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HIGH ORDER ASYMPTOTIC PRESERVING SCHEME FOR1

LINEAR KINETIC EQUATIONS WITH DIFFUSIVE SCALING2

M. ANANDAN∗, B. BOUTIN† , AND N. CROUSEILLES‡3

Abstract. In this work, high order asymptotic preserving schemes are constructed and analysed4
for kinetic equations under a diffusive scaling. The framework enables to consider different cases:5
the diffusion equation, the advection-diffusion equation and the presence of inflow boundary condi-6
tions. Starting from the micro-macro reformulation of the original kinetic equation, high order time7
integrators are introduced. This class of numerical schemes enjoys the Asymptotic Preserving (AP)8
property for arbitrary initial data and degenerates when ϵ goes to zero into a high order scheme which9
is implicit for the diffusion term, which makes it free from the usual diffusion stability condition. The10
space discretization is also discussed and high order methods are also proposed based on classical11
finite differences schemes. The Asymptotic Preserving property is analysed and numerical results12
are presented to illustrate the properties of the proposed schemes in different regimes.13

Key words. collisional kinetic equation, diffusive scaling, high order Runge-Kutta schemes,14
asymptotic preserving property.15

MSC codes. 82C40, 85A25, 65M06, 65L04, 65L06.16

1. Introduction. In this work, we are concerned with the numerical approxima-17

tion of linear kinetic transport equations in a diffusive scaling. Such models are widely18

used in applications such as rarefied gas dynamics, neutron transport, and radiative19

transfer. Due to the presence of a small parameter ϵ (which is the normalized mean20

free path of the particles), standard schemes suffer from a severe restriction on the21

numerical parameters, making the simulations very costly. In the last decades, the22

so-called Asymptotic-Preserving (AP) schemes have been proposed to make possible23

the numerical passage between the micro and macro scale [14, 15]. Indeed, these AP24

schemes are uniformly stable and degenerate when ϵ → 0 to a scheme which is con-25

sistent with the asymptotic diffusion model. This makes them very attractive to deal26

with multi-scale phenomena as an alternative to domain decomposition approaches.27

The goal of this work is to design high order in time AP schemes for collisional28

kinetic equations in the diffusive scaling. Several works can be found in the litera-29

ture on this topic [17, 14, 15, 18, 19, 20, 20, 26, 10, 21, 22, 25, 23, 28]. Our work30

is based on a micro-macro decomposition as introduced in [25] where the unknown31

f of the stiff kinetic equation is split into an equilibrium part ρ plus a remainder32

g. A micro-macro model (equivalent to the original kinetic one) satisfied by ρ ad g33

can be derived. This micro-macro strategy turns out to be the starting point of sev-34

eral numerical approximations in phase space (using particles method, Discontinuous35

Galerkin method or low rank approximation [6, 5, 13, 11, 12]). In addition, a suitable36

first order semi-implicit time discretization of the micro-macro model is used as in37

[25] for which however the asymptotic diffusion equation is solved explicitly. This38

drawback is overcome following [23, 6, 5] in which the AP scheme degenerates into39

an implicit treatment of the diffusion equation. This improvement enables to get a40

numerical scheme which is asymptotically free from the usual parabolic condition.41

The derivation of high order in time AP schemes for stiff kinetic problem has42

∗Indian Institute of Science, C.V. Raman Road, 560012, Bangalore, India (megalaa@iisc.ac.in).
†Univ Rennes, CNRS, IRMAR UMR 6625, 35000 Rennes, France (benjamin.boutin@univ-

rennes.fr).
‡Univ Rennes, CNRS, IRMAR UMR 6625 & centre Inria de l’Université de Rennes (MINGuS) &
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2 M. ANANDAN, B. BOUTIN, AND N. CROUSEILLES

been performed by several authors [7, 8, 9, 1, 13] using the so-called high order IMEX43

methods [4, 2, 27]. In this work, a family of high order IMEX schemes is proposed44

for linear collisional kinetic equations in the diffusive scaling, which degenerates when45

ϵ → 0 to a high order IMEX scheme for the diffusion equation. From the first order46

semi-implicit AP numerical scheme [6], the family of high order schemes proposed in47

this work is obtained using globally stiffly accurate high order IMEX Runge-Kutta48

methods, namely type A and type CK [8, 13].49

In addition to the standard diffusion scaling, we also consider two other examples50

that enter in our framework. First, we consider a modification of the collision operator51

that enables to derive a transport-diffusion asymptotic model [17, 13]. Second, we52

discuss half moments micro-macro decomposition which naturally incorporates the53

incoming boundary conditions [24].54

Lastly, we address the space discretization in order to get a fully high order solver55

of the kinetic equation. High order space approximation based on finite difference56

methods is considered. Staggered or non-staggered strategies are proposed to achieve57

high order accuracy in space.58

The paper is organized as follows. First in Section 2, the kinetic and asymptotic59

diffusion models are introduced. Then in Section 3, high order time integrators (using60

globally stiffly accurate IMEX Runge-Kutta temporal discretization) are proposed,61

and their AP property in the diffusive limit is addressed in Section 4. Section 5 is62

devoted to the space approximation. In Section 6, we discuss some extensions to other63

collision operators and to half moments. In Section 7, numerical results are presented,64

illustrating high order accuracy and the main properties of the schemes.65

2. Kinetic equation, diffusion limit and micro-macro decomposition.66

In this section, we introduce the kinetic model in the diffusive scaling, and recall the67

asymptotic limit. Then, the micro-macro decomposition is performed to derive the68

micro-macro model which serves as a basis for the numerical developments.69

2.1. Linear kinetic equation with diffusive scaling. Let Ω ⊂ Rd be the70

position space and V ⊆ Rd be the velocity space with measure dµ(v). We consider71

the linear kinetic equation with diffusive scaling,72

(2.1) ∂tf +
1

ϵ
v · ∇xf =

1

ϵ2
Lf, (t, x, v) ∈ R+ × Ω× V73

where f(t, x, v) ∈ R is the distribution function (depending on time t ∈ R+, space74

x ∈ Ω ⊂ Rd and velocity v ∈ V ⊂ Rd) and ϵ > 0 measures the dimensionless mean free75

path of particles or the inverse of relaxation time. We consider the initial condition,76

(2.2) f(0, x, v) = f init(x, v), (x, v) ∈ Ω× V77

and boundary conditions are imposed in space. In this work, we will consider periodic78

boundary conditions or inflow boundary conditions. The linear collision operator L79

in (2.1) acts only on the velocity dependence of f , and it relaxes the particles to an80

equilibrium M(v) which is positive and even. We denote for all velocity dependent81

distribution functions h,82

(2.3) ⟨h⟩V =

∫
V
h(v) dµ∫

V
M(v) dµ

.83

In particular, we obtain ⟨M⟩V = 1 and ⟨vM⟩V = 0. Further, the operator L is non-84

positive and self-adjoint in L2
(
V,M−1dµ

)
, with the following null space and range:85

(2.4) N (L) = {f : f ∈ Span (M)}, R(L) = (N (L))
⊥
= {f : ⟨f⟩V = 0}.86
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HIGH ORDER AP SCHEME FOR KINETIC EQUATIONS IN DIFFUSIVE SCALING 3

Therefore, L is invertible on R(L) and we denote its pseudo-inverse by L−1. We also87

assume that L is invariant under orthogonal transformations of Rd.88

2.2. Diffusion limit. In the limit ϵ → 0, it is seen from (2.1) that f → f089

where f0 belongs to N (L). Thus, f0 = ρ(t, x)M where f0 solves Lf0 = 0 and where90

the limiting density ρ is the solution of the asymptotic diffusion equation. To derive91

the diffusion equation, a Chapman-Enskog expansion has to be performed to get92

f = f0 + ϵL−1(vM) · ∇xρ + O(ϵ2). Integrating with respect to the velocity variable93

enables to get the diffusion limit94

(2.5) ∂tρ−∇x · (κ∇xρ) = 0 with κ = −
〈
v ⊗ L−1(vM)

〉
V
> 0.95

2.3. Micro-macro decomposition. In this part, we derive a micro-macro96

model which is equivalent to (2.1), and this is the model that will be discretized97

in the next sections. First, we consider the standard micro-macro decomposition of98

the unknown f [25, 23],99

(2.6) f = ρM + g, with ρ(t, x) = ⟨f⟩V and ⟨g⟩V = 0.100

We introduce the orthogonal projector Π in L2
(
V,M−1dµ

)
ontoN (L): Πh = ⟨h⟩V M ,101

which will be useful to derive the micro-macro model. Substituting (2.6) into (2.1)102

and applying successively Π and (I−Π) enables to get the micro-macro model satisfied103

by (ρ, g)104

∂tρ+
1

ϵ
∇x · ⟨vg⟩V = 0,(2.7)105

∂tg +
1

ϵ
(I −Π) (v · ∇xg) +

1

ϵ
vM · ∇xρ =

1

ϵ2
Lg.(2.8)106

107

Initial conditions for macro and micro equations become108

ρ(0, x) = ρinit(x) =
〈
f init(x, ·)

〉
V
,(2.9)109

g(0, x, v) = ginit(x, v) = f init(x, v)− ρinit(x)M(v),(2.10)110111

whereas the boundary conditions for ρ and g become periodic if f is periodic. From
the micro part (2.8), a Chapman-Enskog expansion of g can be performed to get

g = −ϵ
(
ϵ2∂t − L

)−1
(
(I −Π) (v · ∇xg) + vM · ∇xρ

)
= ϵL−1(vM) · ∇xρ+O(ϵ2),

under some suitable smoothness assumptions. Inserting this expression in (2.7) leads112

to (2.5) in the limit ϵ → 0.113

3. Time integrators. In this part, we present the family of high order time114

integrators for the micro-macro model (2.7)-(2.8). We will keep the phase space115

variables continuous to ease the reading. We first recall the first order temporal116

scheme which leads to the implicit treatment of the asymptotic diffusion model before117

introducing the high order version.118

3.1. First order accurate time integrator. Given ρn, gn that approximate119

ρ, g at time t = n∆t, we obtain the solution ρn+1, gn+1 from the following time120

integration of (2.7) and (2.8) respectively. We use the following first order implicit-121

explicit (IMEX) strategy to attain the asymptotic preserving property122

ρn+1 = ρn − ∆t

ϵ
∇x ·

〈
vgn+1

〉
V
,(3.1)123

gn+1 = gn − ∆t

ϵ
(I −Π) (v · ∇xg

n)− ∆t

ϵ
vM · ∇xρ

n+1 +
∆t

ϵ2
Lgn+1.(3.2)124

125
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Let us observe that this scheme is different from the IMEX strategies employed in126

