
Tunisian Journal of Mathematics
an international publication organized by the Tunisian Mathematical Society

msp

Diffusion-approximation
in stochastically forced kinetic equations

Arnaud Debussche and Julien Vovelle

2021 vol. 3 no. 1



msp
TUNISIAN JOURNAL OF MATHEMATICS

Vol. 3, No. 1, 2021

https://doi.org/10.2140/tunis.2021.3.1

Diffusion-approximation
in stochastically forced kinetic equations

Arnaud Debussche and Julien Vovelle

We derive the hydrodynamic limit of a kinetic equation where the interactions in
velocity are modeled by a linear operator (Fokker–Planck or linear Boltzmann)
and the force in the Vlasov term is a stochastic process with high amplitude and
short-range correlation. In the scales and the regime we consider, the hydrody-
namic equation is a scalar second-order stochastic partial differential equation.
Compared to the deterministic case, we also observe a phenomenon of enhanced
diffusion.
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1. Introduction

1A. Kinetic equations. Let N ∈ N∗. We denote by TN the N -dimensional torus.
Let ε > 0. We consider the following kinetic equation

∂t f + εv · ∇x f + E(t, x) · ∇v f = Q f, t > 0, x ∈ TN , v ∈ RN , (1-1)

which is a perturbation of the equation

∂t f + E(t, x) · ∇v f = Q f, t > 0, x ∈ TN , v ∈ RN . (1-2)
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The operator Q is either the linear Boltzmann (LB) operator

QLB f = ρ( f )M − f, ρ( f )=
∫

RN
f (v) dv, M(v)=

1
(2π)N/2 exp

(
−
|v|2

2

)
, (1-3)

or the Fokker–Planck (FP) operator

QFP f = divv(∇v f + v f ). (1-4)

The force field E(t, x) in (1-2) is a Markov, stationary mixing process t 7→ E(t)
with state space F = H m(TN

;RN ) (m > N + 1). Mixing here refers to the
mixing property as defined for stochastic processes (asymptotic independence),
see Section 2. We show in Section 3 that there is a unique, ergodic, invariant
measure for (1-2) and that this invariant measure is the law of an invariant solution
(x, v) 7→ ρ(x)M t(x, v) parametrized by ρ(x). See (3-6)–(3-7) for the definition
of M t . Consider the solution f to (1-1) starting from a state

fin(x, v)≈ ρin(x)M0(x, v). (1-5)

Rescale over time intervals of order ε−2:

f ε(t, x, v)= f (ε−2t, x, v). (1-6)

Then f ε is a solution to the equation

∂t f ε+ v
ε
·∇x f ε+ 1

ε2 E(ε−2t, x)·∇v f ε= 1
ε2 Q f ε, t>0, x ∈TN , v∈RN . (1-7)

On bounded time intervals [0, T ], we expect

f ε(t, x, v)≈ ρ(x, t)Mε−2t(x, v), (1-8)

where ρ is solution to a given equation (the hydrodynamic equation) which we
would like to identify. We do not prove (1-8), but find the limit equation satisfied
by ρ = limε→0 ρ

ε, where ρε = ρ( f ε). We show in Theorem 1.1 that ρ satisfies
a diffusion equation, where the drift term is a second order differential operator
in divergence form with respect to the space-variable x . Showing that ρε is close
to ρ with ρ a diffusion (in infinite dimension) is therefore a result of diffusion-
approximation (in infinite dimension). See Theorem 1.1 for the precise statement.

1B. Trajectories. The phase space associated to (1-1) is TN
×RN . Consider the

following systems of stochastic differential equations:

d X t = ε dVt ,

dVt = E(t, X t) dt + jumps,
(1-9)



DIFFUSION-APPROXIMATION IN STOCHASTICALLY FORCED KINETIC EQUATIONS 3

and
d X t = ε dVt ,

dVt = (E(t, X t)− Vt) dt +
√

2 dBt .
(1-10)

In (1-9) the second equation describes the following piecewise deterministic Markov
process (PDMP). Consider the Poisson process associated to the times (Tn) and to
the probability measure M dv: the increments Tn+1− Tn are i.i.d. with exponential
law of parameter 1. At each time t = Tn , Vt is jumping to a new value VTn+

chosen at random, according to the probability law M dv. Between each jump,
(Vt) is evolving by the differential equation

dVt

dt
= E(t, X t), Tn < t < Tn+1, (1-11)

which is coupled with the first equation of (1-9). In (1-10), Bt is an N -dimensional
Wiener process. In both the LB case and the FP case, the extra stochastic processes
which we introduce are independent of (E(t)). In this context, Equation (1-1) gives
the evolution of the density, with respect to the Lebesgue measure on TN

x ×RN
v , of

the conditional law of (X t , Vt): let F E
t = σ((E s)0≤s≤t). If the law of (X0, V0) has

density fin with respect to the Lebesgue measure on TN
x ×RN

v , then

E[ϕ(X t , Vt)|F E
t ] =

∫∫
TN×RN

ϕ(x, v) ft(x, v) dx dv, (1-12)

for all ϕ ∈ Cb(T
N
×RN ). From (1-12), it follows that

E[ϕ(X t)] =

∫
TN
ϕ(x)Eρt(x) dx, ρt = ρ( ft), (1-13)

for all ϕ ∈ Cb(T
N ). We are interested in (1-7). The associated process is then

(Xε−2t , Vε−2t) and the associated spatial density ρε−2t . Our main result, Theorem 1.1,
describes the limit behavior of ρε−2t .

1C. Main result.

Notation. The three first moments of a function f ∈ L1(RN , |v|2 dv) are written

ρ( f )=
∫

RN
f (v) dv, J ( f )=

∫
RN
v f (v) dv, K ( f )=

∫
RN
v⊗ v f (v) dv, (1-14)

where a⊗b is the N×N rank-one matrix built on a, b∈RN with i j -th elements ai b j .
We use the notation

a
sym
⊗ b = a⊗ b+ b⊗ a (1-15)

to denote the symmetric version of a⊗ b. We denote by K the second moment of
M (because M is a Maxwellian, this is simply the identity matrix of size N × N
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here):

K = K (M)=
∫

RN
v⊗ vM(v) dv = IdN . (1-16)

For m ∈ N, we denote by J̄m( f ) the total m-th moment of f :

J̄m( f )=
∫∫

TN×RN
|v|m f (x, v) dx dv. (1-17)

Let us also introduce the Banach space

Gm =
{

f ∈ L1(TN
×RN ); J̄0( f )+ J̄m( f ) <+∞

}
, (1-18)

with norm ‖ f ‖Gm = J̄0( f )+ J̄m( f ). Eventually, we define the diffusion matrix K]

and the vector field 2 of the limit equation (1-25) by the formula

K] = K + 1
2 E
[
E(0)

sym
⊗ [R0(E(0))+ (b− 1)R1(E(0))]

]
, (1-19)

and

2=
b
2

divx E
[
R1(E(0))

sym
⊗ E(0)

]
+ E

[
R1 R0(E(0)) divx(E(0))

]
, (1-20)

where bLB
= 2 in the case Q = QLB and bFP

= 1 in the case Q = QFP, and where
the resolvent Rλ is defined by the formula

Rλϕ(e) :=
∫
∞

0
e−λt Ptϕ(e) dt. (1-21)

In (1-21), (Pt) denotes the Markov semigroup generated by (E t). Sufficient con-
ditions for (1-21) to make sense are given at the end of Section 2. For i, j ∈
{1, . . . , N }, x, y ∈ TN , we set

H(i, x, j, y)= 1
2 E
(
[R0(E0(x))]i [E0(y)] j + [R0(E0(y))] j [E0(x)]i

)
. (1-22)

The function H is a kernel on the space L2(TN
;RN ). The associated operator is

denoted by S:

Sρi (x)=
N∑

j=1

∫
TN

H(i, x, j, y)ρ j (y) dy. (1-23)

We show in Proposition 5.13 that S is symmetric, nonnegative and trace-class. Our
main result of diffusion-approximation for ρε is the following one.

Theorem 1.1. Let f εin ∈ G3 be nonnegative. Let m > N + 1. Let (E t) be a mixing
force field on H m(TN

;RN ) according to Definition 2.1, f ε∈C([0,T ]; L1(TN
×RN ))
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be the mild solution to (1-7) with initial condition f εin, in the sense of Definition 4.1
or 4.3, depending on the nature of the collision operator Q.

