Formal
Languages and
Compilers

Exercises

Nataliia Bielova

http://disi.unitn.it/~bielova/flc/index.ntml

Formal languages and compilers 2011

Organization

m Al the material on the welbsite

http://disi.unitn.it/~bielova/flc/index.nhtml

m Didattica online: Esse3

= Caml language http://caml.inria.fr/

m Suggested literature:
s OCaml manual + code of interpreter/compilator
m The “Dragon” book — 15" or 29 edition
m “Compilers: Principles, Techniques, and Tools”
by A.V. Aho, M.S. Lam, R. Sethi and J.D. Ullman

m Contact: bielova@disi.unitn.it

Formal languages and compilers 2011

Revisiting OCaml

Lection 1
3

How to run OCaml

® Run the interpreter with
= ocaml

Exit the interpreter:
m # qQuit;;

Compilers:
m ocamlc compiles in bytecode
m ocamlopt compiles in machine code

Compilation of a single module
m ocamlc —c <fileName>.ml
® Produces <fileName>.cmo

Linking different modules .cmo:
m ocamlc —o filel.cmo ... fleN.cmo

Formal languages and compilers 2011

Characteristics of OCaml

m |t s a functional language

m Functions are “first-class” objects (as in
mathematics, a function can be used as an
argument of another function)

m Static type checking (the types are checked at
compile-time “If you manage to compile it, then
it will work for sure!”)

m Static scoping (the values of the variables are
static at compile-time)

Formal languages and compilers 2011

Characteristics of OCaml (2)

m Type polymorphism

m Constructors of type

® The module system

m Simple types: int, float, char, string, bool, ...

m Built-in simple datatypes: list, fuple, record, ...

Formal languages and compilers 2011

Characteristics of OCaml (2)

m Type polymorphism

m Constructors of type

® The module system

m Simple types: int, float, char, string, bool, ...

m Built-in simple datatypes: list, tuple, record, ...

int and float, what’' s wrong
with them?

® int are integer numbers together with operations:
m arithmetic: + - * / succ pred mod
B relafional: <> <=>==<>

m float are numbers in floating-point representation
with operators:

m arithmetic: +. -. *. /. ** sgrt (nofice the “.”)
m relational: <> <=>==<>

m Conversions between float and int: int_fo_float
and float_to_int

Formal languages and compilers 2011

bool, char, unit

m bool = {true, false}
m char representes the ASCII characters

m Useful functions in module Char:
m code refurns the ASCIlI code of the argument
m chrreturns the character with the given ASCIlI code

m ynit is a “not so interesting type”. Its value is ()
and it’ s similar fo void in Java & C.

Formal languages and compilers 2011

string

® | 0 sequence of characters

m Operators:
m Concatenation s A s2
m pointing fo one character s.[index]

m module String: length, contains, uppercase, ...

m Conversions: string_to_int, float_to_string, ...

Formal languages and compilers 2011

Tuple

m Tuple is a fixed-length list, but the fields may be of
differing type

(2, “hi”, (‘a’, false))
m Operators are applied element by element:

(1.2,3) <(4, 5, 6);; results in frue

Formal languages and compilers 2011

List

m List is a sequence of objects of the same type:
[1.5; 2.0; 3.2] (notice the “;”)

m Operators are applied like for tuples:
[1;2; 3] < [4; 5; 6];; results in true

m Constructors:
m [] empty list
m . add an element to a list:
4 ::[1; 2];; resultsin [4; 1; 2]
m (|1 @ |2) concatenation of the lists:
[1; 2] @ [3; 4];; resultsin [1; 2; 3; 4]

Formal languages and compilers 2011

Array and Record

m Array is a fixed-length list, but the fields have to be of the
same type:

m[| 1;2:3;4 |].(2);; results in...

Formal languages and compilers 2011

Array and Record

m Array is a fixed-length list, but the fields have to be of the
same type:

m | 1:2;,3 4 |].(2); resultsin... 3!

