
Timed automata A determinization procedure The abstract procedure applied Conclusion

When are timed automata determinizable?

C. Baier1, N. Bertrand2, P. Bouyer3, T. Brihaye4

1Technische Universität Dresden – Germany

2INRIA Rennes Bretagne Atlantique – France

3LSV – CNRS & ENS Cachan – France

4Université de Mons – Belgium

Séminaire LaBRI – May 28th 2009

Séminaire LaBRI – Bordeaux – May 28th 09, 1/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 2/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Syntax and semantics

Timed automata

A timed automaton is a tuple A = (L,Σ,X ,E) with
I L finite set of locations

I Σ finite alphabet

I X finite set of clocks

I E ⊆ L× Σ× G × 2X × L set of edges
where G = {

∧
x ∼ c | x ∈ X , c ∈ N} is the set of guards.

States of A: L× (R+)X

Transitions between states of A:

I Delay transitions: (`, v)
t−→ (`, v + t)

I Discrete transitions: (`, v)
a−→ (`′, v ′) if ∃(`, a, g ,Y , `′) ∈ E with

v |= g , v ′(x) = 0 if x ∈ Y , and v ′(x) = v(x) otherwise.

Run of A:
(`0, v0)

τ0−→ (`0, v0 + τ0)
a0−→ (`1, v1)

τ1−→ (`1, v1 + τ1)
a1−→ (`2, v2) . . .

or simply: (`0, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→ (`2, v2) . . .

Séminaire LaBRI – Bordeaux – May 28th 09, 3/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Syntax and semantics

Timed automata

A timed automaton is a tuple A = (L,Σ,X ,E) with
I L finite set of locations

I Σ finite alphabet

I X finite set of clocks

I E ⊆ L× Σ× G × 2X × L set of edges
where G = {

∧
x ∼ c | x ∈ X , c ∈ N} is the set of guards.

States of A: L× (R+)X

Transitions between states of A:

I Delay transitions: (`, v)
t−→ (`, v + t)

I Discrete transitions: (`, v)
a−→ (`′, v ′) if ∃(`, a, g ,Y , `′) ∈ E with

v |= g , v ′(x) = 0 if x ∈ Y , and v ′(x) = v(x) otherwise.

Run of A:
(`0, v0)

τ0−→ (`0, v0 + τ0)
a0−→ (`1, v1)

τ1−→ (`1, v1 + τ1)
a1−→ (`2, v2) . . .

or simply: (`0, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→ (`2, v2) . . .

Séminaire LaBRI – Bordeaux – May 28th 09, 3/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Timed language

Timed word: w = (a0, t0)(a1, t1) . . . (ak , tk)
with ai ∈ Σ and (ti)0≤i≤k nondecreasing sequence in R+.

A = (L, `0, Lacc ,Σ,X ,E) timed automaton equipped with `0 initial
location, and Lacc set of accepting locations.

Accepted timed word

A timed word w = (a0, t0)(a1, t1) . . . (ak , tk) is accepted in A, if there is a

run ρ = (`0, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→ . . . (`k+1, vk+1) in A with `k+1 ∈ Lacc ,
and ti =

∑
j<i τj .

Accepted timed language: L(A) = {w | w accepted by A}.

Séminaire LaBRI – Bordeaux – May 28th 09, 4/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

A running example

`0 `1`3 `2

x>0,a x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

L(A) = {(a, t1)(a, t2) · · · (a, t2n) | 0 < t1 < t2 < · · · < t2n−1

and t2n − t2n−2 = 1}

Séminaire LaBRI – Bordeaux – May 28th 09, 5/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Deterministic timed automata

Deterministic timed automata
A is deterministic whenever for every timed word w , there is at most one
initial run on w in A.

Some timed automata are not determinizable [AD90].

`0 `1 `2

a,{x} x=1,a

a a a

L(A) = {(a, t1) . . . (a, tn) | n ≥ 2 and ∃i < j s.t. tj − ti = 1}
−→ infinitely many clocks needed

Theorem [Finkel 06]

Checking whether a given timed automata is determinizable is undecidable.

