30 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1,

JANUARY 2014

Fast Collision Detection
for Fracturing Rigid Bodies

Loeiz Glondu, Sara C. Schvartzman, Maud Marchal, Georges Dumont, and Miguel A. Otaduy

Abstract—In complex scenes with many objects, collision detection plays a key role in the simulation performance. This is particularly
true in fracture simulation for two main reasons. One is that fracture fragments tend to exhibit very intensive contact, and the other is
that collision detection data structures for new fragments need to be computed on the fly. In this paper, we present novel collision
detection algorithms and data structures for real-time simulation of fracturing rigid bodies. We build on a combination of well-known
efficient data structures, namely, distance fields and sphere trees, making our algorithm easy to integrate on existing simulation
engines. We propose novel methods to construct these data structures, such that they can be efficiently updated upon fracture events
and integrated in a simple yet effective self-adapting contact selection algorithm. Altogether, we drastically reduce the cost of both
collision detection and collision response. We have evaluated our global solution for collision detection on challenging scenarios,
achieving high frame rates suited for hard real-time applications such as video games or haptics. Our solution opens promising
perspectives for complex fracture simulations involving many dynamically created rigid objects.

Index Terms—Physical simulation, collision detection, fracture, rigid body

1 INTRODUCTION

FRACTURE is commonplace in crashes and explosions,
essential ingredients of action entertainment both in
feature films and in video games [1]. When objects fracture,
multiple object fragments collide and pile up, making
fracture simulations extremely collision intensive. The
recent advent of fast algorithms for fracture crack computa-
tion [2], [3], [4] has made collision handling a dominant cost
in fracture simulation.

The simulation of fracture imposes two major challenges
on collision handling. First, acceleration data structures for
collision detection need to be created and/or updated at
runtime, due to topology changes. Second, the newly
created crack surfaces arise in parallel close proximity,
which constitutes a worst case scenario for collision
detection and response, with many surface primitives in
contact, less chances for high-level culling, and no temporal
coherence. Offline animations may afford spikes in the
computational cost at fracture events, with the cost being
amortized over the length of the simulation. But in
interactive applications such as video games, simulation
must comply with a maximum computational budget per
time step, calling for efficient solutions at all simulation
frames, particularly at fracture events.

In this paper, we present an efficient solution for
collision detection among stiff objects undergoing brittle

e L. Glondu, M. Marchal, and G. Dumont are with IRISA/Inria, Campus de
Beaulieu, Rennes Cédex 35042, France.

o S.C. Schvartzman and M.A. Otaduy are with URJC Madrid, Universidad
Rey Juan Carlos, Edf. Ampl. Rectorado, D-0052, ¢/Tulipan s/n, E-28933
Mostoles, Spain.

Manuscript received 8 Oct. 2012; revised 6 Feb. 2013; accepted 22 June 2013;
published online 3 July 2013.

Recommended for acceptance by |. Lee and P. Kry.

For information on obtaining reprints of this article, please send e-mail to:
tucg@computer.org, and reference IEEECS Log Number
TVCGSI-2012-10-0223.

Digital Object Identifier no. 10.1109/TVCG.2013.98.

1077-2626/14/$31.00 © 2014 IEEE

fracture. A first major observation for our solution is that,
with very stiff objects, deformations are visually impercep-
tible; therefore, for collision handling purposes, the objects
can be treated as rigid bodies between fracture events.
Hence, our approach to collision detection, outlined in
Section 3, relies on well-known efficient acceleration data
structures for rigid body contact, namely distance fields and
sphere trees.

However, distance fields and sphere trees typically rely
as well on constant topology, and suffer a heavy preproces-
sing cost. A second major observation for our solution is
that brittle fracture can be considered to be instantaneous
[5]; therefore, collision detection data structures may be
updated only at fracture events. In our work, we propose
novel algorithms for fast reconfigurable distance fields and
sphere trees. In Section 4, we present a novel method to
compute an approximate interior distance field for fracture
fragments. Our method exploits features of fracture simula-
tion and collision response algorithms to optimize its
storage and computational cost. In Section 6, we present
an augmented sphere tree data structure, well suited for fast
updates under fracture events.

The third major observation for our solution is that, at
fracture events, the majority of the contacting primitives
defines redundant contact constraints. As shown in
Section 5, we propose a design of the sphere tree that
lays the foundation for a simple self-adapting collision
detection algorithm at runtime. It is executed as a part of
hierarchical collision detection, not as a postprocess, thus
enabling high-level pruning, and reducing the cost of both
collision detection and response. Even though we apply
our adaptive sphere tree in the context of fracture
simulations, it is also applicable to more general simula-
tions involving either rigid or deformable bodies.

In Section 7, we evaluate our data structures and
algorithms on several challenging fracture simulations,

Published by the IEEE Computer Society

GLONDU ET AL.: FAST COLLISION DETECTION FOR FRACTURING RIGID BODIES 31

Fig. 1. Smashing plates. The user drops balls in real-time to smash the plates, and at the end of the simulation the scene consists of more than 45K
triangles. The complete simulation runs at 7.4 ms per time step, on average, with a maximum of 13.2 ms.

demonstrating very high simulation frame rates, suited for
hard real-time applications such as video games, as shown
in Fig. 1.

2 RELATED WORK

We focus our discussion of related work on the two main
data structures used in our method, namely, distance fields
and sphere trees, on adaptive collision detection methods,
and on collision detection techniques particularly designed
for fracture simulations.

Distance fields store in a grid distances to the surface of
an object, and possibly the distance gradient. For rigid
bodies, distance fields may be precomputed; hence, the
computation of penetration depth of a point inside a rigid
body becomes trivial [6]. Adaptive distance fields [7] store
distances in an octree to reduce storage requirements. In
some applications, it is even sufficient to store informa-
tion only near the surface of the object [8]. Distance fields
have also been used for deformable bodies by fast
recomputation [9] or by approximating finite-element
[10] or modal deformations [11]. In various applications
of computer animation, distance fields have been ap-
proximated using front propagation algorithms [12] or
graph-based distances [13].

Sphere trees are one of the classic types of bounding
volume hierarchies for fast pruning in collision detection
[14]. Fast culling is possible thanks to the sphere trees,
while the adaptive distance field is used for accurate
penetration depth queries. Weller and Zachmann [15]
designed inner sphere trees for the fast computation of
penetration volumes.

Adaptive and time-critical collision detection. One interest-
ing use of sphere trees is time-critical collision detection
[16]. The output of time-critical collision detection was later
optimized by considering also collision response and
adding adaptivity based on visual perception metrics [17].
Other ways to govern adaptivity in time-critical collision
detection include error control based on potential intersec-
tion volumes [18]. With contact levels of detail [19],
adaptive collision detection is extended to arbitrary types
of bounding volumes, contact points are computed using
surface approximations at each level, and various adaptiv-
ity criteria can be considered. Yet a different approach to
limit the cost of hierarchical collision detection in an
adaptive manner is stochastic sampling [20]. Kaufman
et al. [21] augmented adaptive distance fields with sphere
trees to design an adaptive collision detection algorithm
with guaranteed error bounds. Barbi¢ and James [11]

performed time-critical collision detection based on
sphere-tree versus distance field queries.