[25, 13], due to our implicit treatment of density gradient in micro equation (3.2) and127

fully implicit treatment of the macro equation. This strategy enables us to get an128

implicit scheme for diffusion equation in the limit ϵ → 0.129

Although the macro equation is treated in a fully implicit manner, ρn+1 and gn+1 can130

be updated using (3.1) and (3.2) in an explicit manner. From (3.2), we get131

(3.3) gn+1 =
(
ϵ2I −∆tL

)−1 (
ϵ2gn − ϵ∆t (I −Π) (v · ∇xg

n)− ϵ∆tvM · ∇xρ
n+1
)
.132

Inserting this in (3.1), we obtain the following implicit scheme for the macro unknown133

ρn+1=ρn −∆t∇x · ⟨v
(
ϵ2I −∆tL

)−1(
ϵgn−∆t (I −Π) (v · ∇xg

n)−∆tvM ·∇xρ
n+1
)
⟩V,134

or, expressing ρn+1 as quantities at iteration n135
136

ρn+1 =
(
I −∆t2∇x · (Dϵ,∆t∇x)

)−1
(
ρn137

−∆t∇x ·
〈
v
(
ϵ2I −∆tL

)−1
(ϵgn −∆t (I −Π) (v ·∇xg

n))

〉
V

)
138

139

with Dϵ,∆t = ⟨v ⊗
(
ϵ2I −∆tL

)−1
(vM)⟩V . Thanks to this time integrator, ρn+1 can140

be updated by inverting a diffusion type operator. Following this, gn+1 can be found141

explicitly from the knowledge of ρn+1. This first order scheme introduced in [23, 6] is142

the basis of the high order scheme presented below.143

3.2. High order accurate time integrators. Following previous works [8, 13,144

3], we will consider globally stiffly accurate (GSA) IMEX Runge-Kutta (RK) schemes145

to construct high order time integrators for the micro-macro model (2.7) and (2.8).146

An IMEX RK scheme is represented using the double Butcher tableau [4, 2]147

(3.4)
c̃ Ã

b̃T

c A

bT
148

where Ã = (ãij) and A = (aij) are s×s matrices which correspond to the explicit and149

implicit parts of the scheme (A and Ã respectively are lower triangular and strictly150

lower triangular matrices). The coefficients c̃ and c are given by c̃i =
∑i−1

j=1 ãij ,151

ci =
∑i

j=1 aij , and the vectors b̃ = (b̃j) and b = (bj) give quadrature weights that152

combine the stages. For GSA IMEX RK scheme, we have153

(3.5) cs = c̃s = 1 and asj = bj , ãsj = b̃j , ∀j ∈ {1, 2.., s}.154

An IMEX RK method is type A if the matrix A is invertible, and it is type CK if the155

first row of matrix A has zero entries and the square sub-matrix formed by excluding156

the first column and row of A is invertible. In the special case where the first column157

of A has zero entries, the scheme is said to be of type CK-ARS. The reader is referred158

to [8] for more details. In this work, we employ both type A and CK-ARS schemes.159

The first order GSA IMEX RK scheme employed in (3.1) and (3.2) follows the type160

CK-ARS double Butcher tableau (known as ARS(1, 1, 1)),161

(3.6)
0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1
162
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HIGH ORDER AP SCHEME FOR KINETIC EQUATIONS IN DIFFUSIVE SCALING 5

We now use the general IMEX RK scheme from (3.4) with GSA property (3.5) for163

obtaining high order accurate time integration of macro and micro (2.7) and (2.8)164

respectively. We introduce the following notations in the presentation of our scheme.165

T h(k) = (I −Π)
(
v · ∇xh

(k)
)
,(3.7)166

D(j)
ϵ,∆t =

〈
v ⊗

(
ϵ2I − ajj∆tL

)−1
(vM)

〉
V
,(3.8)167

I(j)
ϵ,∆t =

(
ϵ2I − ajj∆tL

)−1
.(3.9)168

169

We will construct high order IMEX RK schemes following the first order guidelines170

(fully implicit treatment of macro equation, implicit treatment of density gradient and171

relaxation terms and explicit treatment of transport term in micro equation). Given172

ρn, gn that approximate ρ, g at time t = n∆t, we obtain the internal RK stage values173

ρ(j) and g(j), j = 1, . . . , s as174

ρ(j) = ρn −
j∑

k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V
,(3.10)175

g(j) = gn −
j−1∑
k=1

ãjk
∆t

ϵ
T g(k) −

j∑
k=1

ajk
∆t

ϵ
vM · ∇xρ

(k) +

j∑
k=1

ajk
∆t

ϵ2
Lg(k),(3.11)176

177

where, as usual, the summation
∑j−1

k=1 in the explicit term is zero for j = 1.178

Although the expressions above are implicit, the stage values ρ(1), g(1) can be found179

in an explicit manner by using the known quantities ρn, gn, and the stage values ρ(j),180

g(j), ∀j ∈ {2, 3, . . . , s} can be found explicitly from ρn, gn and the previous stage181

values ρ(l), g(l), ∀l ∈ {1, 2, . . . , j − 1}. Indeed, proceeding similarly as for the first182

order scheme, we get the following expression of g(j), j = 1, . . . , s from (3.11),183

(3.12)

g(j) = I(j)
ϵ,∆t

(
ϵ2gn − ϵ

j−1∑
k=1

ãjk∆tT g(k) − ϵ

j∑
k=1

ajk∆tvM · ∇xρ
(k) +

j−1∑
k=1

ajk∆tLg(k)

)
.184

Further, we write (3.10) by splitting the summation on k as185

ρ(j) = ρn −
j−1∑
k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V
− ajj

∆t

ϵ
∇x ·

〈
vg(j)

〉
V
,186

and inserting (3.12) in the last term leads to the update of ρ(j) for j = 1, . . . , s187

ρ(j) =
(
I − a2jj∆t2∇x ·

(
D(j)

ϵ,∆t∇x

))−1
(
ρn −

j−1∑
k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V

(3.13)188

−ajj∆t∇x ·
〈
vI(j)

ϵ,∆t

(
ϵgn −

j−1∑
k=1

ãjk∆tT g(k)189

−
j−1∑
k=1

ajk∆tvM · ∇xρ
(k) +

1

ϵ

j−1∑
k=1

ajk∆tLg(k)
)〉

V

)
,190

where the definition of T ,D(j)
ϵ,∆t and I(j)

ϵ,∆t are given by (3.7)–(3.9). After this refor-191

mulation, ρ(j) can be computed from (3.13) by inverting a linear elliptic type problem192
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and following this, g(j) can be found from (3.12). The GSA property in (3.5) guaran-193

tees that the solution at tn+1 = (n + 1)∆t is same as the last RK stage values, that194

is, ρn+1 = ρ(s) and gn+1 = g(s).195

4. Asymptotic preserving property. In this section, we show that the time196

integrated scheme (3.13)-(3.12) becomes a consistent scheme for the diffusion equation197

(2.5) in the limit ϵ → 0. We will discuss the asymptotic preserving property for both198

CK-ARS and type A time integrators as performed in [8] for the fluid limit. First, we199

recall the definition of well-prepared initial data in our context.200

Definition 4.1 (Well-prepared initial data).The initial data ρ(0, x) and g(0, x, v)201

in (2.9) and (2.10) are said to be well-prepared if g(0, x, v) = O(ϵ).202

Lemma 4.2. Assume that ϵ is sufficiently small. Let ãjk and ajk be the coefficients203

of the RK method (3.4) applied to the scheme (3.10)-(3.11). Then, the following holds:204

1. CK-ARS case: If gn = O(ϵ), then g(1) = gn = O(ϵ) and205

g(j) = ϵL−1(vM) · ∇xρ
(j) +O

(
ϵ2
)
, ∀j ∈ {2, . . . , s}.206

2. Type A case: g(j) = ϵL−1(vM) · ∇xρ
(j) +O

(
ϵ2
)
, ∀j ∈ {1, . . . , s}.207

Proof. Let j ∈ {1, . . . , s} such that ajj ̸= 0. Observe that the operator I(j)
ϵ,∆t208

defined in (3.9) admits, for small ϵ, the following expansion:209

(4.1) I(j)
ϵ,∆t = −(ajj∆tL)−1 +O(ϵ2).210

Consider now an A-type time integrator, so with ajj ̸= 0 for any j ∈ {1, . . . , s},211

and assume gn = O(1). From (3.12) and the previous expansion, we obtain212

g(1) = −(a11∆tL)−1
[
−ϵa11∆tvM · ∇xρ

(1)
]
+O(ϵ2) = ϵL−1(vM) · ∇xρ

(1) +O(ϵ2).213
214

Now, the proof is performed by induction on j ∈ {2, . . . , s} assuming that for any215

k ∈ {1, . . . , j − 1}, g(k) = ϵL−1(vM) · ∇xρ
(k) + O(ϵ2). In particular g(k) = O(ϵ) and216

the formula (3.12) has therefore the following expansion:217

g(j) = −(ajj∆tL)−1

[
O(ϵ2)− ϵ

j∑
k=1

ajk∆tvM · ∇xρ
(k) +

j−1∑
k=1

ajk∆tLg(k)