Séminaire LaBRI – Bordeaux – May 28th 09, 6/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Deterministic timed automata

Deterministic timed automata
A is deterministic whenever for every timed word w , there is at most one
initial run on w in A.

Some timed automata are not determinizable [AD90].

`0 `1 `2

a,{x} x=1,a

a a a

L(A) = {(a, t1) . . . (a, tn) | n ≥ 2 and ∃i < j s.t. tj − ti = 1}
−→ infinitely many clocks needed

Theorem [Finkel 06]

Checking whether a given timed automata is determinizable is undecidable.

Séminaire LaBRI – Bordeaux – May 28th 09, 6/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

About universality

A is universal if L(A) = (Σ× R+)∗

Theorem [AD90]

Universality is undecidable for timed automata.

However, universality is decidable for some subclasses

I event-clock timed automata [AFH94]

I one-clock timed automata [OW04]

Séminaire LaBRI – Bordeaux – May 28th 09, 7/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Strong timed bisimulation

Strong timed (bi)simulation

R is a strong timed simulation between transition systems T1 and T2 if for

every s1 R s2 and s1
t1,a−−→ s ′1 for some t1 ∈ R+ and a ∈ Σ, then there

exists s ′2 ∈ S2 such that s2
t1,a−−→ s ′2 and s ′1 R s ′2.

R is a strong timed bisimulation if R and R−1 are strong timed simulations.

Strong timed bisimulation (preserving initial and accepting states) implies
language equivalence.

Séminaire LaBRI – Bordeaux – May 28th 09, 8/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 9/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Unfolding

I A unfolded into a tree A∞ with a fresh clock at each step.
I clocks of A are mapped to their reference in the new set of clocks.

A `0 `1`3 `2

x>0,a,∅ x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

A∞ n0

(`0,z0)
level 0

Séminaire LaBRI – Bordeaux – May 28th 09, 10/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Unfolding

I A unfolded into a tree A∞ with a fresh clock at each step.
I clocks of A are mapped to their reference in the new set of clocks.

A `0`0 `1`3 `2

x>0,a,∅ x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

A∞ n0

(`0,z0)
n0level 0

Séminaire LaBRI – Bordeaux – May 28th 09, 10/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Unfolding

I A unfolded into a tree A∞ with a fresh clock at each step.
I clocks of A are mapped to their reference in the new set of clocks.

A `0 `1`3 `1`3 `2

x>0,a,∅x>0,a,∅ x=1,a,{x}
x>0,a,{x}

x>0,a,{x}x>0,a,{x}

A∞ n0

(`0,z0)
level 0

n1 (`1,z0) n2 (`3,z1)

z0>0,a,{z1} z0>0,a,{z1}

level 1 n1 (`1,z0) n2 (`3,z1)

Séminaire LaBRI – Bordeaux – May 28th 09, 10/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Unfolding

I A unfolded into a tree A∞ with a fresh clock at each step.
I clocks of A are mapped to their reference in the new set of clocks.

A `0`0 `1`3 `2`2

x>0,a,∅ x=1,a,{x}
x>0,a,{x}

x>0,a,{x}

A∞ n0

(`0,z0)
level 0

n1 (`1,z0) n2 (`3,z1)

z0>0,a,{z1} z0>0,a,{z1}

level 1

n3 (`2,z2) n4 (`0,z2)level 2

z0=1,a,{z2} z1>0,a,{z2}

Séminaire LaBRI – Bordeaux – May 28th 09, 10/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Unfolding

n0

(`0,z0)
level 0

n1 (`1,z0) n2 (`3,z1)

z0>0,a,{z1} z0>0,a,{z1}

level 1

n3 (`2,z2) n4

(`0,z2)
level 2

z0=1,a,{z2} z1>0,a,{z2}

n5 (`1,z2) n6 (`3,z3)

n7 (`2,z4) n8 (`0,z4)

...

level 3

level 4

z2>0,a,{z3} z2>0,a,{z3}

z2=1,a,{z4} z3>0,a,{z4}

Séminaire LaBRI – Bordeaux – May 28th 09, 11/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Properties of the unfolding

Input-determinacy property:
for every timed word w , there is a unique valuation vw s.t. every initial
run on w ends in some (n, vw) with level(n) = |w |.

