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Model checking in a nutshell

Does satisfy

system requirement
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@ generic, successfully applied to hardware/software verification
embedded softwares, real-time systems, controllers in avionics,
telecommunications, planning, etc.

© undecidable in general, scalability issues
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Does satisfy

system requirement

c@<@ [l -] S AG(Ajzj(Crit; = ~Critj)) 7

model model-checking property
algorithm

@ generic, successfully applied to hardware/software verification
embedded softwares, real-time systems, controllers in avionics,
telecommunications, planning, etc.

© undecidable in general, scalability issues

2 Turing awards
* Pnueli, 1996: temporal logic; program and systems verification
* Clarke, Emerson and Sifakis, 2007: model checking as highly effective verification technology
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Hardware model checking:

output control function A, == (x&r)
register evaluation §,=xVr
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Hardware model checking: a basic example

output control function A, == (x&r) 0
register evaluation §, =xVvr 1
x =1 1 P 4
0 1
1
=== v
0

automaton model

safety property: when register value is 1, output is 0
reduces to no state with r=1 and y =1 is reachable
— counterexample: finite path reaching error states
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Hardware model checking: a basic example

output control function A, == (x&r) 0
register evaluation §, =xVvr 1
x =1 1 P 4
0 1
1
=== v
0

automaton model

safety property: when register value is 1, output is 0
reduces to no state with r=1 and y =1 is reachable
— counterexample: finite path reaching error states

/\ automaton is exponential in number of variables
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ONO G A WN RO

Software model checking: a basic example

binsearch(x,t) /x t sorted int array of size n x/
low:=0; high:=n—1;
while low <= high {mid := (low + high)/2;
if x < t[mid]
then high:=mid—1;
else if x > t[mid]
then low:=mid+1;
else return mid;}
return —1;
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Software model checking: a basic example

binsearch(x,t) /x t sorted int array of size n x/
low:=0; high:=n—1;
while low <= high {mid := (low + high)/2;
if x < t[mid]
then high:=mid—1;
else if x > t[mid]
then low:=mid+1;
else return mid;}
return —1;

liveness property: every execution terminates
reduces to maximal paths in CFG reach 7 or 8

P
o

control flow graph

— CFG model is not sufficient to prove termination
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else if x > t[mid]
then low:=mid+1;
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liveness property: every execution terminates
reduces to maximal paths in CFG reach 7 or 8

P
o

control flow graph

— CFG model is not sufficient to prove termination

examples of richer model classes
@ counters: int manipulation
& FIFO queues: communication channels

® pushdown automata: recursion stack
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Software model checking: a basic example

binsearch(x,t) /x t sorted int array of size n x/
low:=0; high:=n—1;

while low <= high {mid := (low + high)/2;
if x < t[mid] @/ \@
then high:=mid—1;
else i x > t[mid] ()

then low:=mid+1;
else return mid;}
return —1;

control flow graph

liveness property: every execution terminates
reduces to maximal paths in CFG reach 7 or 8
— CFG model is not sufficient to prove termination

examples of richer model classes
@ counters: int manipulation
& FIFO queues: communication channels

® pushdown automata: recursion stack

/\ the more expressive the model, the more complex the verification
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Model checking community

Wide spectrum of activities: from theory to applications

decidability and complexity ] ) )
industrial case studies
model and logic tuning

implementation and experiments
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Outline

Introduction to model checking

Parameterized verification for distributed algorithms

Two frameworks for threshold-based fault-tolerant algorithms
Threshold automata (with random choices)
Predicate abstraction

Conclusion
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Peterson’s mutual exclusion algorithm

[Peterson Information Processing Letters 1981]

loop forever;

/% non—critical actions %/

bj:=T ; x:=1-1i;
wait until (x=7)v(aby_j); /* request /
do critical section od;

bj=Ll; /+ release */

end loop
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Peterson’s mutual exclusion algorithm

[Peterson Information Processing Letters 1981]

loop forever;
/* non—critical actions %/

bj:=T ; x:=1-1i;

wait until (x=7)v(aby_j); /* request /
do critical section od;

bj=1; /x release x/

bii=1

(x==)v(b1-j)

end loop

Correctness expressed as a safety property:
the processes are not in their critical section simultaneously
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Peterson’s mutual exclusion algorithm