]
+O(ϵ2).218

Inserting the induction hypothesis in the last sum, most of the terms in the two sums219

eliminate so that finally g(j) = ϵL−1(vM) · ∇xρ
(j) +O(ϵ2).220

The case of a CK-ARS time integrator is slightly different. First a11 = 0 so that221

g(1) = gn = O(ϵ) by the particular well-prepared assumption. Now a22 ̸= 0 and (3.12)222

has the following expansion for j = 2:223

g(2)=−(a22∆tL)−1
[
O(ϵ2)−ϵa22∆tvM · ∇xρ

(2)
]
+O(ϵ2)=ϵL−1(vM)·∇xρ

(2) +O(ϵ2).224
225

Again, the proof is by induction on j ∈ {3, . . . , s} assuming for any k ∈ {2, . . . , j−1},226

g(k) = ϵL−1(vM) · ∇xρ
(k) +O(ϵ2). The same computation as above is available since227

g(1) = O(ϵ). One has (note that aj1 = 0 for any j so that the sums start at k = 2):228

g(j) = −(ajj∆tL)−1

[
O(ϵ2)− ϵ

j∑
k=2

ajk∆tvM · ∇xρ
(k) +

j−1∑
k=2

ajk∆tLg(k)

]
+O(ϵ2)229

= ϵL−1(vM) · ∇xρ
(j) +O(ϵ2).230231
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HIGH ORDER AP SCHEME FOR KINETIC EQUATIONS IN DIFFUSIVE SCALING 7

Due to the GSA property of both time integrators, we have gn+1 = g(s) = ϵL−1(vM) ·232

∇xρ
(s) + O

(
ϵ2
)
= ϵL−1(vM) · ∇xρ

n+1 + O
(
ϵ2
)
for sufficiently small ϵ. Thus, the233

following are evident from Lemma 4.2:234

1. For type CK-ARS, if the initial data is well-prepared (that is, g0 = O(ϵ)),235

then gn = O(ϵ), ∀n > 0.236

2. For type A, if the initial data is such that g0 = O(1), then gn = O(ϵ), ∀n > 0.237

As observed in [8], the initial data does not need to be well-prepared for type A time238

integrator, unlike type CK-ARS, to ensure AP property.239

Theorem 4.3.Consider the scheme (3.10)-(3.11) approximating the macro-micro240

model (2.7)-(2.8), with the RK method (3.4) of type A or of type CK-ARS (with well-241

prepared initial data g0 = O(ϵ)). Then in the limit ϵ → 0, the scheme (3.10)-(3.11)242

degenerates to the following scheme for the diffusion equation243

(4.2) ρ(j) = ρn +

j∑
k=1

ajk∆t∇x ·
(
κ∇xρ

(k)
)
, ∀j = 1, . . . , s, κ=−

〈
v ⊗ L−1(vM)

〉
V
.244

Proof. Corresponding to each case (CK-ARS or type A), we have the following:245

Type CK-ARS Assumptions in criterion 1 of Lemma 4.2 are satisfied, and its im-246

plications can be utilised. Hence, inserting g(ℓ) = ϵL−1(vM) · ∇xρ
(ℓ) +247

O(ϵ2), ∀ℓ ∈ {2, 3, .., s} into (3.10), we get (recall that aj1 = 0)248

ρ(j) = ρn − ∆t

ϵ

j∑
k=2

ajk∇x ·
〈
vϵL−1(vM) · ∇xρ

(k)
〉
V
+O(ϵ),249

= ρn −∆t

j∑
k=2

ajk∇x ·
(〈

v ⊗ L−1(vM)
〉
V
∇xρ

(k)
)
+O(ϵ).250

251

Type A Assumptions in criterion 2 of Lemma 4.2 are satisfied, and its implications252

can be utilised. Hence, inserting g(ℓ) = ϵL−1(vM) · ∇xρ
(ℓ) + O(ϵ2), ∀ℓ ∈253

{1, 2, .., s} into (3.10), we get the required result by following the same sim-254

plification as before. The only difference is that here
∑j

k=1 instead of
∑j

k=2.255

Remark 4.4. For type CK-ARS, if the initial data is not well-prepared, computing256

g(2) from (3.11) involves ϵ ã21

a22
L−1(I −Π)(v · ∇xg

(1)) which is not of O(ϵ2). Thus,257

g(2) = ϵ
ã21
a22

L−1(I −Π)(v · ∇xg
(1)) + ϵL−1(vM) · ∇xρ

(2) +O
(
ϵ2
)
,258

and inserting in the macro equation (3.10) for j = 2 leads to (since a21 = 0)259

260

ρ(2) = ρn − ã21
a22

∆t
〈
v ⊗ L−1

(
(I −Π)v∇2

xg
(1)
)〉

V
261

− a22∆t∇x ·
(〈

v ⊗ L−1(vM)
〉
V
∇xρ

(2)
)
+O(ϵ),262

263

which is not consistent with the diffusion equation. Thus, for CK-ARS, asymptotic264

consistency cannot be attained if the initial data is not well-prepared.265

5. Space and velocity discretization. In this section, we present the spatial266

(for both non-staggered and staggered grids) and velocity discretization strategies267

that we employ in our numerical scheme.268
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5.1. Discrete velocity method. For the velocity discretization, we will follow269

the discrete velocity method [16]. Thus, the velocity domain is truncated as v ∈270

[−vmax, vmax], and a uniform mesh is used vk = −vmax+k∆v, k = 1, . . . , Nv(Nv ∈ N⋆)271

and ∆v = 2vmax/Nv. Further, f(t, x, v) and M(v) are represented as:272

fk(t, x) := f(t, x, vk), Mk := M(vk) for k = 1, . . . , Nv.273

Then, according to the definitions (2.3) and (2.6), we have for j = 1, . . . , Nv274

ρ(t, x) ≈
∑Nv−1

k=0 fk∆v∑Nv−1
k=0 Mk∆v

and (Πf(t, x, v))j ≈
∑Nv−1

k=0 fk∆v∑Nv−1
k=0 Mk∆v

Mj .275

276

For the presentation, we will skip the velocity part to focus on space discretization.277

5.2. Space discretization using staggered grid. First, we will consider stag-278

gered grid to approximate g(j) and ρ(j) in space following [25]: the two meshes of the279

space interval [0, 1] are xi = i∆x and xi+1/2 = (i+1/2)∆x for i = 0, . . . , Nx(Nx ∈ N⋆),280

with ∆x = L/Nx. Periodic boundary conditions will be considered in this section.281

The expressions for g(j) and ρ(j) in (3.12)-(3.13) are spatially discretised by con-282

sidering staggered grid: ρ(j) is stored at xi (ρ
(j)
i ≈ ρ(j)(xi)), and g(j) is stored at283

xi+1/2 (g
(j)
i+1/2(v) ≈ g(j)(xi+1/2, v)). The term v ·∇xg

(k) in (3.12) and (3.13) is discre-284

tised in an upwind fashion as v · ∇x ≈ v+ ·G−
upw + v− ·G+

upw where v± = (v ± |v|)/2,285

G±
upw denote the Nx×Nx matrices that approximate ∇x. For instance, the first order286

version is287

(5.1) G−
upw =

1

∆x
circ([−1, 1]), G+

upw =
1

∆x
circ([−1, 1]),288

where the notation circ is defined in Appendix A. With these notations, we get289

(
v∂xg

(j)
)
xi+1/2

≈ v+
g
(j)

i+ 1
2

− g
(j)

i− 1
2

∆x
+ v−

g
(j)

i+ 3
2

− g
(j)

i+ 1
2

∆x
=
((

v+G−
upw + v−G+

upw

)
g(j)
)
i
,290

where in the last term, the i index has to be understood as the i-th component291

of the vector. Instead of first order upwind discretization, one can also use high292

order upwind discretizations so that the matrices G±
upw will be different. Further, the293

term vM · ∇xρ
(k) in (3.12)-(3.13) and the terms of the form ∇x · ⟨(·)⟩V in (3.13) are294

discretised using second order central differences as in [25]. In particular, the term295

vM · ∇xρ
(k) is approximated by296

(5.2)
(
vM∂xρ

(k)
)
xi+1/2

≈ vM
ρ
(k)
i+1−ρ

(k)
i

∆x
=
(
vMGcengρ

(k)
)
i
, Gceng=

1

∆x
circ([−1, 1]).297

Finally, the gradient terms ∇x · ⟨(·)⟩V in (3.13) are approximated as follows298

(5.3) (∂x ⟨·⟩V )xi
=
(⟨·⟩V )i+1/2

− (⟨·⟩V )i−1/2

∆x
=
(
Gcenρ ⟨·⟩V

)
i
,Gcenρ=

1

∆x
circ([−1, 1]).299

Again, high order centered finite differences methods can be used so that it will give300

different expressions for Gcenρ and Gceng . Let us remark that the term ∇x · ∇x = ∇2
x301

in (3.13) is approximated by GcenρGceng , ie GcenρGceng = 1
∆x2 circ([1,−2, 1]), which302

gives the standard second order approximation of the Laplacian.303
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To ease the reading, we present the fully discrete scheme for first order ARS(1, 1, 1)304

but the generalization to high order can be done using the elements of Section 3305

gn+1=
(
ϵ2I −∆tL

)−1(
ϵ2gn−ϵ∆t (I −Π)

(
v+G−

upw+v−G+
upw

)
gn−ϵ∆tvMGcengρ

n+1
)

306

ρn+1 =
(
I −∆t2Gcenρ

(〈
v ⊗

(
ϵ2I −∆tL

)−1
(vM)

〉
V
Gceng

))−1

×307 (
ρn−∆tGcenρ

〈
v
(
ϵ2I −∆tL

)−1(
ϵgn−∆t (I −Π)

