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Timed automata
®00000

Syntax and semantics

A timed automaton is a tuple A = (L, X, X, E) with
» [ finite set of locations  » X finite set of clocks

» ¥ finite alphabet » ECLxYXGx2X x L set of edges
where G = { A x ~ c | x € X, c € N} is the set of guards.
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Syntax and semantics

A timed automaton is a tuple A = (L, X, X, E) with
» [ finite set of locations  » X finite set of clocks

» ¥ finite alphabet » ECLxYXGx2X x L set of edges
where G = { A x ~ c | x € X, c € N} is the set of guards.

States of A: L x (Ry)X
Transitions between states of A'

> Delay transitions: (£,v) < (¢,v + t)
> Discrete transitions: (¢,v) 2 (¢,v') if 3(¢,a,g, Y,V') € E with
viEg VI(x)=0ifxeY, andv(x) v(x) otherwise.

Run of A:
(b0, vo) = (4o, vo +7'0) L5 (b1, v1) 2 (b, v +71) 5 (b, v0) ..
or S|mp|y (60, Vo) —> (61, Vl) & (62, V2) .
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Timed automata
0O@0000

Timed language

Timed word: w = (a, to)(a1, t1) - - - (3k, t«)
with a; € X and (t;)o<i<k nondecreasing sequence in R .

A= (L, 0, Lec, X, X, E) timed automaton equipped with £y initial
location, and L, set of accepting locations.

A timed word w = (ag, tp)(a1, t1) - - - (ak, tk) is accepted in A, if there is a
run p = (60, Vo) Too%, (51, V1) RAILLN .. (£k+17 Vk+1) in A with €k+1 € Lo,

and t; = Zj<i7]'.

Accepted timed language: L£(A) = {w | w accepted by A}.
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Timed automata
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A running example

x>0,a,{x}
0, =1,a,

x>0,a,{x}

L(A)={(a,t1)(a,t2) - (a,t2p) |0 < t1 < tp < -+ < tpp_1
and tr, — top_o = 1}
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Timed automata
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Deterministic timed automata

A is deterministic whenever for every timed word w, there is at most one
initial run on w in A.

Some timed automata are not determinizable [AD90].

a a a

a,{x} Q x=1,a
b &) &

L(A)={(a,t1)...(a,ty) [ n>2and Fi <jst. tj—t; =1}
—— infinitely many clocks needed
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Timed automata
[e]e]e] lele}

Deterministic timed automata

A is deterministic whenever for every timed word w, there is at most one
initial run on w in A.

Some timed automata are not determinizable [AD90].

a a a

a,{x} Q x=1,a
éo \Zl/ Z2

L(A)={(a,t1)...(a,ty) [ n>2and Fi <jst. tj—t; =1}
—— infinitely many clocks needed

Theorem [Finkel 06]

Checking whether a given timed automata is determinizable is undecidable.
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Timed automata
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About universality

A is universal if £L(A) = (X x Ry)*
Theorem [AD90]

Universality is undecidable for timed automata.

However, universality is decidable for some subclasses
> event-clock timed automata [AFH94]
» one-clock timed automata [OW04]
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Timed automata
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Strong timed bisimulation

‘R is a strong timed simulation between transition systems 77 and 75 if for
every s; R s, and s; ha, s; for some t; € Ry and a € X, then there

. t,
exists s; € S, such that s, —2 s} and s} R s}.
MR is a strong timed bisimulation if & and R~ are strong timed simulations.

Strong timed bisimulation (preserving initial and accepting states) implies
language equivalence.
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A determinization procedure
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Outline

© A determinization procedure
@ Unfolding into an infinite tree
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A determinization procedure
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Unfolding

» A unfolded into a tree A>° with a fresh clock at each step.
» clocks of A are mapped to their reference in the new set of clocks.

x>0,a,{x} ¢
0,2,0 =1,a,
: @0
x>0,a,{x}
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A determinization procedure
[o] le]e}

Unfolding

» A unfolded into a tree A>° with a fresh clock at each step.
» clocks of A are mapped to their reference in the new set of clocks.

x>0,a,{x} ¢
0,a,0 =l.a,
. @)
x>0,a,{x}

(£0,20)
A level 0
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A determinization procedure
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Unfolding