[Peterson Information Processing Letters 1981]
loop forever;
/% non—critical actions */
bi:=T soxi=1-1;
wait until (x=7)v(aby_j); /* request /

do critical section od;
bj=1; /x release x/

bii=1

(x==i)v(=b1-7)
end loop

Correctness expressed as a safety property:
the processes are not in their critical section simultaneously

Product transition system representing all possible interleavings

{no.n1,x=1,bp=L,b1=1] [n0.n1,x=0,by=L,by =L}

co,mx=1,bp=L,by=L

no,c1,x=0,bp=1,by =L

wo,n,x=1,bo=T,b1=L] [no. w1 x=0bo=L,b1=T
[wo,w1,x=1,bo=T,b;=T] [wo,w1,x=0,b0=T,b;=T]
wo,c1,x=1,bg=T by =T| [co,w1,x=0,bo=T by =T
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loop forever;
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bi:=T soxi=1-1;
wait until (x=7)v(aby_j); /* request /

do critical section od;
bj=1; /x release x/

bii=1

(x==i)v(=b1-7)
end loop

Correctness expressed as a safety property:
the processes are not in their critical section simultaneously

Product transition system representing all possible interleavings

{no.n1,x=1,bp=L,b1=1] [n0.n1,x=0,by=L,by =L}

checking correctness reduces to
no state (cg,c1,_,_,_) is reachable

co,mx=1,bp=L,by=L

— exhaustive exploration of executions

wo,n,x=1,bo=T,b1=L] [no, w1 x=0,bo=L,by=T
[wo,w1,x=1,bo=T,b;=T] [wo,w1,x=0,b0=T,b;=T]
wo,c1,x=1,bg=T by =T| [co,w1,x=0,bo=T by =T
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Limitations of standard model checking techniques

/\ state-space explosion: product transition system is exponential in
number of processes, and of variables
— tools hardly scale to large number of processes or real-life examples
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partial solutions to improve scalability
¢ BDD encodings
* POR techniques
* bounded model-checking
* CEGAR approaches
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Limitations of standard model checking techniques

/\ state-space explosion: product transition system is exponential in
number of processes, and of variables
— tools hardly scale to large number of processes or real-life examples

partial solutions to improve scalability
¢ BDD encodings
* POR techniques
* bounded model-checking
* CEGAR approaches

/\ models with fixed number of processes
e.g. randomized consensus for 10 participants with model checker PRISM
— correctness should be proven for arbitrary number of processes
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Parameterized verification: to infinity and beyond!

from
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Parameterized verification: to infinity and beyond!

from

* correctness should hold for every number of clients

Vn Cll---lICIIS EF ¢
——
n times

* more generally: for all number of participants, for all network
topologies, for all potential failures, for all parameter valuations

Model checking for distributed algorithms — Nathalie Bertrand December 13th 2021 — OPODIS’21 — 9/ 28



Parameterized verification: to infinity and beyond!

from

* correctness should hold for every number of clients

Vn Cll---lICIIS EF ¢
——
n times
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/\ model checking infinitely many instances at once
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Parameterized verification: to infinity and beyond!

from

* correctness should hold for every number of clients

Vn Cll---lICIIS EF ¢
——
n times

* more generally: for all number of participants, for all network
topologies, for all potential failures, for all parameter valuations

/\ model checking infinitely many instances at once

Good news! it may be computationally easier to prove correctness
“for all n" than “for n a large fixed value”.
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Parameterized verification for distributed algorithms

Starting from...