Collision detection for fracture. Acceleration data structures
for collision detection need to be updated or recomputed at
fracture events, because precomputed distances or bounds
are no longer valid or tight, and new surfaces need to be
considered. Larsson and Akenine-Moller [22] introduced
the concept of selective restructuring of bounding volume
hierarchies, according to fitting-quality metrics. Otaduy
et al. [23] applied local restructuring operations to limit
updates in progressive fracture. Recently, Heo et al. [24]
have presented an algorithm that finds a good compromise
between restructuring and fast recomputation.

All these approaches suffer two major limitations for
simulations of brittle fracture. First, the quality of bounding
volume hierarchies degrades immediately under brittle
fracture, and full recomputations are needed. As a result,
large computational spikes increase the simulation cost at
fracture events. Such spikes can be amortized in offline
simulations, but not in hard real-time applications such as
video games.

Second, earlier research works on collision detection for
fracture simulation [22], [23], [24] have typically focused on
the problem of surface intersection, which unfortunately
does not address the needs of collision response in rigid
body engines. Robust and efficient rigid body engines in the
video games and feature film industry rely on velocity level
constraint-based solvers followed by stabilization or drift
correction [25], [26]. These solvers need contact information
in the form of penetrating points, distances, and directions,
and our collision detection algorithm satisfies these needs.

In an earlier version of our work [27], we presented an
algorithm for collision detection in fracture simulations that
allowed fast update of acceleration data structures at
fracture events, as well as adaptive contact selection for
efficient constraint-based collision response. The fast
update of data structures was based partly on a sphere
tree that is augmented with interior nodes, hence such
nodes do not need to be introduced dynamically when new
fracture surfaces are exposed. However, the culling
efficiency of the tree is reduced after fracture, due to
notable imbalance. In this work, we present a fast
restructuring of the fracturable sphere tree that largely
improves culling efficiency. The contact selection approach
in our earlier work was successful at reducing the cost of
collision detection and response in comparison to a full
contact sampling, but the computational overheads at
fracture events were anyway noticeable. In this work, we

32 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1,

present a maximally distant node traversal algorithm that
leads to a more regular distribution of contact points, and
therefore, the possibility to execute reliable collision
response with fewer contact constraints.

Complementary to our approach, collision detection for
fracture simulations can also benefit in several ways from
fast parallel algorithms executed on graphics processors: for
fast culling in piles of objects [28], collision detection
queries with no need for preprocessing [29], or fast
computation of data structures, either distance fields [9]
or bounding volume hierarchies [30]. We have designed
methods that achieve high performance by reducing
computations (i.e., they are less computationally demand-
ing than previous methods), and could also benefit from
parallel implementations.

3 OVERVIEW OF THE COLLISION DETECTION
ALGORITHM

We execute collision detection tests between pairs of objects
A and B, which may be either original unfractured objects
or fragments resulting from fracture events. Without loss of
generality, let us refer to them as fragments. We augment
each fragment A with two data structures for collision
detection: a distance field D(A) and a sphere tree S(A).
Section 4 describes our fragment distance field, its construc-
tion, and its update. Section 5 describes our novel adaptive
sphere tree and its construction. Finally, Section 6 describes
how we augment the sphere tree to allow fast updates
under fracture, making it a fracturable adaptive sphere tree.

When broad-phase collision culling returns the pair
(A, B) as potentially colliding, we query both S(A) against
D(B) and S(B) against D(A). The result of a query
(S(A), D(B)) is a set of contact constraints C, each defined
by a tuple (¢, d, n). ¢ € A is a contact point, d is the closest
distance from c to the surface of B, and n is the contact
normal. If ¢ is inside B, d is negative and represents the
penetration depth. After collision detection, we feed the
complete set of contact constraints to a constraint-based
contact solver with a velocity-level LCP (with friction), plus
constraint drift correction. In our examples, we have used
the off-the-shelf contact solver built in Havok Physics.

In our algorithm, a query (S(A), D(B)) builds on three
elementary queries involving nodes of the sphere tree S(A).
Each node is represented by its center point p € A and a
radius r. Then, the three elementary queries are as follows:

e insideTest(p, D(B)):
inside or outside B.

e penetration(p, D(B)): when p is inside, it computes
the penetration depth from p to the surface of B, as
well as a penetration direction n.

e sphereTest(p,r, D(B)): when p is outside, it per-
forms a conservative test for intersection between B
and the sphere of radius r centered at p.

it determines whether p is

These three elementary queries will be described in detail in
Section 4. In all our descriptions, we assume that the point p
has been transformed to the local reference system of
fragment B.

Our collision detection algorithm, outlined in Algorithm 1,
traverses a sphere tree S(A) in a breadth-first manner, and

JANUARY 2014

prunes branches that are completely outside the other
fragment B. Pruning is efficiently executed by comparing
the radius of a sphere and the distance from its center to the
surface of B. The algorithm can be easily modified to allow for
a contact tolerance e. A contact constraint is added to C'if the
distance is shorter than ¢, and the query descends to the
children if the distance is shorter than r — e.

Algorithm 1. Query sphere tree S against distance field D.
: INPUT: S, D

2: OUTPUT: Set of contacts C
3: Q) = {root(S)}

4: while done = false do
5. while Q; # 0 do
6:
7
8
9

—_

node < pop_front(Q;)
inside «— insideTest(node.p, D)
if inside then
: (d, n) < penetration(node.p, D)
10: C = C U (node.p, d, n)

11: if sufficientContacts(C) then
12: STOP

13: end if

14: else

15: intersects — sphereTest(node.p, r, D)
16: end if

17: if inside OR intersects then
18: Qy = Qs U nextChild(node)
19: if nextChild(node) # 0 then
20: 9, = Q1 Unode

21: end if

22: end if

23: end while

24: if Q; # () then
25: done «— true
26: end if

27: swap(Q1, Q2)
28: end while

We augment the basic collision detection algorithm with
self-adapting contact selection. As described in Section 5, we
construct the sphere tree in a way that allows adaptive
contact selection by simple breadth-first tree traversal,
defining a contact constraint whenever we encounter a
sphere whose center is inside fragment B, until a sufficient
number of constraints is reached.

To optimize the efficiency of contact selection, we
traverse the nodes of the sphere tree in a maximally distant
order. This traversal order is achieved by appropriately
ordering the nodes of the sphere tree when it is built, and
populating the traversal queue by alternating children of
colliding nodes. In Algorithm 1, we use two traversal
queues, @1 and @)», which are swapped after each level of
the sphere tree is processed. Full details about our self-
adapting contact selection are given in Section 5.