» A unfolded into a tree A>° with a fresh clock at each step.
» clocks of A are mapped to their reference in the new set of clocks.

x>0,a,{x} ¢

x>0,a,0 x=1,a,{x}
NG : ® ®
x>0,a,{x}

A level 0

20>0,a,{z1} 20>0,a,{z1}

level 1 @ (€3,21)
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A determinization procedure
[o] le]e}

Unfolding

» A unfolded into a tree A>° with a fresh clock at each step.
» clocks of A are mapped to their reference in the new set of clocks.

x>0,a,{x} L

M x>0,a,0 @ x=1,a,{x} @
x>0,a,{x}

(€0,20)

A level 0

2>0,a,{z1 } 20>0,a,{z}
level 1 (41,20) (£3,21)

z=1,a,{z} 21>0,a,{z}

level 2 @ (£2,22) (bo,22)
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A determinization procedure
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Unfolding

level 0 fo.z)
20>0,a,{z} 2>0,a,{z}
level 1 @ (£1,20) @ (€3,21)
zn=1,a,{z} 21>0,a,{z}
level 2 @ (€2,22) @4
(£0,22)
2,>0,a,{z3} 2>0,a,{z3}
level 3 69 (1,22) @ (£3,23)
zn=1,a,{z} z3>0,a,{z4 }

level 4 @ (Z2,24) (ZU,ZA)
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A determinization procedure
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Properties of the unfolding

Input-determinacy property:
for every timed word w, there is a unique valuation v,, s.t. every initial
run on w ends in some (n, v,,) with level(n) = |w]|.

Lemma
A and A are strongly timed bisimilar; in particular £(A) = L(A>).

Drawbacks:

» A°° has infinitely many locations.

» A has infinitely many clocks.
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A determinization procedure
L Je]

Outline

© A determinization procedure

@ Region equivalence
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A determinization procedure
oe

Region equivalence

Region construction on A°: at level i regions over {zj, -, z}.
0 )

| 0<z<l,a,{z1} z0>1,a,{z1}
zo>0,a 20>0,a zp>1,a 0<z<1,a
{z1} {z1} 2=1,a {z1} {z1} z=1,a
{z} {z}
(n1,r0) (n1,r1) (n1,r2) (n2,r0) (n2,r1) (n2,r2)

where r=0=z<z<1, n=0=z<z=1 and n=0=z <1<z

Lemma
A% and R(A) are strongly timed bisimilar; thus £(A) = L(R(A>)).
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A determinization procedure
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© A determinization procedure

@ Symbolic determinization
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A determinization procedure
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Symbolic determinization

Determinization at level i on the alphabet Reg; x X x Z.

'

0<z<1,a,{z1} z>1,a,{z1}
zo>1,a 0<z<1,a
zp=1,a {z1} {z1} zp=1,a
{z1} {z1}
(o) | )| ()| ) | [ || ()]
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A determinization procedure
[o] lele)

Symbolic determinization

Determinization at level i on the alphabet Reg; x X x Z.

'

0<z<1,a,{z1} z>1,a,{z1}
zo>1,a 0<z<1,a
zp=1,a {z1} {z1} zp=1,a
{z1} {z1}
(o) | )| ()| o) | () | | ()

0<zo<1,a,{z1} ({n0},20=0) z2>1,a,{z1}

20:1,3

{z1}

(b | | Ammbr) | | (e o)
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A determinization procedure
0000

Properties of the symbolic determinization

The symbolic determinization corresponds to determinization of the
timed system.

SymbDet(.A) is deterministic!

Lemma
L(A) = L(SymbDet(R(A>))).

Drawbacks:

> SymbDet(R(.A>)) has infinitely many locations.
» SymbDet(R(.A>)) has infinitely many clocks.
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A determinization procedure
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Symbolic determinization on the example

0<z<1

|

({n0}720:0)

zg>1

20:1

’ ({n1,m},0=21<2<1) ‘

[ (mm} o=z <1<z)

({m,m},0=2z1<2=1)
| |

0<z1<2=1

({"3,"4},22:0)

z1>0

ZL70
Ay
/

0=z1<z=1

ZQ—].

