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UNIFORMLY ACCURATE METHODS FOR THREE DIMENSIONAL
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Abstract. In this paper, we consider the three dimensional Vlasov equation with an inhomoge-
neous, varying direction, strong magnetic field. Whenever the magnetic field has constant intensity,
the oscillations generated by the stiff term are periodic. The homogenized model is then derived, and
several state-of-the-art multiscale methods, in combination with the particle-in-cell discretization, are
proposed for solving the Vlasov--Poisson equation. Their accuracy as much as their computational
cost remain essentially independent of the strength of the magnetic field. The proposed schemes
thus allow large computational steps, while the full gyro-motion can be restored by a linear inter-
polation in time. In the linear case, extensions are introduced for a general magnetic field (varying
intensity and direction). Eventually, numerical experiments are exposed to illustrate the efficiency
of the methods and some long-term simulations are presented.

Key words. Vlasov--Poisson equation, three dimensions, strong magnetic field, varying direc-
tion, uniformly accurate method, particle-in-cell

AMS subject classifications. 65L05, 65L20, 65L70

DOI. 10.1137/19M127402X

1. Introduction. Vlasov models have been widely considered for modeling the
dynamics of plasmas as encountered in magnetic fusion devices known as a tokamaks,
where a strong external magnetic field is applied so as to confine the charged particles.
In this paper, we consider the three dimensional Vlasov--Poisson equation with a
strong nonhomogeneous magnetic field whose direction may vary [17, 25, 36]:

\partial tf
\varepsilon (t,x,v) + v \cdot \nabla \bfx f

\varepsilon (t,x,v) +

\biggl( 
E(t,x) +

1

\varepsilon 
v \times B(x)

\biggr) 
\cdot \nabla \bfv f

\varepsilon (t,x,v) = 0,

(1.1a)

\nabla \bfx \cdot E(t,x) =

\int 

\BbbR 3

f\varepsilon (t,x,v)dv  - ni,

(1.1b)

f\varepsilon (0,x,v) = f0(x,v),(1.1c)
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3D VLASOV EQUATIONS WITH STRONG MAGNETIC FIELD B521

where, for a given T > 0,

f\varepsilon : (t,x,v) \in [0, T ]\times \BbbR 3 \times \BbbR 3 \mapsto \rightarrow f\varepsilon (t,x,v) \in \BbbR 

is the unknown,
f0 : (x,v) \in \BbbR 3 \times \BbbR 3 \mapsto \rightarrow f0(x,v) \in \BbbR 

a given initial distribution, where

B : x \in \BbbR 3 \mapsto \rightarrow B(x) \in \BbbR 3

denotes the external magnetic field,

E : (t,x) \in \BbbR + \times \BbbR 3 \mapsto \rightarrow E(t,x) \in \BbbR 3

the self-consistent electric-field function, 0 < \varepsilon \leq 1 a dimensionless parameter in-
versely proportional to the strength of the magnetic field, and ni \geq 0 the ion density
of the background. The system (1.1) has a lot of invariants, and we will be interested
in particular in the Hamiltonian defined by

(1.2) \scrH (t) :=

\int 

\BbbR 3

\int 

\BbbR 3

1

2
| v| 2f\varepsilon (t,x,v)dxdv +

1

2

\int 

\BbbR 3

| E(t,x)| 2dx.

The above Vlasov--Poisson model (1.1) is derived from the three dimensional
Vlasov--Maxwell equations by considering the electrostatic approximation. Unlike
some asymptotically reduced models, such as the gyrokinetic equations [30, 34] or the
drift-kinetic limit equations [3, 24, 19], model (1.1) contains the information from the
angle variable and it is of paramount importance for studying the plasma dynamics
in the tokamak device.

In the strong magnetic field limit regime, the charged particles exhibit very fast
rotations with the cyclotron period proportional to \varepsilon , while remaining confined along
the magnetic line. In such a case, the small parameter 0 < \varepsilon \ll 1 renders the
solution f\varepsilon (t,x,v) of (1.1) highly oscillatory in time. Classical numerical integrators
such as splitting or finite-difference schemes thus require time steps smaller than the
cyclotron period in order to accurately capture the dynamics, thus implying severe
computational burden. Recent efforts have aimed at designing numerical schemes
which allow step sizes much larger than the cyclotron period. Upon assuming that
the magnetic field has a fixed direction in space, i.e., that

B(x) = (0, 0, b(x))T , b(x) > 0

(a popular choice both for formal and rigorous analyses [3, 17, 25]), several multiscale
numerical methods have been proposed [8, 16, 18, 20, 21, 22]. Among them, Filbet
et al. constructed particle-in-cell (PIC) schemes in the spirit of asymptotic preserving
techniques [28], which, as \varepsilon \rightarrow 0, are consistent with the drift-limit model [20] or the
gyrokinetic model [18, 21]. These schemes are simple and highly accurate, but the
gyro-motion is lost in the limit regime. In contrast, the schemes proposed in [8, 16]
capture all the information of the kinetic models with an accuracy uniform with
respect to 0 < \varepsilon \leq 1. These uniformly accurate (UA) schemes have computational
cost as well as accuracy totally independent of \varepsilon (we refer the reader to [13] for a
comparison of UA scheme with other multiscale methods). In order to design UA
schemes for kinetic models, different numerical approaches may be used: (i) The two-
scale formulation technique relies upon an explicit separation of the fast and slow times
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B522 CHARTIER ET AL.

and allows one to smooth out the oscillations [8, 15, 16]. (ii) The multi-revolution
composition methods, in the spirit of the heterogeneous multiscale method [1], are also
UA, as confirmed in the recent paper [9]. Both approaches exploit the periodicity of
the solution of the stiff part of the equation. For instance, our recent work [8] isolates
the dominant oscillation frequency owing to a confining property in two dimensions.
However, the general case of a strong magnetic field with varying direction, i.e.,

B(x) = (b1(x), b2(x), b3(x))
T ,

has been barely considered so far for the Vlasov--Poisson equation (1.1) due to its com-
plicated highly oscillatory behavior in three dimensions. Let us also mention recent
developments around the symplectic PIC method, which allows for good preservation
of invariants for very long times (see [26, 33, 29]).

In this work, we propose efficient numerical schemes for solving the three dimen-
sional Vlasov--Poisson equation (1.1) in the strong magnetic field regime by combining
multiscale strategies with the PIC discretization. First, we consider the case of a mag-
netic field with constant intensity | B(x)| = const, for which, as already pointed out in
[6, 34], the motion induced by the stiff Lorentz term 1

\varepsilon v\times B(x) in (1.1) is periodic in
time. Taking advantage of this observation, we derive the limit model of (1.1) by using
averaging methods [6] and then introduce three UA schemes, namely (i) the multi-
revolution composition (MRC) method, (ii) the two-scale formulation (TSF) method,
and (iii) the micro-macro (MM) method. All three are of uniform second order in
time for all \varepsilon \in ]0, 1], but they have specific pros and cons: for instance, MRC methods
are phase-space volume preserving, while MM easily allows for the full recovery of the
gyro-motion. To the best of our knowledge, this key feature is new and paves the way
for an extension to the case of a magnetic field with varying intensity. In this situa-
tion, we indeed introduce, under the PIC discretization, a reparametrization of time
to renormalize the magnetic field. Within this framework, each particle carries its own
fictitious time. Hence, and in order to avoid the occurrence of multiple frequencies,
we drop in this situation the Poisson part of (1.1) and consider instead the case of
an external electric field E(t,x) (this somehow simplifying assumption is relevant, as
it marks an important first step towards the solution of the full problem). In order
to resynchronize all particles (a necessary step in order to provide an approximation
of f\varepsilon (t,x,v)), we then use the interpolation strategy of MM which ensures uniform
second order except for the angular variable. Eventually, numerical experiments are
presented in order to validate uniform accuracy and to compare the various methods.
In particular, we simulate the dynamics of (1.1) in a three dimensional screw-pinch
setup [30].

The remainder of the paper is now organized as follows. Section 2 considers the
limit model of (1.1) with a constant intensity B(x), and section 3 introduces the three
aforementioned UA schemes in this situation: Subsection 3.1 is concerned with the
MRC method, subsection 3.2 with the TSF method, and subsection 3.3 with the MM
method. Extensions to the case of a varying intensity are presented in section 4.
Finally, numerical results with concluding remarks are shown in section 5.

2. Averaging. A general assumption throughout this paper is that the magnetic
field is bounded from below, i.e., that | B(x)| \geq c0 for all x \in \BbbR 3 for some c0 > 0
independent of \varepsilon . In this section, we further assume that the external magnetic field
has constant norm

| B(x)| \equiv const > 0, x \in \BbbR 3,
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3D VLASOV EQUATIONS WITH STRONG MAGNETIC FIELD B523

so that the stiff part of (1.1) generates periodic motion. This setup was also studied in
[25]. A viable case of such a B is given by B(x) = (B1(x1, x2), B2(x1, x2), B3(x1, x2)),
where

B3 =
\sqrt{} 
\| B2

1 +B2
2\| L\infty (\BbbR 2)  - B2

1  - B2
2 ,

with (B1(x1, x2), B2(x1, x2)) \in L\infty (\BbbR 2) and \partial x1
B1 + \partial x2

B2 = 0. It can be verified
that | B(x)| 2 \equiv \| B2

1 +B2
2\| L\infty (\BbbR 2) and \nabla x \cdot B \equiv 0. In such a case, we are able to apply

a recently developed averaging method to quickly obtain the limit model of (1.1) as
\varepsilon \rightarrow 0.

Lemma 2.1. If | B(x)| \equiv b for some constant b > 0, then the solution of

(2.1) \partial t \~f
\varepsilon (t,x,v) +

1

\varepsilon 
v \times B(x) \cdot \nabla \bfv 

\~f\varepsilon (t,x,v) = 0

is 2\pi /b-periodic with respect to the fast time-variable t/\varepsilon .

Proof. The characteristics of (2.1)

\.x(t) = 0, \.v(t) =
1

\varepsilon 
v(t)\times B(x(t)), t > 0,

have a periodic solution in t/\varepsilon which can be obtained, for instance, by the Rodrigues
formula

\bfx (t) = \bfx (0),
(2.2)

\bfv (t) = cos(bt/\varepsilon )\bfv (0) + (1 - cos(bt/\varepsilon ))(\bfB (\bfx (0)) \cdot \bfv (0))\bfB (\bfx (0)) + sin(bt/\varepsilon )\bfv (0)\times \bfB (\bfx (0)).