4 FRAGMENT DISTANCE FIELD

Given a volumetric meshing of an object A, computed as a
preprocess, we propose a fragment distance field data
structure that is efficiently stored and updated even upon

GLONDU ET AL.: FAST COLLISION DETECTION FOR FRACTURING RIGID BODIES 33

.-‘\l‘ r
|
\

/ 0

Fig. 2. lllustration of the front propagation algorithm for interior distance
field computation.

multiple fractures of the object. This data structure stores an
approximate interior distance field of all fragments created
by the fractures, using a precomputed volumetric mesh,
without any remeshing. Moreover, we exploit the connec-
tivity of the mesh to compute approximate distances in a
very fast manner using a front propagation approach.

In this section, we first describe the distance field data
structure and its runtime update, and then we describe how
it is used to answer the three elementary queries outlined in
the previous section.

4.1 Mesh-Based Interior Distance

Our distance field data structure is motivated by features of
fracture simulation algorithms. First, with very stiff objects,
the deformations are visually imperceptible, and distances
may only be updated at fracture events. Second, no energy
is lost during brittle fracture, and the resulting fragments
define an exact partition of the original object. Therefore,
each point of the original object needs to store only one
interior distance value even after multiple fractures. And
third, popular approaches for fracture simulation use a
volumetric mesh to compute an elastic deformation field
and guide the propagation of crack surfaces [5], [31]. The
virtual node algorithm and subsequent adaptations [3], [4],
[32] limit the resolution of newly created fragments, forcing
them to include one node of the original mesh. We exploit
this feature and store one interior distance value at each
node of the original volumetric mesh.

In our implementation, we have used a tetrahedral mesh
as volumetric mesh for storing the fragment distance field.
Specifically, each node of the mesh stores:

e franidentifier of the fragment that contains the node.
e d: a value that approximates the shortest distance to
the surface of fragment f.
e n:a unit vector that approximates the direction from
the node to the closest surface of f.
As a preprocess, we initialize the nodal information using
an exact interior distance field.

In addition to nodal information, tetrahedra that are
intersected by crack surfaces store exact local representa-
tions of those crack surfaces. Following the virtual node
approach, each tetrahedral edge may be cut at most once,
therefore, the storage requirements are limited to six
plane equations.

4.2 Distance Updates upon Fracture

After each fracture event, we locally update the fragment
distance field where needed, following a front propagation

-

Fig. 3. From left to right: interior distance field of a 2D object, distance
fields of its four fragments after fracture, and our approximate distance
fields computed using a fast propagation method.

.

approach. The runtime computation of the exact distance
field is computationally prohibitive, but we propose a fast
approximation that fulfills desired properties. It is impor-
tant to remark that the interior distance of a fragment is used
in the computation of penetration depth and contact normal
in the collision detection Algorithm 1. The amount of
penetration depth is used by the drift correction algorithm
during collision response, and the contact normal is used for
the definition of nonpenetration contact constraints. Dis-
tances need to be accurate close to the surface of an object,
grow monotonically in the interior, and locally approximate
euclidean distance. Normal directions, on the other hand,
must point outward of the object, and should vary smoothly
to avoid competing contact constraints for nearby points. It
turns out that the algorithm for consistent penetration depth
computation of Heidelberger et al. [12] fulfills exactly these
properties; hence, we have adapted this algorithm for
interior distance field approximation.

Next, we summarize the application of Heidelberger’s
algorithm to our problem. When an object A suffers a
fracture, we first visit all tetrahedra intersected by the
newly created crack surfaces, and initialize distance field
information at their nodes. This implies assigning a
fragment identifier f, and computing a distance d and a
direction n, based on the exact surface information stored at
the tetrahedra. For each fragment, we initialize a front with
the visited nodes. Then, we iterate front propagation steps
on the graph defined by tetrahedral edges, until no
distances are reduced. Fig. 2 illustrates the front propaga-
tion inside a fragment.

If the front propagation reaches a node at position p in
step i+ 1, we compute a distance d to the surface as an
average propagation of distances from its neighbors reached
in step ¢ (denoted as N;(p)), in the following manner:

2 jeNi(p) w]'<d(Pj) + n(Pj)T(Pj -p)) .

d =
2 jeNi(p) Wi

1)

Following Heidelberger et al., we use as neighbor weights
wj = 1/[|p; — p|l°. If the distance d is shorter than the
current value stored at p, we update the distance and add p
to the front at step ¢ + 1. We also update the direction at p
as the weighted average direction of neighbors reached in
step i

n=) wn(p), (2)
JENi(p)

followed by a normalization step.
Fig. 3 shows an accurate interior distance field for an
object A, the accurate distance fields of its fragments after

34 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1,

fracture, and our approximate distance fields. The image
illustrates the monotonic growth of distances inside the
fragments. Our distance field approximation does not
require high-quality tetrahedral meshes in practice. In
our examples, we used TetGen for mesh generation,
with maximum radius-edge ratio between 1 and 2 and
interior edges shorter than twice the length of the longest
surface edge.

Even though we have used tetrahedral meshes, our data
structure could be extended to other settings, such as
hexahedral meshes or even meshless methods. The mesh is
used in two ways: 1) Its edges define a graph for the
propagation of distances; and 2) distances can be inter-
polated inside mesh elements. On hexahedral meshes, the
graph may be constructed using the edges of the mesh or
adding other connections, and interpolation can also be
defined inside mesh elements. On meshless methods, a
graph may be constructed using neighboring particle
information which is easily updated upon fracture events
[13], and interpolation can be defined based on neighboring
nodes [33].

4.3 Inside-Outside Query: InsideTest(p, D(f))

As a preprocess, we build a k-d tree with the tetrahedra of
the mesh. To decide whether a point p is inside a fragment
f, we first use the k-d tree to retrieve the tetrahedron that
encloses p. If all nodes of the tetrahedron are in the same
fragment, the query is trivially answered. If only some
nodes are in fragment f, we use the exact local
representation of the crack surfaces to answer the inside-
outside query.

4.4 Penetration Depth Query: Penetration(p, D(f))

If the tetrahedron containing a point p is intersected by
crack surfaces, we use the exact local surface information to
compute the penetration depth and direction to the surface
of fragment f. If the tetrahedron is completely inside the
fragment, we use the fragment distance field. In particular,
we use as neighbors N;(p) the four nodes of the tetrahedron,
apply (1) to compute the distance to the surface of f, and (2)
to compute the penetration direction.

Close to original surfaces of the object, where fracture
does not modify distances, it is possible to obtain more
accurate penetration information in a simple manner. As a
preprocess, we compute a distance field on a dense regular
grid. This regular-grid distance field is used for the
initialization of the fragment distance field at nodal
positions, but we also query it at runtime. We simply use
the minimum of the distances returned by the (precom-
puted) regular-grid distance field and the (dynamically
updated) fragment distance field.

4.5 Sphere Intersection Query:
SphereTest(p, r, D(f))

The fragment distance field stores only interior distance
information for the fragments. When the query point p is
outside fragment f, the fragment distance field provides the
distance d to the surface of some other fragment. This
distance d is a lower estimate of the distance to f, and can be
used for culling in Algorithm 1 if it is larger than the radius
r of the sphere. To handle far fragments, we use the largest
between d and the distance to a bounding box of fragment f.