({n3}7z2:0)

’ ({ns,n6},0=23<2,<1) ‘

’ ({ns,n6},0=23<1<2)

| ((ns.ms} 0=z<2=1) |

0<zz<zp=1

0<23’z2951

({n7,n8},24=0)

z3>1

({ns},z4=0)

o<

0=z3<z=1

122

({n7},24=0)
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A determinization procedure
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© A determinization procedure

@ Clock reduction
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A determinization procedure
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Clock reduction

Active clocks: given a node of SymbDet(R(.A)), its active clocks is the
set of clocks appearing in the region of the node.

SymbDet(R(.A>)) is y-clock bounded if in every node the number of active
clocks is bounded by .

Under the clock-boundedness assumption: I, (SymbDet(R(A>))) =
reduction of SymbDet(R(.A>)) to set of clocks {xi,---,x;}.

Lemma
L(A) = L(T,(SymbDet(R(A>))))
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A determinization procedure
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Clock reduction on the example

|

0<z<1 zp=1
({no},20=0)
zp>1
’ ({m.m2},0=2 <2<1) ‘ ’ ({2} 0=z <1<z) ‘ ’ ({m,m},0=2 <z—1)
0<z<z=1 2>0 LR 0=2<z=1

0<z<1
’ ({ns,m5},0=7<2<1) ‘ ’ ({ns,n5},0=2;<1<z) ‘ ’ ({ns,n6},0=2; < z2—1) ‘
1
0<z3<z=1 0 73> 0=z3<2n=1
S%25 L s

({n7,n},2:=0)

({ns},z:=0)

({n7},24=0)

Zope—x and z e
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© A determinization procedure

@ Location reduction

Séminaire LaBRI — Bordeaux — May 28th 09, 22/35



A determinization procedure
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Location reduction

Property of ', (SymbDet(R(A>))):
Nodes sharing the same label (= set of locations + region + assignment
of the clocks) are isomorphic.

B.a,: T (SymbDet(R(A>))) after merging isomorphic nodes.

Theorem
B ~ is a deterministic timed automaton such that £(A) = £(B4,).
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Timed automata A determinization procedure
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Back to the example

0<x <1

x;>1

The abstract procedure applied Conclusion
000000000

({m,nm},0=x<1<x1)

0<xp<x1=1

x2>0
Q<

ass _ _
)('LLX 0=xp<x;=1

| ({ns,n6},0=x<1<x1) |

0<xo<x1=1

({n7,ng},x1=0)

x2>1

1<% O0=xo<x1=1
<

0Lx2
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Timed automata A determinization procedure The abstract procedure applied Conclusion
000000 000000000000 0000e 000000000

A deterministic version of the example

0<x;<1,a

({(£120),(£3,%9)},0=xp <x=L)

({(£0,x1),(£2,x1)} ,x1=0)
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The abstract procedure applied
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9 The abstract procedure applied

Séminaire LaBRI — Bordeaux — May 28th 09, 26/35



The abstract procedure applied
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Recap of the procedure

1. Unfolding into a timed tree with infinitely many clocks and nodes

2. Region construction on the timed tree
(still infinitely many clocks and nodes)

3. Symbolic determinization of the region tree
(corresponding to a determinization of the timed system)

4. Reduction of the number of clocks
(under the y-clock bounded hypothesis)

5. Reduction of the number of locations
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The abstract procedure applied
oe

Recap of the procedure

1. Unfolding into a timed tree with infinitely many clocks and nodes

2. Region construction on the timed tree
(still infinitely many clocks and nodes)

3. Symbolic determinization of the region tree
(corresponding to a determinization of the timed system)

4. Reduction of the number of clocks
(under the y-clock bounded hypothesis)

5. Reduction of the number of locations

Key hypothesis: y-clock boundedness
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The abstract procedure applied
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9 The abstract procedure applied
@ Determinizable classes
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The abstract procedure applied
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When are TA ~-clock bounded?

For every a € X there is a clock x, reset at each occurrence of a.

Given A an event-clock TA, the number of active clocks is bounded by ¥.
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The abstract procedure applied
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When are TA ~-clock bounded?

For every a € X there is a clock x, reset at each occurrence of a.

Given A an event-clock TA, the number of active clocks is bounded by ¥.

For every edge (¢4, g,a, Y, ?)
Y # ( if and only if g contains some constraint x = c.

