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Abstract We consider the Vlasov–Poisson equation in a Hamiltonian framework and
derive new time splitting methods based on the decomposition of the Hamiltonian
functional between the kinetic and electric energy. Assuming smoothness of the solu-
tions, we study the order conditions of such methods. It appears that these conditions
are of Runge–Kutta–Nyström type. In the one dimensional case, the order conditions
can be further simplified, and efficient methods of order 6 with a reduced number of
stages can be constructed. In the general case, high-order methods can also be con-
structed using explicit computations of commutators. Numerical results are performed
and show the benefit of using high-order splitting schemes in that context. Complete
and self-contained proofs of convergence results and rigorous error estimates are also
given.
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1 Introduction

Frequently, the Vlasov equation is solved numerically with particles methods.
Although they can reproduce realistic physical phenomena, they are well known to
be noisy and converge slowly when more particles are considered in the simulation.
To remedy this, so-called Eulerian methods (which use a grid of the phase space)
have become increasingly popular in the last decades. Indeed, due to the increase in
computer performance, the simulation of charged particles by using Vlasov equation
can be performed in realistic configurations. However, these simulations are still com-
putationally very expensive in high dimensions and a lot has to be done at a more
theoretical level to make simulations faster. For example, the use of high-order meth-
ods is classical when one speaks about space or velocity discretization. However, for
the simulation of Vlasov–Poisson systems, the use of high-order methods in time is
not well developed; generally, only the classical Strang splitting is used and analyzed;
see however pioneering works of [19,23] following [24] or the recent work of [21]
in the linear case. We mention also the work [11], which tells us that the increase of
order of discretization in space should be followed with an increase of order in time.

On the other side, a literature exists around the construction of high-order methods
for ODEs (see [4,5,13,22]). The main goal of this work is to construct high-order
splitting schemes for the nonlinear Vlasov–Poisson PDE system in light of these
recent references.

The starting point of our analysis relies on the fact that the Vlasov–Poisson equation
is a Hamiltonian PDE for a Lie–Poisson bracket common to several nonlinear transport
equations appearing in fluid dynamics, see for instance [15] and Sect. 2 below. Up to
phase space discretization, the splitting schemes we construct preserve this structure
and hence are geometric integrators in the sense of [13,14]. Moreover, each block is
explicit in time, and can be used to derive high-order methods, taking into account
some specific commutator relations.

We consider the Vlasov–Poisson equation in the following form

∂t f + v · ∂x f − ∂xφ( f ) · ∂v f = 0, (1.1)

where f (t, x, v) depends on time t ≥ 0 and the phase space variables (x, v) ∈
T
d × R

d , d = 1, 2, 3, and where for vectors (x1, . . . , xd) ∈ T
d and (y1, . . . , yd) ∈

R
d , we set x · y = x1y1 + · · · + xd yd and |y|2 := y · y. Here, Td denotes the d

dimensional torus R
d/(2πZd) which means that the domain considered is periodic

in space. Note that formally, the same analysis is valid on more general domains.
However, we will perform the analysis, in particular the convergence analysis in this
simplified framework. Classically, the variable x corresponds to the spatial variable
whereas v is the velocity variable.
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High-order Hamiltonian splitting… 771

The electric potential φ( f ) solves the Poisson equation

φ( f )(x) = −�−1
x

[∫
Rd

f (x, v)dv − 1

(2π)d

∫
Td×Rd

f (x, v)dxdv

]
, (1.2)

where �x = ∑d
i=1 ∂2

xi is the Laplace operator in the x variable acting on functions
with zero average. The electric field depending only on x and is defined as E( f ) =
−∂xφ( f ). The energy associated with equations (1.1)–(1.2) is

H( f ) =
∫
Td×Rd

|v|2
2

f (x, v)dxdv +
∫
Td

1

2
|E( f )(x)|2dx .

= T ( f ) + U( f ). (1.3)

The time discretization methods proposed in this paper are based on this decomposition
of the energy. Indeed, the solution of the equations associated with T and U can be
solved exactly (up to a phase space discretization, for example by interpolation in
the framework of semi-Lagrangian methods). We denote by ϕt

T ( f ) and ϕt
U ( f ) the

flows associated with T and U respectively (we postpone the precise definition of
Hamiltonian flows until Sect. 5). The first one corresponds to the equation

∂t f + v · ∂x f = 0,

for which the solution is written explicitly as

f (t, x, v) = f (0, x − tv, v).

For the flow ϕt
U , we have to solve the equation

∂t f − ∂xφ( f ) · ∂v f = 0, (1.4)

for which we verify that the solution is given by

f (t, x, v) = f (0, x, v − t E( f (0))),

where E( f (0)) is the value of the electric field at time t = 0. Indeed, φ( f ) is constant
along the solution of (1.4). Based on these explicit formulae, we will first consider
numerical integrators of the form

ψτ
p = ϕ

bs+1τ

U ◦ ϕ
asτ
T ◦ ϕ

bsτ
U ◦ · · · ◦ ϕ

b2τ
U ◦ ϕ

a1τ
T ◦ ϕ

b1τ
U , (1.5)

where (ai )si=1 and (bi )
s+1
i=1 are real coefficients chosen such that the numerical solution

at time t = τ coincides with the exact solution up to terms of order τ p, i.e., for a given
smooth function f ,

ψτ
p( f ) = ϕτ

H( f ) + O(τ p+1), (1.6)
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772 F. Casas et al.

where ϕτ
H( f ) corresponds to the exact flow associated with (1.3). We will give a

precise definition of smoothness in Sect. 5, and show that this condition ensures the
convergence of order p of the numerical method.

As composition of exact flows of Hamiltonians T and U , such schemes are (infinite
dimensional) Poisson integrators in the sense of [13, Chapter VII]. In particular they
preserve the Casimir invariants for the structure for all times (e.g. all the L p norms
of f ). Note that in this work, we do not address the delicate question of phase space
approximation and focus only on time discretization effects (see [2,6,20]).

To analyze the order of the schemes (1.5), we will use the Hamiltonian structure of
the flows. We will show that they can be expanded in suitable function spaces in terms
of commutators, formally reducing the problem to the classical settings based on the
Baker–Campbell–Haussdorff (BCH) formula and the Lie calculus, see for instance
[4,13]. A rigorous justification will be given in Sect. 5.

In the Vlasov–Poisson case, we will see that the functionals T and U in the decom-
position (1.3) satisfy the following formal relation

[[[T ,U],U],U] = 0, (1.7)

where [·, ·] is the Poisson bracket associated with the infinite dimensional Poisson
structure (see Sect. 2). This property reduces the number of order conditions on the
coefficients (ai )si=1 and (bi )

s+1
i=1 in formula (1.5). The situation is analogous to the case

of splitting methods of Runge–Kutta–Nyström (RKN) type for ordinary differential
equations (ODE) derived from a Hamiltonian function, see [4,13]. In dimension d = 1,
the Vlasov–Poisson system even satisfies the stronger property

[[T ,U],U] = 2m U ,

wherem is the total mass of f which is a Casimir invariant, preserved by the exact flow
and the splitting methods (1.5). This means that we have naturally simpler algebraic
order conditions than those of RKN type for the specific Vlasov–Poisson system in
dimension 1. In any dimension, it also turns out that the exact flow of the Poisson
bracket [[T ,U],U] can be computed up to space discretization. We will retain these
ideas to derive new high-order splitting integrators involving also the flow of this
nested Poisson bracket with optimized coefficients and number of internal steps, in a
similar way as in the ODE setting [4,5]. The paper is organized as follows:

• In Sect. 2, we discuss the Hamiltonian Lie–Poisson structure of the Vlasov–Poisson
equation, and give the expressions of some iterated Poisson brackets. They will
form the cornerstone of our analysis.

• In Sect. 3, we will first make the link between the standard Lie calculus and
the Hamiltonian structure, and then derive high-order splitting methods based on
the formula (1.5). We will then consider generalizations of these methods using
explicitly calculable flows of iterated brackets.

• In Sect. 4 we give numerical illustrations of the performances of the methods: we
mainly exhibit the order of the method, but also address the question of Casimir
invariant preservation (e.g. the L p norms), regarding the influence of phase space
discretizations.
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High-order Hamiltonian splitting… 773

• Finally, Sect. 5 is devoted to the mathematical analysis of the splitting method: we
give convergence results in some function spaces. To this aim, we first give a local
existence result of the Vlasov–Poisson equation with precise estimates (following
in essence [8]), then prove some stability estimates. The results presented in this
section can be compared with the one in [10] for the Strang splitting, where however
only compactly supported solutions are considered.

2 Hamiltonian structure

2.1 Poisson brackets

We define the microcanonical bracket { f, g} of two (sufficiently smooth) functions by
the formula

{ f, g} = ∂x f · ∂vg − ∂v f · ∂x g.