* algorithm pseudo-code

bool v := input_value({0, 1});
int r:=1;
while (true) do
send (R,r,v) to all;
wait for n — t messages (R,r, *);
if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;
else send (P,r,?) to all;
wait for n — t messages (P,r );
if received at least t + 1
messages (P,r,w,D) then {
Vo= owg
/* enough support —> update estimate */
if received at least (n + t) / 2
messages (P,r,w,D)
then decide w;
/% strong majority —> decide */

} else v :=random(0, 1) ;

/* unclear —> coin toss *
re=r+1 ;

od

® requirements
validity, agreement
(a.s.) termination
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Parameterized verification for distributed algorithms

Starting from... ... derive
* algorithm pseudo-code * model
bool v := input_value ({0, 1});

int r:=1;
while (true) do
send (R,r,v) to all;
wait for n — t messages (R,r, *);
if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;
else send (P,r,?) to all;
wait for n — t messages (P,r );
if received at least t + 1
messages (P,r,w,D) then {

X0 (n+t)/2-F e yoit

X1 = (n+t)/2-Fryy st

Vo= w;
/* enough support —> update estimate */
if received at least (n + t) / 2

messages (P,r,w,D)
then decide w; e formulas
/* strong majority —> decide x/ Vk,k’GN, A[FK[D\/,/(]>04>GK[D1_V,/(’]:O)
} else v:=random(0, 1) ; VkeNA (Fx[ly,0]=0 — Gx[Dy,k]=0)
/* | - i */
) ruj::ir ot Pa(Vien Vve(0,1} 6 Are\iDy ) K[6 K] =0)=1
od
® requirements

validity, agreement
(a.s.) termination
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Parameterized verification for distributed algorithms

Starting from... ... derive
* algorithm pseudo-code * model
bool v := input_value ({0, 1});

int r:=1;

while (true) do

send (R,r,v) to all;

wait for n — t messages (R,r, *);

if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;

1
wait for n — t messages (P,r, x); ; N<o

X0 (n+t)/2-F e yoit

else send (P,r,7) to all;
if received at least t + 1
messages (P,r,w,D) then {
Vo= w;
/* enough support —> update estimate */
if received at least (n + t) / 2
messages (P,r,w,D)

then decide w; * formulas
/% strong majority —> decide %/ kK €N, A(Fx[Dy.k]>0—Gx[Dy_, k'] =0)
} else v:=random(0, 1) ; VkeNA (Fx[ly,0]=0 — Gx[Dy,k]=0)
/* unclear —> coin toss */

— Pa(Vien Vve(0,1} 6 Are\iDy ) K[6 K] =0)=1
od

® requirements
validity, agreement * model checking algorithms

(a.s.) termination * prototype implementation
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Which distributed algorithms?

A variety of settings to explore
* timing model: asynchronous, synchronous, etc.
* communication paradigm: shared variable, broadcast, etc.
* failure model: no failures, crash, Byzantine processes
* addressed problem: consensus, leader election, DB consistency, etc.

Model checking for distributed algorithms — Nathalie Bertrand December 13th 2021 — OPODIS'21 - 11/ 28



Which distributed algorithms?

A variety of settings to explore
* timing model: asynchronous, synchronous, etc.
* communication paradigm: shared variable, broadcast, etc.
* failure model: no failures, crash, Byzantine processes
addressed problem: consensus, leader election, DB consistency, etc.

Model checking for distributed algorithms — Nathalie Bertrand December 13th 2021 — OPODIS'21 - 11/ 28



Which distributed algorithms?

A variety of settings to explore
* timing model: asynchronous, synchronous, etc.
* communication paradigm: shared variable, broadcast, etc.
* failure model: no failures, crash, Byzantine processes
addressed problem: consensus, leader election, DB consistency, etc.

A fantastic playground for model checking

raising theoretical and practical issues
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Outline

Introduction to model checking

Parameterized verification for distributed algorithms

Two frameworks for threshold-based fault-tolerant algorithms
Threshold automata (with random choices)

Conclusion
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Threshold automata

for fault-tolerant threshold-based distributed algorithms

* locations represent algorithm control points
* shared variables count sent messages of each type
* guards as linear constraints on variables and parameters

[Konnov Veith Widder CAV'15, Konnov Lazi¢ Veith Widder POPL'17]
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Threshold automata
for fault-tolerant threshold-based distributed algorithms
* locations represent algorithm control points
* shared variables count sent messages of each type

* guards as linear constraints on variables and parameters
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[Konnov Veith Widder CAV'15, Konnov Lazi¢ Veith Widder POPL'17]
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Semantics of threshold automata

* infinite counter system

° finitely many int counters: 1 per location of the TA
° unbounded counter values because of parameters
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Semantics of threshold automata

