A determinization procedure

The abstract procedure applied 000000000

Conclusion

When are timed automata determinizable?

C. Baier¹, N. Bertrand², P. Bouyer³, T. Brihaye⁴

¹Technische Universität Dresden – Germany

²INRIA Rennes Bretagne Atlantique – France

³LSV – CNRS & ENS Cachan – France

⁴Université de Mons – Belgium

Séminaire LaBRI – May 28th 2009

Séminaire LaBRI - Bordeaux - May 28th 09, 1/35

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Outline

Timed automata

- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
- The abstract procedure applied
 - Determinizable classes
 - Algorithmic issues and complexity

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Syntax and semantics

Timed automata

A timed automaton is a tuple $\mathcal{A} = (L, \Sigma, X, E)$ with

L finite set of locations
X finite set of clocks

► Σ finite alphabet where $\mathcal{G} = \{ \bigwedge x \sim c \mid x \in X, c \in \mathbb{N} \}$ is the set of guards.

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Syntax and semantics

Timed automata

A timed automaton is a tuple $\mathcal{A} = (L, \Sigma, X, E)$ with

L finite set of locations
X finite set of clocks

• Σ finite alphabet • $E \subseteq L \times \Sigma \times \mathcal{G} \times 2^X \times L$ set of edges where $\mathcal{G} = \{ \bigwedge x \sim c \mid x \in X, c \in \mathbb{N} \}$ is the set of guards.

States of \mathcal{A} : $L \times (\mathbb{R}_+)^X$ Transitions between states of \mathcal{A} :

- Delay transitions: $(\ell, v) \xrightarrow{t} (\ell, v + t)$
- ▶ Discrete transitions: $(\ell, v) \xrightarrow{a} (\ell', v')$ if $\exists (\ell, a, g, Y, \ell') \in E$ with $v \models g, v'(x) = 0$ if $x \in Y$, and v'(x) = v(x) otherwise.

Run of \mathcal{A} : $(\ell_0, v_0) \xrightarrow{\tau_0} (\ell_0, v_0 + \tau_0) \xrightarrow{a_0} (\ell_1, v_1) \xrightarrow{\tau_1} (\ell_1, v_1 + \tau_1) \xrightarrow{a_1} (\ell_2, v_2) \dots$ or simply: $(\ell_0, v_0) \xrightarrow{\tau_0, a_0} (\ell_1, v_1) \xrightarrow{\tau_1, a_1} (\ell_2, v_2) \dots$

Séminaire LaBRI – Bordeaux – May 28th 09, 3/35

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Timed language

Timed word: $w = (a_0, t_0)(a_1, t_1) \dots (a_k, t_k)$ with $a_i \in \Sigma$ and $(t_i)_{0 \le i \le k}$ nondecreasing sequence in \mathbb{R}_+ .

 $\mathcal{A} = (L, \ell_0, L_{acc}, \Sigma, X, E)$ timed automaton equipped with ℓ_0 initial location, and L_{acc} set of accepting locations.

Accepted timed word

A timed word $w = (a_0, t_0)(a_1, t_1) \dots (a_k, t_k)$ is accepted in \mathcal{A} , if there is a run $\rho = (\ell_0, v_0) \xrightarrow{\tau_0, a_0} (\ell_1, v_1) \xrightarrow{\tau_1, a_1} \dots (\ell_{k+1}, v_{k+1})$ in \mathcal{A} with $\ell_{k+1} \in L_{acc}$, and $t_i = \sum_{j < i} \tau_j$.

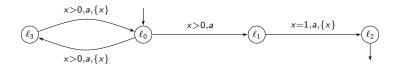
Accepted timed language: $\mathcal{L}(\mathcal{A}) = \{w \mid w \text{ accepted by } \mathcal{A}\}.$

A determinization procedure

The abstract procedure applied
000000000

Conclusion

A running example



$$\mathcal{L}(A) = \{ (a, t_1)(a, t_2) \cdots (a, t_{2n}) \mid 0 < t_1 < t_2 < \cdots < t_{2n-1} \\ \text{and } t_{2n} - t_{2n-2} = 1 \}$$

Séminaire LaBRI - Bordeaux - May 28th 09, 5/35

A determinization procedure

The abstract procedure applied 000000000

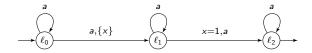
Conclusion

Deterministic timed automata

Deterministic timed automata

 \mathcal{A} is deterministic whenever for every timed word w, there is at most one initial run on w in \mathcal{A} .