Formal languages and compilers 2011

Array and Record

m Array is a fixed-length list, but the fields have to be of the
same type:

m[| 1,2, 3,4 |].(2); results in... 3!

m Record is a sequence of elements of parficular fype:

= fype address = {name: sfring; street: string; number: int} ;;

let friend = {name = “Bart Simpson”; street = “15th avenue”;
number = 1};;

friend.street:; results in “15th avenue”

Formal languages and compilers 2011

Variables

® Binding
let x=5;;
m Parallel binding
let x=5 and y=4;;
m Local binding
let x=4 in x*2;;
® Remember: the binding is static

let x=3 inlet x=2inx-1;; ...resultsin 1

Formal languages and compilers 2011

Pattern matching

» Matches the data composed using constructors:
let couple = (‘a’, 5.3);;
let (first, second)= couple;;

substitutes first with ‘a’ and second with 5.3

Formal languages and compilers 2011

Pattern matching

» Matches the data composed using constructors:
let couple = (‘a’, 5.3);;
let (first, second)= couple;;
substitutes first with ‘a’ and second with 5.3
m |t s possible to use [] and :: with the lists
let list = [1; 2; 3]:;
let head::tail = list;;

results in head = 1 and tail = [2; 3]

Formal languages and compilers 2011

Pattern matching

» Matches the data composed using constructors:
let couple = (‘a’, 5.3);;
let (first, second)= couple;;
substitutes first with ‘a’ and second with 5.3
m |t s possible to use [] and :: with the lists
let list = [1; 2; 3]:;
let head::tail = list;;
results in head = 1 and tail = [2; 3]
® _ is anonymous pattern that matches everything:
let head::_ = list;;

results in head =1

Functions

m Definition
let f = fun x -> x*2;; lef f x = x*2;;

val f: int -> int = <fun>

Formal languages and compilers 2011

Functions

m Definition
let f = fun x -> x*2;; lef f x = x*2;;
val f: int -> int = <fun>

® Functions always have only one argument
m letf=fun(x y)->x+vy;;

f: (int *int) -> int function uncurry
m letf=funxy->x+y;
fint -=>int ->int function curry

Formal languages and compilers 2011

Functions

m Definition
let f = fun x -> x*2;; lef f x = x*2;;
val f: int -> int = <fun>

® Functions always have only one argument
m letf=fun(x y)->x+vy;;

f: (int *int) -> int function uncurry
m letf=funxy->x+y;
fint -=>int ->int function curry

m Pattern matching over the functions
let rec factorial = function
0->1

| n->n*factorial(n-1);;

Higher-order functions

m Substitute a function as a result
let mult x y = x*y;;
let double = mult 2;;

val double: int -> int = <fun>

Formal languages and compilers 2011

Higher-order functions

m Substitute a function as a result
let mult x y = x*y;;
let double = mult 2;;
val double: int -> int = <fun>
® Taking another function as an argument
let rec map f list = match list with
[1->1]

| head::tail -> f head:: map f tail;;

Formal languages and compilers 2011

Higher-order functions

m Substitute a function as a result
let mult x y = x*y;;
let double = mult 2;;
val double: int -> int = <fun>
® Taking another function as an argument
let rec map f list = match list with
[1->1]
| head::tail -> f head:: map f tail;;

val map: (‘a-> ‘b) -> ‘alist -> ‘b list = <fun>

Formal languages and compilers 2011

Higher-order functions

m Substitute a function as a result
let mult x y = x*y;;
let double = mult 2;;
val double: int -> int = <fun>
® Taking another function as an argument
let rec map f list = match list with
[1->1]
| head::tail -> f head:: map f tail;;
val map: (‘a-> ‘b) -> ‘alist -> ‘b list = <fun>

map double [1; 2; 3];; results in [2; 4; 6]

Formal languages and compilers 2011

Polymorphism

= Variables of the type ‘a, ‘b, ‘c, ...

let id x = x;; resultsin valid: ‘a-> ‘a = <fun>
m Polymorphic function

let comp f g x =1(g(x)):;

valcomp: (‘a-> ‘b)->(‘c->"a)->c’ > ‘b=<fun>

Formal languages and compilers 2011

Polymorphism

= Variables of the type ‘a, ‘b, ‘c, ...

let id x = x;; resultsin valid: ‘a-> ‘a = <fun>
m Polymorphic function

let comp f g x =1(g(x)):;

valcomp: (‘a-> ‘b)->(‘c->"a)->c’ > ‘b=<fun>
0 f

Formal languages and compilers 2011

Type declarations

m Simple type declaration

fype color = Red | Blue | Green | Yellow:;

Formal languages and compilers 2011

Type declarations

= Simple type declaration
fype color = Red | Blue | Green | Yellow:;
m Using type constructors

type money = Nothing | USDollars of float | Euro of float
let balance = function

Nothing -> 0.0

| USDollars (dollars) -> dollars

| Euro(euros) -> euros

Formal languages and compilers 2011

Recursive data type: tree

= type ‘atree =
Leaf of ‘a

| Tree of ‘a* ‘atree * ‘atree

let mytree = Tree (4, Q
Tree(2, Leaf(1), Leaf(3)), Q 0

Tree(6, Leaf(5), Leaf(7))):;

Formal languages and compilers 2011

Exceptions

m Predefined exceptions: Division_by_zero, Out_of_memory,
Invalid_argument, ...