* infinite counter system
* finitely many int counters: 1 per location of the TA
° unbounded counter values because of parameters
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Specifying and verifying correctness

* Linear-time Temporal Logic (LTL) fragment without Next, and with
counters

* atomic propositions: whether counter value is 0 or not

[Konnov Veith Widder CAV'15, Konnov Lazi¢ Veith Widder POPL'17]
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forsyte.at/software/bymc/

Specifying and verifying correctness

* Linear-time Temporal Logic (LTL) fragment without Next, and with
counters

* atomic propositions: whether counter value is 0 or not
Agreement: No two correct processes decide differently (safety)
Fx[D,)>0 — Gx«[Di-,]=0

Termination: Eventually all correct processes decide (liveness)

F A\ x[¢] =0

[Gf\{DQ,Dl}

[Konnov Veith Widder CAV'15, Konnov Lazi¢ Veith Widder POPL'17]
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Specifying and verifying correctness

* Linear-time Temporal Logic (LTL) fragment without Next, and with
counters

* atomic propositions: whether counter value is 0 or not

Agreement: No two correct processes decide differently (safety)

Fx[D,]>0 — Gx«[D;-,]=0

Termination: Eventually all correct processes decide (liveness)
F N x[{]=0
[Gf\{DQ,Dl}

Given a threshold automaton TA, a specification ¢ in ELTLgT, and a
resilience condition RC
one can decide whether for all parameters satisfying RC, Sys(TA) = ¢

Tool support: ByMC at forsyte.at/software/bymc/
[Konnov Veith Widder CAV'15, Konnov Lazi¢ Veith Widder POPL'17]
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How to handle randomization?

Ben Or’s randomized algorithm for consensus [Ben Or PODC'83]
bool v := input_value({0, 1});
int r:=1;

while (true) do
send (R,r,v) to all;
wait for n — t messages (R,r, *);
if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;
else send (P,r,?) to all;
wait for n — t messages (P,r,*);
if received at least t + 1
messages (P,r,w,D) then {
voi= wg /% enough support —> update estimate */
if received at least (n + t) / 2
messages (P, r,w,D)

then decide w; /* strong majority —> decide x/
} else v:=random(0, 1) ; /* unclear —> coin toss */

= (rar 1L H
od
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How to handle randomization?

Ben Or’s randomized algorithm for consensus [Ben Or PODC'83]
bool v := input_value({0, 1});
int r:=1;

while (true) do
send (R,r,v) to all;
wait for n — t messages (R,r, *);
if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;
else send (P,r,?) to all;
wait for n — t messages (P,r,*);
if received at least t + 1
messages (P,r,w,D) then {
Vo= w; /* enough support —> update estimate x*/
if received at least (n + t) / 2
messages (P, r,w,D)

then decide w; /* strong majority —> decide x/
} else v:=random(0, 1) ; /* unclear —> coin toss */

= (rar 1L H
od

Modeling challenges
* unboundedly many rounds

* probabilistic choices for local/global coin tosses
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Probabilistic threshold automata

Ben Or's randomized consensus algorithm

______________________________________
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Probabilistic threshold automata

Ben Or's randomized consensus algorithm
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Probabilistic threshold automata

Ben Or's randomized consensus algorithm
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Specifying correctness

Agreement: No two correct processes decide differently (safety)
(VkeNo) (Vk'eNg) A (Fx[Dy,k]>0 — Gx[Di_y,k']=0)
Validity: Any decided value was proposed initially (safety)
(VkeNp) A (Fx[h-,,00=0 — Gx«[Di_,k]=0)

Almost sure termination: under every adversary, with probability 1
every correct process eventually decides (prob. liveness)

Pa(Vkene¢, V G A «x[0,k]=0) =1
ve{0,1} ¢eL\{D,}
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Specifying correctness

Agreement: No two correct processes decide differently (safety)
(VkeNo) (Vk'eNg) A (Fx[Dy,k]>0 — Gx[Di_y,k']=0)
Validity: Any decided value was proposed initially (safety)
(VkeNp) A (F x[/1-,,00=0 — Gx«[Di_,k]=0)

Almost sure termination: under every adversary, with probability 1
every correct process eventually decides (prob. liveness)

