the number of
security objects in the graph).

2. Compute the distance matrix (distance with each cluster).

110

6.2. Analyzing visual clusters

3. Merge the two closest clusters according to the distance matrix.
4. Repeat steps 2 and 3 until all nodes are contained in one single cluster.
For this algorithm to work, it must be provided:
• A function to compute the similarity (and therefore the distance) between two clusters.
• A linkage function that defines the way the new attributes values for a new cluster are

computed from the attributes values of the two clusters that were merged to create it.
To compute the similarity between two nodes, we use a distance measure defined by the

number of dissimilar attribute values. The more two security objects have attribute values that
are different, the more distant they are. We use Ward’s linkage as the linkage function. It minimizes
the variance of the clusters being merged and is well-suited for most applications.

6.2.2 Displaying syntactic clusters
To display the results of hierarchical clustering, i.e., our syntactic clusters, a dendrogram

representation is especially suitable.
A dendrogram is a hierarchical tree representation that records the sequences of merges or

splits. It also graphically shows the distance between its nodes in a efficient way (see Figure 6.4).
By construction, the closer two leaves of a dendrogram are, the more similar the two objects
they represent are. Non-terminal nodes of the dendrogram represent a cluster and each branch
is a criterion of separation of two clusters. Such a dendrogram can be built for each node of the
3D graph from the characteristics of all the neighbors of this node. Our tool allows the analyst
that focuses on a given node (e.g.,an IP address of interest, a node with many neighbors) of the
3D graph to build a dendrogram that corresponds to this node. A first strategy to identify an
interesting node is to consider the ones with high degree. The dendrogram obtained for such a
node allows the analyst to determine, among the neighbors of the node, those that can be usefully
grouped together.

In Figure 6.4, a representation of a dendrogram built upon a visual clusters of 4846 security
objects is displayed. The number displayed next to each node of the dendrogram corresponds to
the number of SOs contained in the cluster. Starting from the root node on the left, we notice
that the first separation clearly separates a single SO from the 4845 other SOs. This can be seen
with the length of the edge going towards the single-SO cluster. The second separation indicates
a much smaller difference between the two clusters. This indicates that the SOs of these clusters
share some similarities. In order to see what are the common attribute values within the same
cluster, the analyst can hover a node. On the figure, we can see for example that the cluster
containing 111 SOs contains SOs that all have as attribute values the values displayed in the blue
rectangle (e.g. conn_state_SF, history_other, proto_tcp, etc.).

6.2.3 Implementation as a web application
We designed and implemented a web application to explore our security-related data, following

the principle of Wang et al. [157] which states that multiple views can help users understand

111

Chapter 6 – Graph visualization and exploration

Figure 6.4 – The dendrogram built on the objects with the highest degree: the top branch
groups all network connections linked to a network scan whereas the bottom branch groups
unrelated network connections.

relationships among different data sets with multiple attributes.
Our tool is made of three views (A, B and C) represented in Figure 6.5.
The 3D-graph view A comes from our previous work (see Section 6.1.1). This first view allows

the analyst to select the visual clusters of security objects to be analyzed by clicking on the central
node of these visual clusters.

The visual clusters are then handled thanks to hierarchical clustering and the corresponding
dendrogram C is displayed. The analyst can interact with the dendrogram by hovering over the
nodes to display the attributes common to a set of nodes or by clicking on the nodes to display

112

6.2. Analyzing visual clusters

Figure 6.5 – Global Interface of our visualization tool - Control Command and Graph
Visualization (A), Timeline Plot(B), Dendrogram (C)

or collapse the sub-graph starting from this node. When the analyst has chosen a criterion for
aggregating nodes in a cluster, he or she can double-click on the corresponding dendrogram node.

The 3D-graph of the view A is then updated and all the security objects corresponding to the
selection criteria are aggregated within the same node called macro-node. This is therefore a mean
to cluster the 3D-graph through human analysis that would be hard to perform automatically
because it requires contextual knowledge that only analysts have.

View B allows to give contextual information on the number of network connections at a given
time t. It also allows to select the graph corresponding to this timestamp in view A.

Figure 6.6 shows the result of such an aggregation. The aggregation of the nodes makes the rest
of the graph much more visible to the analyst. He or she can therefore continue his or her analysis
by reducing the risk of occlusion. It should be mentioned that the information corresponding to
the aggregated nodes is still present, just not displayed. Clicking on the macro-node displays the
attributes common to the aggregated security objects.

Conclusion
We presented in this chapter an immersive data visualization approach and a prototype based

on virtual reality. This prototype is voluntarily simple and offers intuitive controls for the user
to adapt quickly and reduce fatigue. Navigation and graph manipulation are available to change

113

Chapter 6 – Graph visualization and exploration

Figure 6.6 – Results of nodes aggregation performed by the analyst. (left) A large number
of similar nodes are displayed in the middle obscuring the rest of the graph. (right) The
nodes have been aggregated into a single meta node/

the environment scale and the point of view, as well as avoiding occlusion issues. Selection tool
with strong visual feedback allows the user to analyze and link the information supported by the
graph around them in order to rebuild the scenario of the attack.

However, we believe that virtual reality is useful as a collaborative tool, but not usable on
a daily basis by an analyst. As a collaboration tool, functionalities related to interaction and
annotation of objects by several analysts would thus bring interesting improvements.

Visualization only allows to display a limited number of objects (in the order of thousands),
whereas our graphs contain millions of objects. A pre-selection of objects is thus necessary. In this
chapter, we have seen two methods for this pre-selection. First, we have used event temporality
to show only objects related to events that took place in a user-defined time window. Second, in
order to reduce the number of objects to represent without making the information disappear, we
have proposed using hierarchical clustering and a dendrogram representation to aggregate nodes
with common characteristics.

To conclude, it remains to evaluate experimentally, from the point of view of analysts, the
different forms of node clustering that we have proposed. Such an evaluation requires a real use
of the tools we have developed by real analysts, and a systematic collection and analysis of their
user experiences. Such a work is already considered in an operational environment, but could not
have been performed at the time of writing this thesis.

114

Conclusion

To respond to the challenges listed in Section 1.1.2 and respond to the requirements of situa-
tional awareness, we explored in this thesis the use of graphs for security data analysis. To that
end, we proposed a processing pipeline composed of multiple steps, from data modeling to graph
visualization. In the remaining of this chapter, we first provide a summary of our contributions
and then identify some areas to investigate as future work.

Contributions
To help analysts in intrusion detection and forensic analysis, we first proposed in Chapter 3

a new graph-based model of network events, the graph being made of security objects. This
model, based on STIX, is intended to allow analysts to easily link relevant information and
thus facilitates the analysis process. It is built from network events and information from threat
intelligence according to a process that can be adapted to any type of security data. We proposed
an implementation and showed that the approach, that uses data that are classically used in a
SOC, is scalable and allows real-time processing, making it usable in a real SOC context. We have
also shown the usefulness of graph structures through a use case example.

To enhance forensic analysis, we then proposed in Chapter 4 a process based on commu-
nity detection to discover, in the security object graph described in Chapter 3, objects linked to
an attack identified through a given indicator of compromise. We tested different methods and
evaluated their ability to select sub-graphs of interest in a security analysis perspective. These
evaluations revealed that community detection allows to identify a large number of events related
to an attack. It also allows to distinguish information related to normal events from information
related to an attack, when this attack results in a specific structure in the graph.