Formal languages and compilers 2011

Exceptions

m Predefined exceptions: Division_by_zero, Out_of_memory,
Invalid_argument, ...

m User-defined exceptions:

exception Empty_list of string;;

Formal languages and compilers 2011

Exceptions

m Predefined exceptions: Division_by_zero, Out_of_memory,
Invalid_argument, ...

m User-defined exceptions:
exception Empty_list of string;;
let head = fun | -> match | with

[] -> raise (Empty_list("Empty!"))

| hd::tl->hd;;

Formal languages and compilers 2011

Exceptions

m Predefined exceptions: Division_by_zero, Out_of_memory,
Invalid_argument, ...

m User-defined exceptions:
exception Empty_list of string;;
let head = fun | -> match | with

[] -> raise (Empty_list("Empty!"))

| hd::tl->hd;;

head [];;

Formal languages and compilers 2011

Exceptions

m Predefined exceptions: Division_by_zero, Out_of_memory,
Invalid_argument, ...

m User-defined exceptions:
exception Empty_list of string;;
let head = fun | -> match | with

[] -> raise (Empty_list("Empty!"))

| hd::tl->hd;;

head [];;

Exception: Empty_list "Empty!".

try ... with

m Handle the excetions
try dangerous expression
with exceptionl-> actionl

| exception2 -> action?

| exceptionN -> actionN

| _->lastChance

Formal languages and compilers 2011

Abstract Data Types (ADT)

m Abstract Data Types:

m |Inferface: declarations of data types and functions
(in C: file .h, in Java: interface)

m Implementation: ... (In C: file .c, in Java: class)

m |t’ s realized with
m Compilation unit (1 file ¢ 1 module)
m Module system (1 file ¢ 1 or more modules)

Formal languages and compilers 2011

Compilation unit

m Interface

File: .mli

Confent: what is visible outside of the module
= [mplementation

File .ml

Content: implementation of the module ©

Formal languages and compilers 2011

Compilation unit - inferface

® File myset.mili:

type 'a set

val emptySet . 'a set

val member :'a->'aset -> bool

val insert : 'a > 'a set -> 'a set

Formal languages and compilers 2011

Compilation unit - inferface

® File myset.mli:

type 'a set — abstract type, hence is not used directly
val emptySet . 'a set

val member : 'a ->'a set -> bool

val insert : 'a > 'a set -> 'a set

Formal languages and compilers 2011

Compilation unit -
Implementation

® File myset.mil:
type 'aset = Null | Ins of 'a *'a set
let emptySet = Null
let insert x = fun s ->Ins (X, s)
let rec member x = function
Null -> false

| Ins(v, s) -=>x=v | | member xs

Formal languages and compilers 2011

Compilation unit - use

$ ocamlc —c myset.mli

$ ocamic —c myset.ml

$ ocaml

#load “myset.cmo”;;

open Myset;;

let s1 = emptySet;;

val sl : ‘a Myset.set -> <albstr>
let s1 =insert 3s1;;

val s1:int Myset.set = <abstr>

Formal languages and compilers 2011

Module system

® Signature = interface

m Sfructure = implementation

Formal languages and compilers 2011

Module system

® Signature = interface
m Sfructure = implementation

m Correspondence between the signature and
sfructure:

m | sfructure — many signatures: changes the visible
functionality depending on the needs

m] signature — many structures. changes the
implementation without impact on the elements of
the module

Formal languages and compilers 2011

Module system - signature
module type mysetSig = sig

type ‘a set

val emptySet : ‘a set

valinsert: ‘a-> ‘asef-> ‘aset

val member : ‘a-> ‘aset -> bool

end:;;

Formal languages and compilers 2011

Module system - structure

module Set: mysetSig = struct
type 'aset = Null | Ins of 'a * 'a set
let emptySet = Null
let insert x = function s -> INs(x, s)
let rec member x = function
Null -> false
| Ins (v, s) ->x=v | | member xs

end::

Formal languages and compilers 2011

Try the exercises

m ©{tp://disi.unitn.it/~bielova/flc/index.ntml

Formal languages and compilers 2011