Pa (Vkene V G A «[0,k]=0) =1
ve{0,1} ¢eL\{D,}

Verification challenges

* specifications over multiple rounds
* probabilistic guarantees
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Verifying correctness

Safety properties
* must hold on all executions
° probabilistic choices can be transformed into non-determinism
° reduction to non-probabilistic threshold automata
* communication-closure
* reduction to single round threshold automaton by reordering actions
* round switch invariants
° reduction to single round specification

[B. Konnov Lazi¢ Widder Concur’'19]
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Verifying correctness

Safety properties
* must hold on all executions
* probabilistic choices can be transformed into non-determinism
° reduction to non-probabilistic threshold automata
* communication-closure
° reduction to single round threshold automaton by reordering actions
* round switch invariants
° reduction to single round specification

Liveness property
* must hold on almost all executions
° probability values do matter!
° restriction to round-rigid adversaries to reorder actions within rounds
* sufficient conditions on single round threshold automaton that imply
almost sure termination

[B. Konnov Lazi¢ Widder Concur’'19]
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Verifying correctness

Safety properties
* must hold on all executions
* probabilistic choices can be transformed into non-determinism
° reduction to non-probabilistic threshold automata
* communication-closure
° reduction to single round threshold automaton by reordering actions
* round switch invariants
° reduction to single round specification

Liveness property
* must hold on almost all executions
° probability values do matter!
° restriction to round-rigid adversaries to reorder actions within rounds
* sufficient conditions on single round threshold automaton that imply
almost sure termination

/\ sufficient conditions only, approach mimicks manual proof

[B. Konnov Lazi¢ Widder Concur’'19]
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Experimental evaluation

* 6 classical randomized distributed algorithms

* several one-round safety and liveness properties for each

Algorithm

Verif time per property

Ben-Or's Byzantine random. consensus
- Ben-Or's crash random. consensus
- Ben-Or's clean crash random. consensus

Bracha's randomized consensus

Raynal's k-set agreement
- Song's and van Renesse’s BOSCO

Model checking for distributed algorithms — Nathalie Bertrand

<1 sec
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Threshold-based round-based algorithms

Phase King algorithm [Berman Garay, Mathematical Systems Theory 1993]
int id := identifier ({0 ... n—1});
bool v := input_value({0, 1});

for r=0 to t do
broadcast (r,id,v);

receive all (r,_,_);
if # of (r,_,0) received > n/2 + t /+ majority of 0 #/
v = 0;
else if # of (r,_,1) received > n/2 + t /% majority of 1 x/
v = 1;
else v := v' where (r,r,v') received; /x new value is king value %/
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Threshold-based round-based algorithms

Phase King algorithm [Berman Garay, Mathematical Systems Theory 1993]
int id := identifier ({0 ... n—1});
bool v := input_value({0, 1});

for r=0 to t do
broadcast (r,id,v);

receive all (r,_,_):
if # of (r,_,0) received > n/2 + t /x majority of 0 */
v = 0;
else if # of (r,_,1) received > n/2 + t /+ majority of 1 %/
v = 1;
else v := v' where (r,r,v') received; /x new value is king value %/

* threshold automaton with states arranged in layers/rounds
® processes send their local state as message contents
* unbounded number of rounds (parameter t)

* synchronous or asynchronous algorithms
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Threshold-based round-based algorithms

Phase King algorithm [Berman Garay, Mathematical Systems Theory 1993]
int id := identifier ({0 ... n—1});
bool v := input_value({0, 1});
for r=0 to t do
broadcast (r,id,v);
receive all (r,_,_);
if # of (r,_,0) received > n/2 + t /+ majority of 0 #/
v = 0;
else if # of (r,_,1) received > n/2 + t /+ majority of 1 */
v o= 1;
else v := v' where (r,r,v') received; /x new value is king value %/

* threshold automaton with states arranged in layers/rounds
® processes send their local state as message contents
* unbounded number of rounds (parameter t)

* synchronous or asynchronous algorithms

e.g. guard from v; to v
vo+f>n/2+t v (kg>0 A vy <n/2+t)
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Abstraction steps