The statement of the lemma is now an immediate consequence.

Using the observation above, we may apply the following theorem from [6].

Theorem 2.2. Consider a transport equation of the form

\partial tf
\varepsilon (t,y) +

\biggl[ 
G(y)

\varepsilon 
+K(y)

\biggr] 
\cdot \nabla \bfy f

\varepsilon (t,y) = 0, f\varepsilon (0,y) = f0(y),

where the flow map \Phi t of
\.y(t) = G(y(t))

is assumed to be 2\pi -periodic. There exist two formal vector fields G\varepsilon (y) and K\varepsilon (y)
satisfying

G(y)

\varepsilon 
+K(y) =

G\varepsilon (y)

\varepsilon 
+K\varepsilon (y) and [G\varepsilon ,K\varepsilon ] := \partial \bfy G

\varepsilon K\varepsilon  - \partial \bfy K
\varepsilon G\varepsilon = 0,

such that the system
\left\{ 
  
  

\partial \tau g(t, \tau ,y) +G\varepsilon (y) \cdot \nabla \bfy g(t, \tau ,y) = 0,(2.3a)

\partial tg(t, \tau ,y) +K\varepsilon (y) \cdot \nabla \bfy g(t, \tau ,y) = 0,(2.3b)

g(0, 0,y) = f0(y)(2.3c)

has a unique formal solution independently of the order in which the equations are
solved. Moreover, for all positive time we have f\varepsilon (t,y) = g(t, t/\varepsilon ,y) and the first two
terms of K\varepsilon = K [1] + \varepsilon K [2] +O(\varepsilon 2) may be computed as follows:

K [1] = \Pi K\tau , K [2] =  - 1

2
\Pi 

\int \tau 

0

[Ks,K\tau ]ds, with K\tau (\bfy ) := (D\bfy \Phi \tau (\bfy ))
 - 1 (K \circ \Phi \tau )(\bfy ),

with \Pi h := 1/(2\pi )
\int 2\pi 

0
h(\tau )d\tau .
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B524 CHARTIER ET AL.

Remark 2.3. If K\varepsilon is truncated at order k in \varepsilon and G\varepsilon = G(y) + \varepsilon K(y)  - \varepsilon K\varepsilon ,
then the order in which the equations in (2.3) are solved does matter. However, the
difference between the corresponding two solutions is also of order \varepsilon k.

Without loss of generality, we assume in the rest of this section that | B(x)| \equiv 1
to derive the averaged model of (1.1) as obtained from Theorem 2.2. Details of the
derivation may be found in [6], and we thus content ourselves with a sketch of the
computations: from (1.1), we have

G =

\biggl( 
0

v \times B

\biggr) 
, K =

\biggl( 
v
E

\biggr) 
,

and the flow map generated by G is given by

\Phi \tau (y) =

\biggl( 
x

cos(\tau )v + sin(\tau )v \times B+ (1 - cos(\tau ))(B \cdot v)B

\biggr) 
, y =

\biggl( 
x

v

\biggr) 
.

Then

D\bfy \Phi \tau (y) =

\biggl( 
I3 0
N1 N2

\biggr) 
,

where

N1 = sin(\tau ) (v \times \nabla \bfx B) + (1 - cos(\tau ))[(B \cdot v)\nabla \bfx B+B(vT\nabla \bfx B)],

N2 = cos(\tau )I3  - sin(\tau )(B\times I3) + (1 - cos(\tau ))BBT ,

where we have denoted v \times \nabla \bfx B = [v \times \partial x1B,v \times \partial x2B,v \times \partial x3B] and similarly for
v \times I3. A straightforward calculation then leads to

\Pi 
\bigl( 
(D\bfy \Phi \tau (y))

 - 1(K \cdot \Phi \tau )
\bigr) 
=

\biggl( 
(B \cdot v)B

B\bfv 

\biggr) 
,

where

B\bfv = BBT

\biggl[ 
E - 1

2
(v \times \nabla \bfx B)(v \times B) +Mv  - 5

2
M(B \cdot v)B

\biggr] 
 - 1

2
M [v  - 2(B \cdot v)B]

 - 1

2
B\times I3 [M(v \times B) + (v \times \nabla \bfx B)(B \cdot v)B] ,

with
M = (B \cdot v)\nabla \bfx B+B(vT\nabla \bfx B).

Eventually,

K\varepsilon =

\biggl( 
(B \cdot v)B

B\bfv 

\biggr) 
+O(\varepsilon ),

and the limit model at leading order is

\partial tg(t, \tau ,x,v) + (B \cdot v)B \cdot \nabla \bfx g(t, \tau ,x,v) +B\bfv \cdot \nabla \bfv g(t, \tau ,x,v) = 0, t > 0.

By taking \tau = 0 and f(t,x,v) = g(t, 0,x,v), we get the leading order averaged model
of (1.1) for stroboscopic times t \in 2\pi \varepsilon \BbbN ,

\partial tf(t,x,v) + (B \cdot v)B \cdot \nabla \bfx f(t,x,v) +B\bfv \cdot \nabla \bfv f(t,x,v) = 0,(2.4a)

\nabla \bfx \cdot E(t,x) =

\int 

\BbbR 3

f(t,x,v)dv  - ni,(2.4b)

f(0,x,v) = f0(x,v).(2.4c)
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As we shall verify later numerically, we have

f\varepsilon (t,x,v) - f(t,x,v) = O(\varepsilon ), 0 < \varepsilon \ll 1, t \in 2\pi \varepsilon \BbbN .

Similar limit models including higher order corrections have been obtained in [4, 25]
via different approaches.

3. Numerical method. In this section, we introduce numerical schemes for
(1.1) under the assumption | B(x)| \equiv 1. Taking advantage of the periodicity of the
solution of the stiff part, we apply state-of-art multiscale approaches in combination
with PIC discretization. In this way, we obtain schemes whose accuracy and compu-
tational cost are both independent of \varepsilon \in ]0, 1]. Our starting point is the following
PIC representation of f\varepsilon as used in, e.g., [20, 22, 27, 36]:

(3.1) f\varepsilon (t,x,v) \approx 
Np\sum 

k=1

\omega k\delta (x - xk(t))\delta (v  - vk(t)), t \geq 0, x,v \in \BbbR 2.

The characteristic equations of model (1.1) for 1 \leq k \leq Np are then of the form

\.xk(t) = vk(t),(3.2a)

\.vk(t) = E(t,xk(t)) +
1

\varepsilon 
vk(t)\times B(xk(t)), t > 0,(3.2b)

xk(0) = xk,0, vk(0) = vk,0.(3.2c)

Noticing that

\nabla \bfx \cdot E(t,x) =

Np\sum 

k=1

wk\delta (x - xk(t)) - ni,

we observe that the electric field E in (3.2) has in fact no explicit dependence on time,
i.e., E(t,x) = E[X(t)](x), where X(t) = (x1(t), . . . ,xNp(t)). We are in a position to
briefly present three different UA methods.

3.1. Multi-revolution composition method. For a general exposition of
multi-revolution composition (MRC), we refer the reader to [11]. Here we focus on a
uniformly accurate second order method.

MRC framework. Suppose that we wish to solve (1.1) on [0, Tf ] for some
Tf > 0. Rescaling time in (3.2) leads to (we omit the particle index for brevity)

\.x(t) = \varepsilon v(t),(3.3a)

\.v(t) = \varepsilon E[X(t)](x(t)) + v(t)\times B(x(t)), 0 < t \leq Tf

\varepsilon 
,(3.3b)

x(0) = x0, v(0) = v0.(3.3c)

Since the stiff part of (3.3) generates a 2\pi -periodic motion, (3.3) is amenable to MRC
[11, 12]. To do so, we write

(3.4)
Tf

\varepsilon 
= 2\pi Mf + Tr, Mf =

\biggl\lfloor 
Tf

2\pi \varepsilon 

\biggr\rfloor 
\in \BbbN , 0 \leq Tr < 2\pi .

The second order MRC method begins by choosing an integer 0 < M0 \leq Mf and
defining

(3.5) \alpha =
1

2

\biggl( 
1 +

1

M0

\biggr) 
, \beta =

1

2

\biggl( 
1 - 1

M0

\biggr) 
, M =

Mf

M0
, H = \varepsilon M0.
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Denoting xn \approx x(2\pi nM0), v
n \approx v(2\pi nM0), the MRC scheme proceeds as follows:

(3.6)

\biggl( 
xn+1

vn+1

\biggr) 
= \scrE \beta ( - 2\pi )\scrE \alpha (2\pi )

\biggl( 
xn

vn

\biggr) 
, 0 \leq n \leq M  - 1,

where \scrE \alpha (2\pi ) denotes the value at time 2\pi of the flow of

\biggl\{ 
\.x(t) = \alpha Hv(t),

\.v(t) = \alpha HE[X(t)](x(t)) + v(t)\times B(x(t))(3.7)

and \scrE \beta ( - 2\pi ) the value at time ( - 2\pi ) of the flow of

\biggl\{ 
\.x(t) =  - \beta Hv(t),

\.v(t) =  - \beta HE[X(t)](x(t)) + v(t)\times B(x(t)).(3.8)

The solution at final time Tf is then obtained by applying to
\bigl( 
\bfx M

\bfv M

\bigr) 
the flow \scrE r(Tr) at

time Tr of

\biggl\{ 
\.x(t) = \varepsilon v(t),

\.v(t) = \varepsilon E[X(t)](x(t)) + v(t)\times B(x(t)).(3.9)

Splitting scheme. The full MRC scheme calls for the numerical evaluation of
the subflows \scrE \alpha (2\pi ), \scrE \beta (2\pi ), and \scrE r(Tr). This is done here through a splitting, for
instance of \scrE \alpha , in
(3.10)

\scrE \bfx 
\alpha (t) :

\Biggl\{ 
\.x(s) = \alpha Hv(s),

\.v(s) = 0, 0 < s \leq t,
\scrE \bfv 
\alpha (t) :

\Biggl\{ 
\.x(s) = 0, 0 < s \leq t,

\.v(s) = \alpha HE[X(s)](x(s)) + v(s)\times B(x(s)).