JANUARY 2014

The procedure described above performs well in most
cases, but fails for large nonconvex fragments surrounded
by small fragments, returning largely underestimated
distances that produce little culling. We provide a less
conservative solution for such situations. As a preprocess,
we construct a multilevel grid on every object, and register
pointers from the tetrahedra to their occupied cells. Every
grid cell stores a bit mask indicating whether it contains
each and every fracture fragment. Upon a fracture event, we
traverse the tetrahedra of new fragments, mark the bit
masks of their occupied cells, and then we perform a
bottom-up update of the multilevel grid by simple logical
AND operations. To test a sphere for intersection, we query
the grid level with cell size immediately larger than 2 7. The
sphere can be culled if none of the eight cells joining at the
grid point closest to p contains fragment f.

5 ADAPTIVE SPHERE TREE

In this section, we introduce a sphere tree data structure
that is suitable for adaptive collision detection. Our major
goal was to reduce the cost of both collision detection and
response in fracture simulations, in particular at collision-
intensive fracture events, but our adaptive sphere tree is
applicable also to more general simulations involving either
rigid or deformable bodies. We achieve effective adaptivity
thanks to a maximum-distance ordering of points, applied at
two stages: at the construction of the tree, and during tree
traversal. As a result, we propose a self-adapting collision
detection algorithm that is easily integrated in typical
hierarchical collision detection.

5.1 Ordering and Construction of the Sphere Tree

We build a sphere tree on a set of points P = {p;}
representing an object A. In this section, we assume that
P is formed by the vertices in the surface of A, but in
Section 6 we augment P with interior points to create a
fracturable sphere tree.

Given m points visited as a part of a collision query,
adaptive collision detection will be effective if the m points
provide a uniform sampling of the surface of the object, for
any value of m. Based on this observation, to construct the
sphere tree we insert the points in P in an order that
maintains a close-to-uniform sampling after every inser-
tion. Specifically, we insert points following a maximum-
distance ordering. During a collision query, described in
detail in the next sections, we traverse the points in the
same order as they are inserted.

We initialize an ordered list Ly with the two furthest
points in P. Then, given the ordered list with m points,
L,,, we append the point that is furthest from its closest
point in Ly, ie., Ly = (L, p*), with p* = arg maxpi¢p,
minyiep, |P; — pjj- Given the full ordered list, level [of a
sphere tree, with 2! nodes, is trivially constructed by
selecting the first 2! points in the list. Then, level [+1 is
constructed using those same 2! nodes and the following
2! nodes in the list. We set as parent of a node in level
l+1 its closest node in level [. This heuristic groups
nodes based on proximity and increases the chances for
pruning during runtime queries. Fig. 4 shows a 2D
example with the maximum-distance ordering and the

GLONDU ET AL.: FAST COLLISION DETECTION FOR FRACTURING RIGID BODIES 35

1536 247

Fig. 4. A 2D polygon with surface vertices and interior nodes (left) and its
sphere tree (right). The points are numbered according to maximum-
distance ordering and colored according to their insertion level.

tree construction. The sphere tree construction is a
preprocess, and we have followed an unoptimized O(n?)
implementation based on pairwise distance computation,
but accelerations are possible.

Our maximum-distance ordering heuristic does not
guarantee uniform sampling. In our implementation, we
used euclidean distance for the ordering, and results could
be improved using geodesic distance. In addition, uniform
sampling is not a sufficient condition for good adaptivity.
The sampling could be improved by, for example, favoring
convex features. Barbi¢ and James [11] present a relaxation
method for close-to-uniform sampling. However, they
maintain good sampling on full levels of the tree, not after
every individual insertion.

Each node of the tree must store the sphere center (i.e.,
the point position p) and radius. For a node with center at p,
we precompute the radius as the distance to its furthest
descendant. Each point may be present at multiple levels in
the tree (but with different radii). We define a contact
constraint only the first time the in Algorithm 1, and we
point is queried cache its inside-outside status for sub-
sequent queries down the tree. Note that choosing the point
p as the center of the sphere does not yield optimally tight
spheres. We tried instead approaches that produce tighter
spheres with better culling, but the overall query times were
worse as we could not exploit caching.

5.2 Self-Adapting Collision Detection

The fragment distance field and the fracturable sphere tree
enable fast queries and fast data structure updates upon
fracture. However, in situations with many penetrating
points or with parallel surfaces in close proximity, the cost
of collision detection is inevitably high, and collision
response is affected by the large number of contacts. We
have designed a self-adapting collision detection algorithm
that produces a reduced set of contact constraints. Our
algorithm relies on a velocity-level constraint-based contact
solver plus drift correction, the gold standard solution in
rigid body engines in video games. Under effective drift
correction, our algorithm guarantees that final resting
configurations are free of penetrations.

During breadth-first traversal of the sphere tree, we may
output contact constraints high in the hierarchy as outlined
in Algorithm 1. Thanks to the good sampling provided by
the maximum-distance ordering, a few of the first encoun-
tered contacts are probably sufficient for the velocity-level
constraint-based solver, while further contacts become

Fig. 5. Rolling plate on a transparent ground, with contacts output by
(left) our self-adapting collision detection (up to 6), and (right) full
collision detection (up to 128).

redundant. We initialize a collision query between two
fragments f; and f; by setting a maximum number of
contacts m (eight in our experiments), and if this number is
reached we simply interrupt the query. Drift correction
quickly resolves the contacts that have been detected, but if
this number is m, then other contacts may have been
missed. In that case, we increment m «— m+1, and
continue the sphere tree traversal with a negative tolerance
—e (in our experiments € = 0.2% of the object radius), i.e.,
we search for contacts that penetrate further than e
Effectively, with this approach collision detection self-
adapts until the number of contacts guarantees nonpene-
tration up to a tolerance € at resting configurations. Fig. 5
compares the number of contacts for a 5,392-triangle plate
rolling on a transparent ground with our approach versus
full collision detection. Self-adapting collision detection
requires at most six contacts, while full collision detection
outputs up to 128 contacts. In self-adapting collision
detection, adaptivity could also be guided by error metrics
of collision response, but existing approaches do not
address the complex interactions of constraint-based
collision response.

We found that, to be effective at fracture events, self-
adapting collision detection requires a small positive
detection tolerance ¢, i.e., we output contacts closer than
a small distance e. The reason is that the tree traversal
stops only when m contacts are output, and parallel
surfaces just about to touch would allow little culling but
produce no contacts.

5.3 Maximum-Distance Breadth-First Traversal

In a regular breadth-first collision query, nodes on one level
of the sphere tree are processed before visiting any node in
the next level. This traversal strategy is typically imple-
mented using a queue [27]. When a node collides, its
children are pushed into the queue, and the query
continues by popping the first node in the queue. Sibling
nodes are close-by in space; hence, the regular breadth-first
traversal does not produce an appropriate visit order for
efficient self-adapting collision detection on a given level of
the tree. Here, we present a new traversal strategy that
leads to efficient self-adapting collision detection both
across levels of the tree and on a given level of the tree.
As shown in Fig. 6, it leads to robust collision response with
fewer contacts.