Related to intrusion detection, we proposed in Chapter 5 an unsupervised technique based
on an autoencoder to efficiently detect anomalies using four different strategies. For this purpose,
we provided a method to encode both the structure and the content of the security object graph
described in Chapter 3. Using the CICIDS2017 and CICIDS2018 datasets, we showed that the
security object graph processed by an autoencoder gives better results than common methods of
anomaly detection (supervised and unsupervised), including deep learning methods.

Finally, we presented in Chapter 6 an immersive data visualization approach to bring the
security experts back into the loop. The implemented prototype offers tools to explore the security
object graph in an intuitive way. The visualized graph can be the one corresponding to all the
available traffic, subgraphs resulting from the community detection, or subgraphs obtained at the
output of the autoencoder. This visualization is thus useful for both forensic analysis and intrusion
detection. In particular, our tool allows to navigate the graphs in time and space. The selection

115

Chapter 6 – Conclusion

tool also allows the user to analyze and link the information supported by the graph in order to
reconstruct the attack scenarios.

All these contributions form a single processing pipeline of security data modeled as a graph
and allow end-to-end analysis whether for forensic analysis or unsupervised intrusion detection.
With this pipeline, we respond to three of the six functionalities of a SOC presented page 2, i.e.,
the collect, detect, and display functionalities. Our objective was also, beyond the functionalities
themselves, to respond to the challenges identified page 3. We discuss below how our contributions
help meeting the requirements relative to each of these challenges:

Diversity of network traffic We addressed the diversity of network traffic by providing a
rich model of security data representing various communication protocols in Chapter 3.
This model is composed of various security objects (e.g. IPAddress, X509 certificate) and
edges, each having multiple attributes. It can be extended to new types of data by adding
new objects and relations to the ones that already exist. To address the diversity of the
data, we also propose a graph encoding technique in Chapter 5 that preserves the diversity
when feeding our autoencoder. The graph encoding keeps the values of all the types of
attributes that can be found in the model and transform them into categories, therefore
preserving the variability of the data.

Low amount of attack-related data Having a small amount of or even no data related
to attacks is not detrimental to us. Indeed, we specifically chose the autoencoder method
that requires only normal data for its learning phase. Therefore, we do not depend on the
availability of attack-related data.

High cost of errors Our approach based on an autoencoder reduces the cost of detection
errors, as shown by the evaluation we performed using the CICIDS datasets. The 2017
dataset leads to a detection rate of 99.98% and a false positive rate of 0.42% (7.934 network
connections wrongly classified as abnormal (FP) out of a total of 2.422.396 network con-
nections), while those performed on the 2018 dataset leads to a detection rate of 100% and
a false positive rate of 0.25% (4.225 network connections wrongly classified as abnormal
(FP) out of a total of 1.773.761 network connections), outperforming common anomaly
detection techniques. These results were obtained without aggregation or correlation pro-
cesses.

Interpretation of the results by the analyst We proposed a visualization tool in Chap-
ter 6 that allows the analyst to explore security data in an interactive way, thus reducing
the problem of data interpretability. The visualization proposed represents the graph of
security object in 3D with navigation features allowing the analyst to see events (rep-
resented by subgraphs) sequentially, enhancing situation awareness. We also proposed a
hierarchical clustering method and an associated visualization in the form of a dendrogram
to help the analyst comparing similar nodes.

Evaluation difficulties We chose two of the most recent, realistic and reasonably large
synthetic datasets to evaluate our approach for all the evaluation performed during this
thesis. This way, we believe our results are close to those that would be obtained on real

116

data. We recognize, however, that more work is needed to prove this assertion.

Perspectives
Our end-to-end approach has pointed out some research opportunities to further improve

intrusion detection and ease the work of analysts. We present them hereafter.

Automatic feature extraction
The graph model is designed to be scalable and suitable to new types of data. Indeed, new

objects can be added either to represent new data sources or if the network events evolve (e.g., a
new protocol appears).

Taking advantage of this ability, the addition of system and application logs could enrich the
model.

However, system and application logs are rarely well structured. Establishing parsing rules
for each of these sources would be very costly for the security analyst. Building and updating the
model would require the technical expertise of a security analyst and cost can be quite significant.
This is why a research work on the automation of feature extraction or at least on an help to
guide the analyst would be useful.

To this end, what is done for neural language processing is promising. For example, iACE [92],
was designed to automatically extract IoCs from unstructured text. A similar approach would
allow the extraction of security objects from security events and would thus help the analyst
adapting the graph model according to the available data.

Taking time into account more efficiently
Security object graphs allow to link the various elements in the logs. These graphs represent

in a precise and structured way the activities taking place in the information system. Although
temporal information is present in the security object graphs, it is only weakly taken into account
in the detection of anomalies if not at all, even though it may be important for the detection of
an intrusion.

Taking temporal information into account more efficiently is an interesting opportunity to
explore to improve detection.

To this end, the possible contributions of certain types of neural networks adapted to the
processing of sequential data can be studied. We are thinking here particularly to LSTM (Long-
Short Term Memory) [161]).

In addition, since a security object graph is dynamic, it would be interesting to reconsider the
way the graph is encoded to feed the autoencoder taking into account the temporal aspect.

Outside the scope of intrusion detection, recent work related to dynamic graphs include studies
on the representation of the structure of the graph, its dynamicity and the values of the various

117

Chapter 6 – Conclusion

labels associated with the edges and nodes. For example, the propositions of Zheng et al. [167]
and Trivedi et al. [147] could be adapted to the intrusion detection field.

Data visualization
We presented a tool to visually represent graphs of security object. This tool allows analysts

to navigate through the sub-graphs selected by our community and anomaly detection system.
In the first case, the representation of alerts or indicators of compromise allows to perform a
forensic analysis by following the paths in the graph. However, in the second case, even if viewing
abnormal subgraphs is of great help, an additional help would be useful to the analyst so as to
interpret the results of the anomaly detection.

Indeed, the first job of an analyst is to eliminate possible false positives. However, in the case
of detection algorithms based on neural networks, interpretation of the results can be difficult. We
used an autoencoder allowing the analyst to target attributes that deviate from normal behavior.
However, as our data is very rich, a manual attribute-by-attribute analysis would be too costly.
A visual help such as heatmap visualization would allow the analyst to validate the detection
model and analyze the data more quickly. More generally, adding additional interactive views to
our visualization prototype would enhance the security analysis.

118

Bibliography

[1] Ahmed Ahmim et al., « A novel hierarchical intrusion detection system based on
decision tree and rules-based models », in: 2019 15th International Conference on
Distributed Computing in Sensor Systems (DCOSS), IEEE, 2019, pp. 228–233.

[2] Christoforos Anagnostopoulos, « Weakly Supervised Learning: How to Engineer
Labels for Machine Learning in Cyber-Security », in: Data Science for Cyber-
Security (2018).

[3] Giuseppina Andresini et al., « Exploiting the Auto-Encoder Residual Error for In-
trusion Detection », in: 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), IEEE, 2019, pp. 281–290.