Some timed automata are not determinizable [AD90].



 $\mathcal{L}(\mathcal{A}) = \{(a, t_1) \dots (a, t_n) \mid n \ge 2 \text{ and } \exists i < j \text{ s.t. } t_j - t_i = 1\}$ \longrightarrow infinitely many clocks needed

A determinization procedure

The abstract procedure applied 000000000

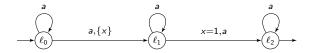
Conclusion

Deterministic timed automata

Deterministic timed automata

 \mathcal{A} is deterministic whenever for every timed word w, there is at most one initial run on w in \mathcal{A} .

Some timed automata are not determinizable [AD90].



 $\mathcal{L}(\mathcal{A}) = \{(a, t_1) \dots (a, t_n) \mid n \ge 2 \text{ and } \exists i < j \text{ s.t. } t_j - t_i = 1\}$ \longrightarrow infinitely many clocks needed

Theorem [Finkel 06]

Checking whether a given timed automata is determinizable is undecidable.

A determinization procedure

The abstract procedure applied 000000000

Conclusion

About universality

${\mathcal A}$ is universal if ${\mathcal L}({\mathcal A})=(\Sigma\times {\mathbb R}_+)^*$

Theorem [AD90]

Universality is undecidable for timed automata.

However, universality is decidable for some subclasses

- event-clock timed automata [AFH94]
- one-clock timed automata [OW04]

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Strong timed bisimulation

Strong timed (bi)simulation

 \mathfrak{R} is a strong timed simulation between transition systems \mathcal{T}_1 and \mathcal{T}_2 if for every $s_1 \ \mathfrak{R} \ s_2$ and $s_1 \xrightarrow{t_1, a} s'_1$ for some $t_1 \in \mathbb{R}_+$ and $a \in \Sigma$, then there exists $s'_2 \in S_2$ such that $s_2 \xrightarrow{t_1, a} s'_2$ and $s'_1 \ \mathfrak{R} \ s'_2$. \mathfrak{R} is a strong timed bisimulation if \mathfrak{R} and \mathfrak{R}^{-1} are strong timed simulations.

Strong timed bisimulation (preserving initial and accepting states) implies language equivalence.

Outline

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Timed automata

2 A determinization procedure

Unfolding into an infinite tree

- Region equivalence
- Symbolic determinization
- Clock reduction
- Location reduction

The abstract procedure applied

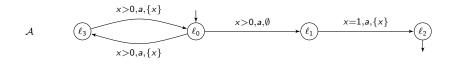
- Determinizable classes
- Algorithmic issues and complexity

A determinization procedure

The abstract procedure applied 000000000

Conclusion

- \mathcal{A} unfolded into a tree \mathcal{A}^{∞} with a fresh clock at each step.
- \blacktriangleright clocks of ${\cal A}$ are mapped to their reference in the new set of clocks.

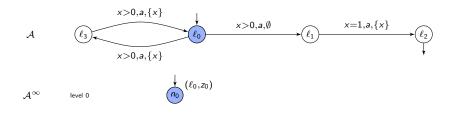


A determinization procedure

The abstract procedure applied 000000000

Conclusion

- \blacktriangleright ${\mathcal A}$ unfolded into a tree ${\mathcal A}^\infty$ with a fresh clock at each step.
- \blacktriangleright clocks of ${\cal A}$ are mapped to their reference in the new set of clocks.

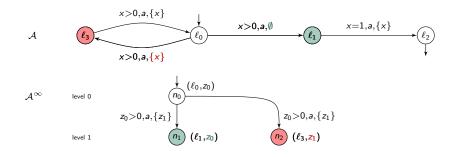


A determinization procedure

The abstract procedure applied 000000000

Conclusion

- \mathcal{A} unfolded into a tree \mathcal{A}^{∞} with a fresh clock at each step.
- \blacktriangleright clocks of ${\cal A}$ are mapped to their reference in the new set of clocks.