The deterministic timed tree associated with an integer reset TA is
(M + 1)-clock bounded, where M is the maximal constant in A.
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The abstract procedure applied
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Sufficient condition

Let p € N. A satisfies the p-assumption if for every n > p, for every run

pP = (603 VO) (gla Vl) T”’a" (Env Vn)

for every clock x, either x is reset along p, of v,(x) > M.

A satisfies the p-assumption = SymbDet(R(.A>)) is p-clock bounded.

Séminaire LaBRI — Bordeaux — May 28th 09, 30/35



The abstract procedure applied
ooe

Sufficient condition

Let p € N. A satisfies the p-assumption if for every n > p, for every run

p = (Co, vo) =25 (€1, v1) ... 225 (€y, Vi)

for every clock x, either x is reset along p, of v,(x) > M.

A satisfies the p-assumption = SymbDet(R(.A>)) is p-clock bounded.

A timed automaton A is strongly non-Zeno if there exists K € N s.t. for
every run sg BRI TOP LN sx in A, k > K implies Zf.;l 7 > 1.

If A is strongly non-Zeno, then it satisfies the p-assumption for some p
exponential in the size of A.
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e The abstract procedure applied

@ Algorithmic issues and complexity
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The abstract procedure applied
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Algorithmic issues

Given A = (L, Ly, Loee, X, M, E) s.t. SymbDet(R(A>)) is y-clock
bounded, locations in B4, are characterized by:

> a finite set of pairs in L4 x XX, and

> a region over X,.

Hence B, has 2/t - +1X1 (2M + 2)0 D" . 41 Jocations.
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The abstract procedure applied
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Algorithmic issues

Given A = (L, Ly, Loee, X, M, E) s.t. SymbDet(R(A>)) is y-clock
bounded, locations in B4, are characterized by:

> a finite set of pairs in L4 x XX, and

> a region over X,.

Hence B, has 2/t - +1X1 (2M + 2)0 D" . 41 Jocations.

Size of the deterministic TA
» TA under the p-assumption: doubly exponential
» event-clock TA: exponential
> integer reset TA: doubly exponential
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The abstract procedure applied
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Complexity of universality

Lower bound
Checking universality in timed automata either satisfying the p-assumption
or with integer resets is EXPSPACE-hard.

Proof idea: given an EXPSPACE Turing machine and an input word,
build a timed automaton which is universal if and on ly if the machine
does not halt. Executions are coded by timed-words, actions
(representing letters) are separated by 1 time unit.

Remark: same lower bound for the inclusion problem (also for SnZTA).
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The abstract procedure applied
[e]e] o]

Complexity of universality

Lower bound

Checking universality in timed automata either satisfying the p-assumption
or with integer resets is EXPSPACE-hard.

Proof idea: given an EXPSPACE Turing machine and an input word,
build a timed automaton which is universal if and on ly if the machine
does not halt. Executions are coded by timed-words, actions
(representing letters) are separated by 1 time unit.

Remark: same lower bound for the inclusion problem (also for SnZTA).

Upper bound

Checking universality is in EXPSPACE for timed automata satisfying the
p-assumption, and for integer resets timed automata.

Proof idea: the complement of B4, can be computed on the fly.
Checking for emptiness can be done in logarithmic space in the number
of locations.

Séminaire LaBRI — Bordeaux — May 28th 09, 33/35



The abstract procedure applied
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Summary complexity

’ H size of the det. TA | universality problem

inclusion problem

TA, doubly exp. EXPSPACE-compl. | EXPSPACE-compl.

SnZTA doubly exp. trivial EXPSPACE-compl.
ECTA exp. PSPACE-compl. PSPACE-compl.

IRTA doubly exp. EXPSPACE-compl. | EXPSPACE-compl.
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Conclusion

Conclusion

Contribution
» general procedure for the determinization of TA
> new determinizable class(es)

> tight complexity bounds

Future work
» adapt the procedure to infinite timed words
» recover decidability of universality for 1-clock TA

» find other determinizable classes

Séminaire LaBRI — Bordeaux — May 28th 09, 35/35



	Timed automata
	

	A determinization procedure
	Unfolding into an infinite tree
	Region equivalence
	Symbolic determinization
	Clock reduction
	Location reduction

	The abstract procedure applied
	
	Determinizable classes
	Algorithmic issues and complexity

	Conclusion