Our traversal strategy is based on the heuristic that
nodes with different parents are more likely to be distant.
Therefore, we push into the breadth-first traversal queue
nodes with different parents first, and then we push their
siblings. As shown in Algorithm 1, our strategy is
implemented, in practice, by storing two different queues:
a queue of nodes being visited at the current level, ;, and a

36 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1,

-

Fig. 6. Blocks on a transparent ground, showing the distribution of
contact points under self-adapting collision detection. Left. with naive
restructuring and breadth-first traversal [27], many contacts are required
to ensure a robust response, due to their nonuniform distribution. Right:
with our tree restructuring algorithm and maximum-distance breadth-first
traversal, the response is robust with fewer contacts, thanks to their
improved distribution.

queue of nodes to be visited at the next level, Q. In
addition, for each node, we maintain an identifier of the last
child pushed into Q)2. When a node n collides, we push its
next child into (),, and in case it has additional children, we
push n itself into @;. In this way, n will be tested again after
other nodes are pushed into ()3, and its children will be
pushed far apart.

6 FRACTURABLE SPHERE TREE

When a body fractures, new collision detection data
structures must be created for the resulting fragments, and
these data structures must account for both original surfaces
and new fracture surfaces. We propose to leverage the
volumetric mesh used by most fracture algorithms to build a
fracturable sphere tree which can be efficiently updated. In
addition, we propose to create sphere trees for the fracture
fragments by quickly splitting and restructuring the original
tree, while optimizing the maximum-distance ordering for
efficient self-adapting collision detection.

6.1 Construction of the Tree

New fracture surfaces pass through the interior of the
original object; therefore, we propose to augment the
sphere tree with nodes of the volumetric mesh used by
fracture algorithms. Specifically, we augment the set of
points P described in Section 5.1 with the nodes of the
volumetric mesh.

As shown in the example in Fig. 4, the maximum-
distance ordering naturally places interior points low in the
sphere tree. As a result, prior to fracture, interior parts are
easily culled and produce almost no overhead, thanks to
self-adapting collision detection. After fracture, on the
other hand, interior parts are exposed with minor mod-
ifications to the sphere tree, and quickly accessed during
tree traversal.

6.2 Tree Splitting and Restructuring
At a fracture event, we create a sphere tree for each
resulting fragment. We decompose this process into three
tasks: splitting the original tree, restructuring each frag-
ment'’s tree, and adding new points.

To split the original tree, we first tag each point in P with
an identifier of the fragment it belongs to. Tree nodes whose
children belong to different fragments are marked as

JANUARY 2014

Fig. 7. Tree splitting, with colors of nodes indicating fragment identifiers.
Left: The marked node is a splitting node, because its children belong to
different fragments. Right: Two new copies of the splitting node (marked
with “?”) are created, and the splitting propagates upward. The new
nodes will receive representative points as part of tree restructuring.

splitting nodes, and indicate where the tree should be split,
as shown in Fig. 7. Then, we replicate each splitting node as
many times as the number of fragments represented in its
children, and connect each child with the copy of the
splitting node in the same fragment.

We mark and replicate splitting nodes following a
bottom-up pass of the fracturable sphere tree, because split
operations may propagate upward in the tree. We also
remove nodes with only one child. At the end of the
splitting process, the original tree is naturally split into as
many copies as fracture fragments.

After a tree is split, a node n, copied from a splitting
node n' with representative point p’, lacks its own
representative point p. We propose a tree restructuring
approach that searches in the subtree rooted at » for a point
that favors the maximum-distance ordering described in
Section 5.1. In practice, we do this by selecting the point p in
the subtree of n that is closest to p’. Assuming that p is
found at node n,, p is set as the representative point for all
nodes in the branch from n to n,.

6.3 Addition of New Surface Points

When an object is fractured, we also add new surface points
to the sphere trees, to appropriately sample the newly
created fracture surfaces. In our implementation, we add
two new points, each on a different fragment, for each edge
of the volumetric mesh that is cut by the fracture surfaces.

To insert each new surface point p in the sphere tree, we
favor again the maximum-distance ordering. The insertion
requires picking a parent point p, and a level in the
hierarchy, because p, may be present at multiple levels.
Recall that p is the result of cutting an edge of the
volumetric mesh; therefore, the edge-point in the same
fragment as p is by construction close to it, and constitutes a
good choice as parent p,.

The strategy to restructure the sphere tree and add new
surface points in our previous work [27] is oblivious of the
maximum-distance ordering. As a result, our novel ap-
proach leads to much more efficient self-adapting contact
selection, as shown in Fig. 6 and further discussed in the
next section.

To choose the level of insertion, note that, due to the
maximum-distance ordering, each level of a sphere tree can
be regarded as a level in a multiresolution representation of
an object. Conceptually, we wish to insert p at the
appropriate level of detail. The size of sphere bounds is a
good indicator of the resolution of each level of detail;
therefore, we choose to insert p as a child of p, at the level

GLONDU ET AL.: FAST COLLISION DETECTION FOR FRACTURING RIGID BODIES 37

d>r

Fig. 8. Addition of a point into the sphere tree. A new point p, in blue, is
added as a child of its adjacent point p,, in green, at the tree level where
the sphere radius r is just larger than the distance d between p and p,,.

where the radius of the sphere bound, r, is just larger than
the distance ||p — p,||. This heuristic, depicted in Fig. 8,
inserts p at the lowest level where there is some other
descendant of p,, farther from p, than p. If such a level does
not exist, we simply insert p as a child of the highest
instance of p,, and we update sphere radii bottom-up.

7 EXPERIMENTS AND RESULTS

We evaluated our approach on five scenarios:

1. a piggy bank dropped on the ground (see Fig. 10),
twenty-seven bunnies dropped at different times
(see Fig. 13),
3. thirty-two bricks crashed against the ground (see
Fig. 14),
4. an interactive scenario where the user drops balls on
four plates placed on a shelf (see Fig. 1), and
5. another interactive scenario where the user manip-
ulates and fractures five bunnies (see Fig. 9).
The sizes of the surface and volumetric meshes of the
different objects are summarized in Table 1. Our collision
detection algorithm has been integrated with the rigid body
engine of Havok, and we have used a fast fracture
simulation method based on modal analysis [4]. The
“freezing” utility of Havok Physics was deactivated in all
experiments, for better analysis. All experiments were
executed on a 3.4-GHz Intel i7-2600 processor with 8 GB
of RAM, using only one core.

7.1 Overall Performance Analysis

Tables 2 and 3 report various simulation statistics and
timings for the five benchmarks. The “piggy bank,”

Fig. 9. The user manipulates bunnies interactively with the mouse,
producing fractures and collisions. The complete simulation runs at 2 ms
per time step on average, with a maximum of 10 ms.

Fig. 10. Piggy bank used for comparisons and analysis.

“bricks,” “plates,” and “interactive bunnies” benchmarks
are all real-time, including dynamics simulation, fracture
simulation, collision detection, and collision response. The
“drop bunnies” scenario, on the other hand, was executed
with a subframe time step (5 ms) to illustrate robust contact
handling with small fragments and high impact velocities.