Lemma

A and A∞ are strongly timed bisimilar; in particular L(A) = L(A∞).

Drawbacks:

I A∞ has infinitely many locations.

I A∞ has infinitely many clocks.

Séminaire LaBRI – Bordeaux – May 28th 09, 12/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 13/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Region equivalence

Region construction on A∞: at level i regions over {z0, · · · , zi}.

n0

n1 n2

z0>0,a

{z1}

z0>0,a

{z1}

(n0,z0=0)

(n1,r0) (n1,r1) (n1,r2) (n2,r0) (n2,r1) (n2,r2)

where r0=0=z1<z0<1, r1=0=z1<z0=1 and r2=0=z1<1<z0

0<z0<1,a,{z1} z0>1,a,{z1}

z0=1,a

{z1}

z0=1,a

{z1}

z0>1,a

{z1}

0<z0<1,a

{z1}

Lemma

A∞ and R(A∞) are strongly timed bisimilar; thus L(A) = L(R(A∞)).

Séminaire LaBRI – Bordeaux – May 28th 09, 14/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 15/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Symbolic determinization

Determinization at level i on the alphabet Regi × Σ× Z .

(n0,z0=0)

(n1,r0) (n1,r1) (n1,r2) (n2,r0) (n2,r1) (n2,r2)

0<z0<1,a,{z1} z0>1,a,{z1}

z0=1,a

{z1}

z0=1,a

{z1}

z0>1,a

{z1}

0<z0<1,a

{z1}

({n0},z0=0)

({n1,n2},r0) ({n1,n2},r1) ({n1,n2},r2)

0<z0<1,a,{z1}

z0=1,a

{z1}

z0>1,a,{z1}

Séminaire LaBRI – Bordeaux – May 28th 09, 16/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Symbolic determinization

Determinization at level i on the alphabet Regi × Σ× Z .

(n0,z0=0)

(n1,r0) (n1,r1) (n1,r2) (n2,r0) (n2,r1) (n2,r2)

0<z0<1,a,{z1} z0>1,a,{z1}

z0=1,a

{z1}

z0=1,a

{z1}

z0>1,a

{z1}

0<z0<1,a

{z1}

({n0},z0=0)

({n1,n2},r0) ({n1,n2},r1) ({n1,n2},r2)

0<z0<1,a,{z1}

z0=1,a

{z1}

z0>1,a,{z1}

Séminaire LaBRI – Bordeaux – May 28th 09, 16/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Properties of the symbolic determinization

The symbolic determinization corresponds to determinization of the
timed system.

SymbDet(A) is deterministic!

Lemma

L(A) = L(SymbDet(R(A∞))).

Drawbacks:

I SymbDet(R(A∞)) has infinitely many locations.

I SymbDet(R(A∞)) has infinitely many clocks.

Séminaire LaBRI – Bordeaux – May 28th 09, 17/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Symbolic determinization on the example

({n0},z0=0)

({n1,n2},0=z1<z0<1) ({n1,n2},0=z1<1<z0) ({n1,n2},0=z1<z0=1)

({n3,n4},z2=0) ({n4},z2=0) ({n3},z2=0)

({n5,n6},0=z3<z2<1) ({n5,n6},0=z3<1<z2) ({n5,n6},0=z3<z2=1)

({n7,n8},z4=0)

...

({n8},z4=0)

...