((
v+G−

upw+v−G+
upw

)
gn
))〉

V

)
.308

5.3. Space discretization using non-staggered grid. We also address the309

case of non-staggered grids which may be more appropriate when high dimensions are310

considered in space since only one spatial mesh is used: xi = i∆x, for i = 0, 1, .., Nx,311

with ∆x = L/Nx. Let g
(j) and ρ(j) in (3.12)-(3.13) ∀j ∈ {1, 2, .., s} be approximated in312

space by g
(j)
i (v) ≈ g(j)(xi, v) and ρ

(j)
i ≈ ρ(j)(xi). The term v·∇xg

(k) in (3.12)-(3.13) is313

discretised in an upwind fashion as v·∇x = v+G−
upw+v−G+

upw, where v
± = (v ± |v|)/2.314

Here, G±
upw denote the matrices that represent an upwind approximation of ∇x. For315

instance, the definition (5.1) can be used, but also its third order version316

(5.4) G−
upw =

1

6∆x
circ([1,−6, 3, 2]), G+

upw =
1

6∆x
circ([−2,−3, 6,−1]),317

where circ represents the matrix notation described in Appendix A can be used. The318

term vM · ∇xρ
(k) in (3.12)-(3.13) and the terms of the form ∇x · ⟨(·)⟩V in (3.13) are319

discretised in central fashion, since these terms act as source in (3.12) and diffusion320

in (3.13). Here, ∇x is approximated by central differences as in (5.3) or (5.2) but in321

the non-staggered case, the same matrix can be used for both terms. As an example,322

the fourth order central difference produces:323

(5.5) Gcen =
1

12∆x
circ([1,−8, 0, 8,−1]).324

The term ∇x · ∇x = ∇2
x in (3.13) is discretised as the matrices product G2

cen =325

GcenGcen. Like in the staggered grid case, we present the fully discrete scheme for326

first order ARS(1, 1, 1) time discretization to ease the reading:327

gn+1=
(
ϵ2I −∆tL

)−1(
ϵ2gn−ϵ∆t (I −Π)

(
v+G−

upw + v−G+
upw

)
gn−ϵ∆tvMGcenρ

n+1
)

328

ρn+1 =
(
I −∆t2Gcen

(〈
v ⊗

(
ϵ2I −∆tL

)−1
(vM)

〉
V
Gcen

))−1

×329 (
ρn −∆tGcen

〈
v
(
ϵ2I −∆tL

)−1 (
ϵgn −∆t (I −Π)

((
v+G−

upw + v−G+
upw

)
gn
))〉

V

)
330

Remark 5.1. We know that the term
∑j

k=1 ajk
∆t
ϵ ∇x ·

〈
vg(k)

〉
V

in (3.10) is split331

into first j − 1 and last j contributions, and g(j) is substituted for the last j contri-332

bution, as in (3.13). The gradient in
∑j−1

k=1 ajk
∆t
ϵ ∇x ·

〈
vg(k)

〉
V
of (3.13) is discretised333

using Gcenρ . Further, the substitution of g(j) for the last j hints the combination of334

∇x · ∇x as ∇2
x for the terms of g(j) involving ∇xg and ∇xρ. However, if we choose335

a spatial discretization for ∇2
x as Gdiff, then these terms will experience GcenρGceng336

for the first j− 1 contributions and Gdiff for the last j contribution of the ρ(j) update337

equation. This disrupts the ODE structure present in RK time discretization, and338

hence reduction to first order time accuracy was observed numerically. Therefore,339

in order to retain high order time accuracy, it is important to carry out the space340

discretization carefully. Hence, we do not introduce a different discretization for ∇2
x,341

and we retain GcenρGceng even for the last j contribution of ρ(j) equation.342
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Remark 5.2. The matrices introduced for spatial discretization do not change the343

Chapman-Enskog expansion so that the AP property is still true in the fully discrete344

form. Thus, we have g(k) = ϵL−1(vM)Gcengρ
(k) + O(ϵ2) for k ∈ {1, . . . , s} by using345

type A. For CK-ARS with well-prepared data, we have g(k) = ϵL−1(vM)Gcengρ
(k) +346

O(ϵ2) for k ∈ {2, . . . , s}. Inserting this in macro equation, we get the corresponding347

RK scheme for the diffusion348

ρ(j) = ρn −∆t

j∑
k=1

ajkGcenρ

(〈
v ⊗ L−1(vM)

〉
V
Gcengρ

(k)
)
+O(ϵ).349

350

6. Extensions to other collision operator and inflow boundary prob-351

lems. In this section, we show that our high order AP schemes can be extended to352

other problems involving advection-diffusion asymptotics and inflow boundaries.353

6.1. Advection-diffusion asymptotics. In this part, an advection-diffusion354

collision operator is considered (see [17, 13]),355

(6.1) Lf := Lf + ϵvM ·A ⟨f⟩V , A ∈ Rd, |ϵA| < 1,356

where L denotes a collision satisfying the properties listed in Section 2. A famous357

simple example is Lf = ⟨f⟩V M − f .358

Using the notations introduced in Section 2, we can derive the micro-macro model359

satisfied by ρ = ⟨f⟩V and g = f −ρM by applying Π and I −Π to (2.1) with collision360

L to get the macro and micro equations in this context361

∂tρ+
1

ϵ
∇x · ⟨vg⟩V = 0,(6.2)362

∂tg +
1

ϵ
(I −Π) (v · ∇xg) +

1

ϵ
vM · ∇xρ =

1

ϵ2
Lg +

1

ϵ
vM ·Aρ.(6.3)363

A Chapman-Enskog expansion can be performed to get g = ϵL−1(vM) · ∇xρ −364

ϵL−1(vM) · Aρ + O(ϵ2). Inserting this in the macro equation (6.2) enables to ob-365

tain an advection-diffusion equation in the limit ϵ → 0:366

(6.4) ∂tρ+∇x ·
(〈
v ⊗ L−1(vM)

〉
V
∇xρ

)
−∇x ·

(〈
v ⊗ L−1(vM)

〉
V
Aρ
)
= 0.367

The goal is to design a uniformly stable high order time integrators for (6.2)-(6.3)368

so that they degenerate into a high order time integrator for (6.4) as ϵ → 0. The369

extension of the schemes introduced in Section 3 will lead to an IMEX discretization370

of the asymptotic model (6.4), where the advection term is treated explicitely while371

the diffusion term is implicit.372

6.1.1. High order time integrator. In this subsection, we present the dis-373

cretization of macro and micro equations (6.2)-(6.3). As in Section 3, in the micro374

equation, we treat 1
ϵ2Lg implicitly to ensure uniform stability and the additional term375

1
ϵ vM ·Aρ explicitly since it will be stabilized by the implicit treatment of the stiffest376

term. Regarding the macro equation and the remaining terms in micro equation, we377

follow the lines from previous Section 3. We thus obtain the following high order378

IMEX RK scheme to approximate (6.2)-(6.3)379

ρ(j) = ρn −
j∑

k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V
,(6.5)380

g(j)=gn−∆t

ϵ

[ j−1∑
k=1

ãjkTg(k)+
j∑

k=1

ajkvM·∇xρ
(k)−

j∑
k=1

ajk
ϵ

Lg(k)−
j−1∑
k=1

ãjkvM·Aρ(k)
]
,(6.6)381

382
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where the coefficients ajk, ãjk are given by the Butcher tableaux. As in Section 3,383

some calculations are required to make the algorithm explicit. First, we have384

385

(6.7) g(j)= I(j)
ϵ,∆t

(
ϵ2gn−ϵ∆t

[ j−1∑
k=1

ãjkT g(k)+

j∑
k=1

ajkvM · ∇xρ
(k)

386

−1

ϵ

j−1∑
k=1

ajkLg
(k)−

j−1∑
k=1

ãjkvM ·Aρ(k)
])

,387

388

with Tg(k)= (I−Π)
(
v ·∇xg

(k)
)
and I(j)

ϵ,∆t=
(
ϵ2I−ajj∆tL

)−1
. Then, ρ(j) is obtained389

by inserting g(j) given by (6.7) in the macro equation (6.5) to get390

ρ(j) =
(
I − a2jj∆t2∇x ·

(
D(j)

ϵ,∆t∇x

))−1
(
ρn −

j−1∑
k=1

ajk
∆t

ϵ
∇x ·

〈
vg(k)

〉
V

(6.8)391

−ajj∆t∇x ·

〈
vI(j)

ϵ,∆t

(
ϵgn −

j−1∑
k=1

ãjk∆tT g(k) −
j−1∑
k=1

ajk∆tvM · ∇xρ
(k)

392

+
1

ϵ

j−1∑
k=1

ajk∆tLg(k) +

j−1∑
k=1

ãjk∆tvM ·Aρ(k)

)〉
V

)
,393

where D(j)
ϵ,∆t = ⟨v ⊗

(
ϵ2I − ajj∆tL

)−1
(vM)⟩V . Thus, ρ(j) can be updated by using394

(6.8) and g(j) can be found explicitly by using (6.7).395

6.1.2. Asymptotic preserving property. This part is dedicated to the as-396

ymptotic preserving property of the scheme (6.8)-(6.7). We first show the AP prop-397

erty of type A time integrator, and we later remark how this property is true for the398

CK-ARS time integrator with well-prepared initial data. First we have399

Lemma 6.1. If gn = O(1) and g(k) = O(ϵ),∀k ∈ {1, 2, . . . , j − 1}, then g(j) =400

O(ϵ),∀j ∈ {2, 3, .., s} for small ϵ. In particular, we have ∀j ∈ {2, 3, .., s}401

(6.9)

g(j) = ϵ

j∑
k=1

ajk
ajj

L−1(vM) · ∇xρ
(k) −

j−1∑
k=1

ajk
ajj

g(k) − ϵ

j−1∑
k=1

ãjk
ajj

L−1(vM) ·Aρ(k) +O(ϵ2).402

Proof. Plugging in (6.7) the expansion (4.1) of I(j)
ϵ,∆t given by (3.9), along with the403

assumptions stated in the Lemma, we obtain (6.9) from which we deduce g(j) = O(ϵ)404

for all j ∈ {2, 3, .., s}.405

Remark 6.2. For type A time integrator, if gn = O(1), we have from (6.7):406

g(1) = ϵ
a11
a11

vM · ∇xρ
(1) +O(ϵ2) = O(ϵ).407

This satisfies the induction hypothesis in Lemma 6.1. Further, (6.9) holds by omitting408 ∑j−1
k=1 terms for j = 1. Thus, (6.9) is true for j ∈ {1, 2, .., s}.409