Note that both \scrE \bfx 
\alpha (t) and \scrE \bfv 

\alpha (t) can be exactly integrated. The exact flow of \scrE \bfx 
\alpha (t) is

clearly
x(t) = x(0) + t\alpha Hv(0), v(t) = v(0), t \geq 0,

while the exact flow of \scrE \bfv 
\alpha (t), by using the Rodrigues rotation formula, can also be

written explicitly as

x(t) = x(0),

v(t) = cos(t)v(0) + sin(t)v(0)\times B+ \alpha H sin(t)E+ \alpha H(t - sin(t))(B \cdot E)B

+ \alpha H(1 - cos(t))E\times B

+ (1 - cos(t))(B \cdot v(0))B, t \geq 0,

where E = E[X(0)](x(0)) and B = B(x(0)). In our experiments, we shall take the
value of the (micro) time step h = 2\pi /M , so that

\scrE \alpha (2\pi ) \approx (\scrE \bfx 
\alpha (h/2)\scrE \bfv 

\alpha (h)\scrE \bfx 
\alpha (h/2))

M
.

Approximations for \scrE \beta (2\pi ) and \scrE r(Tr) are obtained in a similar way. It may then be
proved (see (3.6)) that the error of MRC is of size O(M - 2) for a computational cost
of size M2, making the overall scheme of order one.1

It remains to comment on what happens when the user-controlled M increases
to the limit where M0 reaches the critical value M0 = 1, for which \alpha = 1, \beta = 0

1Under the assumption that E(t,x) \in C2(\BbbR + \times \BbbR 3;\BbbR 3) and B(x) \in C2(\BbbR 3;\BbbR 3) in (3.2).
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3D VLASOV EQUATIONS WITH STRONG MAGNETIC FIELD B527

(3.5), and \scrE \beta ( - 2\pi ) \equiv id. In this case, the full MRC scheme may be regarded as just
the discretization of (3.3) by Strang's method with time step h. Therefore, as soon
as M > 0 implies M0 = Tf/\varepsilon /(2\pi )/M < 1, we replace the MRC method by Strang
splitting with time step h = 2\pi /M . Finally, note that all vector fields involved in
MRC are divergence-free so that their exact flows are phase-space volume preserving,
as is the MRC method itself.

3.2. Two-scale formulation method. Two-scale formulation (TSF) methods
have been developed in [7, 14]. Their underlying rationale is to consider the fast time
as an additional variable. In order to isolate the fast time, we apply the change of
unknowns (x(t),v(t)) \mapsto \rightarrow (x(t),y(t)), where
(3.11)
y(t) = cos(t/\varepsilon )v(t) + (1 - cos(t/\varepsilon ))(B(x(t)) \cdot v(t))B(x(t)) - sin(t/\varepsilon )v(t)\times B(x(t)).

This leads to
\left\{ 
  
  

\.x(t) = F\bfx (t/\varepsilon ,x(t),y(t)),

\.y(t) = F\bfy (t/\varepsilon ,x(t),y(t)), t > 0,(3.12)

x(0) = x0, y(0) = v0,

where

F\bfx (\tau ,x,y) := cos(\tau )y + (1 - cos(\tau ))(B(x) \cdot y)B(x) + sin(\tau )y \times B(x),

and

F\bfy (\tau ,x,y) = cos(\tau )E[X](x) + (1 - cos(\tau ))(B(x) \cdot E[X](x))B(x) - sin(\tau )E[X](x)\times B(x)

 - 
1

2
sin(2\tau )q\tau (y) - 

1

2
(2 sin(\tau ) - sin(2\tau ))q\tau ((B(x) \cdot y)B(x))

 - 
1

2
(1 - cos(2\tau ))q\tau (y \times B(x)) +

1

2
(2 cos(\tau ) - cos(2\tau ) - 1)p\tau (y) +

1

2
(3 - 4 cos(\tau )

+ cos(2\tau ))p\tau ((B(x) \cdot y)B(x)) +
1

2
(2 sin(\tau ) - sin(2\tau ))p\tau (y \times B(x)),

with the vector fields

p\tau (z) := ((\nabla \bfx B(x)F\bfx (\tau ,x,y)) \cdot z)B(x) + (B(x) \cdot z)(\nabla \bfx B(x)F\bfx (\tau ,x,y)),

q\tau (z) := z\times (\nabla \bfx B(x)F\bfx (\tau ,x,y)), z \in \BbbR 3.

Denoting u(t) =
\bigl( 
\bfx (t)
\bfy (t)

\bigr) 
and F (\tau ,u) =

\bigl( 
F\bfx (\tau ,\bfx ,\bfy )
F\bfy (\tau ,\bfx ,\bfy )

\bigr) 
, the TSF of system (3.12) now reads

as

\partial tU(t, \tau ) +
1

\varepsilon 
\partial \tau U(t, \tau ) = F (\tau , U(t, \tau )), t > 0, \tau \in \BbbT ,(3.13)

U(0, 0) = u(0),

where \BbbT = [0, 2\pi ], and one recovers the solution of (3.12) by taking the diagonal, i.e.,

U(t, t/\varepsilon ) = u(t), t \geq 0.

It remains to prescribe an appropriate initial datum U(0, \tau ) to (3.13) so that the
solution U has its derivatives uniformly bounded up to some order.

Initial data. In order to derive U(0, \tau ), we follow the Chapman--Enskog proce-
dure. From the decomposition

U(t) = \Pi U(t, \cdot ), h(t, \tau ) = U(t, \tau ) - U(t), with \Pi U(t, \cdot ) = 1

2\pi 

\int 2\pi 

0

U(t, \tau )d\tau ,
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B528 CHARTIER ET AL.

we split (3.13) into
\left\{ 
 
 

\.U(t) = \Pi F (\cdot , U(t) + h(t, \cdot )), t > 0,

\partial th(t, \tau ) +
1

\varepsilon 
\partial \tau h(t, \tau ) = (I  - \Pi )F (\tau , U(t) + h(t, \tau )), t > 0, \tau \in \BbbT .

Denote L = \partial \tau , A = L - 1(I  - \Pi ), and we have

h(t, \tau ) = \varepsilon AF (\tau , U(t) + h(t, \tau )) - \varepsilon L - 1\partial th(t, \tau ).

Differentiate the above with respect to t on both sides:

\partial th(t, \tau ) = \varepsilon A\nabla F (\tau , U + h)( \.U + \partial th) - \varepsilon L - 1\partial 2
t h(t, \tau ).

By assuming that \partial 2
t h = O(1) for \varepsilon \in ]0, 1], one gets \partial th = O(\varepsilon ) and h(t, \tau ) has the

following first order asymptotic expansion:

h(t, \tau ) = \varepsilon AF (\tau , U(t)) +O(\varepsilon 2).

Using the fact that U(0) = u(0) - h(0, 0), one gets at initial time

h(0, \tau ) = h1st(\tau ) +O(\varepsilon 2), with h1st(\tau ) := \varepsilon AF (\tau ,u(0)),

and we denote the first order initial datum as

(3.14) U1st(\tau ) := u(0) + h1st(\tau ) - h1st(0).

In fact, one can show rigorously that (3.13) with the well-prepared initial datum
U(0, \tau ) = U1st(\tau ) offers

(3.15) \partial tU(t, \tau ), \partial 2
tU(t, \tau ) = O(1), \varepsilon \in ]0, 1].

We refer the reader to [7] for the mathematical justification. The boundedness of the
time derivatives (3.15) is the key to designing UA schemes.

Exponential integrator. Thanks to the TSF (3.13) with the well-prepared
initial datum U(0, \tau ) = U1st(\tau ) from (3.14), we can now directly apply the second
order exponential integrator scheme proposed in [16] for integrating (3.13): Choose
N\tau > 0 as an even integer to uniformly discretize \tau on \BbbT , and take a \Delta t > 0 to define
tn = n\Delta t. Denote Un(\tau ) \approx U(tn, \tau ) for n \geq 0, and let U0(\tau ) = U(0, \tau ). We update
the Un for n \geq 1 as

\widehat (U)
1

l = e - 
il\Delta t
\varepsilon \widehat (U)

0

l + pl\widehat (F )
0

l + ql
1

\Delta t

\biggl( 
\widehat (F )

\ast ,1
l  - \widehat (F )

0

l

\biggr) 
,(3.16a)

\widehat (U)
n+1

l = e - 
il\Delta t

\varepsilon \widehat (U)
n

l + pl\widehat (F )
n

l + ql
1

\Delta t

\biggl( 
\widehat (F )

n

l  - \widehat (F )
n - 1

l

\biggr) 
, n \geq 1,(3.16b)

where for n \geq 0,

Un(\tau ) =

N\tau /2 - 1\sum 

l= - N\tau /2

\widehat (U)
n

l e
il\tau , Fn(\tau ) =

N\tau /2 - 1\sum 

l= - N\tau /2

\widehat (F )
n

l e
il\tau , F \ast ,1(\tau ) =

N\tau /2 - 1\sum 

l= - N\tau /2

\widehat (F )
\ast ,1
l eil\tau ,

and Fn(\tau ) = F (\tau , Un(\tau )), F \ast ,1(\tau ) = F (\tau , U\ast ,1(\tau )), with

\widehat (U)
\ast ,1
l = e - 

il\Delta t
\varepsilon \widehat (U)

0

l + pl\widehat (F )
0

l , U\ast ,1(\tau ) =
N\tau /2 - 1\sum 

l= - N\tau /2

\widehat (U)
\ast ,1
l eil\tau 
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3D VLASOV EQUATIONS WITH STRONG MAGNETIC FIELD B529

and

pl =

\left\{ 
 
 

i\varepsilon 

l

\Bigl( 
e - 

il\Delta t
\varepsilon  - 1

\Bigr) 
, l \not = 0,

\Delta t, l = 0,
ql =

\left\{ 
  
  

\varepsilon 

l2

\Bigl( 
\varepsilon  - \varepsilon e - 

il\Delta t
\varepsilon  - il\Delta t

\Bigr) 
, l \not = 0,

\Delta t2

2
, l = 0.