[4] M Angelini et al., « MAD: A visual analytics solution for Multi-step cyber Attacks
Detection », in: Journal of Computer Languages 52 (2019), pp. 10–24.

[5] Marco Angelini, Nicolas Prigent, and Giuseppe Santucci, « PERCIVAL: proactive
and reactive attack and response assessment for cyber incidents using visual ana-
lytics », in: 2015 IEEE Symposium on Visualization for Cyber Security (VizSec),
IEEE, 2015, pp. 1–8.

[6] ANSSI, OpenCTI, 2020, url: https://www.opencti.io/fr/.

[7] Giovanni Apruzzese et al., « On the effectiveness of machine and deep learning
for cyber security », in: 2018 10th International Conference on Cyber Conflict
(CyCon), IEEE, 2018, pp. 371–390.

[8] Dustin L Arendt et al., « Ocelot: user-centered design of a decision support visu-
alization for network quarantine », in: Visualization for Cyber Security (VizSec),
2015 IEEE Symposium on, IEEE, 2015, pp. 1–8.

[9] Hagai Attias, « A variational baysian framework for graphical models », in: Ad-
vances in neural information processing systems, 2000, pp. 209–215.

[10] Stefan Axelsson, « The base-rate fallacy and its implications for the difficulty of
intrusion detection », in: Proceedings of the 6th ACM Conference on Computer
and Communications Security, 1999, pp. 1–7.

119

https://www.opencti.io/fr/

BIBLIOGRAPHY

[11] R Can Aygun and A Gokhan Yavuz, « Network anomaly detection with stochasti-
cally improved autoencoder based models », in: 2017 IEEE 4th International Con-
ference on Cyber Security and Cloud Computing (CSCloud), IEEE, 2017, pp. 193–
198.

[12] M Bahrololum and M Khaleghi, « Anomaly intrusion detection system using hier-
archical gaussian mixture model », in: International journal of computer science
and network security 8.8 (2008), pp. 264–271.

[13] Jonathan Baker, Matthew Hansbury, and Daniel Haynes, « The OVAL Language
Specification », in:MITRE, Bedford, Massachusetts (url: http://ebookbrowsee. net/ovallanguage-
specification-08-08-2011-pdf-d222972411) (2011).

[14] Paul Barford et al., « Cyber SA: Situational awareness for cyber defense », in:
Cyber situational awareness, Springer, 2010, pp. 3–13.

[15] Sean Barnum and Amit Sethi, « Attack patterns as a knowledge resource for build-
ing secure software », in: OMG Software Assurance Workshop: Cigital, 2007.

[16] Sean Barnum et al., « The CybOX language specification », in: draft, The MITRE
Corporation (2012).

[17] Sean Barnum et al., « The cybox language specification », in: The MITRE Cor-
poration (2012).

[18] Matthew P Barrett, Framework for improving critical infrastructure cybersecurity
version 1.1, tech. rep., 2018.

[19] M Bastian, S Heymann, and M Jacomy, « Gephi: an open source software for
exploring and manipulating networks. International AAAI Conference on Weblogs
and Social Media [Internet]. 2009 », in: There is no corresponding record for this
reference.[Google Scholar] (2015).

[20] Igor LO Bastos et al., « Mora: A generative approach to extract spatiotemporal
information applied to gesture recognition », in: 2018 15th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), IEEE, 2018,
pp. 1–6.

[21] Desiree Beck et al., CybOX™ Version 2.1.1. Part 36: Network Connection Object,
OASIS Committee Specification Draft 0, 2016, url: http://docs.oasis-open.
org/cti/cybox/v2.1.1/cybox-v2.1.1-part36-network-connection.html.

120

http://docs.oasis-open.org/cti/cybox/v2.1.1/cybox-v2.1.1-part36-network-connection.html
http://docs.oasis-open.org/cti/cybox/v2.1.1/cybox-v2.1.1-part36-network-connection.html

BIBLIOGRAPHY

[22] Desiree Beck et al., CybOX™ Version 2.1.1. Part 50: Socket Address Object, OASIS
Committee Specification Draft 0, 2016, url: http://docs.oasis-open.org/cti/
cybox/v2.1.1/csprd01/part50-socket-address/cybox-v2.1.1-csprd01-
part50-socket-address.html.

[23] Jeremiah Blatz, « CSRF: Attack and Defense », in: McAfee® Foundstone® Pro-
fessional Services, White Paper (2007).

[24] Vincent D Blondel et al., « Fast unfolding of communities in large networks », in:
Journal of statistical mechanics: theory and experiment 2008.10 (2008), P10008.

[25] Fabian Böhm, Florian Menges, and Günther Pernul, « Graph-based visual analytics
for cyber threat intelligence », in: Cybersecurity 1.1 (2018), p. 16.

[26] Yacine Bouzida et al., « Efficient intrusion detection using principal component
analysis », in: 3éme Conférence sur la Sécurité et Architectures Réseaux (SAR),
La Londe, France, 2004, pp. 381–395.

[27] Shaosheng Cao, Wei Lu, and Qiongkai Xu, « Deep neural networks for learning
graph representations », in: Thirtieth AAAI conference on artificial intelligence,
2016.

[28] Shaosheng Cao, Wei Lu, and Qiongkai Xu, « Grarep: Learning graph representa-
tions with global structural information », in: Proceedings of the 24th ACM inter-
national on conference on information and knowledge management, 2015, pp. 891–
900.

[29] Eoghan Casey, Greg Back, and Sean Barnum, « Leveraging CybOX™ to stan-
dardize representation and exchange of digital forensic information », in: Digital
Investigation 12 (2015), S102–S110.

[30] Eoghan Casey et al., « Advancing coordinated cyber-investigations and tool in-
teroperability using a community developed specification language », in: Digital
investigation 22 (2017), pp. 14–45.

[31] Apache Cassandra, « Apache cassandra », in:Website. Available online at http://planetcassandra.
org/what-is-apache-cassandra (2014), p. 13.

[32] Brant A Cheikes et al., Common platform enumeration: Naming specification ver-
sion 2.3, US Department of Commerce, National Institute of Standards and Tech-
nology, 2011.

121

http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part50-socket-address/cybox-v2.1.1-csprd01-part50-socket-address.html
http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part50-socket-address/cybox-v2.1.1-csprd01-part50-socket-address.html
http://docs.oasis-open.org/cti/cybox/v2.1.1/csprd01/part50-socket-address/cybox-v2.1.1-csprd01-part50-socket-address.html

BIBLIOGRAPHY

[33] Daiki Chiba et al., « Detecting malicious websites by learning IP address fea-
tures », in: 2012 IEEE/IPSJ 12th International Symposium on Applications and
the Internet, IEEE, 2012, pp. 29–39.

[34] Aaron Clauset, Mark EJ Newman, and Cristopher Moore, « Finding community
structure in very large networks », in: Physical review E 70.6 (2004), p. 066111.

[35] Damien Crémilleux et al., « VEGAS: Visualizing, exploring and grouping alerts »,
in: NOMS 2016-2016 IEEE/IFIP Network Operations and Management Sympo-
sium, IEEE, 2016, pp. 1097–1100.

[36] Roman Danyliw, « RFC 7970: The Incident Object Description Exchange Format
Version 2 », in: Internet Engineering Task Force (IETF) (2016).