Lemma 6.1 enables to get an expansion of g(j) that can be inserted in (6.8) to identify410

the time discretization of the asymptotic limit. However, this leads to quite involved411

calculations which requires to introduce some notations.412
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Definition 6.3. For j ∈ {1, 2, .., s} and k1,m ∈ {1, 2, .., j} we define413

(6.10) Πm
j,k1

=

〈
v
ajk1

ak1k1

(
Sk0Sk1Sk2 . . .Skm−1

) (
Rkm

)〉
V

,414

with415

Sk0 = 1, Skl =

kl−1∑
kl+1=1

aklkl+1

akl+1kl+1

for l ∈ {1, 2, ..,m− 1}, m ≥ 2,416

Rkm =

km∑
km+1=1

akmkm+1
L−1(vM) · ∇xρ

(km+1) −
km−1∑

km+1=1

ãkmkm+1
L−1(vM) ·Aρ(km+1).417

418

As usual, we will use the convention
∑q

j=1 ≡ 0 if q ∈ Z\N.419

The term Πm
j,k1

will be useful in the following study and deserves some remarks:420

the index m denotes the depth of the embedded sums, j corresponds to the current421

stage and k1 corresponds to the indexing over previous stages. We continue with the422

following lemma which gives an induction relation on Πm
j,k1

.423

Lemma 6.4. For j ≥ 2, we have424

Πm
j,j =

j−1∑
k1=1

Πm−1
j,k1

for m ∈ {2, 3, .., j}, and Πj
j,k1

= 0 for k1 ∈ {1, 2, .., j − 1}.425

Proof. For the first relation, considering k1 = j (with j ≥ 2) in (6.10) leads to426

Πm
j,j =

〈
v
(
Sk0SjSk2 . . .Skm−1

) (
Rkm

)〉
V
,427

since ajj ̸= 0. Further, since Sk1=j =

j−1∑
k2=1

ajk2

ak2k2

, we get428

Πm
j,j =

〈
v

j−1∑
k2=1

ajk2

ak2k2

(
Sk0Sk2 ...Skm−1

) (
Rkm

)〉
V

429

By employing the change of variables as kℓ → kℓ−1 for ℓ ∈ {2, 3, ..,m} in the right430

hand side of above expression, we get431

Πm
j,j =

〈
v

j−1∑
k1=1

ajk1

ak1k1

(
Sk0Sk1 . . .Skm−2

) (
Rkm−1

)〉
V

432

=

j−1∑
k1=1

〈
v
ajk1

ak1k1

(
Sk0Sk1 . . .Skm−2

) (
Rkm−1

)〉
V

=

j−1∑
k1=1

Πm−1
j,k1

,433

which proves the first identity.434

For the second relation, considering m = j in (6.10) leads to435

Πj
j,k1

=

〈
v
ajk1

ak1k1

(
Sk0Sk1Sk2 ...Skj−1

) (
Rkj

)〉
V

436

We first prove the relation for j = 2. It is clear from Definition 6.3 that the summation437

in Sk1 goes from k2 = 1 to k2 = k1 − 1. For k1 = 1, the summation goes to438
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k2 = k1 − 1 = 0. Thus, since Sk1 involves
∑0

1 for k1 = 1, it is zero according to the439

convention. Hence Πj
j,k1

= 0 for k1 = 1.440

We now prove the relation for j > 2. From Definition 6.3, it can be seen that the441

summations in Sk1 and Sk2 go from k2 = 1 to k2 = k1 − 1 and k3 = 1 to k3 = k2 − 1442

respectively. Thus, the summation in Sk2 can go to atmost k3 = k2−1 = (k1−1)−1 =443

k1 − 2. Proceeding in this manner, we see that the summation in Skj−1 can go to444

atmost kj = k1 − (j − 1).445

For k1 ∈ {1, 2, .., j−1}, kj = k1−(j−1) ∈ Z\N so that Skj−1 = 0 and hence Πj
j,k1

= 0446

for k1 ∈ {1, 2, .., j − 1} which ends the proof.447

Now, we can use the previous Lemma to identify the asymptotic numerical scheme.448

Lemma 6.5. When ϵ → 0, the numerical scheme (6.5)-(6.6) degenerates into449

(6.11) ρ(j) = ρn +∆t

j∑
k1=1

∇x ·

(
j∑

ℓ=1

(−1)ℓΠℓ
j,k1

)
for j ∈ {1, 2, .., s},450

where Πℓ
j,k1

is given by Definition 6.3.451

Proof. We start with the macro equation in (6.5)452

ρ(j) = ρn −
j∑

k1=1

ajk1

∆t

ϵ
∇x · ⟨vg(k1)⟩V ,453

in which we insert g(k1) given by (6.9) to get454

ρ(j) = ρn −∆t

j∑
k1=1

∇x ·

〈
v
ajk1

ak1k1

(
k1∑

k2=1

ak1k2
L−1(vM) · ∇xρ

(k2) −
k1−1∑
k2=1

ãk1k2
L−1(vM) ·Aρ(k2)

)〉
V

455

+
∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1

ak1k1

(
k1−1∑
k2=1

ak1k2
g(k2)

)〉
V

+O(ϵ)456

= ρn −∆t

j∑
k1=1

∇x ·
〈
v
ajk1

ak1k1

(
Sk0Rk1

)〉
V

+
∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1

ak1k1

(
k1−1∑
k2=1

ak1k2g
(k2)

)〉
V

+O(ϵ)457

= ρn −∆t

j∑
k1=1

∇x · Π1
j,k1

+
∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1

ak1k1

(
k1−1∑
k2=1

ak1k2
g(k2)

)〉
V

+O(ϵ).458

Inserting g(k2) from (6.9) in the above equation and simplifying as before, we get,459

ρ(j) = ρn−∆t

j∑
k1=1

∇x·
(
Π1

j,k1
− Π2

j,k1

)
−∆t

ϵ

j∑
k1=1

∇x·

〈
v
ajk1

ak1k1

(
k1−1∑
k2=1

ak1k2

ak2k2

k2−1∑
k3=1

ak2k3
g(k3)

)〉
V

+O(ϵ).460
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This procedure can be continued (j − 1) times to finally get,461

ρ(j) = ρn +∆t

j∑
k1=1

∇x ·

(
j−1∑
ℓ=1

(−1)ℓΠℓ
j,k1

)
462

−(−1)j−1∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1

ak1k1

k1−1∑
k2=1

ak1k2

ak2k2

· · ·
kj−2−1∑
kj−1=1

akj−2kj−1

akj−1kj−1

kj−1−1∑
kj=1

akj−1kjg
(kj)

〉
V

+O(ϵ)463

= ρn +∆t

j∑
k1=1

∇x ·

(
j−1∑
ℓ=1

(−1)ℓΠℓ
j,k1

)
464

−(−1)j−1∆t

ϵ

j∑
k1=1

∇x ·

〈
v
ajk1

ak1k1

Sk0Sk1 . . .Skj−2

kj−1−1∑
kj=1

akj−1kjg
(kj)

〉
V

+O(ϵ).465

We know from Definition 6.3 that the summations in Sk1 and Sk2 go from k2 = 1 to466

k2 = k1−1 and k3 = 1 to k3 = k2−1 respectively. Thus, the summation in Sk2 can go467

to atmost k3 = k2−1 = (k1−1)−1 = k1−2. Proceeding in this manner, we see that468

the summations in Skj−2 and
∑kj−1−1

kj=1 akj−1kj
g(kj) go to atmost kj−1 = k1 − (j − 2)469

and kj = k1 − (j − 1) respectively.470

Since the summation in k1 goes to atmost j in the above equation, kj in the term471 ∑kj−1−1
kj=1 akj−1kjg

(kj) goes to atmost kj = k1 − (j − 1) = j − (j − 1) = 1, and kj−1472

in Skj−2 goes to atmost kj−1 = k1 − (j − 2) = j − (j − 2) = 2 and so on. Thus,473

only kj = 1 remains in the last summation so that
∑kj−1−1

kj=1 akj−1kjg
(kj) = a21g

(1) =474

ϵa21L
−1(vM)·∇xρ

(1)+O(ϵ2) = a21

a11
ϵa11L

−1(vM)·∇xρ
(1)+O(ϵ2) = ϵSkj−1Rkj+O(ϵ2).475

Thus, we have476

ρ(j) = ρn +∆t

j∑
k1=1

∇x ·

(
j−1∑
ℓ=1

(−1)ℓΠℓ
j,k1

)
477

−(−1)j−1∆t

j∑
k1=1

∇x ·
〈
v
ajk1

ak1k1

(
Sk0Sk1 . . .Skj−1Rkj

)〉
V

+O(ϵ)478

= ρn +∆t

j∑
k1=1

[
∇x ·

(
j−1∑
ℓ=1

(−1)ℓΠℓ
j,k1

)
+∇x ·

(
(−1)jΠj

j,k1

)]
+O(ϵ).479

We can now prove the asymptotic property of the scheme (6.5)-(6.6).480

Theorem 6.6. When ϵ → 0, the scheme (6.5)-(6.6) degenerates into481

482

(6.12) ρ(j) = ρn −∆t

j∑
k=1

ajk∇x ·
(〈

v ⊗ L−1(vM)
〉
V
∇xρ

(k)
)

483

+∆t

j−1∑
k=1

ãjk∇x ·
(〈

v ⊗ L−1(vM)
〉
V
Aρ(k)

)
, for j ∈ {1, 2, . . . , s}.484

485

Proof. From Lemma 6.5, the asymptotic limit ϵ → 0 of the macro equation in486
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(6.5) is (for j ∈ {1, 2, .., s})487