Let ρε = ρ( f ε). Assume the convergence

ρ( f εin)→ ρin in L2(TN ). (1-24)

Let K] and 2 be defined by (1-19) and (1-20) respectively. Then (ρε) converges in
law on C([0, T ]; H−1(TN )) to ρ, the weak-L1 martingale solution in the sense of
Definition 5.18 of the stochastic equation

dρ = divx(K]∇xρ+2ρ) dt +
√

2 divx(ρS1/2 dW (t)), (1-25)

with initial condition
ρ(0)= ρin. (1-26)

In (1-25), W (t) is a cylindrical Wiener process on L2(TN
;RN ), and S is defined

by (1-23).

Remark 1.2 (enhanced diffusion). The Stratonovitch formulation of (1-25) is

dρ = divx(K̃]∇xρ+ 2̃ρ) dt +
√

2 divx(ρ ◦ S1/2 dW (t)), (1-27)

where
K̃] = K + 1

2(b− 1)E
[
R1(E(0))

sym
⊗ E(0)

]
, (1-28)

with bLB
= 2, bFP

= 1. Lemma 5.4 below shows that K] ≥ K and K̃] ≥ K .
Similar effects of enhanced diffusion in homogenization procedures are observed
in [Evans 1989, Theorem 3.2], for example. In the Fokker–Planck case however,
no additional diffusion appears when one uses the Stratonovitch form of the limit
equation, since K̃] = K . Let us focus on the linear Boltzmann case, or on the Itô
form of the limit equation. This last point of view is relevant if we focus on the
average r := E[ρ], that will be a solution to the equation

∂tr − divx(K]∇xr)= 0. (1-29)

We examine first under what condition the matrix K̃] may degenerate in the ma-
trix K . When b > 1, this happens only in the trivial case E t ≡ 0, as explained in
Remark 5.6. Let us examine the matrix K]. When b= 1, it may coincide with K if
E[R0(E(0))

sym
⊗ E(0)] = 0, but this happens only if, for all q ∈RN , the map e 7→ e ·q

is in the kernel of the Dirichlet form associated to (E t) (the details are given in
Remark 5.6 also). It is easy to check that this condition will not be satisfied in
many instances, like diffusion or jump processes.

Remark 1.3 (diffusion-approximation in the context of kinetic equations). The
influence of stochastic mixing forcing terms in kinetic equations has also been
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investigated in [Poupaud and Vasseur 2003; Goudon and Rousset 2009]. The con-
text and the results in these two papers are different from the present one however.
Indeed,

(1) the starting kinetic equations in [Poupaud and Vasseur 2003; Goudon and
Rousset 2009] are not collisional,

(2) In [Poupaud and Vasseur 2003; Goudon and Rousset 2009], in the scaling
that is considered, a collisional kinetic equation is obtained at the limit. The
collision operator (an operator acting on functions of the variable v thus) is a
diffusion operator. At the level of trajectories, the appearance of this operator
is explained by the convergence of the velocity Vt of particles to a diffusion
like the one solving Equation (1-10) with E = 0.

Let us also mention here the recent paper [Goudon 2019], where the limit of the
kinetic equation (1-7) is also investigated. The framework of [Goudon 2019] is
deterministic, the oscillating forcing term E(t) being quasiperiodic. An homoge-
nization procedure leads then to a drift-diffusion equation at the limit. Enhanced
diffusion may be observed or not, depending on the nature of the collision operator,
[Goudon 2019, Lemma 3.6].

Remark 1.4 (weak convergence). Let us make some comments on the weak mode
of convergence of ρε in Theorem 1.1. It is weak in the probabilistic sense (conver-
gence in law). This is inherent to the limit theorems (like the Donsker theorem)
which lay the foundation of diffusion-approximation results. The convergence is
weak with respect to the space-variable also. We obtain below a bound in G3 on f ε

thus by interpolation a better convergence than convergence in C([0, T ]; H−1(TN ))

holds. But this is still in a space with negative regularity with respect to x . We
intend to improve this point, and to consider nonlinear equations in a similar regime,
in a future work. Nevertheless, note that, in the very special case where E is
independent of the space variable, strong convergence can be established. Indeed,
the spatial derivatives of f ε then satisfy the same equation as f ε. Bounds in L1

on the derivatives of f ε can be obtained in this way, by using the estimate (4-4).
Another standard tool in the study of kinetic equations are entropy estimates.

In our context, we are not able do establish such estimates. The lack of entropy
estimates has several consequences. One of those is that we do not have any L2-
bound in space on ρε. We have some uniform bounds in L1 however, and this
is why we consider solutions to the limit SPDE (1-25) taking values in L1 (see
Definition 5.18). For such weak solutions, proving uniqueness for the limit problem
is problematic at first sight. We use a duality method, using a backward SPDE, to
establish pathwise uniqueness: see Theorem 5.19.
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The plan of the paper is the following. In Section 2 we describe the type of
forcing field E(t) which we consider. In Section 3, we prove some mixing prop-
erties and compute the invariant measures for the unperturbed equation (1-2). In
Section 4, we solve the Cauchy problem for the kinetic equation (1-1). In Section 5,
we establish our main result of diffusion-approximation, Theorem 1.1.

2. Mixing force field

Let m > N + 1 be a given integer and let F = H 2m(TN
;RN ) be endowed with the

norm

‖e‖F =

[ ∑
|α|≤2m

N∑
i=1

‖∂αei‖
2
L2(TN )

]1/2

. (2-1)

where the first sum in (2-1) is over all multi-indices α ∈ NN of length |α| =
α1 + · · · + αN less than 2m. The space F will be the state space for the mixing
force field E : we assume that we are given (E t)t≥0, a stationary, homogeneous
Markov process of generator A over F (the generator is defined according to the
theory developed in Appendix B. Let P(t, e, B) be a transition function for (E t)

associated to the filtration generated by (E t) (see, e.g., [Ethier and Kurtz 1986,
p. 156] for the definition), satisfying the Chapman-Kolmogorov relation

P(t + s, e, B)=
∫

F
P(s, e1, B) d P(t, e, de1), (2-2)

for all s, t ≥ 0, e ∈ F , B Borel subset of F . It will be helpful (and it is often more
natural) to see (E t) as the particular evolution (Et(e)) of a process starting from e,
when e is drawn according to the equilibrium measure. Let us give the details of this
procedure: let P(F) be the set of Borel probability measures on F . By [Ethier and
Kurtz 1986, p. 157], up to a modification of the probability space (�,F), say into
a probability space (�̃, F̃), there exists a collection {Pµ;µ ∈ P(F)} of probability
measures and some Markov processes (E(t, s))t≥s with transition function P such
that, Pµ(E(s, s) ∈ D0)=µ(D0) for all Borel subset D0 of F . When µ is the Dirac
mass µ= δe, we use the shorter notation Pe instead of Pδe . By [Ethier and Kurtz
1986, p. 157] additionally, for all D ∈ F , e 7→ Pe(D) is Borel measurable. Let e0

be a random variable on F of law µ. We do a slight abuse of notation and denote
by (E(t, s; e0),P) the couple (E(t, s),Pµ). This means that the finite-dimensional
distribution of both processes are the same, i.e.,

P
(
E(t1, s; e0) ∈ D1, . . . , E(tn, s; e0) ∈ Dn

)
= Pµ

(
E(t1, s) ∈ D1, . . . , E(tn, s) ∈ Dn

)
, (2-3)

for all s ≤ t1 ≤ · · · ≤ tn , and D1, . . . , Dn Borel subsets of F . For simplicity, we
also use the notation E(t; e), or Et(e), instead of E(t, 0; e). Note that, by iteration
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of (2-2), we have

P
(
E(0) ∈ D0, E(t1) ∈ D1, . . . , E(tn) ∈ Dn

)
=

∫
D0

· · ·

∫
Dn−1

P(tn − tn−1, en−1, Dn)P(tn−1− tn−2, en−2, den−1) · · ·

· · · P(t1, e0, de1) dν(e0)