Fig. 12 shows plots of timings and simulation statistics
for the “drop bunnies” and “bricks” scenarios. In both
examples, the cost of collision detection grows steadily as
more objects are dropped. However, we can draw the
important observation that collision detection does not
suffer noticeable spikes at fracture events, despite the large
number of colliding points, thanks to our self-adapting
contact selection. Both scenarios show computational peaks
at fracture events due to the cost of fracture computation.
The cost of data structure updates was always smaller than
the cost of fracture computation, and is not showed for
clarity (but it is summarized in Table 3).

7.2 Influence of Resolution

We have analyzed the influence of resolution (both for the
surface mesh and the interior sampling of the volumetric
mesh) on data structure updates and collision detection
queries (for the sphere in Fig. 11). The timings for a
reference sphere (2.5K triangles and 4K interior points) are:
1.54 ms for updates upon fracture, and 1.16 ms on average
(3.27 ms max) for queries. Changing the surface resolution
(to 10K triangles), while keeping the interior sampling
fixed, timings are: 1.8 ms for the update, and 1.37 ms on
average (4.17 ms max) for queries. Changing the interior
sampling (to 435 points), while keeping the surface fixed,
timings are: 0.46 ms for the update, and 0.68 ms on average
(2.26 ms max) for queries.

7.3 Analysis of Update Overhead

We have analyzed the overhead introduced in collision
detection queries by our data structures, which trade fast
updates upon fracture for not fully optimal culling. Fig. 15
plots several comparisons for the “piggy bank” scenario in
Fig. 10. Our approach updates the distance field (D) and the

TABLE 1
Number of Triangles, Tetrahedra, and Points (Including
Surface Vertices and Interior Points) for the Different
Objects Used in the Experiments

Object # Triangles | # Tetrahedra | # Points
Piggy bank 9,722 20,807 5,870
Bunny 7,940 18,767 5,089
Brick 468 594 224
Plate 5,392 8,617 2,711
Shelf 4652 10,200 2,989

38

Fig. 11. Sphere used for the analysis of sampling resolution on update
and query costs. The top left images show two different samplings of
the surface, and the bottom left images show two different samplings
of the interior.

sphere tree (S) when the piggy bank crashes. We have
compared collision detection query times and the number
of visited points in the sphere trees, with other combina-
tions where we recompute the exact distance field and/or
we recompute a sphere tree for the new surface (with no
interior points).

7.4 Evaluation of Self-Adapting Collision Detection
We have carried out several experiments to evaluate the
impact and performance of our self-adapting collision
detection algorithm. First, we have analyzed the influence
of the number of contact points allowed on the penetration

30000 5000

Bunnies Bricks |

e
| ..uUJW

T e

Mru' e

25000

4000

20000
3000

15000
2000

10000

5000 1000

0 S 0
—# output points

—+# colliding points —# broadphase pairs

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1,

JANUARY 2014

error and the cost of collision detection on practical
scenarios. The figure in the inset shows a plate which is
dropped with random linear and angular velocities into a
bowl. We have executed several trials, fixing the number of
contacts in the range from 2 to 50. For each trial, we ran
10,000 simulations, measuring also the penetration error in
each simulation frame with full collision detection. A plot of
the results is shown in Fig. 16. We observe that the
penetration error drops quickly in the range from 2 to
8 contact points, and adding more contact points barely
improves quality. Intuitively, this can be explained because
six nonredundant constraints may be sufficient to lock the
motion of a rigid body. Our maximum-distance ordering
and breadth-first traversal of the sphere tree ensure that the
contact points are well distributed over the contacting areas;
hence, using more than eight contact points will reduce the
error only when the contact points are not optimally chosen.

_

Fig. 6 demonstrates that our novel tree restructuring
and traversal algorithms, which favor maximum-distance

Bricks

70 . 18
© Bunnies i

14
50 12 | [
w0 2 it 2
30 7&%— 8 I >
> sl N LI ” I
SO i : HHHE

—Totaltime —Collision detection time —Fracture time —Physics time

[SEINEFNI-Y

Fig. 12. Plots for the “drop bunnies” scene (first and third plots) and the “bricks” scene (second and fourth plots). The two left plots show collision
detection statistics: number of points output by adaptive collision detection (green), number of actual colliding points (red), and pairs of bodies output
by broad-phase collision detection (blue). The two right plots show timings per time step: total (blue), collision detection (red), fracture computation
(green), and physics computations (black). Times to update collision detection data structures were always shorter than fracture computation, and

are not included for clarity.

Fig. 13. Bunnies are dropped in three batches and fractured into 166 fragments and 435K triangles. The complete simulation runs at 24.5 ms per

time step on average, with a maximum of 81.5 ms.

Fig. 14. Real-time demo of crashing bricks, totaling 156 fragments and 40K triangles. The complete simulation runs at 11.7 ms per time step on

average, with a maximum of 29.5 ms.

GLONDU ET AL.: FAST COLLISION DETECTION FOR FRACTURING RIGID BODIES

Simulation Statistics for the Different Scenarios: Number of Triangles of the Scene before and after Fracture;
Total Number of Fragments; Number of Contacts Selected by Collision Detection for Collision Response;

TABLE 2

and Total Number of Colliding Points (Not Measured in the Interactive Scenarios)

Scenario # Triangles # Fracture | # Output points | # Colliding points
Original /Fractured | Fragments | Average (Max) Average (Max)
Piggy bank 9,734 / 18,889 27 151 (914) 574 (7,281)
Drop bunnies 137,403 / 430,072 166 866 (2,393) 8382 (29,782)
Bricks 15,036 / 41,060 104 575 (1,055) 2,014 (4,726)
Plates 26,268 / 45,040 44 331 (567) X
Interactive bunnies 39,724 / 44,064 15 88 (198) X
TABLE 3

39

Break-Up of Timings for the Different Scenarios, All Given in Milliseconds, and Showing Average and Maximum
Cost per Time Step: Time Step Size (with Frames Rendered Every 30 ms); Total Cost per Time Step; Time for
Collision Detection Queries; Time for Physics Computations, Numerical Integration, and Collision Response; Time for Data
Structure Updates; and Time for Fracture Computations

Scenario Time step Total time Collision detection Physics Update | Fracture
Average (Max) Average (Max) Average (Max) Max Max
Piggy bank 15 1.89 (13) 1.63 (11) 0.14 (0.59) 1.2 12.5
Drop bunnies 5 19.33 (73) 18 (58) 1.3 (3.66) 44 22
Bricks 30 6.4 (16.5) 5.6 (12.8) 1 (2.46) 1.05 2
Plates 30 7.37 (13.2) 5.8 (9.6) 0.36 (0.7) 0.7 8
Interactive bunnies 15 1.6 (7.3) 1.24 (2) 0.26 (0.41) 1 9

The last two times are measured only at fracture events.

ordering, produce a better sampling of contact surfaces,
and hence allow self-adapting collision detection to exit
with fewer contacts. With the naive restructuring and
traversal approaches in our earlier work [27], a restrictive
self-adapting collision detection leads to excessive inter-
penetration, which cannot be eliminated by drift correction
without noticeable artifacts.

