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Memory management 
 Main operations that need the memory allocation: 
  segments of the user running code 

  constants and static user data 

  dynamic structures of user data 

  temporal values in the evaluation of the expressions 

  transmission of the parameters and return values 

  buffer I/O  

 Operations that ask for dynamic allocation/reallocation of the 
memory: 
  call/return of subprograms 

  creation/destruction of data structures 

  inserting/removing components of the dynamic data structures 

  temporal values in the expressions and commands 
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Memory management (cont) 
 Methods of management: 
  static 

  stack 

  heap 

  Phases of the memory management: 
  allocation  

  release 
  explicit (dispose, free,…)  

  implicit (garbage collection) 

  compacting 
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Memory management (cont) 
  The user should be responsible for memory management?  
  YES ->  

  precise knowledge about the needed memory for the data 

  efficiency 

  NO -> 
  possible loss of information 

  interference with the system 

  Mix of the two options 

 Mechanisms for memory allocation: 
  declaration 

  explicit allocation using pointers 

  primitive operations that ask for memory (e.g. cons in LISP) 
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Static management 
  Principal characteristics: 
  allocation at compile time 

  memory management is never done at run-time 

  no problem of the memory recovery 

  efficiency at run-time 

  impossibility of having recursion  

  impossibility of managing data structures that have non-fixed size 
(that are asking according to their process state or to some input) 

 All the modern languages have some type of dynamic memory 
management 
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Stack 
  It’s the simplest form of the memory management at run-time. 

  allocation and deallocation is a simple move of the SP 
  technique that suits the last-in first-out calls of subprograms: applied to 

allocation/deallocation of the activation record 
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How memory is organized? 
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Heap 
  Heap: 
  part of the memory for dynamic data types 

  “free list” management  

  is used for the operations: 
  malloc/free (C) 

  new/dispose (Pascal) 

  operations over the lists (Lisp/ML/OCaml) 
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Heap management: examples 
let f l = match l with  

 | [] -> [] 

 | hd::tl -> if hd=0 then tl  

   else (hd+1)::tl 
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Heap management: examples 
C: 

struct a { int x;  int y; }; 

struct a *p; 

p = (struct a*) malloc(sizeof (struct a)); 
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Heap with elements of fixed length 

head 
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Memory release 
When there are two pointers to one piece of memory in the heap: 

 p = &I; 

 q = &I; 

Problems: 

 Garbage: the data exist (allocated) but all the pointers to it are 
destructed 

 Dangling References: pointers to access piece of memory 
continue to exist when the lifetime of the associated data is over 
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Memory release (cont.) 
Example 

int *p, *q; 

… 

p = (int *) malloc(sizeof(int)); 

  p  = NULL  /* garbage: we risk to run out of dynamic memory*/ 

  q  = p; free(p)  /* dangling reference: serious errors in the execution*/ 

Solutions: 

  reference counter: 
  explicit memory release 
  mechanism of counting the pointers 

  garbage collection: 
  admitting garbage but not dangling reference 
  garbage collector (when we run out of heap)  
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Reference counter   
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Reference counter (cont.)
Defect: simple operations (e.g. q = p) become much more 

expensive 

int *p, *q, *z; 

p = (int *) malloc(sizeof(int)); 

z = (int *) malloc(sizeof(int)); 

q = p; 

q = z; 

p  = NULL; 
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Reference counter (cont.)

  p = malloc(…) 
1.  memory allocation and initiate counter with 1 
2.  assignment of the allocated structure to p   

  free(p) (or p = NULL) 
1.  decrease the counter of the structure pointed by p 
2.  recover memory in case the counter = 0 
3.  delete p 

  p = q 
1.  decrease the counter of the structure pointed by p 
2.  release the memory in case the counter = 0 
3.  increase the counter of the structure pointed by q 

Note: the access to the structure pointed by p is possible only if the 
counter is ≠ 0 
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Garbage collection 
Idea: 

  allows creation of garbage 
  avoids dangling references 

  doesn’t have to manage the reference counter 

  collects the garbage only when the memory is run out 
1. interruption of program computation 

2. control of “garbage collector” 

3. recovery of program computation  

Note: garbage collection can be an expensive mechanism 
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Garbage collection (cont.) 
 Garbage collection operates in two phases: mark and sweep 

  Every element in the heap has a bit M for marking: 
  0/OFF 

  1/ON (initial marking) 

An element is active when it is a part of the allocated structure. 
1. mark: every active element is marked as OFF 

2. sweep: all the elements ON are returned to the heap 

Note:  
  sweep: simple linear scanning of the heap 

  mark: difficult! 
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Garbage collection (cont.) 
  Showing the example of marking and sweeping. 
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Garbage collection:  
Active Elements 
What does it mean that an element is active? 

It is active if  

  it is pointed from an element outside of the heap 

  It is pointed from an active element of the heap 

To ensure that the release is possible the following conditions should 
be met: 

  every active element should be accessible through the chain of 
pointers that start outside of the heap 

  it should be possible to identify all the pointers outside of the heap 
that point to the elements of the heap 

  it should be possible to identify in every active element of the heap 
whether it contains pointers to other elements of the heap 
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Heap with elements of  
non-fixed length 
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Heap with elements of  
non-fixed length (cont.) 
Two techniques: 

1. using the list that is dynamically created: 
a)  If block of length m is needed, it looks for the block B of the length n >= m 
b)  cuts the block B (if n>m) 

Two ways of choosing the block B: 

  first fit - first in the free memory list that fits. 

  best fit - the smallest free block in the list that fits. 

⇒ problem of fragmentation 

2. compaction technique 
  all the  free space is compacted in one block and moved in front of the 

heap, with the corresponding update of the pointers in the heap 
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