Full Configuration

state | po | vo ki w1
prlvi i ki v
p2|{vi v Vvi -

received(po) | po | vo ki w1
privi v -
plv w
received(py) | -+
received(p2)
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Abstraction steps

Succinct Configuration

po|vw ki wv

Full Configuration
pr|vi vi ki v

state | po | vo ki w1
prlvi i ki v
p2|vi vw v -

p2|vi w w1

~N

Po: Vo Vo Vo Vo

koyko ko ko
pap1: vi ~\V1 vi v

received(po) | po | vo ki w1
pL|lvi v
plv w

received(p1)
received(p2)

e _____1
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Abstraction steps

Succinct Configuration

k
Full Configuration Po| Vo fa vt

prlvi vi ki v

|
|
|
|
|
!
|
state | po | vo ki w1 - - I plvi v w»n
|
|
|
)
|
|
|

prlvi i ki v ~
p2|{vi v vi - - 3
received(po) | po | vo ki w1 - - ) Po: VC{ Vo Wov
_________ -
V: 1% . . .
i L koyko ko ko

plv w
received(py) | -+
received(p2)

Vo 1 1 0 0
\ AN\

koSOYO\O 0
7 ~
V1124\1 2 1

N\A A
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Abstraction steps

Succinct Configuration

po|vw ki wv
prlvi vi ki v

|
|
!
. . |
Full Configuration !
state | po | vo ki w1 - - | plvi v w»n
|
|
|
)
|
|
|

prlvi i ki v .
p2|vi vw v - - 3

received(po) | po | vo ki w1 Po:ivo Vo Vo V0

pPL|v1i v
p2|vi w

koyko ko ko

received(p1)
received(p2)

PN
Guard Configuration E
w>0| T T F F Counter Configuration,ln:4, t=1,f=1
k>0|F F F F -
V1>0 T T T T - v 1 1 0 0
k>0 F T T F - A AN
2(+ko+f)>n+2t | F F F F - ko OYO\O 0
2(vi+ki+f)>n+2t | F F T F - / N
2(w+ko)>n+2t | F F F F - V1! 24\1 2 1
2vi+k)>n+2t | F F F F - Yy A
w+ko+vi+ki+f=n| T T T F - ki 0 1 1 0
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Guard automaton

vo>0 T T F F F

ko >0 F F F F F

vi>0 T T T T F

k1 >0 F T T F F
2(vo+ko+f)>n+2t F F F F F
2vi+ki+f)>n+2t F F T F F
2(vo+ko)>n+2t F F F F F
2(vi+ki)>n+2t F F F F F
vwtko+vi+ki+f=n T T T F F

guard configuration

[B. Thomas Widder Concur'20]
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v >0
k0>0
V1>0
ki >0
2(vg+ko+f)>n+2t
2(vi+ki+f)>n+2t
2(V0+k0)>n+2t
2(vy+ki)>n+2t
vw+ko+vit+ki+f=n

Guard automaton

guard configuration

[B. Thomas Widder Concur'20]
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v >0
k0>0
V1>0
ki >0
2(vg+ko+f)>n+2t
2(vi+ki+f)>n+2t
2(V0+k0)>n+2t
2(vy+ki)>n+2t
vw+ko+vit+ki+f=n

Guard automaton

1 %

guard configuration guard automaton

[B. Thomas Widder Concur'20]
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Guard automaton

vo>0

k0>0

V1>0

ki >0

2(vo+ko+f)>n+2t

2(vi+ki+f)>n+2t

2(V0+k0)>n+2t

2(vi+ki)>n+2t
vot+ko+vi+tki+fzn

guard configuration guard automaton

¢ fixed set of predicates
* transitions in guard automaton via predicate abstraction (SMT solver)

[B. Thomas Widder Concur'20]
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Guard automaton

v >0
ko>0 11
vi >0 O /‘) \
k1>0 To

2(vo+ko+f)>n+2t Yo Y1 Y2 Y3 Y& - Y2
2vi+ki+f)>n+2t 5

2(vo+ko)>n+2t C
2(vi+ ki) >n+2t /\ ) 13
vo+tko+vi+ki+f=n (_/
guard configuration guard automaton
* fixed set of predicates

* transitions in guard automaton via predicate abstraction (SMT solver)

The language of the guard automaton overapproximates the set of
all executions of the layered threshold automaton.