({n7},z4=0)

0<z0<1

z0>1

z0=1

0<z1<z0=1
0<z1 ,z0 6=1

z1>0
0<z1<

1<z0
0=z1<z0=1

0<z2<1 z2>1

z2=1

0<z2<1

z2>1

z2=1

0<z3<z2=1 0<z3 ,z2 6=1

z3>1

0<z3<1<z2
0=z3<z2=1

Séminaire LaBRI – Bordeaux – May 28th 09, 18/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 19/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Clock reduction

Active clocks: given a node of SymbDet(R(A)), its active clocks is the
set of clocks appearing in the region of the node.

Clock boundedness

SymbDet(R(A∞)) is γ-clock bounded if in every node the number of active
clocks is bounded by γ.

Under the clock-boundedness assumption: Γγ(SymbDet(R(A∞))) =
reduction of SymbDet(R(A∞)) to set of clocks {x1, · · · , xγ}.

Lemma

L(A) = L(Γγ(SymbDet(R(A∞))))

Séminaire LaBRI – Bordeaux – May 28th 09, 20/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Clock reduction on the example

({n0},z0=0)

({n1,n2},0=z1<z0<1) ({n1,n2},0=z1<1<z0) ({n1,n2},0=z1<z0=1)

({n3,n4},z2=0) ({n4},z2=0) ({n3},z2=0)

({n5,n6},0=z3<z2<1) ({n5,n6},0=z3<1<z2) ({n5,n6},0=z3<z2=1)

({n7,n8},z4=0)

...

({n8},z4=0)

...

({n7},z4=0)

z2n←x1 and z2n+1←x2

0<z0<1

z0>1

z0=1

0<z1<z0=1
0<z1 ,z0 6=1

z1>0
0<z1<

1<z0
0=z1<z0=1

0<z2<1 z2>1

z2=1

0<z2<1

z2>1

z2=1

0<z3<z2=1 0<z3 ,z2 6=1

z3>1

0<z3<1<z2
0=z3<z2=1

Séminaire LaBRI – Bordeaux – May 28th 09, 21/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 22/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Location reduction

Property of Γγ(SymbDet(R(A∞))):
Nodes sharing the same label (= set of locations + region + assignment
of the clocks) are isomorphic.

BA,γ : Γγ(SymbDet(R(A∞))) after merging isomorphic nodes.

Theorem

BA,γ is a deterministic timed automaton such that L(A) = L(BA,γ).

Séminaire LaBRI – Bordeaux – May 28th 09, 23/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Back to the example

({n0},x1=0)

({n4},x1=0)

({n8},x1=0)

({n1,n2},0=x2<x1<1)

({n5,n6},0=x2<x1<1)

({n1,n2},0=x2<1<x1) ({n1,n2},0=x2<x1=1)

({n3,n4},x1=0) ({n3},x1=0)

({n5,n6},0=x2<1<x1) ({n5,n6},0=x2<x1=1)

({n7,n8},x1=0) ({n7},x1=0)

...
...

0<x1<1

x1>1

x1=1

0<x2<x1=1
0<x2 ,x1 6=1

x2>0
0<x2<

1<x1
0=x2<x1=1

0<x1<1 x1>1

x1=1

0<x1<1

x1>1

x1=1

0<x2<x1=1 0<x2 ,x1 6=1

x2>1

0<x2<1<x1
0=x2<x1=1

Séminaire LaBRI – Bordeaux – May 28th 09, 24/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

A deterministic version of the example

({(`0,x1)},x1=0)

({(`1,x1),(`3,x2)},0=x2<x1<1) ({(`1,x1),(`3,x2)},0=x2<x1=⊥) ({(`1,x1),(`3,x2)},0=x2<x1=1)

({(`0,x1),(`2,x1)},x1=0) ({(`2,x1)},x1=0)

0<x1<1,a

{x2}

x1>1,a

{x2}

x2>0,a

{x1}

x1=1,a

{x2}

x1=1,a

{x1}

0<
x2

,x1
6=1,a

{x1
}

0<x2 <1<x1 ,ax1 :=0

x1=1,a

{x1}

0<
x
1 <

1,a{x
2 }

x 1
>

1,
a

{x 2
} x1=

1,a

{x2}

Séminaire LaBRI – Bordeaux – May 28th 09, 25/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 26/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Recap of the procedure