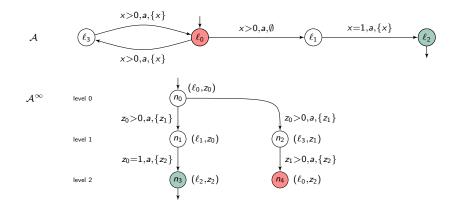


A determinization procedure

The abstract procedure applied 000000000

Conclusion

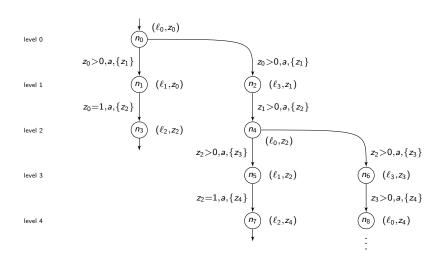
- \mathcal{A} unfolded into a tree \mathcal{A}^{∞} with a fresh clock at each step.
- \blacktriangleright clocks of ${\cal A}$ are mapped to their reference in the new set of clocks.



Unfolding

A determinization procedure

The abstract procedure applied 000000000 Conclusion



A determinization procedure

The abstract procedure applied 000000000

Conclusion

Properties of the unfolding

Input-determinacy property:

for every timed word w, there is a unique valuation v_w s.t. every initial run on w ends in some (n, v_w) with level(n) = |w|.

Lemma

 \mathcal{A} and \mathcal{A}^{∞} are strongly timed bisimilar; in particular $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\infty})$.

Drawbacks:

- \mathcal{A}^{∞} has infinitely many locations.
- \mathcal{A}^{∞} has infinitely many clocks.

Outline

A determinization procedure

The abstract procedure applied 000000000 Conclusion

Timed automata

- A determinization procedure
 Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
 - The abstract procedure applied
 - Determinizable classes
 - Algorithmic issues and complexity

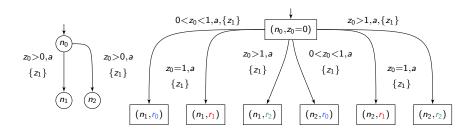
A determinization procedure

The abstract procedure applied 000000000

Conclusion

Region equivalence

Region construction on \mathcal{A}^{∞} : at level *i* regions over $\{z_0, \cdots, z_i\}$.



where $r_0 = 0 = z_1 < z_0 < 1$, $r_1 = 0 = z_1 < z_0 = 1$ and $r_2 = 0 = z_1 < 1 < z_0$

Lemma \mathcal{A}^{∞} and $R(\mathcal{A}^{\infty})$ are strongly timed bisimilar; thus $\mathcal{L}(\mathcal{A}) = \mathcal{L}(R(\mathcal{A}^{\infty}))$. Outline

A determinization procedure

The abstract procedure applied 000000000 Conclusion

Timed automata

2 A determinization procedure

- Unfolding into an infinite tree
- Region equivalence

• Symbolic determinization

- Clock reduction
- Location reduction

The abstract procedure applied

- Determinizable classes
- Algorithmic issues and complexity

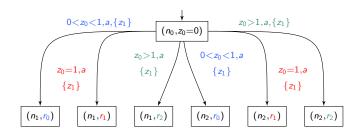
A determinization procedure

The abstract procedure applied 000000000

Conclusion

Symbolic determinization

Determinization at level *i* on the alphabet $\text{Reg}_i \times \Sigma \times Z$.



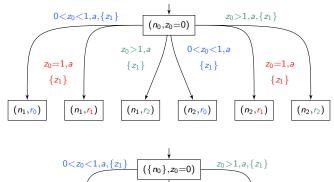
A determinization procedure

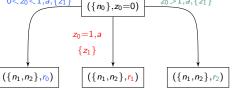
The abstract procedure applied 000000000

Conclusion

Symbolic determinization

Determinization at level *i* on the alphabet $\operatorname{Reg}_i \times \Sigma \times Z$.