= Pν
(
E(t1, 0) ∈ D1, . . . , E(tn, 0) ∈ Dn

)
, (2-4)

where ν is the law of E(0). Therefore E t and Et(E0) have the same finite-di-
mensional distributions: E t is a version Et(E0). The probability space �̃ used
in [Ethier and Kurtz 1986, p. 157] to define the probability measures Pe is the
path-space F [0,+∞) (the σ -algebra F̃ is the product σ -algebra). Assume in addi-
tion that (E t) is càdlàg. Then it is clear that we can take the Skorokhod space
D([0,+∞); F) as a path space to define Pe. The σ -algebra F̃ is then the trace
of the product σ -algebra, which coincide with the Borel σ -algebra when the Sko-
rokhod topology is considered on D([0,+∞); F). In this context, it holds true that
e 7→ Pe(D) is Borel measurable for all D ∈ F̃ (see the proof of Proposition 1.2,
p. 158 in [Ethier and Kurtz 1986]). To sum up (see [Revuz and Yor 1999, Section I-
3]), if (E t) is càdlàg, we can assume that t 7→ E(t, s; e) is càdlàg, for all s ∈ R

and e ∈ F . As a last remark, note that it is always possible, using the Kolmogorov
extension theorem, to build a càdlàg stationary process (Ě(t))t∈R indexed by t ∈ R

with the finite-dimensional distributions

P
(
Ě(s) ∈ D0, Ě(s+ t1) ∈ D1, . . . , Ě(s+ tn) ∈ Dn

)
= P

(
E(0) ∈ D0, E(t1) ∈ D1, . . . , E(tn) ∈ Dn

)
, (2-5)

for all s ∈ R, 0≤ t1, . . . , tn . Instead of adding a new notation (Ě(t))t∈R, we simply
denote this process by (E(t))t∈R. We also denote by (Gt) the usual augmentation
(see [Revuz and Yor 1999, Definition (4.13), Section I-4]) of the canonical filtration
(Ft) on D([0,+∞); F) with respect to the family (Pe)e∈F . In successive order,
(Ft) is the filtration generated by the evaluation maps (πt), πt(ω)= ω(t); F∗t is
the intersection over e ∈ F of the σ -algebras FPe

t obtained by completing Ft with
Pe-negligible sets; and Gt is F∗t+:

Gt =
⋂
s>t

F∗s . (2-6)

Definition 2.1 (mixing force field). Let (E t)t≥0 be a càdlàg, stationary, homoge-
neous Markov process of generator A, in the sense of Appendix B, over F . We
say that (E t)t≥0 is a mixing force field if the conditions (2-7), (2-8), (2-10), (2-14),
(2-16) below are satisfied.
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Our first hypothesis is that there exists a stable ball: there exists R≥ 0 such that:
almost-surely, for all e with ‖e‖F ≤ R, for all t ≥ 0,

‖E(t; e)‖F ≤ R. (2-7)

Our second hypothesis is about the law ν of E t . We assume that it is supported
in the ball BR of F (therefore, it has moments of all orders) and that it is centered:∫

F
e dν(e)= E[E t ] = 0, (2-8)

for all t ≥ 0. Note that a consequence of this hypothesis is that: almost-surely, for
all t ≥ 0,

‖E t‖F ≤ R. (2-9)

Our third hypothesis is a mixing hypothesis: we assume that there exists a
continuous, nonincreasing, positive and integrable function γmix ∈ L1(R+) such
that, for all probability measures µ, µ′ on F , for all random variables e0, e′0 on
F of law µ and µ′ respectively, there is a coupling

(
(E∗t (e0))t≥0, (E∗t (e′0))t≥0

)
of(

(Et(e0))t≥0, (Et(e′0))t≥0
)

such that

E‖E∗t (e0)− E∗t (e
′

0)‖F ≤ Rγmix(t), (2-10)

for all t ≥ 0. Typically, we expect γmix to be of the form γmix(t) = Cmixe−βmixt ,
βmix > 0 (see the example treated in Section 2C for instance).

2A. Some consequences of the mixing hypothesis. Let ϕ be a Lipschitz continu-
ous function on F . We have

Eϕ(E∗t (e0))= 〈Ptϕ,µ〉

(where Pt denote the semigroup associated to A: Eeϕ(Et)= Ptϕ(e)). From (2-10),
it follows that ∣∣〈Ptϕ,µ〉− 〈Ptϕ,µ

′
〉
∣∣≤ ‖ϕ‖LipRγmix(t), (2-11)

for all t ≥ 0. Let ν denote the law of (E(t)) and let e ∈ BR. We will use (2-11)
in particular when e0 = e a. s. and e′0 has law ν. Then (2-11) gives the following
mixing estimate:

‖Ptϕ(e)−〈ϕ, ν〉‖F ≤ R‖ϕ‖Lipγmix(t), (2-12)

for all t ≥ 0, for all e ∈ BR. The estimate (2-12) has an extension to quadratic
functionals: for all linear and continuous3 : F→R, for all bilinear and continuous
q : F × F→ R, we have, for all e ∈ BR,∥∥Pt [3+ q](e)−〈3+ q, ν〉

∥∥
F ≤ R

(
‖3‖B(F)+ 2R‖q‖B(F×F)

)
γmix(t), (2-13)
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where ‖3‖B(F) is the norm of the linear form of 3 and ‖q‖B(F×F) is the norm of
the bilinear form of q. Note that, actually, 〈3, ν〉 = 0 by (2-8). The factor R in
front of ‖q‖B(F×F) in (2-13) is due to the decomposition (recall that e0 = e a. s.
and e′0 has law ν)

Ptq(e)−〈q, ν〉 = E
[
q(E∗t (e0), E∗t (e0))− q(E∗t (e0), E∗t (e

′

0))
]

+ E
[
q(E∗t (e0), E∗t (e

′

0))− q(E∗t (e
′

0), E∗t (e
′

0))
]
.

We have indeed

|Ptq(e)−〈q, ν〉| ≤ ‖q‖B(F×F)E
[
(‖E∗t (e0)‖F +‖E∗t (e

′

0)‖F )‖E∗t (e0)− E∗t (e
′

0)‖F
]

≤ 2R‖q‖B(F×F)E‖E∗t (e0)− E∗t (e
′

0)‖F by (2-7),

≤ 2R2
‖q‖B(F×F)γmix(t) by (2-10).

Without loss of generality (as we can rescale γmix if we rescale R), we assume

‖γmix‖L1(R+) = 1. (2-14)

Using (2-12), the resolvent (1-21) is well defined for all λ≥ 0, e ∈ BR and all
ϕ : F→ R which is Lipschitz continuous and satisfies the cancellation condition
〈ϕ, ν〉 = 0. Using (2-8), we can therefore define Rλϕh(e) for λ≥ 0, where ϕh(e)=
〈e, h〉L2(TN ). Moreover by (2-12), there exists Tλ : F → F such that Rλϕh(e) =
〈Tλ(e), h〉L2(TN ). By a slight abuse of notation, we write Rλ(e)= Tλ(e). By (2-10)
(with e0 = e a. s. and e′0 ∼ ν) and (2-14), we have

‖R0(e)‖F ≤ R, (2-15)

for all e with ‖e‖F ≤ R. Eventually, let 3 : F→ R be a linear functional. Then,
with the notations above, ϕ3 :=3 ◦ R0 is a map F→ R. The generator A acts on
ϕ3 and on the square of ϕ3 and we will assume that there exists a constant C0

R ≥ 0
such that the following bounds are satisfied:

|[A|ϕ3|2](e)| ≤ C0
R‖3‖

2
B(F), |[Aϕ3](e)| ≤ C0

R‖3‖B(F), (2-16)

for all e with ‖e‖F ≤ R.

Remark 2.2. Hypothesis (2-7), an almost sure bound, is quite strong. We use
it in an essential way in the estimates obtained in Proposition 5.10 (bounds on
the moments in v of the solution). It is possible to relax the hypothesis (2-7), by
considering for example that there exists some constants C≥ 1, q > 2, such that

E[‖E(t; e)‖2F ] ≤ C2(1+‖e‖2F ), E

[
sup

t∈[0,1]
‖E t‖

q
F

]
≤ Cq , (2-17)

for all t ≥ 0 and for all e ∈ F . Such an extension requires a lot of work however,
and we judged simpler to work under (2-7). We give in Section 2C some examples
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of processes (jumps processes and diffusion processes) that are admissible in the
sense of Definition 2.1.