With this notation, we can write the Vlasov–Poisson equation as

∂t f − {h( f ), f } = 0, (2.1)

where

h( f )(x, v) = |v|2
2

+ φ( f )(x)

is the microcanonical Hamiltonian associated with f . Recall that for a given functional
G( f ), its Fréchet derivative is the distribution δG

δ f ( f ) evaluated at the point f , being
defined by the formula

G( f + δ f ) − G( f ) =
∫
Td×Rd

δG
δ f

( f )(x) δ f (x) dx dv + O(δ f 2)

for all smooth variations δ f . In general, a Fréchet derivative is an operator acting on
f , hence a rigorous writing of the previous formula necessitates a loss of derivative
in f . We will discuss these issues in Sect. 5.

Considering the two functionals T ( f ) and U( f ) defined in (1.3), their Fréchet
derivatives read explicitly

δT
δ f

( f ) = |v|2
2

and
δU
δ f

( f ) = φ( f )(x), (2.2)

where φ( f ) is given by (1.2). Due to the relation H = T + U , the Vlasov–Poisson
equation can be written as

∂t f −
{

δH
δ f

( f ), f

}
= 0, (2.3)
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774 F. Casas et al.

which is a Hamiltonian equation for the Poisson structure associated with the following
Poisson bracket: for two functionals H( f ) and G( f ), we set

[H,G] =
∫
Td×Rd

δH
δ f

( f )

{
δG
δ f

( f ), f

}
dxdv = −[G,H], (2.4)

where the Fréchet functionals are evaluated in f . Note that the skew-symmetry is
obtained using the relation

{ f g, h} = f {g, h} + g{ f, h},

for three functions of (x, v) and the fact that the integral in (x, v) of a Poisson bracket
of two functions always vanishes. Moreover, this bracket satisfies the Jacobi identity

[F , [G,H]] + [G, [H,F]] + [H, [F ,G]] = 0.

We refer to [15] for discussions related to this structure. Note that to give a meaning to
all the previous expressions, we usually have to assume smoothness for the function
f and deal with loss of derivatives, see for instance (5.5) of Sect. 5.

The Hamiltonian–Poisson structure defined above possesses Casimir invariants,
meaning quantities preserved for every Hamiltonian system of the form (2.1), and not
depending on the specific form of H. This is essentially a consequence of the fact
that the nonlinear transport equation (2.1) involves divergence free vector fields. Let
ψ : R → R be a smooth function, and consider the functional


( f ) :=
∫
Td×Rd

ψ( f (x, v))dx dv. (2.5)

Its Fréchet derivative is δ

δ f ( f ) = ψ ′( f ) and using the definition (2.4), we can observe

that for all Hamiltonian functionals H, we have

[H, 
] =
∫
Td×Rd

δH
δ f

{ψ ′( f ), f }dx dv = 0,

owing to the fact that {ψ ′( f ), f } = 0 for all functions ψ and f . Hence the functionals
(2.5) are invariant under any dynamics of the form (2.3) (see (3.1) below). They are
called Casimir invariants of the Poisson structure. Typical examples are given by the
L p norms of the solution f .

2.2 Relations between T and U

Let us remark that, using (1.2) we have

∫
Td

|E( f )(x)|2dx =
∫
Td

φ( f )(x)
∫
Rd

f (x, v)dv dx,
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High-order Hamiltonian splitting… 775

and hence the potential energy U can be written as

U( f ) = 1

2

∫
(Td×Rd )2

f (x, v) κ(x − y) f (y, w) dx dy dv dw,

where

κ(x) = 1

(2π)d

∑
k∈Zd/{0}

|k|−2eik·x

is the kernel of the inverse of the Laplace operator in the x variable.
The aim of this subsection is to prove the following result:

Proposition 1 For any smooth function f , the functionals T ( f ) and U( f ), satisfy
the following relation:

[[T ,U],U]( f ) = 2m( f )U( f ) + V( f ), (2.6)

where

m( f ) = 1

(2π)d

∫
Td×Rd

f (x, v)dx dv (2.7)

is a constant of motion of (1.1), and

V( f ) = −
∫
Td

�xφ( f )(x)|∂xφ( f )(x)|2dx,

where φ( f ) is defined in (1.2). In dimension d = 1, we have V( f ) = 0, and in any
dimension d ≥ 1, the relation

[[[T ,U],U],U]( f ) = 0 (2.8)

holds for all functions f .

Proof Using (2.2), we calculate the following

[T ,U] = −
∫
Td×Rd

δU
δ f

{δT
δ f

, f }dx dv

= −
∫
Td×Rd

φ( f ){ |v|2
2

, f }dx dv

=
∫
Td×Rd

φ( f )(x)v · ∂x f (x, v)dx dv.

Let us calculate the Fréchet derivative of this functional. To this aim, we evaluate
this functional at f + δ f , where δ f stands for a small perturbation f satisfying∫
Td×Rd δ f = 0. First, we have
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776 F. Casas et al.

φ( f + δ f )(x) = φ( f )(x) − �−1
x

∫
Rd

δ f (x, w)dw + O(δ f 2). (2.9)

Hence, we get

[T ,U]( f + δ f ) = [T ,U] +
∫
Td×Rd

φ( f )(x)v · ∂xδ f (x, v)dxdv

−
∫
Td×Rd

(
�−1

x

∫
Rd

δ f (x, w)dw

)
v · ∂x f (x, v)dxdv +O(δ f 2).

We see that, using an integration by parts in x , the third term can be written as

−
∫
Td×Rd

(∫
Rd

δ f (x, v)dv

)
�−1

x (w · ∂x f (x, w))dxdw.

We deduce that

δ[T ,U]
δ f

( f ) = −v · ∂xφ( f )(x) −
∫
Rd

�−1
x (w · ∂x f (x, w))dw

=: v · E( f )(x) + Z( f )(x).

Using this relation, we calculate

[[T ,U],U] =
∫
Td×Rd

(Z( f )(x) + v · E( f )(x)){φ( f )(x), f (x, v)}dxdv

= −
∫
Td×Rd

(Z( f )(x) + v · E( f )(x))(E( f )(x) · ∂v f (x, v))dxdv.

Now we see that the term involving the function Z( f )(x) vanishes, as the integral of
∂v f (x, v) in v ∈ R

d is equal to 0. We can thus write after an integration by parts

[[T ,U],U] =
∫
Td×Rd

f (x, v)|E( f )(x)|2dxdv.

In other words, we get

[[T ,U],U] =
∫
Td

ρ( f )(x)|E( f )(x)|2dx, with ρ( f )(x) =
∫
Rd

f (x, v)dv.

(2.10)

But we have with (2.7) and (1.2)

ρ( f )(x) = m( f ) − �xφ( f )(x),

and this yields (2.6). In dimension d = 1, we can further write that

�xφ( f )(x)|∂xφ( f )(x)|2 = 1

3
∂x (∂xφ( f )(x))3
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High-order Hamiltonian splitting… 777

and conclude that V is identically equal to 0. In any dimension d, as the Fréchet
derivatives of U and V depend only on x , we automatically obtain (2.8). ��

2.3 Flow of the Hamiltonian [[T ,U],U]

As mentioned above, the Fréchet derivative of the Hamiltonian [[T ,U],U] only
depends on x . Hence its exact flow can be calculated explicitly, making it possi-
ble to be included in the splitting methods blocks in any dimension. The situation is
completely analogous to Hamiltonian systems in classical mechanics when the kinetic
energy is quadratic in momenta, see e.g. [4,17,18].

From the expression (2.10) of the Poisson bracket [[T ,U],U], we can calculate its
Fréchet derivative.

Proposition 2 For any smooth function f and using the notations introduced above,
we have

δ[[T ,U],U]
δ f

= K (x, f ),

where K satisfies

− �x K = −2m�xφ − 2
d∑

i, j=1

(
∂xi ∂x j φ

)2 + 2(�xφ)2. (2.11)

Denoting by Ex j , j = 1, · · · , d the components of the electric vector fields E, we get
in the case d = 2

− �x K = −2m�xφ − 4
(
∂x1 Ex2

) (
∂x2 Ex1

) + 4
(
∂x1 Ex1

) (
∂x2 Ex2

)
, (2.12)

and in the case d = 1, ∂x K = −2mE.