A determinization procedure

The abstract procedure applied 000000000

Conclusion

Properties of the symbolic determinization

The symbolic determinization corresponds to determinization of the timed system.

SymbDet(A) is deterministic!

Lemma $\mathcal{L}(\mathcal{A}) = \mathcal{L}(SymbDet(R(\mathcal{A}^{\infty}))).$

Drawbacks:

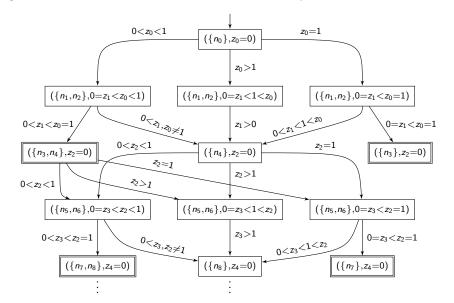
- SymbDet($R(\mathcal{A}^{\infty})$) has infinitely many locations.
- SymbDet($R(\mathcal{A}^{\infty})$) has infinitely many clocks.

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Symbolic determinization on the example



Séminaire LaBRI - Bordeaux - May 28th 09, 18/35

Outline

A determinization procedure

The abstract procedure applied 000000000 Conclusion

Timed automata

2 A determinization procedure

- Unfolding into an infinite tree
- Region equivalence
- Symbolic determinization
- Clock reduction
- Location reduction

The abstract procedure applied

- Determinizable classes
- Algorithmic issues and complexity

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Clock reduction

Active clocks: given a node of SymbDet(R(A)), its active clocks is the set of clocks appearing in the region of the node.

Clock boundedness

SymbDet($R(\mathcal{A}^{\infty})$) is γ -clock bounded if in every node the number of active clocks is bounded by γ .

Under the clock-boundedness assumption: $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty}))) =$ reduction of SymbDet $(R(\mathcal{A}^{\infty}))$ to set of clocks $\{x_1, \dots, x_{\gamma}\}$.

Lemma

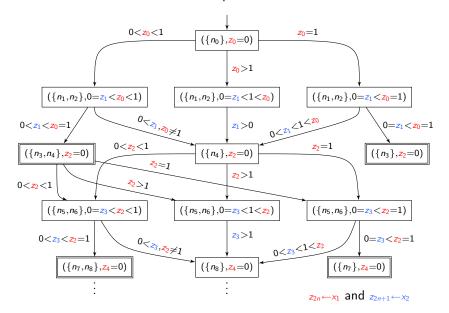
 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\Gamma_{\gamma}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty}))))$

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Clock reduction on the example



Séminaire LaBRI - Bordeaux - May 28th 09, 21/35

Outline

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Timed automata

2 A determinization procedure

- Unfolding into an infinite tree
- Region equivalence
- Symbolic determinization
- Clock reduction
- Location reduction

The abstract procedure applied

- Determinizable classes
- Algorithmic issues and complexity

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Location reduction

Property of $\Gamma_{\gamma}(\text{SymbDet}(R(\mathcal{A}^{\infty})))$:

Nodes sharing the same label (= set of locations + region + assignment of the clocks) are isomorphic.

 $\mathcal{B}_{\mathcal{A},\gamma}$: $\Gamma_{\gamma}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty})))$ after merging isomorphic nodes.

Theorem

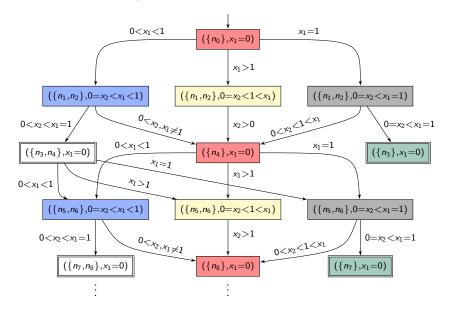
 $\mathcal{B}_{\mathcal{A},\gamma}$ is a deterministic timed automaton such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B}_{\mathcal{A},\gamma})$.