2B. Covariance. Our mixing hypothesis has the following consequence on the
covariances of (Et) and (E t): let

0e(s, t)= E[Es(e)⊗ Et(e)], 0(t)= E[E(t)⊗ E(0)]. (2-18)

Let t ≥ s ≥ r ≥ 0. Conditioning on Gt−s , we have

0e(t − r, t − s)= Pt−s(e(s−r)Aθ ⊗ θ)(e), θ(e)= e

It follows from (2-13) that, for all e with ‖e‖F ≤ R,∥∥0e(t − r, t − s)−0(s− r)
∥∥

F ≤ 2R2γmix(t − s). (2-19)

Note also that 0(−t)= E[E(0)⊗ E(t)] so that, using the notation (1-15), we have

0(t)+0(−t)= E[E(t)
sym
⊗ E(0)]. (2-20)

2C. Some simple examples. Let (En(e))n≥0, with E0(e)= e, be a Markov chain
on F , and let (Nt)t≥0 be a Poisson process of rate 1 (N0 = 0) independent of (En).
We assume that the ball BR of F is stable by (En), that (En(e))n≥0 has the invariant
measure ν and the mixing property

E‖E∗n(e0)− E∗n(e
′

0)‖ ≤ CRγ n, (2-21)

where γ < 1 for a coupling (E∗n(e0), E∗n(e′0)) of (En(e0), En(e′0)). Let

E(t, s; e0)= ENt−s (e0) (2-22)

and let E t = E(t, 0; ē0), where ē0 is a random variable of law ν independent of
(En)n≥0 and (Nt)t≥0. Then (E t) is a stationary process (it is a time-homogeneous
Markov process and is initially at equilibrium). It is càdlàg, it satisfies (2-7), (2-8)
if ν is centered, and also (2-10) since

E‖E∗t (e0)− E∗t (e
′

0)‖F =

∞∑
n=0

P(Nt = n)E‖E∗n(e0)− E∗n(e
′

0)‖F

≤ CR
∞∑

n=0

e−t tn

n!
γ n
= CRe−(1−γ )t =: Rγmix(t).

Let us simplify still by considering the situation where En+1(e) is drawn inde-
pendently of En(e), with law ν. We can then consider the synchronous coupling
(E∗n(e0), E∗n(e′0)) of (En(e0), En(e′0)) which is such that E∗n(e0) = E∗n(e′0) for all
n ≥ 1. It gives us

E‖E∗t (e0)− E∗t (e
′

0)‖F ≤ 2RP(Nt = 0)= 2Re−t .



12 ARNAUD DEBUSSCHE AND JULIEN VOVELLE

In addition, the semigroup, generator and resolvent R0 have the explicit forms

Ptϕ(e)= e−tϕ(e)+ (1− e−t)〈ϕ, ν〉,

and

Aϕ(e)= 〈ϕ, ν〉−ϕ(e), R0ϕ(e)= e.

From these formula, we deduce the second inequality in (2-16) with C0
R ≥ R. The

first inequality in (2-16) is obtained with any C0
R ≥ 2R2. Note that we also have

R1ϕ(e)= e. The matrix K] in (1-19) is therefore given by

K] = K + θE[E(0)⊗ E(0)], θ := 1= b−1
2
∈
{1

2 , 1
}
. (2-23)

In particular, we have K] > K as soon as E[|E(0) · ξ |2]> 0 for a ξ ∈ RN .

Diffusion processes can be used to give some other instances of admissible force
field. We fix N ∈ N∪ {+∞} and set

E t =

N∑
j=1

a j Y
j
t e j , (2-24)

where Y 1, Y 2, . . . are some i.i.d. processes with state space the interval (−1, 1)
and a1, a2, . . . some nontrivial real numbers converging fast enough to zero and
{e j ; 1 ≤ j ≤ N } a family which is free in F . For the process Y , we choose a
diffusion process with state space I = (−1, 1): a diffusion process reflected or
killed at the boundary of I , or a Sturm–Liouville Markov process with a drift that
is singular at the boundary, [Bakry et al. 2014, Chapter 2].

3. Unperturbed equation: ergodic properties

We consider first the equation

∂t ft + E(t) · ∇v ft = Q ft t > 0, v ∈ RN , (3-1)

where Q = QLB or Q = QFP. In (3-1), E(t) stands for E(x, t), where (E(t)) is a
mixing force field. We will not indicate the dependence with respect to x , which
is a simple parameter here.

To find the invariant measure for (3-1), we solve the equation starting from a
given time s ∈R, and then let s→−∞. More precisely, given e ∈RN , we consider
the following evolution equation:

∂t ft + E(t, s; e) · ∇v ft = Q ft t > s, v ∈ RN . (3-2)
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Let f ∈ L1(RN ) and s ∈ R. The solution to (3-2) with initial condition ft=s = f
is

f LB
s,t (v)= e−(t−s) f

(
v−

∫ t

s
E(r, s; e) dr

)
+ ρ( f )

∫ t

s
e−(t−σ)

[
M
(
v−

∫ t

σ

E(r, s; e) dr
)]

dσ, (3-3)

when Q = QLB, and

f FP
s,t (v)

= eN (t−s)
∫

RN
f

(
e(t−s)v

−

∫ t

s
e−(s−σ)E(σ, s, e) dσ +

√
e2(t−s)− 1w

)
M(w) dw, (3-4)

when Q = QFP. A brief explanation to (3-3) and (3-4) is given in Appendix A.
By the term “solution to (3-2),” we mean weak solutions, i.e., functions f ∈
C([s,+∞); L1(RN )) satisfying the identity

〈 ft , ϕ〉 = 〈 f, ϕ〉+
∫ t

s
〈 fσ , E(σ, t; e) · ∇vϕ〉+ 〈 fσ , Q∗ϕ〉 dσ,

almost-surely, for all ϕ ∈ C∞c (R
N ), for all t ≥ s. We may also consider mild

solutions (this is equivalent, actually), as we do in Section 4. We do not need to
be very specific on that point here. All that matters to us is to understand the limit
behavior of fs,t defined by (3-3)–(3-4) when s→−∞. This is the content of the
following result:

Theorem 3.1 (invariant solutions). Let (E(t)) be a mixing force field in the sense
of Definition 2.1. Let f LB

s,t and f FP
s,t be defined by (3-3) and (3-4) respectively, with

e ∈ BR. Then

( f LB
s,t , E(t, s; e))→ (ρ( f )MLB

t , E t ) and ( f FP
s,t , E(t, s; e))→ (ρ( f )MFP

t , E t ) (3-5)

in law on L1(RN )×RN when s→−∞, where MLB
t and MFP

t are defined by

MLB
t =

∫ t

−∞

e−(t−σ)
[

M
(
v−

∫ t

σ

E(r) dr
)]

dσ, (3-6)

and

MFP
t = M

(
v−

∫ t

−∞

e−(t−r)E(r) dr
)
, (3-7)

respectively.
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Equation (3-1) is conservative; the evolution takes place in some manifolds{
f ∈ L1(RN );

∫
RN

f dv = ρ
}

indexed by a parameter ρ ∈R. For such a ρ, we denote by µρ the invariant measure
defined by

〈ϕ,µρ〉 = Eϕ(ρM t , E t), (3-8)

for all continuous and bounded function ϕ on L1(RN )×RN . As a consequence of
(3-5), the law of (ρM t , E t) is independent on time, and is the law of the unique
invariant measure for the dynamical system ( ft , Et) described by (3-1).

Remark 3.2. We will call MLB
t and MFP

t the “invariant solutions”, since their laws
are the invariant measure for (3-1). Note that (E(r)) in (3-6) and (3-7) is defined
for all r ∈ R (see the discussion and convention of notations around (2-5)).

Remark 3.3. Let ϕ be a bounded continuous function on RN
×RN . Similarly to

(1-12), we have, by conditioning on the natural filtration (F E
t ) of (Et):

E[ϕ(Vs,t , E(t, s; e))] = E

∫
RN

fs,t(v)ϕ(v, E(t, s; e)) dv, (3-9)

where Vs,t is the solution to (1-9) or (1-10) (with E(t) instead of E(t, X t)) starting
from Vs at time t = s, where Vs follows the law of density f with respect to the
Lebesgue measure on RN . Since

8 : ( f, e) 7→
∫

RN
f (v)ϕ(v, e) dv

is continuous and bounded on L1(RN )×RN , we deduce from Theorem 3.1 that

lim
s→−∞

E[ϕ(Vs,t , E(t, s; e))] = 〈µρ, ϕ〉 := ρE

∫
RN

M t(v)ϕ(v, E t) dv, (3-10)

where ρ = ρ( f ).

