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Partially observable probabilistic systems

Why probabilities?
randomized algorithms, unpredictable behaviours,
abstraction of non-determinism

Why partial observation?
abstraction of large systems, security concerns

this talk: known automaton-like model
I language-theoretic questions: languages defined by prob. automata
I monitoring issues: fault diagnosis, supervision, etc.
I control problems: optimization for a given objective
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Motivating example for probabilistic automata (PA)

Planning holidays in advance:
1. choose an airline type (lowcost/highcost);
2. book accommodation (internet/phone);
3. choose tour (seeall/missnothing).

each action fails with some probability

start

airport

hotel successfail

3
4lowcost+1highcost

1
4lowcost

3
4internet+ 1

2phone

1
4internet+ 1

2phone

3
4seeall+ 7

8missnothing
1
4seeall+ 1

8missnothing

success probability of plan lowcost · internet · seeall is 27
64 .
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Control strategies in PA
Strategies are words
what is the probability to reach a final state after word w?

The acceptance probability of w = a1 . . . an by A is:

PrA(w) =
∑
q∈Q

π0[q]
∑
q′∈F

( n∏
i=1

Pai

)
[q, q′] = π0Pw 1T

F

Optimal strategies may not exist

q0 q1

1

1
2 b

1
2 a

1a + 1
2 b 1

2 a + 1b

PrA(a1 . . . an) =
n∑

i=1
2i−n−1 · 1ai=b

−→ Find good enough strategies, i.e. that guarantee a given probability
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Existence of good-enough strategies

L./θ(A) = {w ∈ A∗ | PrA(w) ./ θ}

The problem, given a PA A of telling whether L≥ 1
2
(A) 6= ∅ is

undecidable. Paz’71

Undecidability is robust

refined emptiness assuming that for ε > 0 either ∃w PrA(w) ≥ 1− ε or
∀w PrA(w) < ε, decide which is the case Condon et al.’03

value one problem does there exist (wn)n∈N such that
lim supn PrA(wn) = 1? Gimbert and Oualhadj’10

parametric probability values does there exist a valuation of probabilities
such that A has value one? Fijalkow et al.’14
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Anything decidable?

Almost-sure language: L=1(A)

Emptiness of almost-sure language is PSPACE-complete.

equivalent to universality problem for NFA

Quantitative language equivalence
Input: A and A′ PA
Output: yes iff ∀w ∈ A∗ PrA(w) = PrA′(w)

Quantitative language equivalence is decidable in PTIME.
Schützenberger’61, Tzeng’92

linear algebra argument
polynomial bound on length of counterexample to equivalence
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Recap on Probabilistic Automata

Partial observation: the plan must be decided in advance!

I model of system is known
I the effect of a plan can be computed:

after word w , probability distribution over states
I yet most optimization problems are undecidable

What if the system provides feedback, and we can update the plan?
partially observable Markov decision processes
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Example of partially observable MDP (POMDP)

McCallum maze: robot with limited sensor abilities, and imperfect moves

•

I random initial position
I robot only sees walls surrounding it, not the precise cell

observations Ω = {{L,U}, {U,D}, {U,R}, {L,D,R} · · · }
I actions A = {N,W ,S,E} are not implemented accurately

action N leads to north with probability 2
3 and others with 1

3

Reachability objective: move to target cell •
Optimization: minimum expected time
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Strategies

Strategy: maps history ρ ∈ (AΩ)∗ with distribution over actions;

ν : (AΩ)∗ → Dist(A)

ν(ρ, a): probability that a is chosen given history ρ

I pure strategy: all distributions are Dirac
I belief-based strategy: based on set of current possible states

word in PA ⇐⇒ pure strategy in POMDP with |Ω| = 1
Consequence: all hardness results lift from PA to POMDP
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Infinite horizon objectives
Objectives Reachability F visited at least once:

3F = {q0q1q2 · · · ∈ Sω | ∃n, qn ∈ F}

Safety always stay in F :

2F = {q0q1q2 · · · ∈ Sω | ∀n, qn ∈ F}

Büchi F visited an infinite number of times:

23F = {q0q1q2 · · · ∈ Sω | ∀m ∃n ≥ m, qn ∈ F}

Goal: For ϕ an objective, evaluate supν Pν(M |= ϕ).

Pure strategies suffice!
For every strategy ν, there exists a pure strategy ν′ such that
Pν(M |= ϕ) ≤ Pν′

(M |= ϕ). Chatterjee et al.’15
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Undecidability results
Undecidability of qualitative objectives...

... beyond the ones already mentioned for PA

positive repeated reachability does there exist ν such that
Pν(M |= 23F ) > 0? Baier et al.’08

combined objectives does there exist ν such that Bertrand et al.’14
Pν(M |= 23F1) = 1 and Pν(M |= 2F2) > 0?

Proof of first statement: reduction from the value one problem for PA

fq

f]
]]

pure strategies in M:
νw = w1]]w2]]w3 · · ·

val(A) = 1 ⇐⇒ ∃(wi )i∈N
∏

i
PA(wi ) > 0

⇐⇒ ∃νw Pνw (M |= 23f]) > 0
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Decidability results

Good news: decidable problems for PA remain decidable

almost-sure safety existence of ν s.t. Pν(M |= 2F ) = 1
positive safety existence of ν s.t. Pν(M |= 2F ) > 0
almost-sure repeated reachability existence of ν s.t. Pν(M |= 23F ) = 1

are all EXPTIME-complete.

fixpoint algorithms on a powerset construction
belief-based strategies suffice except for positive safety

q3q0

q1

q2

1
2 a

1
2 a

a + 1
2 b1

2 a + b

1
2 b

1
2 a

a

no belief-based strategy can achieve
Pν(M |= 2{q0, q1, q2}) > 0
alternate a and b forever, guarantees a
probability 1

2

Open: decidability of non-null proportion with positive probability
∃ν, Pν(M |= lim supn

#visits to F in n first steps
n > 0) > 0?
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Life is hard...

+ + = /

most optimization problems are undecidable
I notably quantitative questions
I but also some qualitative questions
I and undecidability is robust
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... but there is still hope

I usual way arounds
I decidable subclasses Fijalkow et al.’12
I restricted classes of strategies
I approximations, although with no termination guarantees Yu’06

I promising alternative: discretization
I continuous distributions approximated by large discrete population

a,1/2

b

a,1/2 a

a,1/2

b

a,1/2 a

I limit for large populations differs from continuous semantics
I possible alternative semantics to PA/POMDP models, with more

decidability results

Thank you!
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