ρ(j) = ρn +∆t

j∑
k1=1

∇x ·

(
j∑

ℓ=1

(−1)ℓΠℓ
j,k1

)
= ρn +∆t∇x ·

(
j∑

ℓ=1

(−1)ℓ

(
Πℓ

j,j +

j−1∑
k1=1

Πℓ
j,k1

))
488

= ρn +∆t∇x ·

(
−Π1

j,j +

j∑
ℓ=2

(−1)ℓΠℓ
j,j +

j∑
ℓ=1

(−1)ℓ
j−1∑
k1=1

Πℓ
j,k1

)
.489

490

Using the recurrence relation given by Lemma 6.4 and a change of indices lead to491

ρ(j) = ρn +∆t∇x ·

(
−Π1

j,j +

j∑
ℓ=2

(−1)ℓ
j−1∑
k1=1

Πℓ−1
j,k1

+

j∑
ℓ=1

(−1)ℓ
j−1∑
k1=1

Πℓ
j,k1

)
492

= ρn +∆t∇x ·

(
−Π1

j,j −
j−1∑
ℓ=1

(−1)ℓ
j−1∑
k1=1

Πℓ
j,k1

+

j∑
ℓ=1

(−1)ℓ
j−1∑
k1=1

Πℓ
j,k1

)
493

= ρn +∆t∇x ·

(
−Π1

j,j + (−1)j
j−1∑
k1=1

Πj
j,k1

)
.494

495

From Lemma 6.4, we have
∑j−1

k1=1 Π
j
j,k1

= 0, so that from Definition 6.3 we get496

ρ(j) = ρn +∆t∇x ·
(
−Π1

j,j

)
= ρn −∆t∇x ·

(〈
v
ajj
ajj

Sk0Rk1=j

〉
V

)
497

= ρn −∆t∇x ·

〈v( k1∑
k2=1

ak1k2L
−1(vM) · ∇xρ

(k2) −
k1−1∑
k2=1

ãk1k2L
−1(vM) ·Aρ(k2)

)〉
V


k1=j

498

= ρn −∆t

j∑
k2=1

ajk2
∇x ·

(〈
v ⊗ L−1(vM)

〉
V
∇xρ

(k2)
)
+∆t

j−1∑
k2=1

ãjk2
∇x ·

(〈
v ⊗ L−1(vM)

〉
V
Aρ(k2)

)
,499

500

which ends the proof.501

Remark 6.7. For CK-ARS schemes with well-prepared initial data, we obtain502

g(1) = gn = O(ϵ) and ρ(1) = ρn. The presentation in this section will apply for503

CK-ARS from the second RK stage onwards. For instance, Definition 6.3 applies for504

CK-ARS with the following change in indexes: j ∈ {2, 3, .., s}, k1,m ∈ {2, 3, .., j} and505

all the summations involved start from 2 instead of 1 since a11 = 0. The lemmas and506

theorems that follow also undergo the corresponding change in indexes, and the AP507

property for CK-ARS can be observed for j ∈ {2, 3, .., s}.508

Remark 6.8. Upon incorporating the spatial matrices corresponding to staggered509

grid in place of the continuous gradient operator, we obtain in the limit ϵ → 0,510

511

(6.13) ρ(j) =
(
I + ajj∆tGcenρ

(〈
v ⊗ L−1(vM)

〉
V
Gceng

))−1 ×512 (
ρn −

j−1∑
k=1

ajk∆tGcenρ

(〈
v ⊗ L−1(vM)

〉
V
Gcengρ

(k)
)

513

+

j−1∑
k=1

ãjk∆tGcenρ

(〈
v ⊗ L−1(vM)

〉
V
GavggAρ(k)

))
.514

515
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16 M. ANANDAN, B. BOUTIN, AND N. CROUSEILLES

The matrices Gcenρ ,Gceng are given in subsection 5.2 and Gavgg = 1
2circ([1, 1]). Thus,516

A
(
ρ(k)

)
xi+1/2

= 1
2A(ρ

(k)
i+1 + ρ

(k)
i ) = (GavggAρ

(k))i. This results in a central discretiza-517

tion of the advection term in the macro equation. Thus, we obtain a consistent internal518

RK stage approximation of the advection-diffusion equation in the limit ϵ → 0.519

6.2. Inflow Boundaries. So far, periodic boundary conditions were considered.520

In this part, we consider inflow boundary conditions for f solution to (2.1)521

(6.14) f(t, x, v) = fb(t, x, v), (x, v) ∈ ∂Ω× V such that v · n(x) < 0, ∀t,522

where fb is a given function and n(x) denotes the unitary outgoing normal vector to523

∂Ω. As mentioned in [25, 24], such boundary conditions cannot be adapted naturally524

to the standard micro-macro unknown ρ(t, x) and g(t, x, v) solution to (2.6). To525

overcome this drawback, another micro-macro decomposition is introduced in [24]526

(6.15) f = ρM + g, ρ(t, x) = ⟨f(t, x, ·)⟩V−
, ⟨g(t, x, ·)⟩V−

= 0, ⟨f⟩V−=

∫
V−

fdµ∫
V−

Mdµ
,527

where the velocity domain V− is defined by528

(6.16) V−(x) = {v ∈ V, ω(x, v) < 0}, V+(x) = V \V−(x).529

The function ω(x, v) extends v · n(x) in the interior of domain. Some examples of530

ω(x, v) for different geometries are provided in [24]. It can be seen that the bound-531

ary conditions for ρ(t, x) and g(t, x, v) can be evaluated from the inflow boundary532

condition in (6.14). Indeed, for (x, v) ∈ ∂Ω× V such that v · n(x) < 0, ∀t, we define533

(6.17) ρb(t, x) = ⟨fb(t, x, ·)⟩V−
, gb(t, x, v) = fb(t, x, v)− ρb(t, x)M(v).534

The derivation of the micro-macro model needs to be adapted to this decomposi-535

tion. The projector Π− is defined as Π−h = ⟨h⟩V−
M . Then, substituting (6.15) into536

(2.1) and applying Π− and I −Π− enable to get the macro and micro equations:537

∂tρ+
1

ϵ
⟨vM⟩V−

· ∇xρ+
1

ϵ
∇x · ⟨vg⟩V−

=
1

ϵ2
⟨Lg⟩V−

,(6.18)538

∂tg +
1

ϵ

(
I −Π−) (v · ∇xg) +

1

ϵ

(
I −Π−) vM · ∇xρ =

1

ϵ2
L̃g,(6.19)539

540

where L̃ = (I −Π−)L. Moreover, it can be seen that L̃ = (I −Π−)L (I −Π−) =541

(I −Π−)L (I −Π) since Π−h,Πh ∈ N (L),∀h.542

The macro equation (6.18) turns out to be more complicated than the one obtained543

for standard micro-macro decomposition. It can be made simpler by using ρ = ρ +544

⟨g⟩V , f = ρM − ⟨g⟩V M + g, obtained from the decompositions (2.6) and (6.15).545

Applying Π to (2.1) instead of Π−, we obtain the simpler macro equation,546

(6.20) ∂tρ+
1

ϵ
∇x · ⟨vg⟩V = 0,547

and the micro-macro system that we will consider in the sequel is (6.19)-(6.20).548
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6.2.1. Numerical scheme. In this part, we present the fully discretized scheme549

to approximate (6.19)-(6.20). The boundary conditions on ρb and gb in (6.17) will be550

utilised along with the relation ρ = ρ+ ⟨g⟩V that allows to link ρ and ρ in the interior551

of the domain. We will use a staggered grid in space following [24] and a high order552

scheme in time, following the strategy developed previously. To ease the reading, only553

the first order version will be presented.554

First, we present the space approximation based on a staggered grid. Let us consider555

the space interval [0, L] with two grids: xi = i∆x and xi+1/2 = (i + 1/2)∆x, ∆x =556

L/(Nx − 1). The ’interior’ variables such as ρ, ρ are stored at grid points xi with557

i = 1, . . . , Nx − 2) and g is stored at i + 1/2 = 1/2, · · · , Nx − 3/2. We also use558

the variable gcl = ḡ ∪ ḡb ∈ RNx+1. The whole domain including boundary will be559

considered for the micro unknown ḡ so that the components of gcl correspond to the560

grid indices i + 1/2 = −1/2, · · · , Nx − 1/2. The matrices corresponding to spatial561

operators are given by562

B−
upw =

1

∆x
circ([−1, 1])(Nx−1)×(Nx+1),B

+
upw =

1

∆x
circ([0,−1, 1])(Nx−1)×(Nx+1),(6.21)563

Bcenρ =
1

∆x
circ([−1, 1])(Nx−2)×(Nx−1), Bavg =

1

2
circ([1, 1])(Nx−2)×(Nx−1),(6.22)564

Bceng =
1

∆x
circb([−1, 1])(Nx−1)×(Nx−2).(6.23)565

The circb definition is presented in Appendix A. Further, we also introduce a vector566

containing the boundary values of ρ as ρbd = 1
∆x

[
−ρbi=0

, 0, 0, ..., 0, ρbi=Nx−1

]T
(Nx−1)×1

.567

We now present our scheme by using this matrix notation. For simplicity, we assume568

that ρbd is time invariant. We also use the following notations:569

T h =
(
I −Π−) (v+B−

upw + v−B+
upw

)
h,Dϵ,∆t =

〈
v
(
ϵ2I −∆tL̃

)−1
∆t
(
I −Π−) (vM)⟩V ,570

Eϵ,∆t =
〈(
ϵ2I −∆tL̃

)−1
∆t
(
I −Π−) (vM)

〉
V
, Iϵ,∆t =

(
ϵ2I −∆tL̃

)−1
, J =

(
I −Π−) (vM).571572

The micro equation (6.19) is discretised in time as in the previous (periodic) case573