The proof of Theorem 3.1 uses the estimates (3-13) and (3-14) in the following
lemma.

Lemma 3.4. For w, z ∈ RN , we have the estimates and identities

‖M( · −w)‖2L2(M−1)
= e|w|

2
, (3-11)

‖M( · −w)−M(· − z)‖2L2(M−1)
= e|w|

2
+ e|z|

2
− 2ew·z, (3-12)

in L2(M−1), and

‖M( · −w)‖L1(RN ) = 1, (3-13)

‖M(· −w)−M(· − z)‖L1(RN ) ≤ 2∧
[
|w− z|

(1− |w− z|)+

]1/2

(3-14)

in L1(RN ).
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Proof. Standard manipulations and identities for Gaussian densities give (3-11),
(3-12) and (3-13) (one can also use (3-15) below to prove (3-11) and (3-12)). By
(3-13) and the triangular inequality, we have the bound by 2 in (3-14). To obtain
the second estimate, we use the identity

‖M(· −w)−M(· − z)‖L1(RN ) = ‖M(· −w+ z)−M‖L1(RN ),

and the expansion

M(v−w)=
1

(2π)N/2 e−|v−w|
2/2
= M(w)

∑
n∈NN

Hn(v)w
n, (3-15)

where Hn is the n-th Hermite polynomial (see [Nualart 2006, Section 1.1.1]). This
yields the inequality

‖M( · −w)−M‖L1(RN ) ≤ M(w)
∑

n∈NN \{0}

‖Hn‖L1(RN )|w|
n.

Since ‖Hn‖L1(RN ) ≤ ‖Hn‖L2(M−1) = 1/
√

n! (cf. [Nualart 2006, Lemma 1.1.1]), the
Cauchy–Schwarz inequality yields, for |w|< 1,

‖M(· −w)−M‖L1(RN ) ≤ M(w)
[

e|w||w|
1− |w|

]1/2

≤

[
|w|

1− |w|

]1/2

.

Indeed, setting a = |w|, we have a ∈ [0, 1] and

M(w)e|w|/2 =
[

1
(2π)N ea−a2

]1/2

≤

[
1

(2π)N e1/4
]1/2

≤ 1

since e1/4
≤ 2π . �

Proof of Theorem 3.1. Let e ∈ BR t ∈ R, let 8 : L1(RN )× F → R be a bounded
and uniformly continuous function and let ε > 0. Our aim is to show that∣∣E8( fs,t(v), E(t, s; e))− E8(ρM t , E t)

∣∣< K ε, (3-16)

for s <min(0, t), |s| large enough, where K is a finite constant (it will turn out that
K = 5, but this does not matter). Note that it is sufficient to consider uniformly
continuous functions in (3-16), see Proposition I-2.4 in [Ikeda and Watanabe 1989].
We denote by η a modulus of uniform continuity of 8 associated to ε.

Step 1. Reduction to the case f ∈ L2(M−1). The maps f 7→ fs,t , f 7→ ρ( f )M t

are continuous on L1, uniformly in s ≤ t :

‖ fs,t‖L1(RN ), ‖ρ( f )MLB
t ‖L1(RN ) ≤ ‖ f ‖L1(RN ).
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Using the uniform continuity of 8 on K , we have∣∣E8( fs,t(v), E(t, s; e))− E8(ρM t , E t)
∣∣

< 2ε+
∣∣E8(( f̃ )s,t , E(t, s; e))− E8(ρ( f̃ )M t , E t)

∣∣
if ‖ f − f̃ ‖L1(RN )<η. Therefore, to prove (3-16), we turn to the case f ∈ L2(M−1).

Step 2. Cut-off after time s. For s ≤ t , introduce

MLB
s,t =

∫ t

s
e−(t−σ)

[
M
(
v−

∫ t

σ

E(r) dr
)]

dσ, (3-17)

and
MFP

s,t = M
(
v−

∫ t

s
e−(t−r)E(r) dr

)
. (3-18)

We have ‖MLB
s,t −MLB

t ‖L1(RN ) ≤ e−(t−s) by a direct computation and

‖MFP
s,t −MFP

t ‖L1(RN ) ≤ b
(∫ s

−∞

e−(t−r)E(r) dr
)
,

where b(|w− z|) is the right-hand side of (3-14). We use the bound

b(r)≤

√
5

2
r1/2 (3-19)

and (2-7) to obtain, almost-surely, ‖MFP
s,t −MFP

t ‖L1(RN ) ≤

√
5

2 R1/2e−(t−s)/2. To sum
up, in both the LB and FP case, we have a bound almost-sure on ‖M s,t−M t‖L1(RN )

by a deterministic quantity which tends to 0 when t − s→+∞. It follows that,
for t − s large enough,∣∣E8(ρ( f )M t , E t)− E8(ρ( f )M s,t , E t)

∣∣< ε.
In the next step we prove that∣∣E8( fs,t , E(t, s; e))− E8(ρ( f )M s,t)

∣∣< 2ε, (3-20)

for t − s large enough.

Step 3. Convergence in law. Let e ∈ BR. Let e0 = e a. s. and e′0 = E s . Since
E(s, t; e) has the same law as Et−s(e0) and E(t) has the same law as Et−s(e′0),
(2-10) gives a coupling

(E(s, t; e), E(t))t≥s→ (E∗(s, t; e), E∗t )t≥s

such that
E‖E∗(t, s; e)− E∗t ‖F ≤ Rγmix(t − s), (3-21)

for all t ≥ s. We have

E8( fs,t , E(t, s; e))− E8(ρ( f )M s,t , E t)

= E8( f ∗s,t , E∗(s, t; e))− E8(ρ( f )M∗s,t , E∗t ), (3-22)
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where the superscript star in fs,t and M s,t indicates that E(s, t; e) has been replaced
by E∗(s, t; e) and E(t) by E∗t . Since

|E8( f ∗s,t , E∗(s, t; e))− E8(ρ( f )M∗s,t , E∗t )|

≤ ε+‖8‖BC
[
P(‖ f ∗s,t − ρ( f )M∗s,t‖L1(RN ) > η)+P(‖E∗(s, t; e)− E∗t ‖F > η)

]
,

it is sufficient to prove that f ∗s,t − ρ( f )M∗s,t → 0 and E∗(s, t; e)− E∗t → 0 in
probability on L1(RN ) and F respectively. We show the strongest (strongest, as is
proved classically by means of the Markov inequality) property

lim
s→−∞

E‖ f ∗s,t −ρ( f )M∗s,t‖L1(RN ) = 0, lim
s→−∞

E‖E∗(s, t; e)− E∗t ‖F = 0. (3-23)

The second limit in (3-23) is a consequence of (3-21). Let us prove the first limit.
Consider first the LB case. Using (3-13) and the estimate |ρ( f )| ≤ ‖ f ‖L1(RN ), we
have

E
∥∥ f LB,∗

s,t − ρ( f )MLB,∗
s,t

∥∥
L1(RN )

≤ ‖ f ‖L1(RN )e
−(t−s)

+‖ f ‖L1(RN )E

∫ t

s
e−(t−σ)b

(∫ t

σ

∣∣E∗(r, s, e)− E∗(r)
∣∣ dr

)
dσ,

where, as in (3-19), we denote by b(|w− z|) the right-hand side of (3-14). From
(3-19) follows

2b(r)≤ ε+ 5
4ε

r.

We deduce the estimate

E
∥∥ f LB,∗

s,t − ρ( f )MLB,∗
s,t

∥∥
L1(RN )

≤ ‖ f ‖L1(RN )(e
−(t−s)

+ ε)+
5
4ε
‖ f ‖L1(RN )

∫ t

s
e−(t−r)E

∣∣E∗(r, s, e)− E∗(r)
∣∣ dr.