1. Unfolding into a timed tree with infinitely many clocks and nodes

2. Region construction on the timed tree
(still infinitely many clocks and nodes)

3. Symbolic determinization of the region tree
(corresponding to a determinization of the timed system)

4. Reduction of the number of clocks
(under the γ-clock bounded hypothesis)

5. Reduction of the number of locations

Key hypothesis: γ-clock boundedness

Séminaire LaBRI – Bordeaux – May 28th 09, 27/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Recap of the procedure

1. Unfolding into a timed tree with infinitely many clocks and nodes

2. Region construction on the timed tree
(still infinitely many clocks and nodes)

3. Symbolic determinization of the region tree
(corresponding to a determinization of the timed system)

4. Reduction of the number of clocks
(under the γ-clock bounded hypothesis)

5. Reduction of the number of locations

Key hypothesis: γ-clock boundedness

Séminaire LaBRI – Bordeaux – May 28th 09, 27/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 28/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

When are TA γ-clock bounded?

Event-clock timed automata
For every a ∈ Σ there is a clock xa reset at each occurrence of a.

Given A an event-clock TA, the number of active clocks is bounded by Σ.

Integer-reset timed automata

For every edge (`, g , a,Y , `′)
Y 6= ∅ if and only if g contains some constraint x = c .

The deterministic timed tree associated with an integer reset TA is
(M + 1)-clock bounded, where M is the maximal constant in A.

Séminaire LaBRI – Bordeaux – May 28th 09, 29/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

When are TA γ-clock bounded?

Event-clock timed automata
For every a ∈ Σ there is a clock xa reset at each occurrence of a.

Given A an event-clock TA, the number of active clocks is bounded by Σ.

Integer-reset timed automata

For every edge (`, g , a,Y , `′)
Y 6= ∅ if and only if g contains some constraint x = c .

The deterministic timed tree associated with an integer reset TA is
(M + 1)-clock bounded, where M is the maximal constant in A.

Séminaire LaBRI – Bordeaux – May 28th 09, 29/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Sufficient condition

p-assumption

Let p ∈ N. A satisfies the p-assumption if for every n ≥ p, for every run

ρ = (`0, v0)
τ1,a1−−−→ (`1, v1) . . .

τn,an−−−→ (`n, vn)

for every clock x , either x is reset along ρ, of vn(x) > M.

A satisfies the p-assumption =⇒ SymbDet(R(A∞)) is p-clock bounded.

Strongly non-Zeno

A timed automaton A is strongly non-Zeno if there exists K ∈ N s.t. for

every run s0
τ1,a1−−−→ s1 · · ·

tk ,ak−−−→ sk in A, k ≥ K implies
∑k

i=1 τi ≥ 1.

If A is strongly non-Zeno, then it satisfies the p-assumption for some p
exponential in the size of A.

Séminaire LaBRI – Bordeaux – May 28th 09, 30/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Sufficient condition

p-assumption

Let p ∈ N. A satisfies the p-assumption if for every n ≥ p, for every run

ρ = (`0, v0)
τ1,a1−−−→ (`1, v1) . . .

τn,an−−−→ (`n, vn)

for every clock x , either x is reset along ρ, of vn(x) > M.

A satisfies the p-assumption =⇒ SymbDet(R(A∞)) is p-clock bounded.

Strongly non-Zeno

A timed automaton A is strongly non-Zeno if there exists K ∈ N s.t. for

every run s0
τ1,a1−−−→ s1 · · ·

tk ,ak−−−→ sk in A, k ≥ K implies
∑k

i=1 τi ≥ 1.

If A is strongly non-Zeno, then it satisfies the p-assumption for some p
exponential in the size of A.