Suppose we have the numerical solution Un(\tau ) =
\bigl( 
Xn(\tau )
Y n(\tau )

\bigr) 
from the above scheme;

then the numerical solution xn \approx x(tn), v
n \approx v(tn) of the original characteristics

(3.2) reads as

xn = Xn(tn/\varepsilon ), n \geq 1,

vn = cos(tn/\varepsilon )Y
n(tn/\varepsilon )

+ (1 - cos(tn/\varepsilon ))(B(xn) \cdot Y n(tn/\varepsilon ))B(xn)

+ sin(tn/\varepsilon )Y
n(tn/\varepsilon )\times B(xn).

The derivation and convergence analysis of the above scheme can be found in
[16]. Since the filter (3.11) involves the magnetic field B(x), the filtered system
(3.12), which is less smooth than the original form (3.2), needs more regularity for
optimal convergence of the algorithm. Assuming that E(t,x) \in C2(\BbbR + \times \BbbR 3;\BbbR 3)
and B(x) \in C3(\BbbR 3;\BbbR 3) in (3.2), the TSF exponential integrator (3.16) gives uniform
second order accuracy in terms of \Delta t for all \varepsilon \in ]0, 1] and uniform spectral accuracy
in terms of N\tau (due to periodicity):

O(\Delta t2 +N - m0
\tau ),

withm0 > 0 arbitrarily large. The total cost of the TSF method is O(\Delta t - 1N\tau logN\tau ).

3.3. Micro-macro method. Now we present the main new method of this
work. It is based on the micro-macro (MM) decomposition that has been proposed
very recently in [10]. We shall for the first time consider this approach for the Vlasov--
Poisson equation and propose a second order UA scheme. The same notations will be
adopted from the previous subsection.

MM decomposition. By the averaging theory [35], it is known that for general
oscillatory problem

(3.17) \.u(t) = F (t/\varepsilon ,u(t)), t > 0,

with 2\pi -periodicity in \tau of F (\tau ,u), the solution can be written as a composition

(3.18) u(t) = \Phi t/\varepsilon \circ \Psi t \circ \Phi  - 1
0 (u(0)),

where \Phi \tau (v) is a change of variables with 2\pi -periodicity in \tau for some v, and \Psi t(v)
is the flow map of the autonomous equation with initial value v:

(3.19) \.\Psi t(v) = F0(\Psi t(v)), \Psi 0(v) = v

for some field F0. Though (3.18) is known to hold theoretically for some \Phi \tau and \Psi t,
the explicit formulas of \Phi \tau and \Psi t are not available. In fact, by plugging (3.18) back
into (3.17), the change of variables \Phi \tau , the flow map \Psi t, and the averaged field F0

can be seen to satisfy the relation

(3.20)
1

\varepsilon 
\partial \tau \Phi \tau (v) +D\bfv \Phi \tau (v)F0(v) = F (\tau ,\Phi \tau (v)),
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B530 CHARTIER ET AL.

and, moreover, by taking averaging with respect to \tau \in [0, 2\pi ] on both sides of (3.20),
one can define F0 with \Phi \tau ,

(3.21) F0 = (\Pi D\bfv \Phi \tau )
 - 1\Pi F (\cdot ,\Phi \tau ).

The above two equalities cannot completely determine \Phi \tau and \Psi t, so the standard
averaging method imposes an extra condition \Pi \Phi \tau = id, which uniquely defines the
change of variables \Phi \tau in an implicit way through (3.20). In general, it is not possible
to solve (3.20) to find out the exact \Phi \tau . However, we can define an approximated \Phi \tau 

through a kth order iteration

(3.22) \Phi [k+1]
\tau = id + \varepsilon A

\Bigl( 
F (\tau ,\Phi [k]

\tau ) - D\bfv \Phi 
[k]
\tau F

[k]
0

\Bigr) 
, k \in \BbbN ,

initially with

\Phi [0]
\tau = id, F

[0]
0 = \Pi F,

which asymptotically gives

\Phi \tau = \Phi [k]
\tau +O(\varepsilon k+1).

Here the operator A is defined in the same way as in the previous subsection. As a

compensation to the composition (3.18), by using the approximated function \Phi 
[k]
\tau , a

defect w[k] needs to be introduced:

(3.23) u(t) = \Phi 
[k]
t/\varepsilon \circ \Psi 

[k]
t \circ (\Phi [k]

0 ) - 1(u(0)) +w[k](t),

to ensure that there are no asymptotical truncations made to the exact solution. The
decomposition (3.23) is referred as the MM decomposition of the solution of (3.17).

As a matter of fact, the first order approximation \Phi 
[1]
\tau given by the MM decompo-

sition, i.e., k = 0 in (3.22), coincides with the first order Chapman--Enskog expansion
that we introduced in the previous subsection:

\Phi [1]
\tau (v) = v + \varepsilon AF (\tau ,v) =: \Theta (\tau ,v).

Thus, (3.12) or (3.17) has the first order MM decomposition:

(3.24) u(t) = \Theta (t/\varepsilon , r(t)) +w(t), t \geq 0,

where we denote r(t) := \Psi 
[1]
t \circ (\Phi [1]

0 ) - 1(u(0)) as the macro part and w(t) as the micro
part. By (3.21), we have

F
[1]
0 = (\Pi D\bfv \Phi 

[1]
\tau ) - 1\Pi F (\cdot ,\Phi [1]

\tau ) = \Pi F (\cdot ,\Theta ),

and then by (3.19), the macro part satisfying the averaged equation reads as

\biggl\{ 
\.r(t) = \Pi F (\cdot ,\Theta (\cdot , r(t))) , t > 0,(3.25)

r(0) = u(0) - \varepsilon AF (\tau ,u(0))| \tau =0.

Plugging (3.24) into (3.17), we find the equation for the micro part:

\biggl\{ 
\.w(t) = G(t/\varepsilon , r(t),w(t)), t > 0,(3.26)

w(0) = \varepsilon A [F (\tau ,u(0)) - F (\tau , r(0))] | \tau =0,
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with

G(\tau , r,w) := F (\tau ,\Theta (\tau , r) +w) - (I  - \Pi )F (\tau , r) - d

dt
\Theta (\tau , r(t)).

In the first order MM decomposition, the macro part (3.25) is smooth, containing no
high frequencies. As for the micro part, it can be shown that [10]

w(t) = O(\varepsilon 2), \partial tw(t) = O(\varepsilon ), \partial 2
tw(t) = O(1).

Thanks to the reformulation (3.12), we are able to consider this MM approach for the
characteristics (3.2).

An integration scheme. Now, based on the MM decomposed systems (3.25)
and (3.26), we are going to propose a second order integration for solving (3.17) which

is a compact formulation of (3.12) with u(t) =
\bigl( 
\bfx (t)
\bfy (t)

\bigr) 
and F (\tau ,u) =

\bigl( 
F\bfx (\tau ,\bfx ,\bfy )
F\bfy (\tau ,\bfx ,\bfy )

\bigr) 
. We

solve the macro part (3.25) by a leap-frog finite difference scheme:

rn+1 = rn - 1 + 2\Delta t\Pi F (\cdot ,\Theta (\cdot , rn)) , n \geq 1, r1 = r0 +\Delta t\Pi F
\bigl( 
\cdot ,\Theta (\cdot , r0)

\bigr) 
.

For the micro part (3.26), we integrate the equation to have

w(tn+1) - w(tn) =

\int tn+1

tn

G(t/\varepsilon , r(t),w(t))dt

=

\int tn+1

tn

H(t/\varepsilon , r(t),w(t))dt - \Theta (tn+1/\varepsilon , r(tn+1)) + \Theta (tn/\varepsilon , r(tn)),(3.27)

where
H(\tau , r,w) := F (\tau ,\Theta (\tau , r) +w) .

Since H(\tau , r,w) is periodic in \tau \in \BbbT , we have a Fourier expansion

H(\tau , r,w) =
\sum 

l\in \BbbZ 

\widehat Hl(r,w)eil\tau ,

and the integration in (3.27) can be approximated as\int tn+1

tn

H(t/\varepsilon , \bfr (t),\bfw (t))dt =
\sum 
l\in \BbbZ 

\int tn+1

tn

\widehat Hl(\bfr (t),\bfw (t))eilt/\varepsilon dt

\approx 
\sum 
l\in \BbbZ 

\int tn+1

tn

\biggl[ \widehat Hl(\bfr (tn),\bfw (tn)) + (t - tn)
d

dt
\widehat Hl(\bfr (tn),\bfw (tn))

\biggr] 
eilt/\varepsilon dt

\approx 
\sum 
l\in \BbbZ 

\int tn+1

tn

\biggl[ \widehat Hl(\bfr (tn),\bfw (tn)) +
t - tn
\Delta t

\Bigl( \widehat Hl(\bfr (tn),\bfw (tn)) - \widehat Hl(\bfr (tn - 1),\bfw (tn - 1))
\Bigr) \biggr] 

eilt/\varepsilon dt.

Therefore, for n \geq 1,

\bfw (tn+1) \approx \bfw (tn) +
\sum 
l\in \BbbZ 

e
iltn/\varepsilon 

\biggl[ 
\alpha l

\widehat Hl(\bfr (tn),\bfw (tn)) +
\beta l

\Delta t

\Bigl( \widehat Hl(\bfr (tn),\bfw (tn))  - \widehat Hl(\bfr (tn - 1),\bfw (tn - 1))
\Bigr) \biggr] 

 - \Theta (tn+1/\varepsilon , \bfr (tn+1)) + \Theta (tn/\varepsilon , \bfr (tn)),

and as for n = 0,

w(t1) \approx w(0) +
\sum 

l\in \BbbZ 
\alpha l

\widehat Hl(r(0),w(0)) - \Theta (t1/\varepsilon , r(t1)) + \Theta (0, r(0)),
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where

\alpha l =

\int \Delta t

0

eilt/\varepsilon dt =

\left\{ 
 
 

i\varepsilon 

l

\Bigl( 
1 - e

il\Delta t
\varepsilon 

\Bigr) 
, l \not = 0,

\Delta t, l = 0,

\beta l =

\int \Delta t

0

teilt/\varepsilon dt =

\left\{ 
  
  

\varepsilon 

l2

\Bigl( 
(\varepsilon  - il\Delta t)e

il\Delta t
\varepsilon  - \varepsilon 

\Bigr) 
, l \not = 0,

\Delta t2

2
, l = 0.