By (3-21), this yields the following estimate:

E
∥∥ f LB,∗

s,t − ρ( f )MLB,∗
s,t

∥∥
L1(RN )

≤ ‖ f ‖L1(RN )

(
e−(t−s)

+ ε+
5R
4ε

∫ t

s
e−(t−r)γmix(t − r) dr

)
= ‖ f ‖L1(RN )

(
e−(t−s)

+ ε+
5R
4ε

∫ t−s

0
er−(t−s)γmix(r) dr

)
. (3-24)

We fix r1 such that 5
4 R
∫
∞

r1
γmix(r) dr < ε2. Then

5
4 R
∫ t−s

0
er−(t−s)γmix(r) dr ≤ ε2

+
5
4 R
∫ r1

0
γmix(r) dr er1−(t−s) < 2ε2



18 ARNAUD DEBUSSCHE AND JULIEN VOVELLE

for t − s large enough and (3-23) follows from (3-24). In the FP case, we start first
from the exponential estimate∥∥ f FP

s,t |E≡0− ρ( f )M
∥∥

L2(M−1)
≤ es−t

‖ f ‖L2(M−1). (3-25)

In (3-25), f FP
s,t |E≡0 denotes the function (3-4) obtained when E ≡ 0. The estimate

(3-25) is a consequence of the dual estimate in L2(M) for functions h such that
〈h,M〉L2(RN ) = 0, see [Bakry et al. 2014, p. 179]. It implies∥∥ f FP

s,t |E≡0− ρ( f )M
∥∥

L1(RN )
≤ es−t

‖ f ‖L2(M−1). (3-26)

The translations

v 7→ v−

∫ t

s
e−(t−σ) Ẽ(σ, s, e) dσ, v 7→ v−

∫ t

s
e−(t−σ) Ẽ∗s (σ ) dσ,

leave invariant the L1-norm. Therefore (3-26) yields

E
∥∥ f FP,∗

s,t − ρ( f )MFP,∗
t

∥∥
L1(RN )

≤ es−t
‖ f ‖L2(M−1)+ |ρ( f )|E

∥∥∥∥M
(
· −

∫ t

s
e−(t−σ)E∗(σ ) dσ

)
−M

(
· −

∫ t

s
e−(t−σ)E∗(σ, s, e) dσ

)∥∥∥∥
L1(RN )

.

We conclude as in the case Q = QLB by means of (3-14). �

4. Resolution of the kinetic equation

We consider the resolution of the Cauchy problem of (1-1) or (1-7) at fixed ε > 0.
We set ε = 1 for simplicity. Then (1-1) and (1-7) are the same equation,

∂t f + v · ∇x f + E(t, x) · ∇v f = Q f. (4-1)

What is relevant actually is the dynamics given by ( f, e) 7→ ( ft , Et(e)), where ft

is the solution to the equation

∂t f + v · ∇x f + E(t, x) · ∇v f = Q f, (4-2)

with E(t, x) = Et(e(x)). Therefore, this is (4-2) which we solve. We simply
assume that t 7→ E(t, ·) is a càdlàg function with values in F (see Section 2 for
the definition of the state space F). In the particular case E(t, x)= Et(e(x)), we
define in this way pathwise solutions. We solve the Cauchy problem for (4-2) in
the LB-case and in the FP-case in Section 4A and Section 4B respectively. Then,
in Section 4C, we establish the Markov property of the process ( ft , Et(e)), where
the first component ft is the solution to (4-2) with the forcing E(t, x)= Et(e(x)).
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4A. Cauchy problem in the LB case. Let t 7→ E(t, ·) be a càdlàg function with
values in F . Let 8t(x, v)= (X t(x, v), Vt(x, v)) denote the flow associated to the
field (v, E(t, x)):

Ẋ t =Vt , X0 = x,

V̇t =E(t, X t), V0 = v.

The partial map (x, v) 7→ 8t(x, v) is a C1-diffeomorphism of TN
× RN . We

denote by 8t the inverse application: 8t
◦8t = Id. Note that 8t and 8t preserve

the Lebesgue measure on TN
×RN .

Definition 4.1 (mild solution, LB case). Let fin ∈ L1(TN
×RN ). Assume Q= QLB.

A continuous function from [0, T ] to L1(TN
×RN ) is said to be a mild solution to

(4-2) with initial datum fin if

f (t)= e−t fin ◦8
t
+

∫ t

0
e−(t−s)

[ρ( f (s))M] ◦8t−s ds, (4-3)

for all t ∈ [0, T ].

Proposition 4.2 (the Cauchy problem, LB case). Let fin ∈ L1(TN
×RN ). There

exists a unique mild solution to (4-2) in C([0, T ]; L1(TN
×RN )) with initial datum

fin. It satisfies

‖ f (t)‖L1(TN×RN ) ≤ ‖ fin‖L1(TN×RN ) for all t ∈ [0, T ]. (4-4)

If fin ≥ 0, then f (t) ≥ 0 for all t ∈ [0, T ] and (4-4) is an identity. In addition, if
fin ∈W k,1(TN

×RN ) with k ≤ 2, then

‖ f ‖L∞(0,T ;W k,1(TN×RN )) ≤ C(k, T, fin), (4-5)

where the constant C(k, T, fin) depends on k, T , N , and on the norms

sup
t∈[0,T ]

‖E(t, ·)‖F and ‖ fin‖W k,1(TN×RN )

only. Eventually, if fin ∈ Gm , then f (t) ∈ Gm for all t ∈ [0, T ].

Proof. Let XT denote the space of continuous functions from [0, T ] to L1(TN
×RN ).

We use the norm
‖ f ‖XT = sup

t∈[0,T ]
‖ f (t)‖L1(TN×RN )

on XT . Note that
‖ρ( f )‖L1(TN ) ≤ ‖ f ‖L1(TN×RN ). (4-6)

Let f ∈ XT . Assume that (4-3) is satisfied. Then, by (4-6), we have

‖ f (t)‖L1(TN×RN ) ≤ e−t
‖ fin‖L1(TN×RN )+

∫ t

0
e−(t−s)

‖ f (s)‖L1(TN×RN ) ds.
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By Gronwall’s Lemma applied to t 7→ et
‖ f (t)‖L1(TN×RN ), we obtain (4-4) as an

a priori estimate. Besides, the L1-norm of the integral term in (4-3) can be es-
timated by (1− e−T )‖ f ‖XT . Therefore existence and uniqueness of a solution
to (4-3) in L1(�; XT ) follow from the Banach fixed point theorem. To obtain
the additional regularity (4-5), we do the same kind of estimates on the system
satisfied by the derivatives and incorporate these estimates in the fixed-point space.
To conclude the proof, let us assume fin ≥ 0. Since s 7→ s− (negative part) is
convex and satisfies (a + b)− ≤ a− + b−, we deduce from (4-3) and the Jensen
inequality that

f −(t)≤
∫ t

0
e−(t−s)

[ρ( f (s))M]− ◦8t−s ds.

Since M ≥ 0 and ρ( f )− ≤ ρ( f −), (4-6) yields the estimate

‖ f −(t)‖L1(TN×RN ) ≤

∫ t

0
e−(t−s)

‖ f −(s)‖L1(TN×RN ) ds.

We conclude that f −= 0 by the Grönwall lemma. Eventually, that fin ∈Gm implies
f (t)∈Gm for all t ∈ [0, T ] (propagation of moments) is proved in Proposition 5.10.

�

4B. Cauchy problem in the FP case. Let Kt(x, v; y, w) denote the kernel associ-
ated to the kinetic Fokker–Planck equation

∂t f = QFP f − v · ∇x f. (4-7)

Let us recall some elementary facts about Kt (see [Bouchut 1993] for more results
about the analytic properties of Kt , and [Pulvirenti and Simeoni 2000] for the
probabilistic interpretation of Kt ). The function Kt(·; y, w) is the density with
respect to the Lebesgue measure on TN

× RN of the law µ
(y,w)
t of the solution

(X t , Vt) to the SDE

d X t =Vt dt, X0 = y, (4-8)

dVt =− Vt dt +
√

2 dBt , V0 = w, (4-9)

where Bt is a Wiener process over RN . Therefore

Kt f (x, v) :=
∫∫

TN×RN
Kt(x, y; y, w) f (y, w) dy dw

satisfies the identity

〈Kt f, ϕ〉 =
∫∫

TN×RN
Eϕ(X t , Vt) f (y, w) dy dw, (4-10)
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for f ∈ L1(TN
×RN ) and ϕ : TN

×RN
→R continuous and bounded. The solution

to (4-8)–(4-9) is given explicitly by

X t = y+ (1− e−t)w+

∫ t

0
(1− e−(t−s)) dBs,

Vt = e−tw+

∫ t

0
e−(t−s) dBs .