Séminaire LaBRI – Bordeaux – May 28th 09, 30/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Outline

1 Timed automata

2 A determinization procedure
Unfolding into an infinite tree
Region equivalence
Symbolic determinization
Clock reduction
Location reduction

3 The abstract procedure applied
Determinizable classes
Algorithmic issues and complexity

Séminaire LaBRI – Bordeaux – May 28th 09, 31/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Algorithmic issues

Given A = (L, `0, Lacc ,X ,M,E) s.t. SymbDet(R(A∞)) is γ-clock
bounded, locations in BA,γ are characterized by:

I a finite set of pairs in LA × XX
γ , and

I a region over Xγ .

Hence BA,γ has 2|L| · γ|X | ·
(
(2M + 2)(γ+1)2 · γ!

)
locations.

Size of the deterministic TA
I TA under the p-assumption: doubly exponential

I event-clock TA: exponential

I integer reset TA: doubly exponential

Séminaire LaBRI – Bordeaux – May 28th 09, 32/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Algorithmic issues

Given A = (L, `0, Lacc ,X ,M,E) s.t. SymbDet(R(A∞)) is γ-clock
bounded, locations in BA,γ are characterized by:

I a finite set of pairs in LA × XX
γ , and

I a region over Xγ .

Hence BA,γ has 2|L| · γ|X | ·
(
(2M + 2)(γ+1)2 · γ!

)
locations.

Size of the deterministic TA
I TA under the p-assumption: doubly exponential

I event-clock TA: exponential

I integer reset TA: doubly exponential

Séminaire LaBRI – Bordeaux – May 28th 09, 32/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Complexity of universality

Lower bound
Checking universality in timed automata either satisfying the p-assumption
or with integer resets is EXPSPACE-hard.

Proof idea: given an EXPSPACE Turing machine and an input word,
build a timed automaton which is universal if and on ly if the machine
does not halt. Executions are coded by timed-words, actions
(representing letters) are separated by 1 time unit.

Remark: same lower bound for the inclusion problem (also for SnZTA).

Upper bound

Checking universality is in EXPSPACE for timed automata satisfying the
p-assumption, and for integer resets timed automata.

Proof idea: the complement of BA,γ can be computed on the fly.
Checking for emptiness can be done in logarithmic space in the number
of locations.

Séminaire LaBRI – Bordeaux – May 28th 09, 33/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Complexity of universality

Lower bound
Checking universality in timed automata either satisfying the p-assumption
or with integer resets is EXPSPACE-hard.

Proof idea: given an EXPSPACE Turing machine and an input word,
build a timed automaton which is universal if and on ly if the machine
does not halt. Executions are coded by timed-words, actions
(representing letters) are separated by 1 time unit.

Remark: same lower bound for the inclusion problem (also for SnZTA).

Upper bound

Checking universality is in EXPSPACE for timed automata satisfying the
p-assumption, and for integer resets timed automata.

Proof idea: the complement of BA,γ can be computed on the fly.
Checking for emptiness can be done in logarithmic space in the number
of locations.

Séminaire LaBRI – Bordeaux – May 28th 09, 33/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Summary complexity

size of the det. TA universality problem inclusion problem

TAp doubly exp. EXPSPACE-compl. EXPSPACE-compl.

SnZTA doubly exp. trivial EXPSPACE-compl.

ECTA exp. PSPACE-compl. PSPACE-compl.

IRTA doubly exp. EXPSPACE-compl. EXPSPACE-compl.

Séminaire LaBRI – Bordeaux – May 28th 09, 34/35

Timed automata A determinization procedure The abstract procedure applied Conclusion

Conclusion

Contribution

I general procedure for the determinization of TA

I new determinizable class(es)

I tight complexity bounds

Future work

I adapt the procedure to infinite timed words

I recover decidability of universality for 1-clock TA

I find other determinizable classes

Séminaire LaBRI – Bordeaux – May 28th 09, 35/35

	Timed automata
	

	A determinization procedure
	Unfolding into an infinite tree
	Region equivalence
	Symbolic determinization
	Clock reduction
	Location reduction

	The abstract procedure applied
	
	Determinizable classes
	Algorithmic issues and complexity

	Conclusion