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Back to the example



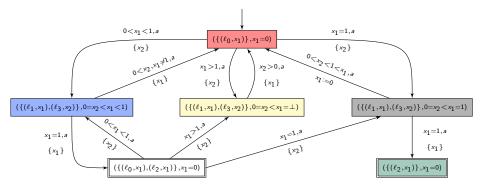
Séminaire LaBRI - Bordeaux - May 28th 09, 24/35

A determinization procedure

The abstract procedure applied 000000000

Conclusion

A deterministic version of the example



Outline

A determinization procedure

The abstract procedure applied

Conclusion

Timed automata

- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction

The abstract procedure applied

- Determinizable classes
- Algorithmic issues and complexity

A determinization procedure

The abstract procedure applied

Recap of the procedure

- 1. Unfolding into a timed tree with infinitely many clocks and nodes
- 2. Region construction on the timed tree (still infinitely many clocks and nodes)
- 3. Symbolic determinization of the region tree (corresponding to a determinization of the timed system)
- Reduction of the number of clocks (under the γ-clock bounded hypothesis)
- 5. Reduction of the number of locations

A determinization procedure

The abstract procedure applied

Conclusion

Recap of the procedure

- 1. Unfolding into a timed tree with infinitely many clocks and nodes
- 2. Region construction on the timed tree (still infinitely many clocks and nodes)
- 3. Symbolic determinization of the region tree (corresponding to a determinization of the timed system)
- Reduction of the number of clocks (under the γ-clock bounded hypothesis)
- 5. Reduction of the number of locations

Key hypothesis: γ -clock boundedness

Outline

A determinization procedure

The abstract procedure applied

Conclusion

Timed automata

- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction

The abstract procedure applied

- Determinizable classes
- Algorithmic issues and complexity

A determinization procedure

The abstract procedure applied

When are TA γ -clock bounded?

Event-clock timed automata

For every $a \in \Sigma$ there is a clock x_a reset at each occurrence of a.

Given \mathcal{A} an event-clock TA, the number of active clocks is bounded by Σ .

A determinization procedure

The abstract procedure applied

When are TA γ -clock bounded?

Event-clock timed automata

For every $a \in \Sigma$ there is a clock x_a reset at each occurrence of a.

Given ${\mathcal A}$ an event-clock TA, the number of active clocks is bounded by $\Sigma.$

Integer-reset timed automata

For every edge (ℓ, g, a, Y, ℓ') $Y \neq \emptyset$ if and only if g contains some constraint x = c.

The deterministic timed tree associated with an integer reset TA is (M + 1)-clock bounded, where M is the maximal constant in A.

A determinization procedure

The abstract procedure applied

Conclusion

Sufficient condition

p-assumption

Let $p \in \mathbb{N}$. A satisfies the *p*-assumption if for every $n \ge p$, for every run

$$\rho = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \dots \xrightarrow{\tau_n, a_n} (\ell_n, v_n)$$

for every clock x, either x is reset along ρ , of $v_n(x) > M$.

 \mathcal{A} satisfies the *p*-assumption \Longrightarrow SymbDet($R(\mathcal{A}^{\infty})$) is *p*-clock bounded.

A determinization procedure

The abstract procedure applied

Conclusion

Sufficient condition

p-assumption

Let $p \in \mathbb{N}$. A satisfies the *p*-assumption if for every $n \ge p$, for every run

$$\rho = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \dots \xrightarrow{\tau_n, a_n} (\ell_n, v_n)$$

for every clock x, either x is reset along ρ , of $v_n(x) > M$.

 \mathcal{A} satisfies the *p*-assumption \Longrightarrow SymbDet($R(\mathcal{A}^{\infty})$) is *p*-clock bounded.

Strongly non-Zeno

A timed automaton \mathcal{A} is *strongly non-Zeno* if there exists $K \in \mathbb{N}$ s.t. for every run $s_0 \xrightarrow{\tau_1, a_1} s_1 \cdots \xrightarrow{t_k, a_k} s_k$ in $\mathcal{A}, k \geq K$ implies $\sum_{i=1}^k \tau_i \geq 1$.