(4-11)

The process (X0
t , V 0

t ) given by (4-11) when y = 0, w = 0 is a Gaussian process
with covariance matrix

Qt :=

( ∫ t
0 |1− e−s

|
2 ds

∫ t
0 e−s(1− e−s) ds∫ t

0 e−s(1− e−s) ds
∫ t

0 e−2s ds

)
⊗ IN . (4-12)

Using (4-12) and (4-10)–(4-11), one can show that

Kt : L p(TN
×RN )→ L p(TN

×RN )

with norm bounded by e(N/p′)t . We have also the estimate∫∫
TN×RN

|∇wKt(x, v; y, w)| dx dv ≤ Ct−1/2, (4-13)

for all (y, w) ∈ TN
× RN , t ∈ [0, T ], with a constant C independent on (y, w)

and T . The estimate (4-13) also follows from the estimate between Equations (26)
and (27) of [Bouchut 1993].

Definition 4.3 (mild solution, FP case). Let t 7→ E(t, ·) be a càdlàg function with
values in F . Let p ∈ [1,+∞). Let fin ∈ L p(TN

× RN ). Assume Q = QFP. A
continuous function from [0, T ] to L p(TN

×RN ) is said to be a mild solution to
(4-2) in L p with initial datum fin if

f (t)= Kt fin+

∫ t

0
∇wKt−s[E(s) f (s)] ds, (4-14)

for all t ∈ [0, T ].

Proposition 4.4 (the Cauchy problem, FP case). Let t 7→ E(t, ·) be a càdlàg func-
tion with values in F. Let p ∈ [1,+∞). Let fin ∈ L p(TN

×RN ). Then (4-2) has
a unique mild solution f in L p with initial datum fin. If fin ≥ 0, then f (t) ≥ 0,
for all t ∈ [0, T ]. In addition, for every k ≤ 2, the regularity W k,p(TN

×RN ) is
propagated:

sup
t∈[0,T ]

‖ f (t)‖W k,p(TN×RN ) ≤ C(k, T )‖ fin‖W k,p(TN×RN ), (4-15)

where the constant C(k, T ) depends on k, T , N and supt∈[0,T ] ‖E(t, ·)‖F . If p = 1
and fin ≥ 0, then ‖ f (t)‖L1(TN×RN ) = ‖ fin‖L1(TN×RN ). If , more generally, there
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is no sign condition on fin ∈ L1(TN
×RN ), then (4-4) is satisfied. Eventually, if

fin ∈ Gm , then f (t) ∈ Gm for all t ∈ [0, T ].

Proof. The existence-uniqueness follows from the Banach fixed point theorem
using (4-13), in a manner similar to the proof of Proposition 4.2. To obtain (4-15)
for k = 1, we assume first that f (t) is in W k,p(TN

×RN ) for all t and we use the
relations

∇x Kt(x, v; y, w)=−∇y Kt(x, v; y, w),

∇vKt(x, v; y, w)=−(1− e−t)∇y Kt(x, v; y, w)− e−t
∇wKt(x, v; y, w),

and Gronwall’s lemma, to obtain (4-15). We can drop the a priori requirement
that f (t) is in W k,p(TN

×RN ) for all t either by incorporating this in the fixed-
point space, or by working with differential quotients. The case k = 2 is obtained
similarly. To prove that fin ≥ 0 implies f (t)≥ 0, we use a duality argument: it is
sufficient to prove the propagation of the sign for L∞ solutions to the dual equation

ϕ(T )= ψ, (4-16)

∂tϕ =−v · ∇xϕ− E t · ∇vϕ− Q∗FPϕ, 0< t < T . (4-17)

This follows from the maximum principle, since Q∗FPϕ =1vϕ− v · ∇vϕ. The max-
imum principle for the solutions to (4-16)–(4-17) also yields the L1-estimate (4-4).
The propagation of moments is proved in Proposition 5.10. �

4C. Markov property. We prove the following result.

Theorem 4.5 (Markov property). Let (E(t)) be a mixing force field in the sense of
Definition 2.1. We denote by A the generator of (E t). Let X denote the state space

X = L1(TN
×RN )× F. (4-18)

For ( f, e) ∈ X , let ft denote the mild solution to (4-2) with initial datum f and
forcing Et(e). Then ( ft , Et(e))t≥0 is a time-homogeneous Markov process over X .

Proof. We will just give the sketch of the proof. We use the propagation of the
W 2,1-regularity stated in Proposition 4.2 and Proposition 4.4. when ft has the
regularity W 2,1(TN

×RN ), it is simple to prove that

ft =9t( f, (E(σ ))0≤σ≤t), (4-19)

where 90,t( f, ·) is a continuous map from L1([0, t]; F) to L1(TN
×RN ). Indeed,

if f i
t , i ∈ {1, 2} are two solutions to (4-2) corresponding to two different forcing

terms E i (t, x), i ∈ {1, 2}, we just need to write

[∂t + E1
· ∇v − Q]( f 1

t − f 2
t )= (E

2
− E1) · ∇v f 2

t ,
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multiply the equation by sgn( f1− f2) and integrate, to obtain

‖ f 1
t − f 2

t ‖L1(TN×RN ) ≤ C
∫ t

0
‖E2(s)− E1(s)‖F ds, (4-20)

where the constant C depends on the L∞t L1
x,v-norm of ∇v f 2

t . Without loss of
generality, we can assume that � is the path-space, in which case (4-19) gives

ft =9t( f, ω). (4-21)

Setting θtω = ω(t + ·), we see that 9 satisfies the cocycle property 9t+s( f, ω)=
9t(9s( f, ω), θsω). In this context of random dynamical system, it is clear that the
process ( ft , Et(e))t≥0 is a Markov process, [Crauel 1991]. The extension to the
case where f ∈ L1(TN

×RN ) results from a density argument. �

Let us introduce the operators

L]ϕ( f, e)= Aϕ( f, e)+ (Q f − e · ∇v f, D f ϕ( f, e)), (4-22)

L[ϕ( f, e)=−(v · ∇x f, D f ϕ( f, e)), (4-23)

and L =L]+L[. Formally, L is the generator associated to the Markov process
( ft , Et). In the Proposition 4.6 below, we describe a class of test-functions that
are in the domains of both L] and L[, the class being big enough to be used to
characterize the limit process by the perturbed test-function method.

Proposition 4.6. Let (E(t)) be a mixing force field in the sense of Definition 2.1.
Let A be the generator of (Et), let X be the state space defined by (4-18), and let
L] and L[ be defined by (4-22)–(4-23). Let ψ : Rm

× F → R be a continuous
function which is bounded on bounded sets of Rm

× F and satisfies the following
properties:

(1) for all u ∈ Rm , e 7→ ψ(u; e) is in the domain of A and (u, e) 7→ Aψ(u; e) is
bounded on bounded sets of Rm

× F ,

(2) for all e ∈ F , u 7→ ψ(u; e) is differentiable, (u, e) 7→ ∇uψ(u; e) is bounded
on bounded sets of Rm

× F and continuous with respect to e.

Let ξ1, . . . , ξm ∈ C∞c (T
N
×RN ). Then the test-function

ϕ : ( f, e) 7→ ψ(〈 f, ξ1〉, . . . , 〈 f, ξm〉; e) (4-24)

satisfies L]ϕ( f, e),L[ϕ( f, e) <+∞ for all ( f, e) ∈ X and ϕ is in the domain of
L in the sense that

Ptϕ( f, e)= ϕ( f, e)+ tL ϕ( f, e)+ o f,e(t), (4-25)

for all ( f, e) ∈ X .
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Proof. Let ξ = (ξi )1,m . We have

L]ϕ( f, e)=
{

Aψ(u; e)+〈 f, Q∗ξ + e · ∇vξ〉∇uψ(u; e)
}∣∣

u=〈 f,ξ〉,

L[ϕ( f, e)= 〈 f, v · ∇xξ〉∇uψ(u; e)|u=〈 f,ξ〉,

therefore ( f, e) 7→ (L]ϕ( f, e),L[ϕ( f, e)) is bounded on bounded sets of X . To
obtain (4-25), we use the decomposition of Ptϕ( f, e)−ϕ( f, e) into the sum of the
terms

E( f,e)ϕ( f, Et)−ϕ( f, e) (4-26)

and

E( f,e)[ϕ( ft , Et)−ϕ( f, Et)]. (4-27)

By item (1), we have the asymptotic expansion (4-26)= t Aψ(u; e)|u=〈 f,ξ〉+ o(t).
In addition, by (4-2), we have

ut = u+ t
(
〈 f, Q∗ξ + e · ∇vξ〉+ 〈 f, v · ∇xξ〉

)
+ o(t),

where ut = 〈 ft , ξ〉, u = 〈 f, ξ〉. By item (2), we obtain the asymptotic expansion

(4-27)= t
(
〈 f, Q∗ξ + e · ∇vξ〉+ 〈 f, v · ∇xξ〉

)
∇uψ(u; e)|u=〈 f,ξ〉+ o(t).