[37] Herve Debar, David Curry, and Benjamin Feinstein, « The intrusion detection mes-
sage exchange format (IDMEF) », in: IETF Request for Comments 4765 (2007).

[38] Hervé Debar, Marc Dacier, and Andreas Wespi, « Towards a taxonomy of intrusion-
detection systems », in: Computer networks 31.8 (1999), pp. 805–822.

[39] Arthur P Dempster, Nan M Laird, and Donald B Rubin, « Maximum likelihood
from incomplete data via the EM algorithm », in: Journal of the Royal Statistical
Society: Series B (Methodological) 39.1 (1977), pp. 1–22.

[40] Qi Ding et al., « Intrusion as (anti) social communication: characterization and
detection », in: Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2012, pp. 886–894.

[41] Min Du et al., « Deeplog: Anomaly detection and diagnosis from system logs
through deep learning », in: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1285–1298.

[42] James P Early and Carla E Brodley, « Behavioral features for network anomaly de-
tection », in: Machine Learning and Data Mining for Computer Security, Springer,
2006, pp. 107–124.

[43] Andreas Ekelhart, Elmar Kiesling, and Kabul Kurniawan, « Taming the logs-
Vocabularies for semantic security analysis », in: Procedia Computer Science 137
(2018), pp. 109–119.

[44] Elasticsearch, version 7.9, url: https://www.elastic.co/fr/elasticsearch/.

122

https://www.elastic.co/fr/elasticsearch/

BIBLIOGRAPHY

[45] Mica R Endsley, « Toward a theory of situation awareness in dynamic systems »,
in: Human factors 37.1 (1995), pp. 32–64.

[46] Juan M Estevez-Tapiador, Pedro Garcia-Teodoro, and Jesus E Diaz-Verdejo, « Stochas-
tic protocol modeling for anomaly based network intrusion detection », in: First
IEEE International Workshop on Information Assurance, 2003. IWIAS 2003. Pro-
ceedings. IEEE, 2003, pp. 3–12.

[47] Gilberto Fernandes et al., « A comprehensive survey on network anomaly detec-
tion », in: Telecommunication Systems 70.3 (2019), pp. 447–489.

[48] Mohamed Amine Ferrag et al., « Deep learning for cyber security intrusion detec-
tion: Approaches, datasets, and comparative study », in: Journal of Information
Security and Applications 50 (2020), p. 102419.

[49] Santo Fortunato, « Community detection in graphs », in: Physics reports 486.3-5
(2010), pp. 75–174.

[50] Santo Fortunato and Darko Hric, « Community detection in networks: A user
guide », in: Physics reports 659 (2016), pp. 1–44.

[51] Jérôme François, Shaonan Wang, Thomas Engel, et al., « BotTrack: tracking bot-
nets using NetFlow and PageRank », in: International Conference on Research in
Networking, Springer, 2011, pp. 1–14.

[52] David Freedman, Robert Pisani, and Roger Purves, « Statistics (international stu-
dent edition) », in: Pisani, R. Purves, 4th edn. WW Norton & Company, New
York (2007).

[53] Thomas MJ Fruchterman and Edward M Reingold, « Graph drawing by force-
directed placement », in: Software: Practice and experience 21.11 (1991), pp. 1129–
1164.

[54] Amirhossein Gharib et al., « An evaluation framework for intrusion detection
dataset », in: Information Science and Security (ICISS), 2016 International Con-
ference on, IEEE, 2016, pp. 1–6.

[55] W Gibb and D Kerr, « OpenIOC: back to the basics », in: OpenIOC: Back to the
Basics (2018).

[56] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning, MIT press,
2016.

123

BIBLIOGRAPHY

[57] Aditya Grover and Jure Leskovec, « node2vec: Scalable feature learning for net-
works », in: Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 2016, pp. 855–864.

[58] Thomas R Gruber, « Toward principles for the design of ontologies used for knowl-
edge sharing? », in: International journal of human-computer studies 43.5-6 (1995),
pp. 907–928.

[59] Mohamed Hamdi and Noureddine Boudriga, « Detecting Denial-of-Service attacks
using the wavelet transform », in: Computer Communications 30.16 (2007), pp. 3203–
3213.

[60] Will Hamilton, Zhitao Ying, and Jure Leskovec, « Inductive representation learning
on large graphs », in: Advances in neural information processing systems, 2017,
pp. 1024–1034.

[61] William L Hamilton, Rex Ying, and Jure Leskovec, « Representation learning on
graphs: Methods and applications », in: arXiv preprint arXiv:1709.05584 (2017).

[62] Nick Heard, Patrick Rubin-Delanchy, and Daniel J Lawson, « Filtering automated
polling traffic in computer network flow data », in: 2014 IEEE Joint Intelligence
and Security Informatics Conference, IEEE, 2014, pp. 268–271.

[63] Ivan Herman, Guy Melançon, and M Scott Marshall, « Graph visualization and
navigation in information visualization: A survey », in: IEEE Transactions on
visualization and computer graphics 6.1 (2000), pp. 24–43.

[64] Elena Hernández-Pereira et al., « Conversion methods for symbolic features: A
comparison applied to an intrusion detection problem », in: Expert Systems with
Applications 36.7 (2009), pp. 10612–10617.

[65] Md Nahid Hossain et al., « SLEUTH: Real-time attack scenario reconstruction
from COTS audit data », in: Proc. USENIX Secur. 2017, pp. 487–504.

[66] Christopher Humphries et al., « Corgi: Combination, organization and reconstruc-
tion through graphical interactions », in: Proceedings of the Eleventh Workshop on
Visualization for Cyber Security, 2014, pp. 57–64.

[67] Stephen C Johnson, « Hierarchical clustering schemes », in: Psychometrika 32.3
(1967), pp. 241–254.

[68] William Kent, « A simple guide to five normal forms in relational database the-
ory », in: Communications of the ACM 26.2 (1983), pp. 120–125.

124

BIBLIOGRAPHY

[69] Elmar Kiesling et al., « The SEPSES Knowledge Graph: An Integrated Resource
for Cybersecurity », in: International Semantic Web Conference, Springer, 2019,
pp. 198–214.

[70] Jihyun Kim et al., « Long short term memory recurrent neural network classifier for
intrusion detection », in: 2016 International Conference on Platform Technology
and Service (PlatCon), IEEE, 2016, pp. 1–5.

[71] Samuel T King and Peter M Chen, « Backtracking intrusions », in: ACM SIGOPS
Operating Systems Review, vol. 37, ACM, 2003, pp. 223–236.

[72] Thomas N Kipf and Max Welling, « Semi-supervised classification with graph con-
volutional networks », in: arXiv preprint arXiv:1609.02907 (2016).

[73] Ivan Kirillov et al., Malware attribute enumeration and characterization, 2011.

[74] Myungsook Klassen and Ning Yang, « Anomaly based intrusion detection in wire-
less networks using Bayesian classifier », in: 2012 IEEE fifth international confer-
ence on advanced computational intelligence (ICACI), IEEE, 2012, pp. 257–264.

[75] Marius Kloft et al., « Automatic feature selection for anomaly detection », in:
Proceedings of the 1st ACM workshop on Workshop on AISec, 2008, pp. 71–76.