Proof Let us calculate [[T ,U],U]( f + δ f )

[[T ,U],U]( f + δ f ) =
∫

ρ( f + δ f )|E( f + δ f )|2dx

=
∫

ρ( f + δ f )|∂xφ( f + δ f )|2dx

=
∫

ρ( f + δ f )

∣∣∣∣∂xφ( f ) − ∂x�
−1
x

∫
δ f dw

∣∣∣∣
2

+ O(δ f 2)

=
∫

ρ( f + δ f )

[
|E( f )|2 − 2∂xφ · ∂x�

−1
x

∫
δ f dw

]
dx

+ O(δ f 2),
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778 F. Casas et al.

where we used (2.9). Hence we have

[[T ,U],U]( f + δ f ) − [[T ,U],U]( f )
=

∫
|E |2ρ(δ f )dx − 2

∫
ρ( f )

[
∂xφ · ∂x�

−1
x

∫
δ f dw

]
dx + O(δ f 2)

=
∫

|E |2
∫

δ f dwdx − 2
∫

∂x · (ρ( f )E)�−1
x

∫
δ f dwdx + O(δ f 2)

=
∫

|E |2
∫

δ f dwdx − 2
∫

�−1
x [∂x · (ρE)]

∫
δ f dwdx + O(δ f 2).

We deduce, that

K (x, f ) := δ[[T ,U],U]
δ f

( f ) = |E |2 − 2�−1
x div(ρE). (2.13)

Now we consider the Laplacian applied to K

−�x K = −2
d∑

i, j=1

(
∂xi Ex j

)2 − 2
d∑

i, j=1

Ex j ∂
2
xi Ex j + 2div(ρE)

= −2
d∑

i, j=1

(
∂xi ∂x j φ

)2 − 2
d∑

i, j=1

∂x j φ ∂2
xi ∂x j φ

−2
d∑
j=1

∂x j ρ ∂x j φ − 2ρ

d∑
i=1

∂2
xiφ,

where Ex j , j = 1, · · · , d, denote the components of the electric vector fields E . Using
that −�xφ = ρ − m, with m independent of xi , we obtain

− �x K = −2m�xφ − 2
d∑

i, j=1

(
∂xi ∂x j φ

)2 + 2(�xφ)2. (2.14)

In dimension d = 2, we get

−�x K = −2m�xφ − 4
(
∂x1∂x2φ

)2 + 4
(
∂2
x1

φ
) (

∂2
x2

φ
)

,

= −2m�xφ − 4
(
∂x1 Ex2

) (
∂x2 Ex1

) + 4
(
∂x1 Ex1

) (
∂x2 Ex2

)
,

which can be solved, the right hand side being of zero average. Let us remark that the
two last term are nothing but the determinant of the Jacobian matrix of the electric
field E .
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High-order Hamiltonian splitting… 779

In dimension d = 1, we have from (2.13)

∂x K = 2E · ∂x E − 2∂x (�
−1
x div(ρE))

= (−2∂xxφ − 2ρ)E

= −2mE

as expected. ��
With the previous notations and Proposition 2, the equation associated with the

Hamiltonian [[T ,U],U] is given by

∂t f − {K , f } = ∂t f − ∂x K · ∂v f = 0. (2.15)

Hence the flow associated with [[T ,U],U] is explicit and given by

ϕt
[[T ,U ],U ]( f )(x, v) = f (0, x, v + t∂x K (x, f (0))), (2.16)

because, K depending only on x and integrals of f in v, it is constant in the evolution
of the flux associated with [[T ,U],U].

In dimension 2 and 3, K (and then ∂x K ) can be easily computed in Fourier space by
solving (2.11): in particular, the computational cost of a term of the form ϕt

U+γ [[T ,U ],U ]
is essentially the same for γ = 0 (standard splitting) as for γ 	= 0.

3 Derivation of high-order methods

The splitting methods (1.5) are composition of exact flows of Hamiltonian equations
of the form (2.1). To analyze their orders of approximation, we will use the algebraic
structure of the Vlasov–Poisson equation. For a Hamiltonian equation of the form
(2.3), let us define

adH f =
{

δH
δ f

( f ), f

}
.

This notation is justified by the fact that the Eq. (1.1) is equivalent to

∀G,
d

dt
G( f ) = [H,G]( f ) = −

∫
Rd×Td

δG

δ f
adH f dx dv, (3.1)

where G here are functionals acting on some function space. We will not discuss here
the mathematical validity of such an equivalence, but taking for instance G( f ) as a
norm of a function space (see Sect. 5), we can prove that the solution f (t) admits a
formal expansion of the form

f (t) =
∑
k≥0

tk

k!adkH f0 = exp(t adH) f0. (3.2)
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780 F. Casas et al.

By using similar expansions for the flows we have

ϕt
T ( f ) =

∑
k≥0

tk

k!adkT f and ϕt
U ( f ) =

∑
k≥0

tk

k!adkU f.

By using (3.1) and the Jacobi identity, we see that the following relation

[adT , adU ] := adT ◦ adU − adU ◦ adT = ad[T ,U ]

holds true. We deduce that the classical calculus of Lie derivatives also applies to our
case.

Using this identification, (see also [4]) we can write formally the exact flows as

ϕt
T =: etT , ϕt

U =: etU , and ϕt
H = et (T+U ),

with the operators T and U satisfying the relation [[T,U ],U ] = 2mU in dimension
1, where m is a constant, or the RKN-type relation [[[T,U ],U ],U ] = 0. To derive
splitting methods in dimension d ≥ 2, we will also consider numerical schemes
containing blocks based on the exact computation of the flow associated with the
Hamiltonian [[T,U ],U ]. In this section we will concentrate on the derivation of high-
order splitting methods of the form (1.5) satisfying these formal relations.

Scheme (1.5) is at least of order 1 for the problem (1.1) if and only if the coefficients
ai , bi satisfy the consistency condition

s∑
i=1

ai = 1,

s+1∑
i=1

bi = 1. (3.3)

We are mainly interested in symmetric compositions, that is, integrators such that
as+1−i = ai , bs+2−i = bi , so that

ψτ
p = eb1τU ea1τT eb2τU · · · eb2τU ea1τT eb1τU . (3.4)

In that case, the resulting integrators are of even order. In particular, a symmetric
method verifying (3.3) is at least of order 2 [13]. Notice that the number of flows in
the splitting method (1.5) or (3.4) is σ ≡ 2s + 1, but the last flow can be concatenated
with the first one at the next step in the integration process, so that the number of flows
ϕτ
U and ϕτ

T per step is precisely s.
Restriction (1.6) imposes a set of constraints the coefficients ai , bi in the compo-

sition (3.4) have to satisfy. These are the so-called order conditions of the splitting
method and a number of procedures can be applied to obtain them [13]. One of them
consists in applying recursively the Baker–Campbell–Hausdorff (BCH) formula in
the formal factorization (3.4). When this is done, we can express ψτ

p as the formal
exponential of only one operator

ψτ
p = eτ(T+U+R(τ )), (3.5)
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Table 1 Number of independent order conditions that need to be satisfied for a numerical scheme of order
p when [[[T,U ],U ],U ] = 0 (d > 1), and when [[T,U ],U ] = 2mU , with m constant (d = 1)

Order p 2 4 6 8

d > 1 2 4 8 18

d = 1 2 4 8 16

where

R(τ ) = τp21[T,U ] + τ 2(p31[[T,U ], T ] + p32[[T,U ],U ])
+ τ 3(p41[[[T,U ], T ], T ] + p42[[[T,U ],U ], T ] + p43[[[T,U ],U ],U ])
+O(τ 4), (3.6)

and pi j are polynomials in the parameters ai , bi . Here we assume that the coefficients
satisfy (3.3).

The integrator is of order p if R(τ ) = O(τ p), and thus the order conditions are
p21 = p31 = p32 = · · · = 0 up to the order considered. For a symmetric scheme one
has R(−τ) = R(τ ), so that R(τ ) only involves even powers of τ . As a consequence,
p21 = p41 = p42 = · · · = p2n,k = 0 automatically in (3.6) and we have only to
impose p31 = p3,2 = · · · = p2n+1,k = 0. The total number of order conditions can
be determined by computing the dimension of the subspaces spanned by the k-nested
commutators involving T and U for k = 3, 5, . . ., see [17].

For the problem at hand [[[T,U ],U ],U ] = 0 identically, and this introduces
additional simplifications due to the linear dependencies appearing at higher order
terms in R(τ ). The number of order conditions is thus correspondingly reduced. In
Table 1 we have collected this number for symmetric methods of order p = 2, 4, 6, 8
(line d > 1). Thus, a symmetric 6th-order scheme within this class requires solving
8 order conditions (the two consistency conditions (3.3) plus 2 conditions at order 4
plus 4 conditions at order 6), so that the scheme (3.4) requires at least 15 exponentials
to be of order 6. In fact, it is a common practice to consider more exponentials than
strictly necessary and use the free parameters introduced to minimize error terms. In
particular, in [5] a 6th-order splitting method involving 23 exponentials (11 stages)
was designed which has been shown to be very efficient for a number of problems,
including Vlasov–Poisson systems [12].