(6.24) gn+1 = Iϵ,∆t

(
ϵ2gn − ϵ∆tT gncl − ϵ∆tJBcengρ

n+1 − ϵ∆tJ ρbd
)
,574

and for the macro equation (6.20), we obtain575

ρn+1 − ρn

∆t
+

1

ϵ

〈
vBcenρg

n+1
〉
V
= 0576

Substituting gn+1 in the above equation, we get577

(6.25) ρn+1 = ρn −∆tBcenρ

〈
vIϵ,∆t

(
ϵgn −∆tT gncl −∆tJBcengρ

n+1 −∆tJ ρbd
)〉

V
.578

In index notation, we use ρn+1
i = ρn+1

i + 1
2 ⟨g

n+1
i−1/2 + gn+1

i+1/2⟩V (since ρ = ρ+ ⟨g⟩V ) to579

match the two grids. In matrix notation, this becomes ρn+1 = ρn+1 + Bavg⟨gn+1⟩V580

with Bavg given by (6.22). Substituting this into the above equation and inserting the581

expression for gn+1 into Bavg

〈
gn+1

〉
V

enable to update the interior macro unknown582

583

(6.26) ρn+1 =
(
I − ϵBavg

(
Eϵ,∆tBceng

)
−∆tBcenρ

(
Dϵ,∆tBceng

))−1 ×584 (
ρn −Bavg

〈
Iϵ,∆t

(
ϵ2gn − ϵ∆tT gncl − ϵ∆tJ ρbd

)〉
V

585

−∆tBcenρ

〈
vIϵ,∆t

(
ϵgn −∆tT gncl −∆tJ ρbd

)〉
V

)
.586587
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The right hand side of above expression involves only known quantities so that ρn+1588

can be updated from (6.26) which can then be used to update gn+1 in (6.24). Then,589

we update gn+1
cl thanks to the boundary conditions (6.17), and finally ρn+1 can be590

computed from ρn+1 = ρn+1 +Bavg

〈
gn+1

〉
V
. In the limit ϵ → 0, the above equation591

becomes,592

ρn+1=
(
I +∆tBcenρ

(〈
v ⊗ L̃−1J

〉
V
Bceng

))−1 (
ρn−∆tBcenρ

(〈
v ⊗ L̃−1J

〉
V
ρbd

))
593

This is a consistent discretization of the diffusion equation in (2.5) since ⟨v⊗L̃−1J ⟩V =594

⟨v ⊗ L−1(vM)⟩V = −κ. Further, the high order scheme in time can be constructed595

in a similar manner as before.596

7. Numerical results. In this section, we present the numerical validation of597

our high order asymptotic preserving schemes in different configurations.598

7.1. Diffusion asymptotics. First, we check time and space accuracy for the599

micro-macro scheme in the diffusion limit.600

7.1.1. Time order of accuracy. The spatial domain L = [0, 2π] of the prob-601

lem is discretized using Nx = 50 grid points. The velocity domain is truncated to602

[−vmax, vmax] with vmax = 5 and we take ∆v = 1. The initial condition is:603

ρ(0, x) = 1 + cos(x)604

Well-prepared data (WP): g(0, x, v) = ϵ2(I −Π)
(
v2M

)
ρ(0, x)605

Non-well prepared data (N-WP): g(0, x, v) = (I −Π)
(
v2M

)
ρ(0, x),606607

with M(v) = 1√
2π

e−v2/2. Periodic boundary conditions are used on both ρ and g.608

The spatial terms are discretised by using the atmost-third order accurate matri-609

ces on non-staggered grid presented in subsection 5.3. The final time is T = 0.5,610

and the following ∆t are considered to validate the different high order time in-611

tegrators: ∆t = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001. The type A micro-macro schemes612

constructed using the Butcher tableau corresponding to DP-A(1, 2, 1), DP2-A(2, 4, 2)613

and DP1-A(2, 4, 2) are considered. Although DP1-A(2, 4, 2) is second order accurate,614

the implicit part of it when used separately is third order accurate. Further, we also615

consider the type CK-ARS micro-macro schemes constructed using Butcher tableau616

corresponding to ARS(1, 1, 1), ARS(2, 2, 2) and ARS(4, 4, 3). The Butcher tableau of617

different time integrators utilised are presented in Appendix B.618

619

In Figure 1, we plot the time error for the different time integrators in both WP620

and N-WP cases and for different values of ϵ. Note that the reference solution for621

each curve is obtained by using the same micro-macro scheme corresponding to that622

curve with ∆t = 10−4. For ϵ = 1, the required orders of accuracy are recovered for623

type A schemes with both N-WP and WP initial data, as observed in Figures 1a624

and 1b. For ϵ = 10−4, due to the asymptotic degeneracy of our scheme into a fully-625

implicit scheme for diffusion equation, only the implicit part of the Butcher tableau626

plays a role. Hence DP1-A(2, 4, 2) becomes third order accurate in time, while DP-627

A(1, 2, 1) and DP2-A(2, 4, 2) are first and second order accurate respectively. This is628

shown in Figures 1c and 1d. On the other hand, CK-ARS schemes with both N-WP629

and WP initial data for ϵ = 1 recover the required orders of accuracy as shown in630

Figures 1e and 1f. However, for ϵ = 10−4, orders of accuracy are observed only when631

WP initial data are used (Figure 1h). As shown in the analyses presented in previous632
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(a) A N-WP, ϵ = 1 (b) A WP, ϵ = 1 (c) A N-WP, ϵ = 10−4 (d) A WP, ϵ = 10−4

(e) CK N-WP, ϵ = 1 (f) CK WP, ϵ = 1 (g) CK N-WP, ϵ=10−4 (h) CK WP, ϵ = 10−4

Fig. 1. Accuracy in time for different type A and CK-ARS time integrators (both WP and
N-WP initial data). The reference solution is obtained from the micro-macro with ∆t = 10−4.

sections, usage of N-WP initial data for CK-ARS time integrators does not allow the633

asymptotic accuracy (Figure 1g), as discussed in [8].634

Since we proved the asymptotic preserving property, the diffusion solution is used as635

reference solution in the asymptotic regime (ϵ = 10−4) with ∆t = 10−4 (in Figure 2)636

to check the orders of accuracy of high order integrators. The results are similar to637

the ones obtained for ϵ = 10−4 in Figure 1, except that here we observe a plateau638

for third order scheme and small ∆t. This is due to the O(ϵ2) difference between the639

schemes based on micro-macro and diffusion models. This error dominates O(∆t3)640

error, and hence it is observed.641

7.1.2. Space order of accuracy. The problem set-up is the same as described642

in the previous subsection, except for the following changes. Here, we consider the643

final time to be T = 0.01 and ∆t = 0.001 so that the error in time is small enough to644

study the spatial accuracy. To do so, we consider the following number of points in645

space: Nx = 20, 24, 30, 40 and 60. The reference solution is obtained with Nx = 120.646

Since the spatial accuracy plots obtained from different time integrators are quite647

similar, we present only the plots obtained by using DP1-A(2, 4, 2) and ARS(4, 4, 3)648

for different values of ϵ (ϵ = 10−4, 0.2, 1) in Figures 3a and 3b. For the spatial649

discretization, we only show the results obtained by the third order spatial matrices650

on non-staggered grid presented in subsection 5.3 so that the scheme is expected to651

be third order accurate in space. In Figures 3a and 3b, the expected order is observed652

for the two time integrators and for the three considered values of ϵ.653

7.1.3. Qualitative results. In this part, we compare the density obtained by654

the micro-macro equation (MM), the linear kinetic equation with BGK collision op-655

erator (BGK) and the asymptotic diffusion equation, for different values of ϵ. The656

MM scheme described in previous sections is utilised, the BGK is discretized using an657

IMEX (implicit treatment of collision term and explicit treatment of transport term)658

scheme whereas for the diffusion model, an implicit scheme is used. For all three659

models, the Butcher tableau corresponding to DP1-A(2, 4, 2) time integrator is used.660

For the spatial discretization, we use third order scheme on non-staggered grid.661
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(a) A N-WP (b) A WP

(c) CK N-WP (d) CK WP

Fig. 2. Accuracy in time for different type A and CK-ARS time integrators (both WP and
N-WP initial data). The reference solution is obtained from the diffusion equation with ∆t = 10−4.

(a) A N-WP (b) CK-ARS WP

Fig. 3. Accuracy in space for the third order spatial scheme coupled with DP1-A(2, 4, 2) (left)
and ARS(4, 4, 3) (right) for the time approximation.

The problem domain L = [0, 2π] is discretised using Nx = 20 grid points for all the662

three models. The final time is T = 0.5, and ∆t = 0.005. We use the same N-WP663

initial and boundary conditions described in the previous subsection. Further, we also664

consider the same velocity discretization as before for both MM and BGK models.665

In Figure 4a for rarefied regime (ϵ = 1), the MM and BGK models compare very666

well, while the diffusion model is different as expected. In the intermediate regime667

(ϵ = 0.2), the BGK and MM models match very well while the diffusion model is668

slightly different. For ϵ = 10−4, we only compare MM and the diffusion in Figure 4c669

and illustrate the AP property of the time integrators used for MM.670

7.2. Advection-diffusion asymptotics. In this subsection, we present the671

time accuracy of our high order micro-macro scheme for the advection-diffusion case.672

As in the diffusion case, the spatial domain L = [0, 2π] is discretised using Nx = 20673

grid points whereas the velocity domain is [−vmax, vmax] with vmax = 5 and ∆v = 1.674
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(a) ϵ = 1 (b) ϵ = 0.4 (c) ϵ = 10−4

Fig. 4. Qualitative results for diffusion asymptotics

(a) A (b) CK-ARS

Fig. 5. Accuracy in time. Left: DP1-A(2, 4, 2) (N-WP initial data). Right: ARS(4, 4, 3) (WP
initial data). The reference solution is obtained from the micro-macro scheme with ∆t = 10−4.