[76] Satoru Kobayashi et al., « Mining causality of network events in log data », in:
IEEE Transactions on Network and Service Management 15.1 (2017), pp. 53–67.

[77] Stephen G Kobourov, « Spring embedders and force directed graph drawing algo-
rithms », in: arXiv preprint arXiv:1201.3011 (2012).

[78] Daphne Koller et al., Introduction to statistical relational learning, MIT press, 2007.

[79] Christopher Kruegel and Giovanni Vigna, « Anomaly detection of web-based at-
tacks », in: Proceedings of the 10th ACM conference on Computer and communi-
cations security, 2003, pp. 251–261.

[80] Anukool Lakhina, Mark Crovella, and Christophe Diot, « Mining anomalies us-
ing traffic feature distributions », in: ACM SIGCOMM computer communication
review 35.4 (2005), pp. 217–228.

[81] Anukool Lakhina et al., « Structural analysis of network traffic flows », in: Pro-
ceedings of the joint international conference on Measurement and modeling of
computer systems, 2004, pp. 61–72.

125

BIBLIOGRAPHY

[82] Pavel Laskov et al., « Learning intrusion detection: supervised or unsupervised? »,
in: International Conference on Image Analysis and Processing, Springer, 2005,
pp. 50–57.

[83] Yann Le Cun and Françoise Fogelman-Soulié, « Modèles connexionnistes de l’apprentissage »,
in: Intellectica 2.1 (1987), pp. 114–143.

[84] JooHwa Lee and KeeHyun Park, « AE-CGAN Model based High Performance
Network Intrusion Detection System », in: Applied Sciences 9.20 (2019), p. 4221.

[85] Laetitia Leichtnam et al., « Forensic Analysis of Network Attacks: Restructuring
Security Events as Graphs and Identifying Strongly Connected Sub-graphs », in:
Workshop on Traffic Measurements for Cybersecurity (WTMC2020), 2020.

[86] Laetitia Leichtnam et al., « Heterogeneous Logs Graph Visualization and Cluster-
ing for Attack Traces Discovery », in: 2018 IEEE Symposium on Visualization for
Cyber Security (VizSec), IEEE, 2018.

[87] Laetitia Leichtnam et al., « Sec2graph: Network Attack Detection Based on Novelty
Detection on Graph Structured Data », in: International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, Springer, 2020, pp. 238–
258.

[88] Laetitia Leichtnam et al., « Starlord: Linked security data exploration in a 3d
graph », in: 2017 IEEE Symposium on Visualization for Cyber Security (VizSec),
IEEE, 2017, pp. 1–4.

[89] Yang Li and Li Guo, « An active learning based TCM-KNN algorithm for su-
pervised network intrusion detection », in: Computers & security 26.7-8 (2007),
pp. 459–467.

[90] Yinhui Li et al., « An efficient intrusion detection system based on support vec-
tor machines and gradually feature removal method », in: Expert Systems with
Applications 39.1 (2012), pp. 424–430.

[91] Zhou Li et al., « Finding the linchpins of the dark web: a study on topologically
dedicated hosts on malicious web infrastructures », in: 2013 IEEE Symposium on
Security and Privacy, IEEE, 2013, pp. 112–126.

126

BIBLIOGRAPHY

[92] Xiaojing Liao et al., « Acing the ioc game: Toward automatic discovery and anal-
ysis of open-source cyber threat intelligence », in: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016, pp. 755–
766.

[93] Yihua Liao and V Rao Vemuri, « Use of k-nearest neighbor classifier for intrusion
detection », in: Computers & security 21.5 (2002), pp. 439–448.

[94] Tao Liu et al., « Method for network anomaly detection based on Bayesian statis-
tical model with time slicing », in: 2008 7th World Congress on Intelligent Control
and Automation, IEEE, 2008, pp. 3359–3362.

[95] Yarden Livnat et al., « Visual correlation for situational awareness », in: IEEE
Symposium on Information Visualization, 2005. INFOVIS 2005. IEEE, 2005, pp. 95–
102.

[96] Shan Lu and Mieczyslaw M Kokar, « A situation assessment framework for cyber
security information relevance reasoning », in: 2015 18th International Conference
on Information Fusion (Fusion), IEEE, 2015, pp. 1459–1466.

[97] Matthew V Mahoney and Philip K Chan, PHAD: Packet header anomaly detection
for identifying hostile network traffic, tech. rep., 2001.

[98] David Mann, « An introduction to the common configuration enumeration (cce) »,
in: Technical Report, Department, Tech. Rep. (2008).

[99] David E Mann and Steven M Christey, « Towards a common enumeration of vul-
nerabilities », in: 2nd Workshop on Research with Security Vulnerability Databases,
Purdue University, West Lafayette, Indiana, 1999.

[100] Robert A Martin, « Making security measurable and manageable », in: MILCOM
2008-2008 IEEE Military Communications Conference, IEEE, 2008, pp. 1–9.

[101] Robert A Martin and Sean Barnum, « Common weakness enumeration (cwe) status
update », in: ACM SIGAda Ada Letters 28.1 (2008), pp. 88–91.

[102] Paul Maxwell, Elie Alhajjar, and Nathaniel D Bastian, « Intelligent Feature Engi-
neering for Cybersecurity », in: 2019 IEEE International Conference on Big Data
(Big Data), IEEE, 2019, pp. 5005–5011.

[103] Silvia Metelli, Nicholas Heard, et al., « On Bayesian new edge prediction and
anomaly detection in computer networks », in: The Annals of Applied Statistics
13.4 (2019), pp. 2586–2610.

127

BIBLIOGRAPHY

[104] Sadegh M Milajerdi et al., « HOLMES: real-time APT detection through correla-
tion of suspicious information flows », in: arXiv preprint arXiv:1810.01594 (2018).

[105] Erxue Min et al., « SU-IDS: A semi-supervised and unsupervised framework for
network intrusion detection », in: International Conference on Cloud Computing
and Security, Springer, 2018, pp. 322–334.

[106] Josiane Mothe, Karen Mkhitaryan, and Mariam Haroutunian, « Community de-
tection: Comparison of state of the art algorithms », in: 2017 Computer Science
and Information Technologies (CSIT), IEEE, 2017, pp. 125–129.

[107] Mark EJ Newman, « Fast algorithm for detecting community structure in net-
works », in: Physical review E 69.6 (2004), p. 066133.

[108] Steven Noel et al., « CyGraph: graph-based analytics and visualization for cyber-
security », in: Handbook of Statistics, vol. 35, Elsevier, 2016, pp. 117–167.

[109] OASIS, STIXv2.0, url: freetaxii.github.io.

[110] Iosif-Viorel Onut and Ali A Ghorbani, « A Feature Classification Scheme For Net-
work Intrusion Detection. », in: IJ Network Security 5.1 (2007), pp. 1–15.

[111] Cyril Onwubiko, « CoCoa: An Ontology for Cybersecurity Operations Centre Anal-
ysis Process », in: 2018 International Conference On Cyber Situational Awareness,
Data Analytics And Assessment (Cyber SA), IEEE, 2018, pp. 1–8.

[112] OTX Alienvault, url: https://otx.alienvault.com/.

[113] Mingdong Ou et al., « Asymmetric transitivity preserving graph embedding », in:
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, 2016, pp. 1105–1114.