We have shown in the Sect. 2.3 that, besides the flow corresponding to U , the flow
associated to [[T ,U],U] can also be explicitly computed in a similar way as ϕτ

U .
Moreover, since [[[T ,U],U],U] = 0, both flows commute so that we can consider a
composition (1.5) with the flow ϕ

bi τ
U replaced by ϕτ

biU+ci τ 2[[T ,U ],U ]. Equivalently, in

the composition (3.4) we replace ebi τU by eτCi , where Ci ≡ biU + ciτ 2[[T,U ],U ]:

ψτ
p = eτC1 ea1τT eτC2 · · · eτC2 ea1τT eτC1 . (3.7)

In that case the order conditions to achieve order 6 are explicitly given by the following
equations
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s+1∑
i=1

bi

⎛
⎝ i∑

j=1

a j

⎞
⎠

2

= 1

3
;

s+1∑
i=1

ai

⎛
⎝s+1∑

j=i

b j

⎞
⎠

2

− 2
s+1∑
i=1

ci = 1

3
;

s+1∑
i=1

bi

⎛
⎝ i∑

j=1

a j

⎞
⎠

4

= 1

5
;

s+1∑
i=2

bi

⎛
⎜⎝

i−1∑
j=1

b j

⎛
⎝ i∑

k= j+1

ak

⎞
⎠

3
⎞
⎟⎠ = 6

5! ;

s+1∑
i=2

ai

⎛
⎝2

i−1∑
j=1

a j

⎛
⎝ i−1∑

k= j

ck

⎞
⎠ +

i−2∑
j=1

a j

i−1∑
k= j+1

ak

⎛
⎝k−1∑

�= j

b�

⎞
⎠

(
i−1∑
m=k

bm

)⎞
⎠ = 1

5! ;

2
s+1∑
i=2

ai

⎛
⎝bi

i−1∑
j=1

c j + ci

i−1∑
j=1

b j

⎞
⎠ +

s∑
i=2

ai

(
2

⎛
⎝ s+1∑

j=i+1

b j

⎞
⎠

(
i−1∑
k=1

ck

)

+2

⎛
⎝ s+1∑

j=i+1

c j

⎞
⎠

(
i−1∑
k=1

bk

)
+

⎛
⎝ i−1∑

j=1

b j

⎞
⎠ s+1∑

k=i+1

ak

(
k−1∑
�=i

b�

) (
s+1∑
m=k

bm

) )
= 1

5! ,

(3.8)

together with the consistency conditions (3.3). Here as+1 = 0, as+1−i = ai , bs+2−i =
bi . The two equations in the first line of (3.8), together with (3.3), lead to a method
of order four. With the inclusion of Ci in the scheme, the number of exponentials
can be significantly reduced (one has more parameters available to satisfy the order
conditions): the minimum number of exponentials required by the symmetric method
(3.7) to achieve order 6 is σ = 9 instead of 15 for scheme (3.4). There are several
other systems where the evaluation of the flow associated with [[T,U ],U ] is not
substantially more expensive in terms of computational cost than the evaluation of eτU ,
and thus schemes of the form (3.7) have been widely analyzed and several efficient
integrators can be found in the literature [4,18].

We have considered compositions of the form (3.7) with σ = 9, 11, and 13 expo-
nentials. When σ = 9 there is only one real solution of equations (3.8). Indeed, in
this case, we have to solve five polynomial equations in five parameters. This has
been done by applying Mathematica which produced 3 solutions as output, only one
of them being real. More efficient schemes are obtained by using more exponen-
tials: the corresponding free parameters can be used to optimize the scheme (for
instance, by annihilating higher order terms in R(τ ), reducing the norm of the main
error terms, etc.). In Table 2 we collect the coefficients of the best methods we have
found. The most efficient one (see Sect. 4) corresponds to σ = 13. In this case the
two free parameters have been chosen such that the coefficient multiplying the com-
mutator [T, [T, [T, [T, [T, [T,U ]]]]]] at order 7 vanishes and such that b1 = b2. This
procedure usually leads to very efficient schemes, as shown in [3,16]. The scheme
reads

ψτ
6 = eτC1 ea1τT eτC2 ea2τT eτC3 ea3τT eτC4 ea3τT eτC3 ea2τT eτC2 ea1τT eτC1

(3.9)
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Table 2 Coefficients for symmetric schemes of order 6 for the Vlasov–Poisson equation in the general
case (d > 1) for σ = 9, 11 and 13

ψτ
6 of the form (3.7) with σ = 9, d > 1

a1 = 1.079852426382430882456991

a2 = −0.579852426382430882456991

b1 = 0.359950808794143627485664

b2 = −0.1437147273026540434771131

b3 = 0.567527837017020831982899

c1 = 0

c2 = −0.0139652542242388403673

c3 = −0.039247029382345626020

ψτ
6 of the form (3.7) with σ = 11, d > 1

a1 = a2

a2 = 0.303629319055488881944104

a3 = −0.2145172762219555277764167

b1 = 0.086971698963920047813358

b2 = 0.560744966588102145251453

b3 = −0.1477166655520221930648117

c1 = −1.98364114652831655458915 × 10−6

c2 = 0.00553752115152236516667268

c3 = 0.00284218110811634663914191

ψτ
6 of the form (3.9) with σ = 13, d > 1

a1 = 0.270101518812605621575254

a2 = −0.108612186368692920020654

a3 = 0.338510667556087298445400

b1 = b2

b2 = 0.048233230175303256742758

b3 = 0.236139260374249444475399

b4 = 0.334788558550288084078170

c1 = 0.000256656790401210726353

c2 = 0.000943977158092759357851

c3 = −0.002494619878121813220455

c4 = −0.002670269183371982607658

and its coefficients are collected in Table 2. Notice that all bi coefficients are positive
and only one ai is negative. All methods from Table 2 will be tested and compared in
Sect. 4.

In the one-dimensional case, d = 1, we have in addition [[T,U ],U ] = 2mU , so
that the operators Ci in scheme (3.9) are simply Ci = (bi + 2cimτ 2)U . But in this
case one can do even better since this feature leads to additional simplifications also
at higher orders in τ . Specifically, a straightforward calculation shows that
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W5,1 = [U, [U, [T, [T,U ]]]] = 4m2U

W7,1 = [U, [T, [U, [U, [T, [T,U ]]]]]] = −8m3U (3.10)

W7,2 = [U, [U, [U, [T, [T, [T,U ]]]]]] = 0,

and the number of order conditions is further reduced, as shown in the third line of
Table 1 (d = 1). Although this reduction only manifests at orders higher than six,
we can incorporate the flows of W5,1 and W7,1 into the composition, namely we can
replace the ebi τU in (3.4) by eτDi , where

Di = biU + ciτ
2[[T,U ],U ] + diτ

4W5,1 + eiτ
6W7,1

= (bi + 2cimτ 2 + 4dim
2τ 4 − 8eim

3τ 6)U.

In this way it is possible to reduce the number of exponentials in the composition and
obtain more efficient integrators tailored for this special situation. In the particular
case of a 6th-order symmetric scheme it turns out that the di and ei coefficients can
be used to vanish some of the conditions at order seven, and thus reduce the overall
error. The composition

ψτ
6 = eτD1 ea1τT eτD2 ea2τT eτD3 ea3τT eτD3 ea2τT eτD2 ea1τT eτD1 (3.11)

with

D1 = (b1 + 2c1mτ 2)U

D2 = (b2 + 2c2mτ 2 + 4d2m
2τ 4)U

D3 = (b3 + 2c3mτ 2 + 4d3m
2τ 4 − 8e3m

3τ 6)U

and coefficients collected in Table 3 (d = 1) turns out to be particularly efficient, as
shown in [1]. Here the parameters ci , di and ei have been chosen to satisfy 4 out of 8
conditions at order 7.

The methods we have considered here are left-right symmetric compositions whose
first flow corresponds to the functional U . It is clear, however, that similar compositions
but now with the first flow corresponding to T can be considered. In that case, the
schemes read

ψτ
p = ea1τT eτC1 · · · eτC1 ea1τT . (3.12)

This corresponds to a different class of methods, in general with a different behavior
and efficiency, since this problem possesses a very particular algebraic structure that
is not preserved by interchanging T and U . We have also analyzed 6th-order schemes
of this class, but we have not found better integrators than those collected in Tables 2
and 3 in our numerical experiments.
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Table 3 Coefficients for a symmetric scheme of order 6 for the Vlasov–Poisson equation in dimension
d = 1

ψτ
6 of the form (3.11) with σ = 11, d = 1

a1 = 0.168735950563437422448196

a2 = 0.377851589220928303880766

a3 = −0.093175079568731452657924

b1 = 0.049086460976116245491441

b2 = 0.264177609888976700200146

b3 = 0.186735929134907054308413

c1 = −0.000069728715055305084099

c2 = −0.000625704827430047189169

c3 = −0.002213085124045325561636

d2 = −2.916600457689847816445691 × 10−6

d3 = 3.048480261700038788680723 × 10−5

e3 = 4.985549387875068121593988 × 10−7

4 Numerical examples

This section is devoted to numerical illustrations of the splitting methods introduced
in the previous section in the cases d = 1 and d = 2 (in (1.1)).