[B. Thomas Widder Concur'20]
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Guard automaton

v >0

ko> 0 -

v o0 N \v

ki>0 To
2(vo+ko+f)>n+2t Yo Y1 Y2 Y3 Y& - o Y2
2(vi+ki+f)>n+2t 5 - (_\ \)

2(vo+ko)>n+2t C
2(vi+ ki) >n+2t /\ ) 13
vo+tko+vi+ki+f=n (_/
guard configuration guard automaton

* fixed set of predicates
* transitions in guard automaton via predicate abstraction (SMT solver)

The language of the guard automaton overapproximates the set of
all executions of the layered threshold automaton.

/\ Incomplete method yet sufficient to prove correctness of Phase
King algorithm + analysis can be refined by adding more predicates
[B. Thomas Widder Concur'20]
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How good are guard automata and predicate abstraction?

Drawbacks and advantages compared to threshold automata approach

o layered assumption on algorithm structure
o formalization using domain theory concepts

© randomization not supported
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How good are guard automata and predicate abstraction?

Drawbacks and advantages compared to threshold automata approach

o layered assumption on algorithm structure

O]

formalization using domain theory concepts

(0]

randomization not supported

formal relation between distributed algorithms and model semantics
allows to check for liveness properties on infinite executions

enables refinement

& & & &

stand alone implementation
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Outline

Conclusion
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Parameterized verification of distributed algorithms

Parameterized verification techniques
e apply to simple standard distributed algorithms

* provide automated correctness proofs
in contrast to error-prone manual proofs and non-exhaustive simulation

* are generic
one model-checking algorithm for a class of distributed algorithms
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Parameterized verification of distributed algorithms

Parameterized verification techniques
e apply to simple standard distributed algorithms

* provide automated correctness proofs
in contrast to error-prone manual proofs and non-exhaustive simulation

* are generic
one model-checking algorithm for a class of distributed algorithms

Half a dozen of frameworks so far
* broadcast protocols [Esparza Finkel Mayr LICS'99

[Delzanno Sangnier Zavattaro Concur'10

|
|
* shared-memory models [Esparza Ganty Majumdar JACM 2016]
[Bouyer Markey Randour Sangnier Stan ICALP'16]

|

|

]

* randomized algorithms on rings [Lin Riimmer CAV'16
* synchronous algorithms on rings [Aiswarya Bollig Gastin 1&C 2018
* population protocols [Esparza Ganty Leroux Majumdar Acta Inf. 2017
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Parameterized verification of distributed algorithms

Parameterized verification techniques
e apply to simple standard distributed algorithms

* provide automated correctness proofs
in contrast to error-prone manual proofs and non-exhaustive simulation

* are generic
one model-checking algorithm for a class of distributed algorithms

Half a dozen of frameworks so far
* broadcast protocols [Esparza Finkel Mayr LICS'99

[Delzanno Sangnier Zavattaro Concur'10

|
|
* shared-memory models [Esparza Ganty Majumdar JACM 2016]
[Bouyer Markey Randour Sangnier Stan ICALP'16]

|

|

]

* randomized algorithms on rings [Lin Riimmer CAV'16
* synchronous algorithms on rings [Aiswarya Bollig Gastin 1&C 2018
* population protocols [Esparza Ganty Leroux Majumdar Acta Inf. 2017

Two available tools to try out: ByMC, Peregrine
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Still many challenges for model checking

Current interests
* compositional analysis of threshold automata to improve scalability

* shared-memory consensus algorithms [Aspnes JACM 2002]

Mid- to long-term objectives
* model extraction from pseudo-code
* quantitative analysis of randomized consensus algorithms
* complexity measures computation (e.g. convergence time)

* automated synthesis of correct-by design distributed algorithms
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Still many challenges for model checking

Current interests
* compositional analysis of threshold automata to improve scalability

* shared-memory consensus algorithms [Aspnes JACM 2002]

Mid- to long-term objectives
* model extraction from pseudo-code
* quantitative analysis of randomized consensus algorithms
* complexity measures computation (e.g. convergence time)

* automated synthesis of correct-by design distributed algorithms

Thanks for your attention!
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