In total, the detailed exponential integration scheme based on the MM method reads
as

\bfu 
n+1

= \Theta (tn+1/\varepsilon , \bfr 
n+1

) + \bfw 
n+1

, n \geq 0,(3.28a)

\bfr 
n+1

= \bfr 
n - 1

+ 2\Delta t\Pi F
\bigl( 
\cdot ,\Theta (\cdot , \bfr n)

\bigr) 
, n \geq 1,(3.28b)

\bfw 
n+1

= \bfw 
n
+

N\tau /2 - 1\sum 
l= - N\tau /2

e
iltn/\varepsilon 

\biggl[ 
\alpha l

\widehat Hl(\bfr 
n
,\bfw 

n
) +

\beta l

\Delta t

\Bigl( \widehat Hl(\bfr 
n
,\bfw 

n
)  - \widehat Hl(\bfr 

n - 1
,\bfw 

n - 1
)
\Bigr) \biggr] 

(3.28c)

 - \Theta (tn+1/\varepsilon , \bfr 
n+1

) + \Theta (tn/\varepsilon , \bfr 
n
), n \geq 1,

\bfr 
1
=\bfr 

0
+ \Delta t\Pi F

\Bigl( 
\cdot ,\Theta (\cdot , \bfr 0)

\Bigr) 
, \bfw 

1
= \bfw 

0
+

N\tau /2 - 1\sum 
l= - N\tau /2

\alpha l
\widehat Hl(\bfr 

0
,\bfw 

n
)  - \Theta (t1/\varepsilon , \bfr 

1
) + \Theta (0, \bfr 

0
),(3.28d)

\bfr 
0
=\bfu (0)  - \varepsilon AF (\tau ,\bfu (0))| \tau =0, \bfw 

0
= \varepsilon A [F (\tau ,\bfu (0))  - F (\tau , \bfr (0))] | \tau =0,(3.28e)

where N\tau is an even integer to truncate the Fourier series. Suppose the numerical
solution of MM is obtained as un =

\bigl( 
\bfx n

\bfy n

\bigr) 
; then the numerical velocity of (3.2) at tn is

given as

vn = cos(tn/\varepsilon )y
n + (1 - cos(tn/\varepsilon ))(B(xn) \cdot yn)B(xn) + sin(tn/\varepsilon )y

n \times B(xn).

The MM scheme (3.28) is uniformly second order accurate. In practical pro-
gramming, one only needs a subroutine to evaluate F (\tau ,u). When the electric and
magnetic field E and B in particle system (3.2) are given external functions such as
polynomials, the dependence of the fast time scale t/\varepsilon (or \tau ) in F and \Theta can be
found out explicitly and the averaging with respect to \tau (through the operator \Pi )
in the MM scheme can be pre-computed exactly. Then the MM method will have
a discretization error in time of O(\Delta t2) with optimal computational cost O(\Delta t - 1).
In case that the exact evaluation of t/\varepsilon is impossible or too costly, one can always
perform those computations of the fast time scale with the additional variable \tau by
FFT with uniform spectral accuracy thanks to the periodicity. In such a case, the
error bound of MM is

O(\Delta t2 +N - m0
\tau ),

with m0 > 0 arbitrarily large (due to smoothness in \tau and periodicity) and the total
cost being O(\Delta t - 1N\tau logN\tau ), which are the same for TSF.

Full recovery of oscillation. Since MM method finds out the dependence of the
fast scale in a rather explicit way, it can easily recover the complete gyro-motion of the
particles, i.e., the full oscillatory trajectory of the solution of (3.2), by interpolating
the macro part and micro part, respectively.

Let rn and wn be the numerical solutions obtained from MM under a step size
\Delta t > 0. For an arbitrary t > 0, if tn < t < tn+1, then we can use the linear
interpolation to get

rnI (t) =
tn+1  - t

\Delta t
rn +

t - tn
\Delta t

rn+1, wn
I (t) =

tn+1  - t

\Delta t
wn +

t - tn
\Delta t

wn+1.
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3D VLASOV EQUATIONS WITH STRONG MAGNETIC FIELD B533

Noting that r(t) is the averaged part and w(t) satisfies \partial 2
tw(t) = O(1), together with

the accuracy order of rn and wn from the MM scheme, it is clear that the above linear
interpolation gives uniform second accuracy for approximating r(t) and w(t). Then,
with MM decomposition (3.24), we get the interpolated numerical solution of (3.17),

(3.29) un
I (t) = \Theta (t/\varepsilon , rnI (t)) +wn

I (t), tn \leq t \leq tn+1,

which fully recovers the oscillation information with ease. It is direct to see that

| u(t) - un
I (t)| = O(\Delta t2 +N - m0

\tau ).

Restart strategy. In practical long time computing, we observe that the MM
scheme (3.28) could have numerical instability issues. The instability is developed
from the micro part (3.26) in MM decomposition (3.24) as time evolves since w(t) =
O(\varepsilon ) does not hold for arbitrary long times in general. Here we propose a restart
strategy to improve its long time performance.

Choose T0 > 0 as the period to restart the MM decomposition. For some m \in \BbbN ,
we consider the oscillatory problem (3.17) for um(t) = u(mT0 + t) as

\.um(t) = F (mT0/\varepsilon + t/\varepsilon ,um(t)), 0 < t \leq T0.

Then we apply the proposed MM strategy to the above, which leads to MM decom-
position as

(3.30) um(t) = \Theta (mT0/\varepsilon + t/\varepsilon , r(t)) +w(t), 0 \leq t \leq T0,

with
\biggl\{ 

\.r(t) = \Pi F (mT0/\varepsilon + \cdot ,\Theta (mT0/\varepsilon + \cdot , r(t))) , 0 < t \leq T0,

r(0) = um(0) - \varepsilon AF (mT0/\varepsilon + \tau ,um(0))| \tau =0

and
\biggl\{ 

\.w(t) = G(mT0/\varepsilon + t/\varepsilon , r(t),w(t)), 0 < t \leq T0,

w(0) = \varepsilon A [F (mT0/\varepsilon + \tau ,um(0)) - F (mT0/\varepsilon + \tau , r(0))] | \tau =0.

The integration scheme (3.28) is then applied to solve the above two systems.
As can be seen in the numerical results later, this restart strategy for solving (3.2)

is stable in long time computing. Its accuracy and computational cost are essentially
the same as the direct scheme without restart.

Remark 3.1. In the case that B(x) = B0(x) + O(\varepsilon ), with | B0(x)| \equiv const, all
the proposed algorithms in this section can be extended to such a case without any
essential difficulties.

Remark 3.2. Although physically the magnetic field should be divergence-free,
i.e., \nabla \bfx \cdot B = 0, all the algorithms we proposed in this section do not rely on the
divergence-free property of B(x) to offer the uniform accuracy.

4. Extension to varying intensity magnetic field. In this section, we extend
previous methods to the case of a Vlasov equation with a general magnetic field (whose
intensity may vary), i.e.,

| B(x)| = b(x) \not = const, x \in \BbbR 3.
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We start by commenting on the difficulties to be encountered in this situation. As
soon as | B(x)| = b(x) varies with x while remaining bounded from below by some c0
independent of \varepsilon , the characteristic equations for each particle

\.xk(t) = vk(t),

\.vk(t) = E(t,xk(t)) +
1

\varepsilon 
vk(t)\times B(xk(t)), t > 0,

generate high oscillations. However, the dynamics of the dominant part of the whole
particle system is nonperiodic in general and thus does not allow for the application of
averaging techniques. A possible remedy consists in time-reparametrization. However,
another difficulty then arises from the Poisson equation itself:

\nabla \bfx \cdot E(t,x) =

Np\sum 

k=1

wk\delta (x - xk(t)),

which couples a huge number (Np \gg 1) of particles with different frequencies.

Rescaling the time for each particle. Each particle has a periodic oscillation
with respect to its own time sk = sk(t), given by

(4.1) \.sk(t) = b(xk(t)), sk(0) = 0.

Note that sk(t) is strictly increasing and that

sk(t) \rightarrow \infty , as t \rightarrow \infty ,

since b(x) \geq c0 > 0. Denoting \~xk(sk) := xk(t), \~vk(sk) := vk(t), we indeed have

\left\{ 
      
      

d

dsk
\~xk(sk) =

\~vk(sk)

b(\~xk(sk))
,

d

dsk
\~vk(sk) =

E(t(sk), \~xk(sk))

b(\~xk(sk))
+

1

\varepsilon 
\~vk(sk)\times 

B(\~xk(sk))

b(\~xk(sk))
, sk > 0,(4.2)

\~xk(0) = xk,0, \~vk(0) = vk,0,

where the intensity of the magnetic field is scaled to one. Assuming that the electric
field E(t,x) is a given external field with no \varepsilon -dependent oscillation in t, then the
particle system (4.2) is decoupled for each k. Therefore, the numerical methods
introduced in the previous section can all be applied to (4.2) for each particle in its
own time sk with uniform accuracy.

In order to build up an approximation of the function f\varepsilon (t,x,v) through (3.1),
it is then necessary to resynchronize for all particles. However, reverting sk to the
physical time t is not straightforward, as it requires numerically solving the nonlinear
equation (4.1) or its equivalent for the inverse map:

(4.3) \.t(sk) = 1/b(\~xk(sk)), t(0) = 0.

Given a physical time t = T > 0 (or, conversely, Sk > 0), the best we can hope for
is to determine sk(T ) (or, conversely, t(Sk)) up to an error of size O(\Delta tp) if a pth
order numerical method is applied. This source of possible error needs to be properly
controlled. Here we illustrate how it can be done for the MM method.

D
ow

nl
oa

de
d 

01
/1

0/
22

 to
 1

29
.2

0.
36

.6
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3D VLASOV EQUATIONS WITH STRONG MAGNETIC FIELD B535

Interpolating to synchronize. For the sake of brevity, we omit k and denote

\~B(\~x) =
B(\~x)

b(\~x)
, \~E(t, \~x) =

E(t, \~x)

b(\~x)
.