The splitting methods introduced above enable to reduce the numerical solution
of the Vlasov–Poisson problem (1.1) to one-dimensional linear transport problems of
the form

∂t f + a∂z f = 0, f (tn, z) = g(z), z ∈ T
1, (4.1)

where z can denote the spatial direction x or the velocity direction v, a is a coefficient
which does not depend on the advected direction z, and g denotes an initial condition
given on a uniform grid of N points. Typically, a is the component of the vector v or
of the electric field frozen in time.

To deal with the one-dimensional advection equations, a semi-Lagrangian method
is used (see [6,7,9]). Since the characteristics can be solved exactly in this case (a does
not depend on z), the error produced by the scheme comes from the splitting (error
in time) and from the interpolation step (error in x and v). Note that the interpolation
is performed using high-order Lagrange polynomials (of order 17 in practice) so that
the numerical solution of (4.1) writes

f (tn+1, zi ) ≈ Ig(zi − aτ),

where I is an interpolation operator (piecewise Lagrange interpolation in our case).
We refer the reader to [2,6,7,9]) for more details. After each advection in the velocity
direction (U part), the Poisson equation (1.2) is solved to update the electric potential
φ. Note that in the case d = 2, the Hamiltonian splitting leads to 2-dimensional
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advections U and T . These subproblems are split again leading to one-dimensional
advections; this does not introduce additional errors since it concerns linear advection
for which this subsplitting is exact. The numerical solution of the Poisson equations
(1.2) and (2.12) to get φ and K is performed using a spectral method. Their derivatives
are computed using high order finite differences.

We consider the following initial condition for (1.1) with d = 1

f (t = 0, x, v) = 1√
2π

exp(−v2/2)(1 + 0.5 cos(kx)), (4.2)

with x ∈ [0, 2π/k], v ∈ [−vmax, vmax], vmax = 8 and k = 0.5. In the case d = 2,
the following initial condition for (1.1) is chosen

f (t = 0, x, y, vx , vy) = 1

2π
exp(−(v2

x + v2
y)/2) (1 + 0.5 cos(kx) cos(ky)) ,

(4.3)

where x, y ∈ [0, 2π/k], v = (vx , vy) ∈ [−vmax, vmax]2, vmax = 8 and k = 0.5.
We are interested in the total energy conservation H( f ) given by (1.3). Indeed, this

quantity is theoretically preserved by (1.1) for all times, so it represents an interesting
diagnostic. For a given time splitting, we introduce the discrete total energy H( fh)(t)
(integrals in phase space are replaced by summations) where fh denotes the solution
of the splitting scheme and we look at the following quantity

errH = max
t∈[0,tf ]

∣∣∣∣H( fh)(t)

H( f )(0)
− 1

∣∣∣∣ , (4.4)

where tf > 0 is the final time of the simulation. We are also interested in the L2 norm
‖ fh(t)‖L2 of fh (which is also preserved with time) and we plot the quantity

errL2 = max
t∈[0,tf ]

∣∣∣∣‖ fh(t)‖L2

‖ f (0)‖L2
− 1

∣∣∣∣ , (4.5)

Different splitting will be studied regarding these quantities to compare their relative
performances. First, we consider some splitting methods from the literature: the well-
known 2nd-order Strang splitting (STRANG, σ = 3 flows per step size, even if we take
σ = 2 in all the figures, since the last flow can be concatenated with the first flow at the
next iteration), the so-called triple jump 4th-order composition [24] (3JUMP, σ = 7
flows) and the 6-th order splitting method proposed in [5] (06-23, σ = 23 flows).
Then, the splitting methods introduced in this work are considered. When d = 1, the
method of Table 3 (06-11, σ = 11 flows), and in the case d > 1 the schemes of Table
2: 06-9, 06-11 and 06-13, with σ = 9, 11 and 13 flows, respectively.

In the following figures, we choose a final time tf and the quantities (4.4) and (4.5)
are plotted as a function of σ/τ , where σ is the number of flows of the considered
method and τ is the time step used for the simulation. This choice ensures that all
the diagnostics are obtained with a similar CPU cost. In the sequel, we consider 70
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Fig. 1 Case d = 1. errH (defined by (4.4)) as a function of σ/τ where σ is the number of flows and τ the
time step, for the different splitting methods. N = 256

Fig. 2 Case d = 1. errH (defined by (4.4)) as a function of σ/τ where σ is the number of flows and τ the
time step, for the different splitting methods. From left to right, N = 64, 128

different time steps in [0.125, 8] for d = 1 and 100 different time steps belonging to
the interval [0.1, 30] for d = 2. Finally, we denote by N the number of points per
direction we use to sample uniformly the phase space grid.

Case d = 1.
We first focus on the d = 1 case. In Fig. 1, we plot the quantity relative to the total
energy errH defined in (4.4) for STRANG, 3JUMP, 06-23 and our 06-11 (see Table 3)
using N = 256 points per direction and tf = 16. The expected orders of the different
methods are recovered. However, even if 06-23 and 06-11 are both of 6th-order, 06-11
presents a better behavior since the total energy is better preserved up to two orders of
magnitude than 06-23. Both methods require a similar amount of CPU time. Note that
the 06-11 scheme has also been used with success in the one-dimensional context in
[1]. In Fig. 2, the same diagnostics as before is shown, but with two smaller values of
N . For N = 64, we can also observe the plateau for small τ which reveals the phase
space error. The level of this plateau can be decreased by increasing N .

On Fig. 3, the time evolution of H( fh)(t) and ‖ fh(t)‖L2 are displayed for the four
splitting methods with different N for a constant CPU time: STRANG with τ = 1/8,
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Fig. 3 Case d = 1. Time history of H( fh) (left column) and of ‖ fh(t)‖L2 norm (right column). From top
to bottom, N = 64, 128, 256. Comparison of STRANG, 3JUMP, 06-11 and 06-23 at almost constant CPU
time

3JUMP with τ = 0.4, 06-23 with τ = 4/3 and 06-11 with τ = 0.64. It appears that the
conservation of the total energy is very well preserved for 06-11. For the conservation
of the L2 norm, the benefit of high-order splitting is not so clear since all the curves are
nearly superimposed. When N increases, we observe that the eruption time increases;
the eruption time corresponds to the time at which the finest scale length of f reaches
the phase space grid size. After this time, the error rapidly blows up (see [23]).

On Fig. 4, we look at time evolution of errH for larger final time (tf = 64), consid-
ering N = 4096 (which ensures phase space convergence) and different time steps (τ
are the same as before, but also τ/2 are considered). We observe the expected behavior
for times smaller than 30. Then, for 06-11 and 06-23, errH increases, illustrating the
fact that the fine structure is not well resolved. For STRANG and 3JUMP, errH still
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Fig. 4 Case d = 1. Time history of errH for large time. Comparison of STRANG, 3JUMP, 06-11 and
06-23, at almost constant CPU time, with N = 4096. From left to right, τ is divided by 2 for each method

Fig. 5 Case d = 1. Phase space distribution function f (t = 16, x, v) obtained with 06-11. N = 1024

remains at the same level. Indeed, since their time error is quite important, the lack
of accuracy to capture fine structure does not affect it. As a conclusion, even for large
times, the proposed splitting 06-11 presents the best behavior.

Finally, on Fig. 5, we display the whole phase space distribution function at time
tf = 16 obtained with 06-11. We can observe the fine structures (filaments) which are
typically developed in this nonlinear Landau test case.

Case d = 2.
Next, we focus on the d = 2 case. In Fig. 6 we plot the quantity relative to the total
energy errH defined in (4.4) as a function of σ/τ for N = 64 and tf = 60. First, on the
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Fig. 6 Case d = 2: errH (defined by (4.4)) as a function of σ/τ where σ is the number of flows and τ the
time step, for the different splitting methods. N = 64

left part of Fig. 6, methods of the literature are displayed: STRANG (order 2), 3JUMP
(order 4), and 06-23 (order 6). This diagnostic enables us to recover the expected order
of the different methods. Then, on the right part of Fig. 6 we focus on our new methods
06-9, 06-11 and 06-13 (see Table 2). All the methods in this figure are of order 6, so
that we are able to study the influence of the number of flows σ (the reference 06-23
method is also displayed) on errH. Even if all the methods are of order 6, they have
not the same precision. Indeed, adding some flows in the splitting method enables in
our context to generate a more efficient method. Two explanations can be made: first,
the coefficients can be chosen smaller and few of them are negative and second, the
error term can be optimized (see Sect. 3). Finally, the 06-13 method appears to be the
best method, reaching an error of about 10−10 with τ ≈ 0.2.