We have also compared our novel restructuring and
traversal methods with our earlier naive approaches from a
performance point-of-view. Fig. 17 shows timing compar-
isons for the “Drop bunnies” benchmark from Fig. 13. Our
new methods lead to considerably better timings, thanks to
more efficient high-level culling. Note also that the new

15 25000
Collision detection time

Number of visited points

N

update D, recompute S —recomputeD, S

20000
10
15000
10000

5000

0

—updateD,S —recompute D, update S

Fig. 15. Comparison of query times and statistics for the “piggy bank”
scene. We compare our fast update of the distance field D and sphere
tree S to full recomputation of an exact distance field and/or a sphere
tree of the new surfaces. We achieve similar culling efficiency with much
faster updates at fracture events.

IS
N
a
o

mean penetration
visit cost (nb points)

0 10 20 30 40 50
nb points max

o

10 20 30 40 50
nb points max

Fig. 16. Analysis of self-adapting collision detection. Plots of the mean
penetration and the number of visited points versus the number of
contact points allowed.

maximum-distance traversal has barely any computational
overhead. As a stress test, we have also evaluated the
performance on the “Drop bunnies” benchmark with a
fixed number of contacts, with no dynamic adaptation.
From the observations made above, we have fixed the
number of contacts to 8 for each pair of bodies. As expected,
the computational cost is lower, almost constant during the
intervals when the number of bodies in the scene does not
change. With our earlier restructuring and traversal, the
total average and maximum numbers of contacts per frame
in this scene were 1,235 and 3,245, respectively (see result
tables in [27]). With our novel restructuring and traversal,
these numbers go down to 866 and 2,393 (see Table 2), and
fixing the number of contacts per body pair to 8 the number
go down to 755 and 1,974. In this benchmark, we observed
no perceptible penetration errors when fixing the number of
contacts, but this approach is not guaranteed to perform
well in a general setting.

8 DiscussioN AND FUTURE WORK

In this paper, we proposed an efficient solution for collision
detection in simulations of fracturing rigid bodies. Our
solution is composed of algorithms that address the two
main challenges in such simulations: the update of

70

60 M Our algorithm

50

o M Glondu et. al. 2012 [27]
30 Our restructuring with

20 traversal of [27]

10 M Fixed number of contacts

0

Fig. 17. Plots of total simulation times (ms) of the dropping bunnies
scenarios, using different visiting and restructuring algorithms.

40 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1,

acceleration data structures upon topology changes, and the
efficient computation of contacts between newly created
crack surfaces. One of the main features of our solution is a
maximum-distance ordering of nodes in a sphere tree,
which serves as the basis for a self-adapting collision
detection algorithm. We enforce maximum-distance order-
ing during the construction of the tree, but also during tree
restructuring at fracture events, and during tree traversal as
part of collision queries.

Our algorithms demonstrate high performance in chal-
lenging scenarios, including real-time user manipulation of
fracturing objects, and scenes with hundreds of fragments
and tens of thousands of triangles simulated at video game
rates. Some limitations remain however, including the
possibility to miss collisions with small features and
robustness problems under large penetrations. Solving
these limitations requires nontrivial extensions to incorpo-
rate continuous collision detection.

We envisage other interesting extensions as well. One is
the design of parallel versions of our algorithms, to exploit
the computing power of graphics processors. Another one
is the application of our solutions to penalty-based collision
response. The self-adapting collision detection was de-
signed for constraint-based response algorithms and may
not be trivially adapted, but other components, such as the
fragment distance field, may be easily integrated. Yet
another interesting extension is handling ductile and/or
progressive fracture and elastic deformations. Since our
approach already updates data structures at fracture events,
it should also be possible to update those data structures as
objects deform and fractures progress, but the extension is
not straightforward. Distance fields and sphere trees could
also serve for self-collision detection algorithms.

The results of our experiments open promising perspec-
tives for the use of our solutions in real-time applications
such as video games and haptic interaction.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. This research was supported in
part by the Spanish Ministry of Economy (TIN2009-07942
and TIN2012-35840) and by the European Research Council
(ERC-2011-5tG-280135 Animetrics).

REFERENCES

[1] M. Baker, N.B. Zafar, M. Carlson, E. Coumans, B. Criswell, T.
Harada, and P. Knight, Destruction and Dynamics for Film and Game
Production, ACM SIGGRAPH Course Notes, 2011.

[2] Z. Bao, J].-M. Hong, J. Teran, and R. Fedkiw, “Fracturing Rigid
Materials,” IEEE Trans. Visualization and Computer Graphics,
vol. 13, no. 2, pp. 370-378, Mar. 2007.

[3] E.G. Parker and J.F. O’Brien, “Real-Time Deformation and
Fracture in a Game Environment,” Proc. ACM SIGGRAPH/
Eurographics Symp. Computer Animation, pp. 156-166, 2009.

[4] L. Glondu, M. Marchal, and G. Dumont, “Real-Time Simula-
tion of Brittle Fracture Using Modal Analysis,” IEEE Trans.
Visualization and Computer Graphics, vol. 19, no. 2, pp. 201-209,
Feb. 2013.

[5] J.F. O’Brien and].K. Hodgins, “Graphical Modeling and Anima-
tion of Brittle Fracture,” Proc. ACM 26th Ann. Conf. Computer
Graphics and Interactive Techniques (SIGGRAPH), pp. 137-146, 1999.

[6] E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex Rigid
Bodies with Stacking,” Proc. ACM SIGGRAPH Conf., 2003.

(7]

(8]

]

(10]

(1]

(12]

(13]

(14]

(15]

[16]

(7]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

(23]

[26]

(27]

(28]

(29]

(30]

JANUARY 2014

S. Frisken, R. Perry, A. Rockwood, and R. Jones, “Adaptively
Sampled Distance Fields: A General Representation of Shapes for
Computer Graphics,” Proc. ACM 27th Ann. Conf. Computer
Graphics and Interactive Techniques (SIGGRAPH), pp. 249-254, 2000.
W.A. McNeely, K.D. Puterbaugh, and J.J. Troy, “Six Degrees-of-
Freedom Haptic Rendering Using Voxel Sampling,” Proc. ACM
26th Ann. Conf. Computer Graphics and Interactive Techniques
(SIGGRAPH), pp. 401-408, 1999.

A. Sud, N.K. Govindaraju, R. Gayle, and D. Manocha, “Interactive
3D Distance Field Computation Using Linear Factorization,” Proc.
ACM Symp. Interactive 3D Graphics and Games, 2006.

S. Fisher and M.C. Lin, “Fast Penetration Depth Estimation for
Elastic Bodies Using Deformed Distance Fields,” Proc. IEEE/
RS] Int’l Conf. Intelligent Robots and Systems, 2001.

J. Barbi¢ and D.L. James, “Six-DoF Haptic Rendering of Contact
between Geometrically Complex Reduced Deformable Models,”
IEEE Trans. Haptics, vol. 1, no. 1, pp. 39-59, Jan.-June 2008.