[114] Vern Paxson, « Bro: a system for detecting network intruders in real-time », in:
Computer networks 31.23-24 (1999), pp. 2435–2463.

[115] Kexin Pei et al., « Hercule: Attack story reconstruction via community discov-
ery on correlated log graph », in: Proceedings of the 32Nd Annual Conference on
Computer Security Applications, ACM, 2016, pp. 583–595.

[116] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, « Deepwalk: Online learning of
social representations », in: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 701–710.

128

freetaxii.github.io
https://otx.alienvault.com/

BIBLIOGRAPHY

[117] Marco AF Pimentel et al., « A review of novelty detection », in: Signal Processing
99 (2014), pp. 215–249.

[118] R Pincus, « Barnett, V., and Lewis T.: Outliers in Statistical Data. J. Wiley &
Sons 1994, XVII. 582 pp.,£ 49.95 », in: Biometrical Journal 37.2 (1995), pp. 256–
256.

[119] Pascal Pons and Matthieu Latapy, « Computing communities in large networks
using random walks », in: International symposium on computer and information
sciences, Springer, 2005, pp. 284–293.

[120] Prelude, url: https://www.prelude-siem.com/.

[121] Ricardo S Puttini, Zakia Marrakchi, and Ludovic Mé, « A Bayesian Classification
Model for Real-Time Intrusion Detection », in: 22th International Workshop on
Bayesian Inference and Maximum Entropy Methods in Science and Engineering
(MAXENT’2002), 2002.

[122] Majjed Al-Qatf et al., « Deep learning approach combining sparse autoencoder
with SVM for network intrusion detection », in: IEEE Access 6 (2018), pp. 52843–
52856.

[123] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara, « Near linear time
algorithm to detect community structures in large-scale networks », in: Physical
review E 76.3 (2007), p. 036106.

[124] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo, « struc2vec:
Learning node representations from structural identity », in: Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2017, pp. 385–394.

[125] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, « " Why should I trust
you?" Explaining the predictions of any classifier », in: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining,
2016, pp. 1135–1144.

[126] Piazza Rich, Wunder John, and Jordan Bret, « STIX Version 2.0. Part 1: STIX
Core Concepts », in: OASIS Committee Specification (2017), url: http://docs.
oasisopen.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-
part1-stix-core.html.

129

https://www.prelude-siem.com/
http://docs.oasisopen.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html
http://docs.oasisopen.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html
http://docs.oasisopen.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html

BIBLIOGRAPHY

[127] Marko A Rodriguez, « The gremlin graph traversal machine and language (in-
vited talk) », in: Proceedings of the 15th Symposium on Database Programming
Languages, 2015, pp. 1–10.

[128] Ryan Anthony Rossi, Rong Zhou, and Nesreen Ahmed, « Deep inductive graph
representation learning », in: IEEE Transactions on Knowledge and Data Engi-
neering (2018).

[129] Martin Rosvall and Carl T Bergstrom, « Maps of random walks on complex net-
works reveal community structure », in: Proceedings of the National Academy of
Sciences 105.4 (2008), pp. 1118–1123.

[130] Karen Scarfone and Peter Mell, Guide to intrusion detection and prevention sys-
tems (IDPS), tech. rep., National Institute of Standards and Technology, 2012.

[131] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani, « Toward Gener-
ating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. »,
in: ICISSP, 2018, pp. 108–116.

[132] Sharp, Austin et al., JanusGraph, version 0.5.2, url: https://janusgraph.org/.

[133] Nino Shervashidze et al., « Weisfeiler-lehman graph kernels. », in: Journal of Ma-
chine Learning Research 12.9 (2011).

[134] Hossein Siadati, Bahador Saket, and Nasir Memon, « Detecting malicious logins
in enterprise networks using visualization », in: 2016 IEEE Symposium on Visual-
ization for Cyber Security (VizSec), IEEE, 2016, pp. 1–8.

[135] Dimitrios Sisiaridis and Olivier Markowitch, « Feature Extraction and Feature Se-
lection: Reducing Data Complexity With Apache Spark », in: International Jour-
nal of Network Security and its Security Applications (IJNSA), vol. 9, 6, 2017.

[136] Robin Sommer and Vern Paxson, « Outside the closed world: On using machine
learning for network intrusion detection », in: 2010 IEEE symposium on security
and privacy, IEEE, 2010, pp. 305–316.

[137] Stuart Staniford, James A Hoagland, and Joseph M McAlerney, « Practical auto-
mated detection of stealthy portscans », in: Journal of Computer Security 10.1-2
(2002), pp. 105–136.

[138] Gianluca Stringhini et al., « Marmite: spreading malicious file reputation through
download graphs », in: Proceedings of the 33rd Annual Computer Security Appli-
cations Conference, 2017, pp. 91–102.

130

https://janusgraph.org/

BIBLIOGRAPHY

[139] Blake E Strom et al., « Mitre att&ck: Design and philosophy », in:MITRE Product
MP (2018), pp. 18–0944.

[140] Hudan Studiawan, Christian Payne, and Ferdous Sohel, « Graph clustering and
anomaly detection of access control log for forensic purposes », in: Digital Investi-
gation 21 (2017), pp. 76–87.

[141] Nan Sun et al., « Data-driven cybersecurity incident prediction: A survey », in:
IEEE Communications Surveys & Tutorials 21.2 (2018), pp. 1744–1772.

[142] Zareen Syed et al., « UCO: A unified cybersecurity ontology », in: Workshops at
the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[143] Direction Interministérielle des Systèmes d’Information et de Communication (DISIC),
Référentiel Général d’Interopérabilité v2.0, 2016.

[144] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini, « Automatic graph
drawing and readability of diagrams », in: IEEE Transactions on Systems, Man,
and Cybernetics 18.1 (1988), pp. 61–79.

[145] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau, « Guilt by association:
large scale malware detection by mining file-relation graphs », in: Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2014, pp. 1524–1533.

[146] Vincent A Traag and Jeroen Bruggeman, « Community detection in networks with
positive and negative links », in: Physical Review E 80.3 (2009), p. 036115.

[147] Rakshit Trivedi et al., « Dyrep: Learning representations over dynamic graphs »,
in: International Conference on Learning Representations, 2019.

[148] Orestis Tsigkas, Olivier Thonnard, and Dimitrios Tzovaras, « Visual spam cam-
paigns analysis using abstract graphs representation », in: Proceedings of the ninth
international symposium on visualization for cyber security, 2012, pp. 64–71.

[149] Unity 3D, version 2018.2.0, url: https://unity.com/.

[150] Jake VanderPlas, Python data science handbook: Essential tools for working with
data, " O’Reilly Media, Inc.", 2016.

131

https://unity.com/

BIBLIOGRAPHY

[151] Kalyan Veeramachaneni et al., « AIˆ 2: training a big data machine to defend »,
in: 2016 IEEE 2nd International Conference on Big Data Security on Cloud (Big-
DataSecurity), IEEE International Conference on High Performance and Smart
Computing (HPSC), and IEEE International Conference on Intelligent Data and
Security (IDS), IEEE, 2016, pp. 49–54.

[152] Tatiana Von Landesberger et al., « Visual analysis of large graphs: state-of-the-art
and future research challenges », in: Computer graphics forum, vol. 30, 6, Wiley
Online Library, 2011, pp. 1719–1749.