Concerning the L2 norm conservation, the splitting preserves it exactly when x and
v are supposed continuous. However, it is not true anymore when we are interested
in the fully discretized case. We have remarked that the L2 norm conservation mainly
depends on the number of stages of the splitting method, but also on the L∞ norm of
the coefficients (see [13]).

5 Analysis of the Vlasov–Poisson equation

This last section is devoted to the rigorous mathematical analysis of Vlasov–Poisson
equations and their approximation by splitting methods of the form (1.5) satisfying
the order conditions to ensure (1.6).

For a given multi-index p = (p1, . . . , pd) ∈ N
d , we denote by ∂

p
x the multi-

derivative ∂
p1
x1 · · · ∂ pd

xd . Moreover, we set |p| = p1 + . . . + pd . Similarly, we set

vm := v
m1
1 · · · vmd

d for v = (v1, . . . , vd) ∈ R
d and m = (m1, . . . ,md) ∈ N

d . As the
functional framework, we will consider the spaces Hr

ν equipped with the norms

‖ f ‖2

Hr
ν

=
∑

(m,p,q)∈Nd×N
d×N

d

|p|+|q|≤r
|m|≤ν

∫
Rd

∫
Td

|vm∂
p
x ∂qv f (x, v)|2dxdv, (5.1)
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where, ∂
p
x and ∂

q
v denote the usual multi-derivative in the x and v variables. In such

spaces - already considered in [8] - and for r and ν large enough, the Vlasov–Poisson
equation is well-posed and satisfies stability estimates ensuring the convergence of
stable and consistent numerical methods, see Theorem 1 and Lemma 3 below for
precise estimates.

Before giving a complete proof of these results, we will state some useful estimates.
In the following, we will denote by Lq

x and Lq for q = 2 and q = ∞ the standard Lq

spaces on T
d and T

d × R
d respectively. Similarly, for r ≥ 0, Hr

x and Hr denote the
standard Sobolev spaces on T

d and T
d × R

d respectively.

Lemma 1 Let ν > d/2. Then we have for p = (p1, . . . , pd) ∈ N
d

‖∂ p
x φ( f )(x)‖

L2
x

≤ C‖ f ‖H(|p|−2)+
ν

, (5.2)

and

‖∂ p
x φ( f )(x)‖

L∞
x

≤ C‖ f ‖H(|p|+ν−2)+
ν

. (5.3)

Proof For a given function g(x, v), we have

∣∣∣∣
∫
Rd

g(x, v)dv

∣∣∣∣ ≤
(∫

Rd

1

(1 + |v|2)ν dv

)1/2 (∫
Rd

(1 + |v|2)ν |g(x, v)|2dv

)1/2

,

as soon as ν > d/2. Applying this formula, we first see with the definition (5.1) that

∫
Td

∣∣∣∣
∫
Rd

g(x, v)dv

∣∣∣∣
2

dx ≤ C‖g‖2

H0
ν

.

We then obtain (5.2) by applying this formula to

g(x, v) = �−1
x ∂

p
x f (x, v).

After using the Gagliardo–Nirenberg inequality (easily obtained in Fourier space)

‖∂ p
x φ( f )‖

L∞
x

≤ C‖φ(x)‖
H |p|+ν
x

,

for ν > d/2, we then deduce the second equation (5.3) from (5.2). ��
We will first give a meaning to the expansion (3.2). To do this we will use the two

following inequalities: for r ≥ 1 and ν > d/2,

‖v · ∂x f ‖Hr
ν

≤ ‖ f ‖Hr+1
ν+1

, and ‖∂xφ( f ) · ∂v f ‖Hr
ν

≤ C‖ f ‖2

Hr+1
ν

. (5.4)

Indeed, the first is clear from the definition of the Hr
ν norm. To prove the second, we

use the fact that for given (m, p, q) ∈ (Nd)3 satisfying |p| + |q| ≤ r and |m| ≤ ν as
in the definition of (5.1), we have
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‖vm∂
p
x ∂qv (∂xφ( f ) · ∂v f )‖L2 ≤ C‖φ( f )‖

Wr+1,∞
x

‖ f ‖Hr+1
ν

,

whereWr+1,∞
x denotes the standard Sobolev space in the x variable, controlling (r+1)

derivatives in L∞. Now, we conclude by using

‖φ( f )‖
Wr+1,∞

x
≤ C‖ f ‖Hr−1+γ

γ
,

for all γ > d/2 (see (5.3) above) with d = 1, 2, 3 and γ < min(ν, 2). Using the
Hamiltonian formalism adT f = v · ∂x f and adU f = ∂xφ( f ) · ∂v f , the estimates
(5.4) can be written

‖adT f ‖Hr
ν

≤ ‖ f ‖Hr+1
ν+1

and ‖adU f ‖Hr
ν

≤ C‖ f ‖2

Hr+1
ν

, (5.5)

and a similar inequality for the operator adH. Hence, the expansion (3.2) can be easily
interpreted as follows (using a Taylor expansion in time):

Lemma 2 Let r > d/2+1, d = 1, 2, 3 and N ∈ N, and B a bounded set ofHr+N+1
ν+N+1.

Then there exists t0 and C such that for all t < t0 and all f ∈ B,

‖ϕt
H( f ) −

N∑
k=0

tk

k!adkH f ‖Hr
ν

≤ CtN+1.

Of course the same lemma holds for the exact flows ϕt
T and ϕt

U . Using these expan-
sions and the identification between splitting method (1.5) and methods based on
composition of exponentials (3.4) which is done using the relation (3.2), we can make
precise the notion of order that we consider in this paper. The algebraic conditions
analyzed in Sect. 3 and the previous estimates yields order p methods in the following
sense:

Definition 1 The method (1.5) is said to be of order p, if there exist ν0, νp ≥ 0 and

r0, rp ≥ 0 such that for all ν > ν0, r > r0 and all bounded sets B of Hr+rp
ν+νp

, there
exist τ0 and C > 0 such that for all f ∈ B and all τ ≤ τ0,

‖ϕτ
H( f ) − ψτ

p( f )‖Hr
ν

≤ Cτ p+1. (5.6)

We will show in the next sections that the condition (5.6) implies the scheme is of
order p in the sense that it approximates the solution in Hr

ν over a finite time interval

[0, T ] with a precision O(τ p), provided the initial data is in Hr+rp
ν+νp

.

5.1 Existence of solutions

The goal of this subsection it to prove the following result:
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Theorem 1 Let ν > d/2, r ≥ 3ν. There exists a constant Cr,ν and Lr,ν such that
for all given B > 0 and f0 ∈ Hr+2ν+1

ν such that ‖ f0‖Hr+2ν+1
ν

≤ B, then for all

α, β ∈ [0, 1], there exists a solution f (t, x, v) of the Vlasov–Poisson equation

∂t f + αv · ∂x f − β∂xφ( f ) · ∂v f = 0,

with initial value f (0, x, v) = f0(x, v), on the interval

T := Cr,ν

1 + B
, (5.7)

such that for all t ∈ [0, T ], we have the estimate

∀ t ∈ [0, T ], ‖ f (t)‖Hr+2ν+1
ν

≤ min(2B, eLr,ν (1+B)t )‖ f0‖Hr+2ν+1
ν

. (5.8)

Moreover, for two initial conditions f0 and g0 satisfying the previous hypothesis, we
have

∀ t ∈ [0, T ], ‖ f (t) − g(t)‖Hr
ν

≤ eLr,ν (1+B)t‖ f0 − g0‖Hr
ν

. (5.9)

Equations (5.8) and (5.9) show that the flow is locally bounded in Hr+2ν+1
ν and

locally Lipschitz in Hr
ν for r large enough (ν being essentially d/2). Before proving

the theorem, we will show a stability lemma that will be useful both for the local
existence of solutions and the analysis of splitting methods.