We filter (4.2) and (4.3) as before by introducing
(4.4)
\~y(s) := cos(s/\varepsilon )\~v(s)+(1 - cos(s/\varepsilon ))( \~B(\~x(s)) \cdot \~v(s)) \~B(\~x(s)) - sin(s/\varepsilon )\~v(s)\times \~B(\~x(s)),

and obtain
\left\{ 
         
         

d

ds
\~x(s) = \~F\bfx (s/\varepsilon , \~x(s), \~y(s)),

d

ds
\~y(s) = \~F\bfy (s/\varepsilon , \~x(s), \~y(s)), s > 0,(4.5)

d

ds
t(s) =

1

b(\~x(s))
,

\~x(0) = x0, \~y(0) = v0, t(0) = 0,

which now has the appropriate format (3.17). Here \~F\bfy is defined similarly as in (3.12)

(see section 3.2) with the scaled vector fields \~E, \~B, and \~F\bfx = F\bfx /b(\~x). We then solve
system (4.5) with the MM scheme (3.28) with time step \Delta s > 0 and denote tn \approx t(sn)
the numerical solution of t(sn) at sn = n\Delta s. Then, using the notations r := (r\bfx , r\bfy )
and w = (w\bfx ,w\bfy ) for the macro and micro parts (see section 3.3), the numerical
solution of \~x and \~y at sn = n\Delta s is

\~\bfx n := \bfr n\bfx +\varepsilon A \~F\bfx (sn/\varepsilon , \bfr 
n
\bfx , \bfr 

n
\bfy )+\bfw n

\bfx \approx \~\bfx (sn), \~\bfy n := \bfr n\bfy +\varepsilon A \~F\bfy (sn/\varepsilon , \bfr 
n
\bfx , \bfr 

n
\bfy )+\bfw n

\bfy \approx \~\bfy (sn).

Assume that b(\cdot ) \in C1(\BbbR 3) and 0 < c0 \leq b(x) \leq Cb for all x \in \BbbR 3 for some Cb > 0.
Then from

tn \geq t(sn) - | tn  - t(sn)| \geq 
sn
Cb

 - C\Delta s2

we see that whenever \Delta s > 0 is small enough, the value of tn will eventually become
greater than any arbitrary positive value. For a given final time T > 0, we thus stop
the algorithm when tn \leq T \leq tn+1. Note that the function t(s) satisfies

d2

ds2
t(s) = O(1), 0 < \varepsilon \leq 1,

so that we can interpolate the value of t(s) from tn and tn+1 with second order uniform
accuracy:

\theta :=
T  - tn+1

tn  - tn+1
, T = \theta tn + (1 - \theta )tn+1, s\ast = \theta sn + (1 - \theta )sn+1.

Interpolation is further used to obtain

r\ast \bfx = \theta rn\bfx + (1 - \theta )rn+1
\bfx , r\ast \bfy = \theta rn\bfy + (1 - \theta )rn+1

\bfy ,

w\ast 
\bfx = \theta wn

\bfx + (1 - \theta )wn+1
\bfx , w\ast 

\bfy = \theta wn
\bfy + (1 - \theta )wn+1

\bfy .

As stated in section 3.3, all functions used above in the interpolation have a uniformly
bounded second order derivative. As a consequence, the so-obtained approximations
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are uniformly second order. Eventually, the numerical solutions of (4.5) at s = s(T )
are given by

\~x(s(T )) \approx \~x\ast , \~y(s(T )) \approx \~y\ast ,

with

(4.6) \~x\ast := r\ast \bfx + \varepsilon A \~F\bfx (s
\ast /\varepsilon , r\ast \bfx , r

\ast 
\bfy ) +w\ast 

\bfx , \~y\ast := r\ast \bfy + \varepsilon A \~F\bfy (s
\ast /\varepsilon , r\ast \bfx , r

\ast 
\bfy ) +w\ast 

\bfy .

Note that the dependence in the fast-time s/\varepsilon within the MM method only appears in
the O(\varepsilon )-terms. As a consequence, the approximation errors of \~x(s(T )) and \~y(s(T ))
by (4.6) are still of uniform second order, although an error is introduced on s\ast /\varepsilon 
owing to | s(T ) - s\ast | /\varepsilon = O(\Delta s2/\varepsilon ).

To reconstruct an approximation of the distribution function f\varepsilon (T,x,v), we need
x(T ) and v(T ). For the position variable, we directly have x(T ) = \~x(s(T )) due
to the definition. As for the velocity variable v(T ), we need to invert the change
of variables (4.4), where the fast-scale s/\varepsilon occurs in some O(1)-terms. However,
the parallel component v\| := (B \cdot v)B/\| B\| 2 of the velocity as well as | v| do not
suffer from the same problem, thanks to the following observations (let us recall that
\| \~B(\~x(s))\| 2 = 1):

\~v\| (s) = ( \~B(\~x(s)) \cdot \~y(s)) \~B(\~x(s)), | \~v(s)| = | \~y(s)| ,

which allow us to get

v\| (T ) \approx ( \~B(\~x(s(T ))) \cdot \~y(s(T ))) \~B(\~x(s(T ))), | v(T )| = | \~y(s(T ))| .

Therefore, the strategy proposed in this section is of overall uniform second order for
the computation of

x(t), v\| (t), | v(t)| , t \geq 0.

This, in turn, allows for a uniformly accurate approximation of macroscopic quantities
such as the density or the kinetic energy

\rho \varepsilon (t,x) :=

\int 

\BbbR 3

f\varepsilon (t,x,v)dv, \rho \varepsilon \bfv (t,x) :=

\int 

\BbbR 3

| v| 2f\varepsilon (t,x,v)dv,

as well as the magnetic moment [26, 32]

(4.7) \mu \varepsilon (t) :=

\int 

\BbbR 3

\int 

\BbbR 3

f\varepsilon (t,x,v)
| v\bot | 2
| B(x)| dxdv,

with v\bot := v  - v\| .

5. Numerical results. This section is devoted to presenting the numerical re-
sults from the proposed numerical schemes. We shall first test and compare the
accuracy, efficiency, and long time performance of the schemes considering a single
test particle for some three dimensional simulations in the two following cases: a con-
stant intensity magnetic field and a varying intensity magnetic field. Then we shall
focus on the nonlinear Vlasov--Poisson case under the influence of a constant intensity
magnetic field.
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5.1. Accuracy study. We investigate the performance of the proposed numer-
ical methods by considering a single particle system in three dimensions:

\.x(t) = v(t),

\.v(t) = E(x(t)) +
1

\varepsilon 
v(t)\times B(x(t)), t > 0,(5.1)

x(0) = x0, v(0) = v0.

We take two three dimensional vector fields B(x) : x \in \BbbR 3 \rightarrow \BbbR 3 and E(x) =
 - \nabla \bfx \phi (x), with some \phi (x) : \BbbR 3 \rightarrow \BbbR ; then (5.1) is a Hamiltonian system with the
energy conserved as

(5.2) \scrH s(t) :=
1

2
| v(t)| 2 + \phi (x(t)) = \scrH s(0), t \geq 0.

Note here that we do not require B to be divergence-free for these accuracy tests since
all the presented properties of the proposed schemes hold in general as long as B is
a smooth enough vector field. Hence, we first focus on a constant intensity magnetic
field before considering the general case to test the proposed methods MRC, TSF,
and MM.

Example 5.1 (constant intensity). We take the two external fields in the system
(5.1):

E(x) =

\left( 
  

cos(x1/2) sin(x2) sin(x3)/2

sin(x1/2) cos(x2) sin(x3)

sin(x1/2) sin(x2) cos(x3)

\right) 
  ,

B(x) =

\left( 
  

sin(x1 + x2)

cos(x1 + x2) sin(x3)

cos(x1 + x2) cos(x3)

\right) 
  , x = (x1, x2, x3),

where | B(x)| = 1 and E(x) derives from the potential \phi (x):

E(x) =  - \nabla \bfx \phi (x), \phi (x) =  - sin(x1/2) sin(x2) sin(x3).

We choose the initial data for (5.1) as

x0 = (1/3, - 1/2,
\surd 
\pi /2), v0 = (1/2, e/4, - 1/3).

A reference solution is obtained by using the classical fourth order Runge--Kutta
(RK4) method with small step size \Delta t = 10 - 6.

We first study the convergence of the three proposed methods (MRC, TSF, and
MM) aiming to illustrate their uniform accuracy for all \varepsilon \in ]0, 1]. To do so, we solve
the system under different \varepsilon until T = \pi /2 and compute the error

(5.3) error =
| x(T ) - xnum| 

| x(T )| +
| v(T ) - vnum| 

| v(T )| ,

where xnum and vnum are the numerical values obtained by the different schemes.
For the TSF and MM methods, we define the time step \Delta t = T/M , with M \in \BbbN  \star ,
and we fix the grid points for the \tau -direction as N\tau = 32. For MRC, we define the
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numerical parameters from a given M \in \BbbN  \star as follows: H = \varepsilon Mf/M and h = 2\pi /M
if Mf/M \geq 1 and \Delta t = 2\pi /M if Mf/M < 1 (Mf being defined by (3.4)).

The error (defined by (5.3)) produced by the three methods at T = \pi /2 with
respect to the number of (macro) grid points M or with respect to \varepsilon is given in Figure
1. As expected, the three methods enjoy the uniform second order accuracy property
since the rate of convergence is essentially insensitive to the value \varepsilon \in ]0, 1]. The
typical behavior of uniformly accurate methods can be observed on the error as a
function of \varepsilon : the curves obtained for different M are almost parallel. Note that the
results obtained by TSF and MM are very close, whereas the error produced by MRC
becomes smaller when \varepsilon decreases.

In Figure 2, we look at the error of TSF and MM with respect to the number of
grid points N\tau in the auxiliary variable \tau (the time step is fixed to \Delta t = 10 - 5). This
error is important to study since these two methods involve an additional variable
\tau which may make them less competitive. We can see in Figure 2 that the error
decreases spectrally as the number of grid points N\tau increases. Moreover, for small
values of \varepsilon , a very small number of N\tau is needed to reach high accuracy: \varepsilon \leq 2 - 7,
N\tau = 16 is enough for machine precision. Finally, let us remark that the results
obtained for MM are much less sensitive than TSF: when \varepsilon = 1/2, N\tau = 32 enables
us to reach machine precision for MM, whereas TSF requires N\tau = 128.