The initial condition for the problem is:675

ρ(0, x) = sin(x)(7.1)676

Well-prepared data (WP): g(0, x, v) = ϵ2(I −Π)
(
v2M

)
ρ(0, x)(7.2)677

Non-well prepared data (N-WP): g(0, x, v) = (I −Π)
(
v2M

)
ρ(0, x),(7.3)678679

with M(v) = 1√
2π

e−v2/2. Periodic boundary conditions are used on both ρ and g.680

The spatial terms are discretised by using the atmost-first order accurate matrices681

on staggered grid presented in subsection 5.2. The final time is T = 0.5, and the682

following time steps are considered: ∆t=0.5, 0.1, 0.05, 0.01, 0.005, 0.001. We observe683

the time order of accuracy for both ϵ = 1 and ϵ = 10−4. We choose the highest order684

time integrator in both type A and CK-ARS schemes for studying the time accuracy.685

Hence, we consider DP1-A(2, 4, 2) and ARS(4, 4, 3) with N-WP and WP data respec-686

tively.687

Asymptotically, our micro-macro scheme degenerates to a consistent scheme for the688

advection-diffusion equation with advection and diffusion terms being treated explic-689

itly and implicitly respectively. Hence, unlike the case of diffusion asymptotics for690

which an extra order is observed asymptotically, DP1-A(2, 4, 2) remains second order691

accurate for ϵ = 10−4 since both explicit and implicit matrices of the Butcher tableau692

are involved here (Figure 5a). For ϵ = 1, the required second order accuracy is ob-693

served. Further, the required third order accuracy of ARS(4, 4, 3) is observed for both694

ϵ = 10−4, 1 in Figure 5b, since well-prepared initial data is considered.695
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(a) Type A, ϵ = 1 (b) Type A, ϵ = 10−4

Fig. 6. Accuracy in time with type A schemes for ϵ = 1 (left) and ϵ = 10−4 (right). The
reference solution is obtained from the micro-macro for inflow boundaries scheme with ∆t = 10−4.

7.3. Inflow boundary condition. In this subsection, the high order numerical696

scheme for micro-macro model that allows inflow boundary conditions is validated697

numerically. We first present the time accuracy results for high order schemes. Then,698

some qualitative plots are shown for two tests with zero inflow at the right boundary,699

and equilibrium and non-equilibrium inflows respectively at the left boundary.700

7.3.1. Time order of accuracy. If the domain of the problem is a half-plane,701

ω(x, v) =
[
−v, 0, 0, · · ·

]
can be chosen ∀x as described in [24]. Here, for numerical702

purposes, we consider a domain of L = [0, 2] and assume that the right boundary703

does not influence the dynamics.704

The spatial domain is discretised using Nx = 20 grid points and the velocity domain705

is [−vmax, vmax] with vmax = 5 with ∆v = 1. The initial conditions at all interior706

points and right boundary conditions for the variables ρ, ρ and g are considered to be707

0. The left boundary conditions (for vk > 0) are:708

(7.4) f (t, xi = 0, vk) = M(vk), ρ (t, xi = 0) = 1, g(t, xi+1/2 = −∆x/2, vk) = 0,709

with M(v) = 1√
2π

e−v2/2. The final time is T = 0.1, and the following time steps are710

considered to check the accuracy in time: ∆t = 0.1, 0.05, 0.01, 0.005, 0.001. Like in the711

previous problems, we observe the time order of accuracy for both ϵ = 1 and ϵ = 10−4.712

The time integrators considered are DP-A(1, 2, 1) and DP1-A(2, 4, 2). The reference713

solution for each curve in Figure 6 is obtained by using the same micro-macro scheme714

corresponding to that curve with ∆t = 10−4. For type A time integrators with ϵ = 1715

in Figure 6a, first and second order accuracies of DP-A(1, 2, 1) and DP1-A(2, 4, 2)716

are observed. In Figure 6b for ϵ = 10−4, first and third order accuracies of DP-717

A(1, 2, 1) and DP1-A(2, 4, 2) respectively are observed. As for the (periodic) diffusion718

case, DP1-A(2, 4, 2) turns out to be third order accurate since only the implicit part719

of Butcher tableau is involved asymptotically. For ARS(2, 2, 2) and ARS(4, 4, 3) time720

integrators (not shown here), order reduction to first order for ϵ = 1 (due to the initial721

condition). However, for ϵ = 10−4, the required second and third orders respectively722

are observed.723

7.3.2. Qualitative results for equilibrium inflow. In this part, we consider724

the same problem as before and present a comparison of density plots obtained by725

using schemes based on micro-macro (MM), full-kinetic (BGK) and diffusion models,726

for different regimes of ϵ. The boundary conditions for diffusion model ρ(t, x = 0) = 1727

and ρ(t, x = 2) = 0. The final time is T = 0.1, Nx = 40 and ∆t = 0.001. Further,728
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(a) ϵ = 1 (b) ϵ = 0.4 (c) ϵ = 10−4

Fig. 7. Qualitative results for equilibrium inflow at the left boundary.

we consider the same velocity discretization as before for both MM and BGK models.729

The results for MM are obtained by DP1-A(2, 4, 2) time integrator.730

In Figure 7a for rarefied regime (ϵ = 1), the MM and BGK results are in good731

agreement. In the intermediate regime (ϵ = 0.4) in Figure 7b, the MM and BGK732

results are still close, and still different from the diffusion one. For ϵ = 10−4, only733

MM and the diffusion are plotted and are found to be in very good agreement, thereby734

illustrating the AP property of the numerical scheme for MM.735

7.3.3. Qualitative results for non-equilibrium inflow. In this part, we con-736

sider the same problem as before, but the left boundary condition is chosen as (for737

vk > 0)738

f (t, xi=0, vk) = vkMk, ρ (t, xi=0) = ⟨f (t, xi=0, vk)⟩V−
(7.5)739

g
(
t, xi+1/2=−∆x

2 , vk
)
=2
(
f (t, xi=0, vk)−ρ (t, xi=0)Mk

)
−g
(
t, xi+1/2=

∆x
2 , vk

)
.

(7.6)

740741

The number of grid points, velocity discretization, final time and time step are the742

same as in the previous (equilibrium inflow) case. Here, we present a comparison of743

plots obtained by using schemes based on MM, BGK and diffusion models, for different744

regimes of ϵ. The scheme described in subsection 6.2.1 is used for the micro-macro745

model and a standard BGK approximation where only inflow boundary condition is746

needed serves as a reference. For diffusion, the diffusion term is treated implicitly and747

the left boundary condition for diffusion model is obtained from [18] which translates748

in our context749

750

ρ(t, xi = 0) =

∑
vk>0 vkf (t, xi = 0, vk)∆v∑

vk>0 vkMk∆v
751

+
1

κ
∑

vk
Mk∆v

∑
vk>0

v2k

(
f (t, xi = 0, vk)−Mk

∑
vk>0 vkf (t, xi = 0, vk)∆v∑

vk>0 vkMk∆v

)
∆v.752

753

In Figure 8a for rarefied regime (ϵ = 1), the MM and BGK models compare very754

well, while the diffusion model is driven by the macro boundary condition. In the755

intermediate regime (ϵ = 0.4) in Figure 8b, in the MM and BGK results (which are756

in a good agreement), a boundary layer starts to be created whereas it is not the757

case for the diffusion model. For ϵ = 10−4, one can see that MM model develops a758

boundary layer at the left boundary before aligning with the diffusion model in the759
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(a) ϵ = 1 (b) ϵ = 0.4 (c) ϵ = 10−4

Fig. 8. Qualitative results for non-equilibrium inflow at the left boundary.

interior of the domain. This is consistent with the results observed in the literature760

[18, 24, 25, 6].761

Appendix A. Appendix: Matrix notation. The circ function is given by:762

circ([a1, a2, .., am, .., aM ]) =


am am+1 .. aM 0 .. 0 a1 .. am−1

am−1 am am+1 .. aM 0 .. 0 a1 ..

am+2 .. aM 0 .. 0 a1 .. am am+1

am+1 .. aM 0 .. 0 a1 .. am−1 am

(A.1)763

764

The circb([−1, 1])(Nx−1)×(Nx−2) function is given by:765

circb([−1, 1])(Nx−1)×(Nx−2) =

 1 0 .. 0
−1 1 0 ..

.. .. −1 1

.. .. .. −1


(Nx−1)×(Nx−2)

(A.2)766

767

Appendix B. Appendix: Butcher tableau. The following is the 2-stage768

second order accurate Butcher tableau ARS(2, 2, 2):769

0 0 0 0
γ γ 0 0
1 δ 1−δ 0

δ 1−δ 0

0 0 0 0
γ 0 γ 0
1 0 1−γ γ

0 1−γ γ

770

Here, γ = 1− 1√
2
and δ = 1− 1

2γ .771

The following is the 4-stage third order accurate Butcher tableau ARS(4, 4, 3):772

0 0 0 0 0 0
1/2 1/2 0 0 0 0
2/3 11/18 1/18 0 0 0
1/2 5/6 −5/6 1/2 0 0
1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

0 0 0 0 0 0
1/2 0 1/2 0 0 0
2/3 0 1/6 1/2 0 0
1/2 0 −1/2 1/2 1/2 0
1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2

773

For type A, we use 2-stage first order accurate Butcher tableau DP-A(1, 2, 1) (γ ≥ 1
2 )774

775

0 0 0
1 1 0

1 0

γ γ 0
1 1−γ γ

1−γ γ
776
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The following is the 4-stage second order accurate Butcher tableau DP2-A(2, 4, 2):777

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1 0 1/2 1/2 0

0 1/2 1/2 0

γ γ 0 0 0
0 −γ γ 0 0
1 0 1− γ γ 0
1 0 1/2 1/2−γ γ

0 1/2 1/2−γ γ

778

The following is the 4-stage second order accurate Butcher tableau DP1-A(2, 4, 2)779

which achieves third order accuracy on the DIRK part:780

0 0 0 0 0
1/3 1/3 0 0 0
1 1 0 0 0
1 1/2 0 1/2 0

1/2 0 1/2 0

1/2 1/2 0 0 0
2/3 1/6 1/2 0 0
1/2 −1/2 1/2 1/2 0
1 3/2 1− 3/2 1/2 1/2

3/2 1− 3/2 1/2 1/2

781
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