Lemma 3 Let α, β ∈ R+, ν > d/2 and r > 3ν be given. There exists a constant
C > 0 such that the following holds: Assume that g(t) ∈ Hr

ν and f (t) in Hr
ν are

continuous functions in time, and let h(t) be a solution of the equation

∂t h + α v · ∂xh − β∂xφ( f ) · ∂vh = g. (5.10)

Then we have

∀ t > 0, ‖h(t)‖2

Hr
ν

≤ ‖h(0)‖2

Hr
ν

+ C
∫ t

0
(α + β‖ f (σ )‖Hr

ν

)‖h(σ )‖2

Hr
ν

dσ

+2
∫ t

0
‖g(σ )‖Hr

ν

‖h(σ )‖Hr
ν

dσ. (5.11)

Proof Let Lκ be the operator Lκh = {κ, h} with

κ(x, v) = α

2
|v|2 + βφ( f )(x).
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The equation (5.10) is thus equivalent to ∂t h − {κ, h} = g. Let D be a linear operator.
We calculate that

d

dt
‖Dh‖2

L2 = 2〈Dh, DLκh〉L2 + 2〈Dh, Dg〉L2

= 2〈Dh,LκDh〉L2 + 2〈Dh, [D,Lκ ]h〉L2 + 2〈Dh, Dg〉L2 ,

where [D,Lκ ] = DLκ −LκD is the commutator between the two operators. The first
term in the previous equality can be written

2〈Dh,LκDh〉L2 = 〈1,Lκ (Dh)2〉L2 = 〈L∗
κ1, (Dh)2〉L2 = 0,

where L∗
κ is the L2 adjoint of Lκ , upon using the fact that Hamiltonian vector fields

are divergence free. Hence we get

d

dt
‖Dh‖2

L2 = 2〈Dh, [D,Lκ ]h〉L2 + 2〈Dh, Dg〉L2 .

Now we consider the operators D = Dm,p,q = vm∂
p
x ∂

q
v for given muti-indices

(m, p, q) ∈ N
3d such that |m| ≤ ν and |p| + |q| ≤ r . It is then clear that the

second term on the right-hand side can be bounded by 2‖h‖Hr
ν

‖g‖Hr
ν

, and we are led

to prove that

|〈Dh, [D,Lκ ]h〉L2 | ≤ C(α + β‖ f ‖Hr
ν

)‖h‖2

Hr
ν

. (5.12)

The operator Lκ can be split into a linear combination of operators of the form Li
v =

vi∂xi and Li
φ = −∂xi φ( f )(x)∂vi for i = 1, . . . , d. We compute that for any smooth

function h

[Dm,p,q ,Li
v]h = vm∂

p
x ∂qv (vi∂xi h) − (vi∂xi )v

m∂
p
x ∂qv h

= vm∂xi ∂
p
x ∂qv (vi h) − viv

m∂xi ∂
p
x ∂qv h

= qiv
m∂xi ∂

p
x ∂q−〈i〉

v h + vm∂xi ∂
p
x vi∂

q
v h − viv

m∂xi ∂
p
x ∂qv h

= qi D
m,p+〈i〉,q−〈i〉h,

where 〈i〉 is the multi-index with coefficients δi j the Kronecker symbol, for j =
1, . . . , d (we make the convention that Dm,p,q = 0 when p or q contains negative
index). Hence, as |p + 〈i〉| + |q − 〈i〉| ≤ r as soon as |q − 〈i〉| ≥ 0 we get

‖[Dm,p,q ,Li
v]h‖

L2 ≤ C‖h‖Hr
ν

,

where the constant C depends on r . This gives the first term in the right-hand side of
(5.12).
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For the second term, we compute

[Dm,p,q ,Li
φ]h = −vm∂

p
x ∂qv (∂xi φ∂vi h) + (∂xiφ∂vi )v

m∂
p
x ∂qv h

= mi (∂xi φ)vm−〈i〉∂ p
x ∂qv h −

∑
k 	=0

(
p
k

)
(∂kx ∂xiφ)vm∂

p−k
x ∂qv ∂vi h,

(5.13)

(with the usual convention that vm = 0 if m contains a negative index). The first term
is easily bounded: we have

‖(∂xi φ)vm−〈i〉∂ p
x ∂qv h‖

L2 ≤ C‖∂xi φ‖
L∞
x

‖h‖Hr
ν

,

and using (5.3) with p = 〈i〉, we obtain the estimate, as r ≥ ν − 1.
In the second term, when |k| + ν − 1 ≤ r we can estimate directly

‖(∂kx ∂xi φ)vm∂
p−k
x ∂qv ∂vi h‖

L2 ≤ ‖∂kx ∂xi φ( f )‖
L∞
x

‖h‖Hr
ν

≤ C‖ f ‖H|k|+1+ν−2
ν

‖h‖Hr
ν

,

after using (5.3), which gives the desired bound.
When |k| ≥ r + 1 − ν we can estimate

‖(∂kx ∂xiφ)vm∂
p−k
x ∂qv ∂vi h‖

L2 ≤ ‖∂kx ∂xi φ‖
L2
x
‖vm∂

p−k
x ∂qv ∂vi h‖

L∞

≤ C‖ f ‖H|k|−1
ν

‖vm∂
p−k
x ∂qv ∂vi h‖

H2ν

≤ C‖ f ‖H|k|−1
ν

‖h‖H2ν+|p−k|+|q|+1
ν

,

by using (5.2) and Gagliardo-Nirenberg inequality in T
d × R

d . Now in the sum of
the second term in (5.13) we have |k| ≤ |p| ≤ r otherwise the term is zero. We thus
have |p − k| + |q| ≤ |p| − |k| + |q|. As |p| + |q| ≤ r , then under the condition
|k| ≥ r +1−ν considered here, we have |p− k|+ |q| ≤ ν −1. We thus get the result,
provided 3ν < r , in order to bound both terms in the previous equation with the help
of Hr

ν norms. ��
Proof of Theorem 1 We define the sequence of function ( fn(t, x, v))n∈N as follows:
for t ∈ [0, T ], f0(t, x, v) = f0(x, v), and for n ≥ 0, given fn ∈ Hr+2ν+1

ν , we set
fn+1(t, x, v) the solution of

∂t fn+1 + αv · ∂x fn+1 − β∂xφ( fn) · ∂v fn+1 = 0, (5.14)

with initial value fn+1(0, x, v) = f0(x, v). Let hn be the Hamiltonian

hn(x, v) = α

2
|v|2 + βφ( fn)(x),

123



796 F. Casas et al.

and χ t
n(x, v) its flow. Note that as fn is in Hr+2ν+1

ν the flow of the microcanonical
Hamiltonian hn is well defined. Moreover, this flow exists globally in time, since
φ( fn)(x) is bounded as x ∈ T

d a compact domain. The function fn+1(t, x, v) is thus
well defined using characteristics: fn+1(t, x, v) = f0(χ−t

n (x, v)).
Let us apply Lemma 3 with the space Hr+2ν+1

ν . We get for all t > 0,

‖ fn+1(t)‖2

Hr+2ν+1
ν

≤ ‖ f0‖2

Hr+2ν+1
ν

+C
∫ t

0
(α + β‖ fn(σ )‖Hr+2ν+1

ν
)‖ fn+1(σ )‖2

Hr+2ν+1
ν

dσ.

This shows by induction that we have

∀ n, ∀ t ∈ [0, T ], ‖ fn(t)‖Hr+2ν+1
ν

≤ 2‖ f0‖Hr+2ν+1
ν

≤ 2B,

provided T is small enough, namelyCT (α+2β‖ f0‖Hr+2ν+1
ν

) < 1/4 (which is implied

if we assume (5.7) for a suitable constant Cr,ν). An application of Gronwall’s lemma
then implies (5.8).

Now we can write that

∂t ( fn+1 − fn) + αv · ∂x ( fn+1 − fn) − β∂xφ( fn) · ∂v( fn+1 − fn)

= β∂xφ( fn − fn−1) · ∂v fn .

Using Lemma 3 with the space Hr
ν , there exists a constant C such that

‖ fn+1(t) − fn(t)‖2

Hr
ν

≤ C(α + 2βB)

∫ t

0
‖ fn+1(σ ) − fn(σ )‖2

Hr
ν

dσ

+2
∫ t

0
‖ fn+1(σ ) − fn(σ )‖Hr

ν

‖∂xφ( fn − fn−1) · ∂v fn‖Hr
ν

dσ.

Now for an operator of the form D = vm∂
p
x ∂

q
v with |p| + |q| ≤ r and |m| ≤ ν, we

have

‖D(∂xφ( fn − fn−1) · ∂v fn)‖L2

≤ C‖φ( fn − fn−1)‖Hr+1
x

∑
|a|+|b|≤r+1

‖vm∂ax ∂bv fn‖L∞

≤ C‖ fn − fn−1‖Hr
ν

‖ fn‖Hr+2ν+1
ν

,

using (5.2) and Gagliardo–Nirenberg inequality inTd ×R
d . Hence, using the previous

uniform bound on ‖ fn‖Hr+2ν+1
ν

, we obtain
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‖ fn+1(t) − fn(t)‖2

Hr
ν

≤ C(1 + B)

∫ t

0
‖ fn+1(σ ) − fn(σ )‖2

Hr
ν

dσ

+C(1 + B)

∫ t

0
‖ fn+1(σ ) − fn(σ )‖Hr

ν

‖ fn(σ ) − fn−1(σ )‖Hr
ν

dσ.