We now intend to compare the efficiency of TSF, MM, and MRC in different
regimes (\varepsilon = 1/2 and 1/214). Let us first fix the numerical parameters. According to
the previous comments, in the regime \varepsilon = 1/2 we take N\tau = 128 for TSF and N\tau = 32
for MM, whereas in the regime \varepsilon = 1/214 we take N\tau = 8 for both TSF and MM. We
test the long time behavior of the three methods by investigating the relative error
on the numerical total energy defined by

(5.4) error(tn) =
| \scrH n

s  - \scrH s(0)| 
| \scrH s(0)| 

, \scrH n
s =

1

2
| vn| 2 + \phi (xn),

where \scrH n
s is the numerical approximation of \scrH s(tn) given by (5.2). We plot in Figure

3 the error (considering the maximum of (5.4) among all the iterations) against the
computational time of the three methods for \varepsilon = 1/2 or 1/214 (different time steps
have been chosen). For a given error, when \varepsilon = 1/2 the MRC method is more efficient
than TSF or MM, but it is no longer true when \varepsilon becomes smaller. This is explained
by the fact that N\tau can be chosen smaller in the asymptotic regime, making TSF
and MM more competitive. MRC for \varepsilon = 1/2 reads as the Strang splitting, while for
\varepsilon = 1/214 the convergence of MRC becomes first order in terms of total computational
cost. For a comparison with the classical method, we also include the efficiency curve
of RK4 in the limit regime in Figure 3. Then, in Figure 4, the time history of (5.4)
is plotted for the three methods until T = 32\pi for \varepsilon = 1/214. The TSF and MM
methods run with N\tau = 32 and M = 1024 (\Delta t = 0.098) or M = 2048 (\Delta t = 0.049).
We report that, for this test, MM becomes unstable in large time so that the restart
strategy is used every T0 = 8\pi . For MRC, we used M = 64 or M = 128. Figure 4
clearly shows that MRC has the best long time behavior among the three methods.
Indeed, TSF and MM have a linear drift in the energy error as time evolves, whereas
for MRC it remains of the same order (about 10 - 5) for large time. Let us remark
that the energy error converges quadratically for the three methods with respect to
number of time grid points M .

Finally, we consider the scheme MM (M = 32, N\tau = 32) to illustrate the recon-
struction of the whole trajectory for t \in [0, \pi ] (so that \Delta t = 0.0982). To do so, we still
consider the system (5.1) with Example 5.1, with \varepsilon = 1/25. In Figure 5, we plot a
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Figure 1. Errors of MRC, TSF and MM with respect to time steps M under
different ε (left) or with respect to ε under different M (right) for example 5.1.

Then, in Figure 7, the time history of the energy error (defined by (5.4)) of the method with
∆s = 1/8 and ∆s = 1/16 till a physical time T = T (s) = 100 and under three different ε is shown.
Let us remark that the restart strategy is used at every time step. In Figure 7, we observe that the
scheme computes the energy (5.2) with uniform second order accuracy for ε ∈]0, 1]. Under a rather
large step size (∆s� ε), the scheme is stable in long time computing, and even if a slight linear drift
in the energy error is observed, the energy error (about 10−3) is rather good for all ε considered. In
Figure 7, the relation between the new time s and the physical time t(s) is also plotted to illustrate
that the physical time t(s) is a monotone increasing function.

Finally, we study the dynamics of the magnetic moment defined by

I(t) =
1

2

|v⊥(t)|2
|B(x(t))| , (5.5)

Fig. 1. Errors of MRC, TSF, and MM with respect to time steps M under different \varepsilon (left) or
with respect to \varepsilon under different M (right) for Example 5.1.

reference trajectory (obtained with a very small time step) and the numerical solution
obtained by MM using the strategy proposed in section 3.3 (i.e., with a coarse time
grid and using the linear interpolation strategy in (3.29)). Using a few grid points, we
can see that the MM method is able to fully restore the complex trajectory (highly
oscillatory confined behavior around a magnetic field line) of the particle under trivial
computational cost.

Example 5.2 (varying intensity). Second, we investigate the numerical perfor-
mance of the strategy proposed in section 4 for a magnetic field with varying direction
and varying intensity on the particle system (5.1).

We shall consider the particle system (5.1) with the same electric field E(x) as
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Figure 2. Error of TSF and MM with respect to Nτ under different ε for example 5.1.
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Figure 3. Efficiency comparison of TSF, MM and MRC in classical (left) or as-
ymptotic regime (right) of ε for example 5.1: error versus computational time.
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Figure 4. Energy error of TSF, MM (with restart every T0 = 8π) and MRC for
example 5.1 under ε = 1/214 till T = 32π. ∆t = 0.0982 or 0.0491 (ratio ∆t/ε ≈ 1609
or 804) for TSF and MM.

which is an analogy of (4.7) at the particle level (5.1). We use MM with ∆s = 1/16 (so that it is
accurate enough) to solve (5.1) till t = 100 with three different values of ε (ε = 2−9, 2−10, 2−11).

Fig. 2. Error of TSF and MM with respect to N\tau under different \varepsilon for Example 5.1.
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which is an analogy of (4.7) at the particle level (5.1). We use MM with ∆s = 1/16 (so that it is
accurate enough) to solve (5.1) till t = 100 with three different values of ε (ε = 2−9, 2−10, 2−11).

Fig. 3. Efficiency comparison of TSF, MM, and MRC in the classical (left) or asymptotic
regime (right) of \varepsilon for Example 5.1: error versus computational time.
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example 5.1 under ε = 1/214 till T = 32π. ∆t = 0.0982 or 0.0491 (ratio ∆t/ε ≈ 1609
or 804) for TSF and MM.

which is an analogy of (4.7) at the particle level (5.1). We use MM with ∆s = 1/16 (so that it is
accurate enough) to solve (5.1) till t = 100 with three different values of ε (ε = 2−9, 2−10, 2−11).

Fig. 4. Energy error of TSF, MM (with restart every T0 = 8\pi ), and MRC for Example 5.1
under \varepsilon = 1/214 until T = 32\pi . \Delta t = 0.0982 or 0.0491 (ratio \Delta t/\varepsilon \approx 1609 or 804) for TSF and
MM.

before, but here the magnetic field is

B(x) =

\left( 
  
1 - sin(x2)/2

1 + cos(x3)/2

1 + cos(x1)/2

\right) 
  , x = (x1, x2, x3),
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Figure 5. Left: exact trajectory of the particle in example 5.1 till T = π under
ε = 1/25. Right: numerical solution of MM under ∆t = 0.0982 (red dots, ratio
∆t/ε ≈ 3.14) and the fully recovered trajectory with fine linear interpolation.
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Figure 6. Error of MM under different M = ∆s−1 in x, |v| and v‖ at T = 1 in
example 5.2 of varying intensity.

In Figure 8, the relative error on the magnetic moment, i.e. |I(tn) − I(0)|/(εI(0)) is displayed as
a function of the rescaled time s. Let us remark that the MM scheme captures this quantity I(t)
with uniform second order accuracy for ε ∈]0, 1], since I(t) only depends on |v| and v‖ through

|v⊥|2 = |v|2 − |v‖|2. The deviation of the magnetic moment (5.5) behaves as |I(t) − I(0)| = O(ε)
in the simulation, which is consistent with the results obtained in [26]. Our scheme captures this
adiabatic quantity even when ∆s� ε whereas the scheme used in [26] needs ∆s < ε.

5.2. Simulation of the Vlasov-Poisson system. In this last part, we focus on the numerical
simulation of the full 3D Vlasov-Poisson equation (1.1) using the MRC method. The chosen initial
data is a Maxwellian in velocity and a ring-shape distribution in space with a perturbation in angle
[18]:

f0(x,v) =
n0

2π
(1 + η cos(kθ)) e−5(r−5)2

e−
1
2 |v|2 , (5.6)

where x = (x1, x2, x3), v = (v1, v2, v3), r = |x| and θ = arctan(x2/x1). The non-homogenous
magnetic field is taken as in [30] (screw-pinch setup)

B(x) =
1√

1 + α2x2
1 + α2x2

2




αx2

−αx1

1


 ,

Fig. 5. Left: exact trajectory of the particle in Example 5.1 until T = \pi under \varepsilon = 1/25. Right:
numerical solution of MM under \Delta t = 0.0982 (red dots, ratio \Delta t/\varepsilon \approx 3.14) and the fully recovered
trajectory with fine linear interpolation. Color is available online only.

which satisfies \nabla \bfx \cdot B = 0 but has a varying intensity in x \in \BbbR 3 since

| B(x)| 2 = 3 + cos(x1) + cos(x3) - sin(x2) + cos(x1)
2/4 + sin(x2)

2/4 + cos(x3)
2/4.

We choose the same initial data as before for Example 5.1 and solve the problem via
the new time formulation (4.2) with the MM method (see section 4). The reference
solution is again obtained by directly solving (5.1) with the RK4 method under small
step size (\Delta t = 10 - 6).

First, we are interested in the error (defined by (5.3)) against the number of grid
points M for the quantities x(t), v\| (t) := v(t) \cdot B(x(t))B(x(t))/\| B(x(t))\| 2 and | v(t)| 
at T = 1. In Figure 6, we can observe that the proposed MM scheme converges as
the number of grid points M increases (\Delta s decreases) with a uniform second order
accurate rate for all \varepsilon ]0, 1].

Then, in Figure 7, the time history of the energy error (defined by (5.4)) of the
method with \Delta s = 1/8 and \Delta s = 1/16 until a physical time T = T (s) = 100 and
under three different \varepsilon is shown. Let us remark that the restart strategy is used
at every time step. In Figure 7, we observe that the scheme computes the energy
(5.2) with uniform second order accuracy for \varepsilon \in ]0, 1]. Under a rather large step size
(\Delta s \gg \varepsilon ), the scheme is stable in long time computing, and even if a slight linear drift
in the energy error is observed, the energy error (about 10 - 3) is rather good for all \varepsilon 
considered. In Figure 7, the relation between the new time s and the physical time
t(s) is also plotted to illustrate that the physical time t(s) is a monotone increasing
function.