If \mathcal{A} is strongly non-Zeno, then it satisfies the *p*-assumption for some *p* exponential in the size of \mathcal{A} .

Outline

A determinization procedure

The abstract procedure applied

Conclusion

Timed automata

- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction

The abstract procedure applied

- Determinizable classes
- Algorithmic issues and complexity

A determinization procedure

The abstract procedure applied

Conclusion

Algorithmic issues

Given $\mathcal{A} = (L, \ell_0, L_{acc}, X, M, E)$ s.t. SymbDet $(R(\mathcal{A}^{\infty}))$ is γ -clock bounded, locations in $\mathcal{B}_{\mathcal{A},\gamma}$ are characterized by:

- a finite set of pairs in $L_{\mathcal{A}} imes X_{\gamma}^{X}$, and
- ▶ a region over X_{γ} .

Hence $\mathcal{B}_{\mathcal{A},\gamma}$ has $2^{|\mathcal{L}|} \cdot \gamma^{|\mathcal{X}|} \cdot ((2M+2)^{(\gamma+1)^2} \cdot \gamma!)$ locations.

A determinization procedure

The abstract procedure applied

Conclusion

Algorithmic issues

Given $\mathcal{A} = (L, \ell_0, L_{acc}, X, M, E)$ s.t. SymbDet $(R(\mathcal{A}^{\infty}))$ is γ -clock bounded, locations in $\mathcal{B}_{\mathcal{A},\gamma}$ are characterized by:

- a finite set of pairs in $L_{\mathcal{A}} imes X_{\gamma}^{X}$, and
- > a region over X_{γ} .

Hence $\mathcal{B}_{\mathcal{A},\gamma}$ has $2^{|\mathcal{L}|} \cdot \gamma^{|\mathcal{X}|} \cdot ((2M+2)^{(\gamma+1)^2} \cdot \gamma!)$ locations.

Size of the deterministic TA

- TA under the p-assumption: doubly exponential
- event-clock TA: exponential
- integer reset TA: doubly exponential

A determinization procedure

The abstract procedure applied

Conclusion

Complexity of universality

Lower bound

Checking universality in timed automata either satisfying the *p*-assumption or with integer resets is EXPSPACE-hard.

Proof idea: given an EXPSPACE Turing machine and an input word, build a timed automaton which is universal if and on ly if the machine does not halt. Executions are coded by timed-words, actions (representing letters) are separated by 1 time unit.

Remark: same lower bound for the inclusion problem (also for SnZTA).

A determinization procedure

The abstract procedure applied

Conclusion

Complexity of universality

Lower bound

Checking universality in timed automata either satisfying the *p*-assumption or with integer resets is EXPSPACE-hard.

Proof idea: given an EXPSPACE Turing machine and an input word, build a timed automaton which is universal if and on ly if the machine does not halt. Executions are coded by timed-words, actions (representing letters) are separated by 1 time unit.

Remark: same lower bound for the inclusion problem (also for SnZTA).

Upper bound

Checking universality is in EXPSPACE for timed automata satisfying the *p*-assumption, and for integer resets timed automata.

Proof idea: the complement of $\mathcal{B}_{\mathcal{A},\gamma}$ can be computed on the fly. Checking for emptiness can be done in logarithmic space in the number of locations.

A determinization procedure

The abstract procedure applied

Conclusion

Summary complexity

	size of the det. TA	universality problem	inclusion problem
TA _p	doubly exp.	EXPSPACE-compl.	EXPSPACE-compl.
SnZTA	doubly exp.	trivial	EXPSPACE-compl.
ECTA	exp.	PSPACE-compl.	PSPACE-compl.
IRTA	doubly exp.	EXPSPACE- <i>compl.</i>	EXPSPACE- <i>compl.</i>

Conclusion

A determinization procedure

The abstract procedure applied 000000000

Conclusion

Contribution

- general procedure for the determinization of TA
- new determinizable class(es)
- tight complexity bounds

Future work

- adapt the procedure to infinite timed words
- recover decidability of universality for 1-clock TA
- find other determinizable classes