[153] Cynthia Wagner et al., « Misp: The design and implementation of a collabora-
tive threat intelligence sharing platform », in: Proceedings of the 2016 ACM on
Workshop on Information Sharing and Collaborative Security, 2016, pp. 49–56.

[154] Daixin Wang, Peng Cui, and Wenwu Zhu, « Structural deep network embedding »,
in: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, 2016, pp. 1225–1234.

[155] Ke Wang and Salvatore J Stolfo, « Anomalous payload-based network intrusion
detection », in: International workshop on recent advances in intrusion detection,
Springer, 2004, pp. 203–222.

[156] Wei Wang et al., « Malware traffic classification using convolutional neural network
for representation learning », in: 2017 International Conference on Information
Networking (ICOIN), IEEE, 2017, pp. 712–717.

[157] Michelle Q Wang Baldonado, Allison Woodruff, and Allan Kuchinsky, « Guide-
lines for using multiple views in information visualization », in: Proceedings of the
working conference on Advanced visual interfaces, 2000, pp. 110–119.

[158] Charles V Wright, Fabian Monrose, and Gerald M Masson, « Using visual motifs
to classify encrypted traffic », in: Proceedings of the 3rd international workshop on
Visualization for computer security, 2006, pp. 41–50.

[159] Charles Xosanavongsa, Eric Totel, and Olivier Bettan, « Discovering Correlations:
A Formal Definition of Causal Dependency Among Heterogeneous Events », in:
2019 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE, 2019,
pp. 340–355.

[160] Keyulu Xu et al., « Representation learning on graphs with jumping knowledge
networks », in: arXiv preprint arXiv:1806.03536 (2018).

132

BIBLIOGRAPHY

[161] Yu Yan et al., « A Network Intrusion Detection Method Based on Stacked Au-
toencoder and LSTM », in: ICC 2020-2020 IEEE International Conference on
Communications (ICC), IEEE, 2020, pp. 1–6.

[162] Chuanlong Yin et al., « A deep learning approach for intrusion detection using
recurrent neural networks », in: Ieee Access 5 (2017), pp. 21954–21961.

[163] Xiaoxin Yin et al., « VisFlowConnect: netflow visualizations of link relationships
for security situational awareness », in: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, 2004, pp. 26–34.

[164] Daokun Zhang et al., « Network representation learning: A survey », in: IEEE
transactions on Big Data (2018).

[165] Jiong Zhang and Mohammad Zulkernine, « Anomaly based network intrusion de-
tection with unsupervised outlier detection », in: 2006 IEEE International Con-
ference on Communications, vol. 5, IEEE, 2006, pp. 2388–2393.

[166] Yong Zhang et al., « Network intrusion detection: Based on deep hierarchical net-
work and original flow data », in: IEEE Access 7 (2019), pp. 37004–37016.

[167] Li Zheng et al., « AddGraph: Anomaly Detection in Dynamic Graph Using Attention-
based Temporal GCN. », in: IJCAI, 2019, pp. 4419–4425.

133

Appendices

135

CybOX
HTTP_Network_Connection

Instance example

This example is extract from the CybOX Github project 3 and describes how an HTTP Net-
work Connection Instance is represented in the CybOX language.

<?xml version=" 1 .0 " encoding="UTF−8" ?>
<cybox:Observables xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "

xmlns:cybox=" h t tp : // docs . oa s i s−open . org / c t i /ns/cybox/ core−2"
xmlns:cyboxCommon=" ht tp : // docs . oa s i s−open . org / c t i /ns/cybox/common−2"
xmlns:AddressObj=" h t tp : // docs . oa s i s−open . org / c t i /ns/cybox/ ob j e c t s / address−2"
xmlns:PortObj=" h t tp : // docs . oa s i s−open . org / c t i /ns/cybox/ ob j e c t s /port−2"
xmlns:SocketAddressObj=
" h t tp : // docs . oa s i s−open . org / c t i /ns/cybox/ ob j e c t s / socket−address−1"
xmlns:NetworkConnectionObj=
" h t tp : // docs . oa s i s−open . org / c t i /ns/cybox/ ob j e c t s /network−connect ion−2"
xmlns:HTTPSessionObj=" h t tp : // docs . oa s i s−open . org / c t i /ns/cybox/ ob j e c t s /http−s e s s i on −2"
xmlns:example=" h t tp : // example . com/ "
xs i : s chemaLocat ion="

␣␣␣␣ h t tp : // docs . oa s i s−open . org / c t i /ns/cybox/ core−2␣ . . / core . xsd
␣␣␣␣ h t tp : // docs . oa s i s−open . org / c t i /ns/cybox/ ob j e c t s /network−connect ion−2␣ . . / ob j e c t s
␣␣␣␣/Network_Connection_Object . xsd "

cybox_major_version=" 2 " cybox_minor_version=" 1 " cybox_update_version=" 1 ">
<cybox:Observable id=" example:Observable−1b427720−98d7−4735−b125−754 c7e08 f285 ">

<cybox :Desc r ip t i on>
This Observable s p e c i f i e s an example in s t anc e o f a Network Connection Object
with an HTTP Ses s i on .

</ cybox :Desc r ip t i on>
<cybox:Object id=" example:Object−d1fdd983−530b−489 f−9ab8−ed3cb5212c35 ">

<cybox :Prope r t i e s x s i : t y p e=" NetworkConnectionObj:NetworkConnectionObjectType ">
<NetworkConnectionObj:Layer3_Protocol datatype=" s t r i n g ">

IPv4</NetworkConnectionObj:Layer3_Protocol>
<NetworkConnectionObj:Layer4_Protocol datatype=" s t r i n g ">

TCP</NetworkConnectionObj:Layer4_Protocol>
<NetworkConnectionObj:Layer7_Protocol datatype=" s t r i n g ">

HTTP</NetworkConnectionObj:Layer7_Protocol>
<NetworkConnectionObj:Source_Socket_Address>

<SocketAddressObj:IP_Address>

3. https://github.com/CybOXProject/schemas/blob/master/samples/CybOX_Network_
Connection_HTTP_Instance.xml

136

https://github.com/CybOXProject/schemas/blob/master/samples/CybOX_Network_Connection_HTTP_Instance.xml
https://github.com/CybOXProject/schemas/blob/master/samples/CybOX_Network_Connection_HTTP_Instance.xml

<AddressObj:Address_Value>192 . 1 68 . 1 . 1 5</AddressObj:Address_Value>
</SocketAddressObj:IP_Address>
<SocketAddressObj :Port>

<PortObj:Port_Value>5525</PortObj:Port_Value>
</SocketAddressObj :Port>

</NetworkConnectionObj:Source_Socket_Address>
<NetworkConnectionObj:Destination_Socket_Address>

<SocketAddressObj:IP_Address>
<AddressObj:Address_Value>198 . 49 . 123 . 10</AddressObj:Address_Value>

</SocketAddressObj:IP_Address>
<SocketAddressObj :Port>

<PortObj:Port_Value>80</PortObj:Port_Value>
</SocketAddressObj :Port>

</NetworkConnectionObj:Destination_Socket_Address>
<NetworkConnectionObj:Layer7_Connections>