Finally, we study the dynamics of the magnetic moment defined by

(5.5) I(t) =
1

2

| v\bot (t)| 2
| B(x(t))| ,

which is an analogy of (4.7) at the particle level (5.1). We use MM with \Delta s = 1/16
(so that it is accurate enough) to solve (5.1) until t = 100 with three different values of
\varepsilon (\varepsilon = 2 - 9, 2 - 10, 2 - 11). In Figure 8, the relative error on the magnetic moment, i.e.,
| I(tn) - I(0)| /(\varepsilon I(0)), is displayed as a function of the rescaled time s. Let us remark
that the MM scheme captures this quantity I(t) with uniform second order accuracy
for \varepsilon \in ]0, 1] since I(t) only depends on | v| and v\| through | v\bot | 2 = | v| 2  - | v\| | 2.
The deviation of the magnetic moment (5.5) behaves as | I(t)  - I(0)| = O(\varepsilon ) in the
simulation, which is consistent with the results obtained in [26]. Our scheme captures
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Figure 5. Left: exact trajectory of the particle in example 5.1 till T = π under
ε = 1/25. Right: numerical solution of MM under ∆t = 0.0982 (red dots, ratio
∆t/ε ≈ 3.14) and the fully recovered trajectory with fine linear interpolation.
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Figure 6. Error of MM under different M = ∆s−1 in x, |v| and v‖ at T = 1 in
example 5.2 of varying intensity.

In Figure 8, the relative error on the magnetic moment, i.e. |I(tn) − I(0)|/(εI(0)) is displayed as
a function of the rescaled time s. Let us remark that the MM scheme captures this quantity I(t)
with uniform second order accuracy for ε ∈]0, 1], since I(t) only depends on |v| and v‖ through

|v⊥|2 = |v|2 − |v‖|2. The deviation of the magnetic moment (5.5) behaves as |I(t) − I(0)| = O(ε)
in the simulation, which is consistent with the results obtained in [26]. Our scheme captures this
adiabatic quantity even when ∆s� ε whereas the scheme used in [26] needs ∆s < ε.

5.2. Simulation of the Vlasov-Poisson system. In this last part, we focus on the numerical
simulation of the full 3D Vlasov-Poisson equation (1.1) using the MRC method. The chosen initial
data is a Maxwellian in velocity and a ring-shape distribution in space with a perturbation in angle
[18]:

f0(x,v) =
n0

2π
(1 + η cos(kθ)) e−5(r−5)2

e−
1
2 |v|2 , (5.6)

where x = (x1, x2, x3), v = (v1, v2, v3), r = |x| and θ = arctan(x2/x1). The non-homogenous
magnetic field is taken as in [30] (screw-pinch setup)

B(x) =
1√

1 + α2x2
1 + α2x2

2




αx2

−αx1

1


 ,

Fig. 6. Error of MM under different M = \Delta s - 1 in x, | v| , and v\| at T = 1 in Example 5.2 of
varying intensity.
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Figure 7. Energy error of MM (restart each step) for ε = 1/2, 1/25, 1/214 till
t = 100 and the evolution of t(s) in example 5.2.
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Figure 8. Deviation of the magnetic moment: 1
ε |I(t) − I(0)|/I(0) till t = 100

in example 5.2 under different ε (computed with ∆s = 1/16 � ε, ratios ∆s/ε =
32, 64, 128).

which satisfies both |B(x)| = 1 and ∇x · B(x) = 0. The spatial domain is a cartesian geometry
x = (x1, x2, x3) ∈ Ω = [−8, 8] × [−8, 8] × [0, 1]. We choose n0 = 100, η = 0.05, k = 4 and discretize
the spatial domain Ω with Nx1

= Nx2
= 256 points in x1, x2-directions and Nx3

= 4 points in
x3-direction. As a diagnostic, we consider the following quantity:

ρε(t,x) =

∫

R3

fε(t,x,v)dv, x ∈ Ω.

For the PIC method, we choose Np = 100×Nx1Nx2Nx3 particles and the projection of the particles
on the spatial grid is done by cubic splines.

In Figures 9, the density ρε is displayed at different times for ε = 1/25 with M = 256 in MRC till
t = 64π (so M0 = H/ε = 4 in (3.5)) whereas α = 0 in the magnetic field, so that B is homogeneous

Fig. 7. Energy error of MM (restart each step) for \varepsilon = 1/2, 1/25, 1/214 until t = 100 and the
evolution of t(s) in Example 5.2.

this adiabatic quantity even when \Delta s \gg \varepsilon , whereas the scheme used in [26] needs
\Delta s < \varepsilon .

5.2. Simulation of the Vlasov--Poisson system. In this last part, we focus
on the numerical simulation of the full three dimensional Vlasov--Poisson equation
(1.1) using the MRC method. The chosen initial data is a Maxwellian in velocity and
a ring-shape distribution in space with a perturbation in angle [18]:

(5.6) f0(x,v) =
n0

2\pi 
(1 + \eta cos(k\theta )) e - 5(r - 5)2e - 

1
2 | \bfv | 2 ,
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Figure 7. Energy error of MM (restart each step) for ε = 1/2, 1/25, 1/214 till
t = 100 and the evolution of t(s) in example 5.2.
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Figure 8. Deviation of the magnetic moment: 1
ε |I(t) − I(0)|/I(0) till t = 100

in example 5.2 under different ε (computed with ∆s = 1/16 � ε, ratios ∆s/ε =
32, 64, 128).

which satisfies both |B(x)| = 1 and ∇x · B(x) = 0. The spatial domain is a cartesian geometry
x = (x1, x2, x3) ∈ Ω = [−8, 8] × [−8, 8] × [0, 1]. We choose n0 = 100, η = 0.05, k = 4 and discretize
the spatial domain Ω with Nx1

= Nx2
= 256 points in x1, x2-directions and Nx3

= 4 points in
x3-direction. As a diagnostic, we consider the following quantity:

ρε(t,x) =

∫

R3

fε(t,x,v)dv, x ∈ Ω.

For the PIC method, we choose Np = 100×Nx1Nx2Nx3 particles and the projection of the particles
on the spatial grid is done by cubic splines.

In Figures 9, the density ρε is displayed at different times for ε = 1/25 with M = 256 in MRC till
t = 64π (so M0 = H/ε = 4 in (3.5)) whereas α = 0 in the magnetic field, so that B is homogeneous

Fig. 8. Deviation of the magnetic moment: 1
\varepsilon 
| I(t)  - I(0)| /I(0) until t = 100 in Example 5.2

under different \varepsilon (computed with \Delta s = 1/16 \gg \varepsilon , ratios \Delta s/\varepsilon = 32, 64, 128).

where x = (x1, x2, x3), v = (v1, v2, v3), r = | x| , and \theta = arctan(x2/x1). The nonho-
mogeneous magnetic field is taken as in [30] (screw-pinch setup):

B(x) =
1\sqrt{} 

1 + \alpha 2x2
1 + \alpha 2x2

2

\left( 
 

\alpha x2

 - \alpha x1

1

\right) 
 ,

which satisfies both | B(x)| = 1 and \nabla \bfx \cdot B(x) = 0. The spatial domain is a Cartesian
geometry x = (x1, x2, x3) \in \Omega = [ - 8, 8] \times [ - 8, 8] \times [0, 1]. We choose n0 = 100, \eta =
0.05, k = 4 and discretize the spatial domain \Omega with Nx1

= Nx2
= 256 points in the

x1, x2-directions and Nx3
= 4 points in the x3-direction. As a diagnostic, we consider

the following quantity:

\rho \varepsilon (t,x) =

\int 

\BbbR 3

f\varepsilon (t,x,v)dv, x \in \Omega .

For the PIC method, we choose Np = 100\times Nx1
Nx2

Nx3
particles and the projection

of the particles on the spatial grid is done by cubic splines.
In Figure 9, the density \rho \varepsilon is displayed at different times for \varepsilon = 1/25 with

M = 256 in MRC until t = 64\pi (so M0 = H/\varepsilon = 4 in (3.5)), whereas \alpha = 0 in the
magnetic field, so that B is homogeneous and aligned with the x3-direction. There are
two different dynamics which can be seen in the results: an instability develops in the
direction orthogonal to the magnetic field (one can see four vortices at time t = 64\pi ),
and a slight parallel dynamics develops in the plane parallel to the magnetic field.
In Figures 10 and 11, a nonhomogeneous magnetic field is considered (\alpha = 0.003).
We can observe that the dynamics is different from the homogeneous case. Indeed,
the instability leading to the formation of four vortices is different and one can see
stronger nonhomogeneous phenomena in the x3-direction due to the expression of the
magnetic field.

Finally, in Figure 12, we plot the energy error for both configurations (\alpha = 0 and
\alpha = 0.003). Very good conservations are obtained for long times. Moreover, we con-
sider the relative error between the Vlasov--Poisson system (1.1) and the asymptotic
model (2.4) as a function of \varepsilon for \alpha = 0.003. To do so, we compute the L\infty norm (in
space) of | \rho \varepsilon (t = \pi ,x) - \rho (t = \pi ,x)| /| \rho \varepsilon (t = \pi ,x)| at the final time t = \pi . We can see
that when \varepsilon decreases, the error is O(\varepsilon ), as predicted by the theory.
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and aligned with the x3 direction. There is two different dynamics which can be seen in the results:
an instability develops in the direction orthogonal to the magnetic field (one can see four vortices at
time t = 64π) and a slight parallel dynamics in the plane parallel to the magnetic field. In Figures
10 and 11, a non-homogeneous magnetic field is considered (α = 0.003). We can observe that the
dynamics is different dynamics from the homogeneous case. Indeed, the instability leading to the
formation of four vortices is different and one can see stronger non homogeneous phenomena in the
x3 direction due to the expression of the magnetic field.

Finally, in Figure 12, we plot the energy error for both configurations (α = 0 and α = 0.003).
Very good conservations are obtained for long time. Moreover, we consider the relative error between
the Vlasov-Poisson system (1.1) and the asymptotic model (2.4) as a function of ε, for α = 0.003.
To do so, we compute the L∞ norm (in space) of |ρε(t = π,x) − ρ(t = π,x)|/|ρε(t = π,x)| at the
final time t = π. We can see that when ε decreases, the error is O(ε), as predicted by the theory.

Figure 9. Vlasov-Poisson case: pseudo-color snapshots of ρε under ε = 1/25 at
t = 0, 16π, 32π, 64π with initial condition 5.6 with α = 0.
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