B. Heidelberger, M. Teschner, R. Keiser, M. Miieller, and M.
Gross, “Consistent Penetration Depth Estimation for Deformable
Collision Response,” Proc. Conf. Vision, Modeling and Visualization,
2004.

D. Steinemann, M.A. Otaduy, and M. Gross, “Fast Arbitrary
Splitting of Deforming Objects,” Proc. ACM SIGGRAPH/
Eurographics Symp. Computer Animation, pp. 63-72, 2006.

LJ. Palmer and R.L. Grimsdale, “Collision Detection for Animation
Using Sphere-Trees,” Computer Graphics Forum, vol. 14, no. 2,
pp. 105-116, 1994.

R. Weller and G. Zachmann, “Inner Sphere Trees for Proximity
and Penetration Queries,” Proc. Conf. Robotics: Science and Systems,
2009.

P.M. Hubbard, “Approximating Polyhedra with Spheres for Time-
Critical Collision Detection,” ACM Trans. Graphics, vol. 15, no. 3,
pp. 179-210, 1996.

C. O’Sullivan and]. Dingliana, “Real-Time Collision Detection
and Response Using Sphere-Trees,” Proc. 15th Spring Conf.
Computer Graphics, pp. 83-92, 1999.

J. Klein and G. Zachmann, “ADB-Trees: Controlling the Error of
Time-Critical Collision Detection,” Proc. Int’l Vision, Modeling and
Visualization, 2003.

M.A. Otaduy and M.C. Lin, “CLODs: Dual Hierarchies for
Multiresolution Collision Detection,” Proc. Eurographics Symp.
Geometry Processing, pp. 94-101, 2003.

S. Kimmerle, M. Nesme, and F. Faure, “Hierarchy Accelerated
Stochastic Collision Detection,” Proc. Conf. Vision, Modeling and
Visualization, 2004.

D.M. Kaufman, S. Sueda, and D.K. Pai, “Contact Trees: Adaptive
Contact Sampling for Robust Dynamics,” Proc. ACM SIGGRAPH
Technical Sketches, 2007.

T. Larsson and T. Akenine-Moller, “A Dynamic Bounding Volume
Hierarchy for Generalized Collision Detection,” Computers and
Graphics, vol. 30, pp. 450-459, 2006.

M.A. Otaduy, O. Chassot, D. Steinemann, and M. Gross,
“Balanced Hierarchies for Collision Detection between Fracturing
Objects,” Proc. IEEE Virtual Reality Conf., 2007.

J.-P. Heo, J.-K. Seong, D. Kim, M.A. Otaduy,].-M. Hong, M. Tang,
and S.-E. Yoon, “FASTCD: Fracturing-Aware Stable Collision
Detection,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer
Animation, 2010.

K. Erleben, “Velocity-Based Shock Propagation for Multibody
Dynamics Animation,” ACM Trans. Graphics, vol. 26, no. 2, 2007.
D.M. Kaufman, S. Sueda, D.L. James, and D.K. Pai, “Staggered
Projections for Frictional Contact in Multibody Systems,” Proc.
ACM SIGGRAPH Asia, 2008.

L. Glondu, S.C. Schvartzman, M. Marchal, G. Dumont, and M.A.
Otaduy, “Efficient Collision Detection for Brittle Fracture,” Proc.
ACM SIGGRAPH/Eurographics Symp. Computer Animation, 2012.
F. Liu, T. Harada, Y. Lee, and Y.J. Kim, “Real-Time Collision
Culling of a Million Bodies on Graphics Processing Units,” Proc.
ACM SIGGRAPH Asia, 2010.

F. Faure, S. Barbier, J. Allard, and F. Falipou, “Image-Based
Collision Detection and Response between Arbitrary Volume
Objects,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer
Animation, pp. 155-162, 2008.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D.
Manocha, “Fast BVH Construction on GPUS,” Proc. Eurographics,
2009.

GLONDU ET AL.: FAST COLLISION DETECTION FOR FRACTURING RIGID BODIES 41

(31]

[32]

(33]

M. Miiller, J. Dorsey, L. McMillan, and R. Jagnow, “Real-Time
Simulation of Deformation and Fracture of Stiff Materials,” Proc.
Eurographics Workshop Animation and Simulation, 2001.

N. Molino, Z. Bao, and R. Fedkiw, “A Virtual Node Algorithm for
Changing Mesh Topology during Simulation,” ACM Trans.
Graphics, vol. 23, no. 3, pp. 385-392, 2004.

M. Miiller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M.
Alexa, “Point Based Animation of Elastic, Plastic and Melting
Objects,” Proc. ACM SIGGRAPH/Eurographics Symp. Computer
Animation, pp. 141-151, 2004.

Loeiz Glondu received the PhD degree in
computer science from the Ecole Normale
Supérieure de Cachan high school in Rennes,
France, in 2012. His main research interests
include physically based simulation, haptic
rendering, and virtual reality.

Sara C. Schvartzman received the BS degree
in computer science from Universidad Auténo-
ma de Madrid in 2007, and the master’s degree
in graphics, games and virtual reality from
Universidad Rey Juan Carlos (URJC Madrid),
in 2010. She is currently working toward the PhD
degree at URJC Madrid, and is a visiting
research student in the Salisbury Robotics Lab
at Stanford University. Her thesis work has been
published at the ACM SIGGRAPH and SCA

conferences, and her main research interests include collision detection,
physically based animation, and fracture simulation.

Maud Marchal received the MS and PhD
degrees in computer science from the University
Joseph Fourier in Grenoble, France, in 2003 and
2006, respectively. She is an associate profes-
sor in the Computer Science Department at
INSA (Engineering School) in Rennes, France.
Her main research interests include physically
based simulation, haptic rendering, 3D interac-
tion and virtual reality.

Georges Dumont received the PhD degree in
computer science from Rennes 1 University in
1990 and the habilitation degree in mechanical
science in 2005. He is a professor in mechanical
sciences at Brittany Antenna of Ecole Normale
Supérieure de Cachan in Rennes. His main
research interests include physical simulation,
mechanics, biomechanics, haptic rendering,
interactive collaboration and virtual reality.

Miguel A. Otaduy received the BS degree in
electrical engineering from Mondragén Univer-
sity, in 2000 and the MS and PhD degrees in
computer science from the University of North
Carolina at Chapel Hill, in 2003 and 2004,
respectively. He is an associate professor in
the Department of Computer Science’s Model-
ing and Virtual Reality Group at Universidad
Rey Juan Carlos (URJC Madrid). From 2005 to

= 2008, he was a research associate at ETH
Zurich, and then he joined URJC Madrid. His main research interests
include physically based computer animation and haptic rendering. He
has published more than 60 papers in computer graphics and haptics.
He is the conference cochair of the 2013 ACM Symposium Interactive
3D Graphics and Games and cochair of the editorial board of the 2013
IEEE World Haptics Conference. He also cochaired the program
committee of the ACM SIGGRAPH/Eurographics Symposium Compu-
ter Animation in 2010.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