<NetworkConnectionObj:HTTP_Session>
<HTTPSessionObj:HTTP_Request_Response>

<HTTPSessionObj:HTTP_Client_Request>
<HTTPSessionObj:HTTP_Request_Line>

<HTTPSessionObj:HTTP_Method datatype=" s t r i n g ">
GET</HTTPSessionObj:HTTP_Method>

<HTTPSessionObj:Version>
HTTP/1 .1</HTTPSessionObj:Version>

</HTTPSessionObj:HTTP_Request_Line>
<HTTPSessionObj:HTTP_Request_Header>

<HTTPSessionObj:Parsed_Header>
<HTTPSessionObj:Accept_Encoding>

gz ip</HTTPSessionObj:Accept_Encoding>
<HTTPSessionObj:Connection>

c l o s e</HTTPSessionObj:Connection>
</HTTPSessionObj:Parsed_Header>

</HTTPSessionObj:HTTP_Request_Header>
</HTTPSessionObj:HTTP_Client_Request>
<HTTPSessionObj:HTTP_Server_Response>

<HTTPSessionObj:HTTP_Status_Line>
<HTTPSessionObj:Version>

HTTP/1 .1</HTTPSessionObj:Version>
<HTTPSessionObj:Status_Code>

200</HTTPSessionObj:Status_Code>
<HTTPSessionObj:Reason_Phrase>

OK</HTTPSessionObj:Reason_Phrase>
</HTTPSessionObj:HTTP_Status_Line>
<HTTPSessionObj:HTTP_Response_Header>

<HTTPSessionObj:Parsed_Header>
<HTTPSessionObj:Server>

Apache</HTTPSessionObj:Server>
<HTTPSessionObj:Transfer_Encoding>

chunked</HTTPSessionObj:Transfer_Encoding>
</HTTPSessionObj:Parsed_Header>

</HTTPSessionObj:HTTP_Response_Header>
</HTTPSessionObj:HTTP_Server_Response>

</HTTPSessionObj:HTTP_Request_Response>

137

Chapter 6 – Appendix

</NetworkConnectionObj:HTTP_Session>
</NetworkConnectionObj:Layer7_Connections>

</ cybox :Prope r t i e s>
</ cybox:Object>

</ cybox:Observable>
</ cybox:Observables>

138

Titre : Détection et visualisation d’anomalies dans des événements réseaux hétérogènes : mo-
délisation des événements sous forme de graphes et détection de communautés et de nouveautés
grâce à l’apprentissage automatique

Mot clés : sécurité informatique, détection d’intrusion, analyse forensique, analyse de graphe,
visualisation

Résumé : L’objectif général de cette thèse est
d’évaluer l’intérêt des graphes dans le domaine
de l’analyse des données de sécurité.

Nous proposons une approche de bout en
bout composé d’un modèle unifié de données ré-
seau sous forme de graphes, d’un système de dé-
couverte de communauté, d’un système de dé-
tection d’anomalies non supervisé et d’une vi-
sualisation des données sous forme de graphes.

Le modèle unifié est obtenue en utilisant
des graphes de connaissance pour représenter
des journaux d’évènements hétérogènes ainsi
que du trafic réseau. La détection de commu-
nautés permet de sélectionner des sous-graphes

représentant des événements fortement liés à
une alerte ou à un IoC et qui sont donc perti-
nents pour l’analyse forensique. Notre système
de détection d’intrusion basé sur les anomalies
repose sur la détection de nouveauté par un au-
toencodeur et donne de très bons résultats sur
les jeux de données CICIDS 2017 et 2018. En-
fin, la visualisation immersive des données de
sécurité permet de mettre en évidence les rela-
tions entre les éléments de sécurité et les évé-
nements malveillants ou les IoCs. Cela donne
à l’analyste de sécurité un bon point de départ
pour explorer les données et reconstruire des
scénarii d’attaques globales.

Title: Detecting and visualizing anomalies in heterogeneous network events: modeling events
as graph structures and detecting communities and novelties with machine learning

Keywords: computer security, intrusion detection, forensic analysis, graph analysis, visualiza-
tion

Abstract: The general objective of this thesis
is to evaluate the interest of graph structures
in the field of security data analysis.

We propose an end-to-end approach con-
sisting in a unified view of the network data in
the form of graphs, a community discovery sys-
tem, an unsupervised anomaly detection sys-
tem, and a visualization of the data in the form
of graphs.

The unified view is obtained using knowl-
edge graphs to represent heterogeneous log files
and network traffics. Community detection al-

lows us to select sub-graphs representing events
that are strongly related to an alert or an IoC
and that are thus relevant for forensic analy-
sis. Our anomaly-based intrusion detection sys-
tem relies on novelty detection by an autoen-
coder and exhibits very good results on CICIDS
2017 and 2018 datasets. Finally, an immersive
visualization of security data allows highlight-
ing the relations between security elements and
malicious events or IOCs. This gives the secu-
rity analyst a good starting point to explore the
data and reconstruct global attack scenarii.

	Introduction
	Security Operation Centers
	SOC functionnalities
	Tools used in a SOC and relative challenges

	Research problem and hypothesis
	How to build a data model suited to security?
	How to detect intrusion?
	How to present results to an analyst?

	Contributions and thesis organization

	State of the art
	Introduction
	Representing and handling security data with graphs
	Structured models of cyber security information
	Automated analysis of graphs for security supervision

	Anomaly detection
	Features engineering
	Anomaly detection using machine learning

	Graph visualization for security
	Visualizing homogeneous graphs
	Visualizing heterogeneous graphs

	Conclusion

	Security related data representation model
	Introduction
	Building security object graphs from network events
	From a security event to a security object graph
	From heterogeneous log events to a graph of security objects
	Comparison with CybOX and STIX Models

	Model implementation
	Implementation and configuration setup
	Scalability

	Use case and security analysis examples
	Conclusion

	Community discovery
	Introduction
	Discovering communities in graphs for highlighting attack-related sub-graphs
	Definition of the community detection problem
	Common challenges of community detection
	Common methods used for community detection

	Implementation and experimental results
	Choice of the dataset
	Evaluation criteria
	Experimental results on attack detection relevance

	Discussion
	Relevance of the results according to the method
	Relevance of the results according to the type of attack
	Limits of the approach and prospects for improvement

	Conclusion

	Novelty detection
	Introduction
	Encoding the graph for machine learning
	From SO attribute values to categories
	Encoding attributes using categories.
	Encoding the structure of the graph.

	Novelty detection with an autoencoder
	Using an autoencoder for novelty detection
	Building the novelty detector

	Implementation and experimental results
	Experimental setup
	Comparison of the four strategies of sec2graph
	Comparison with other work applied to the CICIDS2017 dataset
	Comparison with other pieces of work applied to the CICIDS2018 dataset

	Conclusion

	Graph visualization and exploration
	Introduction
	Security objects graph exploration with 3D graph visualization
	The 3D graph visualization
	User interactivity
	Implementation as an immersive environment

	Analyzing visual clusters
	Identifying syntactic clusters
	Displaying syntactic clusters
	Implementation as a web application

	Conclusion

	Conclusion
	Contributions
	Perspectives

	Bibliography
	Appendices
	CybOX HTTP Network Connection Instance example

