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Motivation
Control of gene expression for a population of cells

credits: G. Batt

I cell population
I gene expression monitored

through fluorescence level
I drug injections affect all cells
I response varies from cell to cell
I obtain a large proportion of cells

with desired gene expression level

I arbitrary nb of components
I full observation

I uniform control
I MDP model for single cell
I global quantitative

reachability objective
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Modelling

I population of N identical MDP M
I uniform control policy under full observation

F

a,1/
2

a,1/2

b

a

b
a

b

a,b

a,1/4

a,1/
2

a,1/2

b

a

b
a

b

a,b

config: # copies in each state

Verification question does the maximum probability that a given
proportion of MDPs reach a target set of states meet a threshold for all
population sizes ?

∀N max
σ

Pσ(MN |= 3 at least 80% of MDPs in F )≥ .7?
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Challenge

Objective: design experimental protocol to obtain
a large proportion of cells with desired gene expression level

Formalisation:

F

a,1/
2

a,1/2

b

a

b
a

b

a,b

∀N max
σ

Pσ(MN |= 3≥ 80% in F )≥ .7?

probabilities

+

proportions

+

parameter

+

control
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Simplifying the problem

I trivial proportion: 100%
I qualitative probabilities (almost-sure)...

or even no probabilities!

F
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a
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a,b

a

a

b

a

b
a

b

a,b

I controller chooses the action (e.g. a)
I adversary chooses how to move each individual copy (a-transition)

Question can one control the population to ensure that for all
non-deterministic choices all NFAs simultaneously reach a target set?
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Parameterized control

Objective: design experimental protocol to obtain
all cells with desired gene expression level in the worst-case

Formalisation:

F

a

a

b

a

b
a

b

a,b

∀N ∃σ ∀τ (AN , σ, τ) |= 3F N?

probabilities

+

proportions

+

parameter

+

control
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Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

∃σ ∀τ(AN , σ, τ) |= 3F N =⇒ ∀M ≤ N ∃σ ∀τ(AM , σ, τ) |= 3F M

Cutoff: smallest N for which controller has no winning strategy

q1

...

qM

F

b

b

b
A\a1

A\aM

b

A∪{b}

A = {a1, · · · , aM}
unspecified edges lead to a sink state

winning σ if N < M
play b then ai s.t. qi is empty

winning τ for N = M
always fill all qi ’s

cutoff is M
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Lower bound on the cutoff

F

··· 2M bottom states
(here 6)

a

a

b

u

d

d

u

c

b

c

a,b,c

u,d u,d u,d

a,b,c

I ∀N ≤ 2M , ∃σ, AN |= ∀σ3F N

accumulate copies in bottom states, then u/d to converge
I for N > 2M controller cannot avoid reaching the sink state

Cutoff O(2|A|)

Combined with a counter, cutoff is even doubly exponential!
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A natural attempt: the support game

1 2 3 4
a

a

a

a

b

b

b

b

b

Assumption: if state 2 or 4 is empty, controller wins

Support game: 2 Eve chooses action
3 Adam chooses transfer graph (footprint of copies’ moves)

1,2,3,4

1,3,4

1,2,3

a b

If Eve wins support game then controller has a winning strategy for all N
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Support game is not equivalent to population game

I controller alternates a and b ;
I adversary always fills q2 and q4 in the b-step

aa

aa bb

bb

b •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

···

Play in support game is not realisable: Controller wins with (ab)ω!
Memoryless support-based controllers are not enough!

Exponential memory on top of support may even be needed.
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Capacity game: refining winning condition of support game

a a

a

a
G

•

•

•

•

•

•
H

•

•

•

•
G G

•

•
H

· · ·

accumulator

Finite capacity play: all accumulators have finitely many entries
Bounded capacity play: finite bound on # entries for accumulators

Bounded capacity
I corresponds to realizable plays
I does not seem to be regular

Capacity game: Eve wins a play if either it reaches a subset of F , or
it does not have finite capacity.

Eve wins capacity game iff Controller has a winning strategy for all N
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Solving the capacity game

Naive solution

2EXPTIME procedure in the size of NFA A

I set of plays with infinite capacity is ω-regular
non-deterministic Büchi automaton guesses an accumulator, and checks it
has infinitely many entries

I winning condition can be determinized into parity condition
exponential blowup

Better solution EXPTIME procedure
•q

•x

•
•y

G H

x → y enters accumulator from q

•q
•x

• t

G

G separates pair (t, x)

Parity game:
capacity game enriched with list of separation graphs
priorities reflect how the list evolves

# states = (simply!) exponential in |A| # priorities = polynomial in |A|

Parity game is equivalent to capacity game.

Theorem:
The population control problem is EXPTIME-complete.
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Summary of results

Uniform control of a population of identical NFA
I parameterized control problem: gather all copies in F
I (surprisingly) quite involved!
I tight results for complexity, cutoff, and memory

I complexity: EXPTIME-complete decision problem
I bound on cutoff: doubly exponential
I memory requirement: exponential memory (orthogonal to supports)

is needed and sufficient for controller

To appear at Concur’17
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Back to motivations

Control of gene expression for a population of cells

credits: G. Batt

probabilities proportions

parameter control

I need for truely probabilistic model
→ MDP instead of NFA

I need for truely quantitative questions
→ proportions and probabilities instead of sure convergence

∀N max
σ

Pσ(MN |= 3 at least 80% of MDPs in F )≥ .7?
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Thanks!
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