From this estimate we deduce by a Gronwall inequality that

‖ fn+1(t) − fn(t)‖2

Hr
ν

≤ e3(1+B)T/2(1 + B)/2
∫ T

0
‖ fn(σ ) − fn−1(σ )‖2

Hr
ν

dσ.

For T (1 + B) - see estimate (5.7) - sufficiently small, this shows that

sup
t∈[0,T ]

‖ fn+1(t) − fn(t)‖Hr
ν

≤ 1

2
sup

t∈[0,T ]
‖ fn(t) − fn−1(t)‖Hr

ν

.

We deduce that the sequence fn converges in Hr
ν , uniformly in time. The limit is then

a solution of the Vlasov–Poisson equation in C1([0, T ],Hr
ν).

Now, if we take two solutions, we have as before

∂t ( f − g) = −αv · ∂x ( f − g) + β∂xφ( f ) · ∂v( f − g) + β∂xφ( f − g) · ∂vg.

Using the previous lemma and the estimates we have on f and g on the interval [0, T ],
we get as before

‖ f (t) − g(t)‖2

Hr
ν

≤ ‖ f (0) − g(0)‖Hr
ν

+ e3(1+B)T/2(1 + B)/2
∫ t

0
‖ f (σ ) − g(σ )‖2

Hr
ν

dσ,

from which we easily deduce the second estimate (5.9) (using (5.7)). ��

5.2 Convergence of splitting methods

5.2.1 Classical splitting methods

We can now prove the following convergence result:

Theorem 2 Let ψτ
p a splitting method of the form (1.5) fulfilling the condition of

Definition 1 for some number p and sufficiently large indices ν0, νp, r0, rp. Then it
is convergent in the following sense: For given ν > ν0 and r > r0, there exists C∗
such that for f ∈ Hr+rp

ν+νp
, ϕt

H( f ) exists for t ∈ [0, T ] with T = C∗(1 + B)−1 with

B = ‖ f ‖Hr+r p
ν+νp

, and there exist τ0 and C such that for all τ ≤ τ0, we have

‖(ψτ
p)

n( f ) − ϕt
H( f )‖Hr

ν

≤ Cτ p, (5.15)

for t = nτ ≤ T .
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Proof We can assume that r0 and ν0 (and hence r ans s) are large enough to ensure
that the solution ϕt

H( f ) exists over the time interval T = Cr,ν(1 + B)−1 given by
Theorem 1 with α = β = 1, see (5.7).

Now let us consider a splitting method of the form (1.5) with coefficients (ai , bi ).
Using Theorem 1 with the indices (r + rp − 2ν − 1, ν + νp), we can apply (5.8)

alternately to ϕ
ai τ
T (i.e. β = 0) and ϕ

bi τ
U (i.e. α = 0), and we obtain

‖ψτ
p( f )‖Hr+r p

ν+νp
≤ eL(1+B)τ‖ f ‖Hr+r p

ν+νp
,

where

L = Lr+rp−2ν−1,ν+νp

(
s∑

i=1

|ai | +
s+1∑
i=1

|bi |
)

.

This implies the bound

∀ nτ ≤ T, ‖(ψτ
p)

n( f )‖Hr+r p
ν+νp

≤ eL(1+B)T B = eκ B,

where κ is a factor depending on r, rp, ν and νp, but not on B. Let us use the notation
f (t) = ϕt

H and fn = (ψτ
p)

n( f ). We can write

‖ fn+1 − f (tn+1)‖Hr
ν

≤ ‖ψτ
p( fn) − ϕτ

H( fn)‖Hr
ν

+ ‖ϕτ
H( fn) − ϕτ

H( f (tn))‖Hr
ν

.

(5.16)

By applying again Theorem (1) with the constant eκ B instead of B, we can define the
flow ϕt

H over a time interval of the form C∗(1 + B)−1 by possibly adapting C∗ (this
is due to the fact that κ does not depend on B), and such that for all f and g satisfying
‖ f ‖Hr+r p

ν+νp
≤ eκ B, and ‖ f ‖Hr+r p

ν+ν0

≤ eκ B, we have

‖ϕτ
H( f ) − ϕτ

H(g)‖Hr
ν

≤ eL∗(1+B)τ‖ f − g‖Hr
ν

,

for some constant L∗ depending on r, ν, sp and νp.
From (5.16), we obtain

‖ fn+1 − f (tn+1)‖Hr
ν

≤ ‖ψτ
p( fn) − ϕτ

H( fn)‖Hr
ν

+ eL∗(1+B)τ‖ fn − f (tn)‖Hr
ν

.

Using now the Definition 1 of the order p of the method, applied with the bounded
set B defined as the ball of radius eκ B in the space Hν+ν0

r+rp , we obtain

‖ fn+1 − f (tn+1)‖Hr
ν

≤ Cτ p+1 + eL∗(1+B)τ‖ fn − f (tn)‖Hr
ν

,

which gives the result by induction. ��
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5.2.2 Splitting methods with iterated commutators

To end this section, we give arguments to show that Theorem 2 still holds for more
general splitting methods defined by formulas (3.9) (3.11) using flows associated with
iterated commutators.

Let us first consider the one-dimensional case d = 1. In this case, the flow of
[[T ,U],U] = 2m U , as well as the flows of the high-order commutators W5,1, W7,1
and W7,2 (see (3.10)) are in fact flows of the Hamiltonian U scaled in time. Hence,
all the previous convergence results extend straightforwardly to numerical schemes of
the form (3.11).

In the higher dimensional cases d ≥ 2, the flow ϕt
[[T ,U ],U ] is given by the formulas

(2.15), (2.16). We see that it has the same structure as the flow ϕt
U , but the potential

φ( f ) is replaced by the potential K ( f ) given by the formula (2.14). This potential
satisfies the following estimates (compare with Lemma 1)

Lemma 4 Let ν > d/2. Then we have for r ≥ 2 + d/2

‖K ( f )(x)‖
Hr
x

≤ C
(
‖ f ‖Hr−2

ν
+ ‖ f ‖2

Hr−2
ν

)
(5.17)

and

‖K ( f )(x)‖
Wr,∞

x
≤ C

(
‖ f ‖Hr+ν−2 + ‖ f ‖2

Hr+ν−2
ν

)
. (5.18)

Proof Using the definition (2.11) of K , we have

K = 2mφ − 2
d∑

i, j=1

(−�x )
−1 (

∂xi ∂x j φ
)2 + 2(−�x )

−1(�xφ)2.

We deduce that for r ≥ 2,

‖K‖
Wr,∞

x

≤ C

(
‖φ‖

Wr,∞
x

+ sup
i, j=1,...,d

‖ (
∂xi ∂x j φ

)2 ‖
Wr−2,∞

x
+ ‖ (�xφ)2 ‖

Wr−2,∞
x

)

≤ C

(
‖φ‖

Wr,∞
x

+ sup
i, j=1,...,d

‖∂xi ∂x j φ‖2

Wr−2,∞
x

+ ‖�xφ‖2

Wr−2,∞
x

)
,

and we deduce (5.17) from the estimate (5.3) for φ( f ). For the L2 estimates, we have

‖K‖
Hr
x

≤ C

(
‖φ‖

Hr
x

+ sup
i, j=1,...,d

‖(∂xi ∂x j φ)2‖
Hr−2
x

+ ‖(�xφ)2‖
Hr−2
x

)
,
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and we conclude in a similar way by using the fact that for α > d/2,

∀ u, v ∈ Hα
x , ‖uv‖

Hα
x

≤ C‖u‖
Hα
x

‖v‖
Hα
x

for some constantC depending only on α and d. We then deduce the result by applying
the estimate (5.2) on φ( f ). ��
With these estimates in hand, it is easy to show that an existence result like Theorem 1
holds for the flow ϕt

[[T ,U ],U ] with similar estimates. Convergence results for splitting
methods (3.9) can then be easily shown as in the proof of Theorem 2.

6 Conclusion

In this work, new time splitting schemes are proposed for the Vlasov–Poisson system.
They are based on the decomposition of the Hamiltonian H between the kinetic T
and electric U part. In the one-dimensional case, the relation [[T ,U],U] = 2m U
enables to design very efficient (with optimized number of flows) high-order splitting
using the modified potential approach. This can be generalized to arbitrary dimension,
the price to pay being to compute the flow associated to the commutator [[T ,U],U]
which only depends on the spatial variables; in this case also, new high-order splitting
are proposed which turns out to be very efficient compared to the existing splitting of
the literature. Finally, a convergence result of such splitting methods applied to the
Vlasov–Poisson system is obtained.
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