
Memory
management

Lecture 4

Formal Languages and Compilers 2011

Nataliia Bielova

1

Memory management
 Main operations that need the memory allocation:
  segments of the user running code

  constants and static user data

  dynamic structures of user data

  temporal values in the evaluation of the expressions

  transmission of the parameters and return values

  buffer I/O

 Operations that ask for dynamic allocation/reallocation of the
memory:
  call/return of subprograms

  creation/destruction of data structures

  inserting/removing components of the dynamic data structures

  temporal values in the expressions and commands

2

Formal languages and Compilers 2011

Memory management (cont)
 Methods of management:
  static

  stack

  heap

  Phases of the memory management:
  allocation

  release
  explicit (dispose, free,…)

  implicit (garbage collection)

  compacting

3

Formal languages and Compilers 2011

Memory management (cont)
  The user should be responsible for memory management?
  YES ->

  precise knowledge about the needed memory for the data

  efficiency

  NO ->
  possible loss of information

  interference with the system

  Mix of the two options

 Mechanisms for memory allocation:
  declaration

  explicit allocation using pointers

  primitive operations that ask for memory (e.g. cons in LISP)

4

Formal languages and Compilers 2011

Static management
  Principal characteristics:
  allocation at compile time

  memory management is never done at run-time

  no problem of the memory recovery

  efficiency at run-time

  impossibility of having recursion

  impossibility of managing data structures that have non-fixed size
(that are asking according to their process state or to some input)

 All the modern languages have some type of dynamic memory
management

5

Formal languages and Compilers 2011

Stack
  It’s the simplest form of the memory management at run-time.

  allocation and deallocation is a simple move of the SP
  technique that suits the last-in first-out calls of subprograms: applied to

allocation/deallocation of the activation record

6

stack

allocation
of k cells

stack
pointer
(SP)

SP

k

g
ro

w
in

g

Formal languages and Compilers 2011

How memory is organized?
7

the user subprograms
and programs of the

system

free space

beginning of stack

st
a

tic

m
e

m
o

ry

memory for AR

AR of other programs

stack growth

heap growth

st
a

c
k

h
e

a
p

end of stack

SP

AR of a
subprogram

Formal languages and Compilers 2011

Heap
  Heap:
  part of the memory for dynamic data types

  “free list” management

  is used for the operations:
  malloc/free (C)

  new/dispose (Pascal)

  operations over the lists (Lisp/ML/OCaml)

8

Formal languages and Compilers 2011

Heap management: examples
let f l = match l with

 | [] -> []

 | hd::tl -> if hd=0 then tl

 else (hd+1)::tl

9

 0

 3

 5

Formal languages and Compilers 2011

Heap management: examples
let f l = match l with

 | [] -> []

 | hd::tl -> if hd=0 then tl

 else (hd+1)::tl

10

 0

 3

 5

Formal languages and Compilers 2011

Heap management: examples
let f l = match l with

 | [] -> []

 | hd::tl -> if hd=0 then tl

 else (hd+1)::tl

11

 0

 3

 5

 2

 4

Formal languages and Compilers 2011

Heap management: examples
let f l = match l with

 | [] -> []

 | hd::tl -> if hd=0 then tl

 else (hd+1)::tl

12

 0

 3

 5

 2

 4

Formal languages and Compilers 2011

Heap management: examples
let f l = match l with

 | [] -> []

 | hd::tl -> if hd=0 then tl

 else (hd+1)::tl

13

 0

 3

 5

 2

 4

 3

Formal languages and Compilers 2011

Heap management: examples
C:

struct a { int x; int y; };

struct a *p;

p = (struct a*) malloc(sizeof (struct a));

14

p
sizeof(struct a)

in the heap

in the stack

Formal languages and Compilers 2011

Heap with elements of fixed length

head

15

…

elements of the list with free space

allocated elements

head head head

…

…

…
 allocation deallocation

Memory release
When there are two pointers to one piece of memory in the heap:

 p = &I;

 q = &I;

Problems:

 Garbage: the data exist (allocated) but all the pointers to it are
destructed

 Dangling References: pointers to access piece of memory
continue to exist when the lifetime of the associated data is over

16

p

q

Formal languages and Compilers 2011

Memory release (cont.)
Example

int *p, *q;

…

p = (int *) malloc(sizeof(int));

  p = NULL /* garbage: we risk to run out of dynamic memory*/

  q = p; free(p) /* dangling reference: serious errors in the execution*/

Solutions:

  reference counter:
  explicit memory release
  mechanism of counting the pointers

  garbage collection:
  admitting garbage but not dangling reference
  garbage collector (when we run out of heap)

17

Formal languages and Compilers 2011

Reference counter
18

 K element of the heap

K: number of pointers to an element => memory is released only if K=0

int *p, *q;
p = (int *) malloc(sizeof(int));

q = p;

free(p);

 1 p

 2
p

q

 1 q

Formal languages and Compilers 2011

Reference counter (cont.)
Defect: simple operations (e.g. q = p) become much more

expensive

int *p, *q, *z;

p = (int *) malloc(sizeof(int));

z = (int *) malloc(sizeof(int));

q = p;

q = z;

p = NULL;

19

 1 p

 1 z

 2

 1 z

 1 p

 2

 0

 2

p

q

z
q

z
q Formal languages and Compilers 2011

Reference counter (cont.)

  p = malloc(…)
1.  memory allocation and initiate counter with 1
2.  assignment of the allocated structure to p

  free(p) (or p = NULL)
1.  decrease the counter of the structure pointed by p
2.  recover memory in case the counter = 0
3.  delete p

  p = q
1.  decrease the counter of the structure pointed by p
2.  release the memory in case the counter = 0
3.  increase the counter of the structure pointed by q

Note: the access to the structure pointed by p is possible only if the
counter is ≠ 0

20

Formal languages and Compilers 2011

Garbage collection
Idea:

  allows creation of garbage
  avoids dangling references

  doesn’t have to manage the reference counter

  collects the garbage only when the memory is run out
1. interruption of program computation

2. control of “garbage collector”

3. recovery of program computation

Note: garbage collection can be an expensive mechanism

21

Formal languages and Compilers 2011

Garbage collection (cont.)
 Garbage collection operates in two phases: mark and sweep

  Every element in the heap has a bit M for marking:
  0/OFF

  1/ON (initial marking)

An element is active when it is a part of the allocated structure.
1. mark: every active element is marked as OFF

2. sweep: all the elements ON are returned to the heap

Note:
  sweep: simple linear scanning of the heap

  mark: difficult!

22

Formal languages and Compilers 2011

Garbage collection (cont.)
  Showing the example of marking and sweeping.

Formal languages and Compilers 2011

23

Garbage collection:
Active Elements
What does it mean that an element is active?

It is active if

  it is pointed from an element outside of the heap

  It is pointed from an active element of the heap

To ensure that the release is possible the following conditions should
be met:

  every active element should be accessible through the chain of
pointers that start outside of the heap

  it should be possible to identify all the pointers outside of the heap
that point to the elements of the heap

  it should be possible to identify in every active element of the heap
whether it contains pointers to other elements of the heap

24

Formal languages and Compilers 2011

Heap with elements of
non-fixed length

25

hp = heap pointer

hp

hp

M

free

P

free

hp
hp

heap free

M M

N

M

N

P

M

free

P
hp

M

free

P

Q

hp (end) hp (end)

How to proceed?

Heap with elements of
non-fixed length (cont.)
Two techniques:

1. using the list that is dynamically created:
a)  If block of length m is needed, it looks for the block B of the length n >= m
b)  cuts the block B (if n>m)

Two ways of choosing the block B:

  first fit - first in the free memory list that fits.

  best fit - the smallest free block in the list that fits.

⇒ problem of fragmentation

2. compaction technique
  all the free space is compacted in one block and moved in front of the

heap, with the corresponding update of the pointers in the heap

26

Formal languages and Compilers 2011