This concludes the proof. �

Remark 4.7. The result of Proposition 4.6 holds true if we consider some functions
ξi not as smooth and localized as C∞c functions, provided there is a sufficient
balance with the regularity and integrability properties of f . For example, we
apply Proposition 4.6 in Section 5A3 with ξi (x, v) = ξ̂i (x)ζi (v), where ξ̂i is in
some Sobolev space H s(TN ) and ζi (v) is a polynomial in v of degree less than
two. In that case, we view ( ft , Et) as a Markov process on X3 := G3× F and the
conclusion of Proposition 4.6 is valid for f ∈ G3.

Remark 4.8. Note that, in the context of Proposition 4.6, the function |ψ |2 has the
same properties (item (1) and item (2)) as ψ . Therefore |ψ |2 is also in the domain
of L .

5. Diffusion-approximation

We consider the Markov process ( f εt , Eεt ) (see Theorem 4.5). The generator L ε

of this process can be decomposed as

L ε
=

1
ε2 L]+

1
ε
L[,
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where L] and L[ are defined by (4-22) and (4-23) respectively. For every ϕ in the
domain of L ε, the process

Mε
ϕ(t) := ϕ( f εt , Eεt )−ϕ( fin, E0)−

∫ t

0
L εϕ( f εs , Eεs ) ds (5-1)

is a (Gt/ε2)-martingale (this is a consequence of Theorem 4.5 and Theorem B.1 in
Appendix B. The equation associated to the principal generator L] is (1-2). It has
been analyzed in Section 3. Our approach to the proof of the convergence of (ρε)
uses the perturbed test-function method introduced by Papanicolaou, Stroock and
Varadhan [Papanicolaou et al. 1977]. Let us explain the main steps of the proof.

(1) Limit generator. To find the limit generator L associated to the equation
satisfied by the limit ρ of (ρε), which acts on test functions ϕ(ρ), we seek two
correctors ϕ1 and ϕ2 such that, for the perturbed test function

ϕε( f, e)= ϕ(ρ)+ εϕ1( f, e)+ ε2ϕ2( f, e), (5-2)

we may write L εϕε =L ϕ+ o(1). See Section 5A.

(2) Tightness. We prove the tightness of the sequence (ρε) in an adequate space.
First, we obtain some bounds uniform with respect to ε by perturbation of the
functional which we try to estimate. See Section 5B. Then we establish some
uniform estimates on the time increments of (ρε). See Section 5C.

(3) Convergence. We use the characterization of (1-25)–(1-26) as a martingale
problem to take the limit of the processes (ρε). This is a very classical approach to
the convergence of stochastic processes, see the introduction to [Jacod and Shiryaev
2003, Chapter III]. We will consider the class Θ of test-functions ϕ(ρ) of the form

ϕ(ρ)= ψ(〈ρ, ξ〉), (5-3)

for ξ ∈C3(TN ), ρ∈ L1(TN ), andψ a Lipschitz function on R such thatψ ′∈C∞b (R).
This class Θ is a separating class in L1(TN ): if two random variables ρ1 and ρ2

satisfy Eϕ(ρ1) = Eϕ(ρ2) for all ϕ as in (5-3), then ρ1 and ρ2 have the same laws
(this is because Θ separates points, see Theorem 4.5 p. 113 in [Ethier and Kurtz
1986]).

5A. Perturbed test-function. Let ϕ : L1(TN ) → R be a given test-function as
in (5-3). Consider the perturbation (5-2). To obtain the approximation L εϕε =

L ϕ+ o(1), we identify the powers in ε in each side of this equality. This gives,
for the scale ε−2, the first equation L]ϕ = 0. This equation is satisfied since ϕ is
independent on e. Indeed, we have Aϕ = 0, consequently, and also(

Q f − e · ∇v f, D f ϕ(ρ)
)
=
(
ρ(Q f − e · ∇v f ), Dρϕ(ρ)

)
= 0
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since ρ(Q f ) = 0 and ρ(e · ∇v f ) = 0. At the scales ε−1 and ε0 respectively, we
obtain the equation for the first corrector

L]ϕ1+L[ϕ = 0 (5-4)

and the equation for the second corrector

L]ϕ2+L[ϕ1 =L ϕ. (5-5)

If (5-4) and (5-5) are satisfied, then L εϕε =L ϕ+εL[ϕ2. We solve (5-4) and (5-5)
by formal computations first, see Sections 5A1 and 5A2. In Section 5A3 then, we
give and prove the rigorous statement concerning the resolution of (5-4) and (5-5),
see Proposition 5.7.

5A1. First corrector. We seek a solution to (5-4) by means of the resolvent for-
mula

ϕ1( f, e)=
∫
∞

0
E( f,e)ψ( ft , Et) dt, ψ =L[ϕ,

where ft is obtained either by (3-3) or (3-4) with s = 0. The right-hand side ψ is

ψ( f, e)=L[ϕ( f, e)=−
(
divx(v f ), D f ϕ(ρ)

)
.

Since ρ(v f )= J ( f ), this gives

ψ( f, e)=−
(
divx(J ( f )), Dρϕ(ρ)

)
. (5-6)

Lemma 5.1. Let fs,t be equal either to (3-3), or to (3-4). The two first moments of
fs,t (see (1-14) for the definition of the moments) are, respectively, ρ( fs,t)= ρ( f ),
and

J ( fs,t)= e−(t−s) J ( f )+ ρ( f )
∫ t

s
e−(t−σ)E(σ, s; e) dσ. (5-7)

Proof. We use the formula∫
RN
(1, v, v⊗2)M(v−w) dv = (1, w, K +w⊗2), (5-8)

where K is defined by (1-16). By (5-8) (and a change of variable in the FP-case),
we obtain (5-7). �

Remark 5.2. Similar computations done on the equilibria MLB
t and MFP

t defined
by (3-6) and (3-7) give the formula

J (MLB
0 )= J (MFP

0 )=

∫ 0

−∞

eσ E(σ ) dσ. (5-9)
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Using (2-12) and (5-7), it is also simple to establish∫
∞

0
|EJ ( f0,t)| dt <+∞,

∫
∞

0
EJ ( f0,t) dt = J ( f )+ ρ( f )R0(e). (5-10)

Combining (5-6) and (5-10), we obtain the following candidate as first corrector:

ϕ1( f, e)=−
(
divx(H( f, e)), Dρϕ(ρ)

)
, H( f, e) := J ( f )+ρ( f )R0(e). (5-11)

5A2. Second corrector and limit generator. Let µρ be the invariant measure pa-
rametrized by ρ associated to L], defined by (3-8). Since L ∗] µρ=0 and 〈L ϕ,µρ〉=

L ϕ(ρ), a necessary condition for (5-5) is that

L ϕ(ρ)= 〈L[ϕ1, µρ〉. (5-12)

If (5-12) is satisfied, then we set

ϕ2( f, e)=
∫
∞

0

(
E( f,e)L[ϕ1( ft , Et)−〈L[ϕ1, µρ〉

)
dt. (5-13)

Equation (5-12) gives the limit generator L . Since f 7→ H( f, e), defined in (5-11),
is linear, we have

L[ϕ1( f, e)=−
(
divx(v f ), D f ϕ1( f, e)

)
=
(
divx [H(divx(v f ), e)], Dρϕ(ρ)

)
+ D2

ρϕ(ρ) ·
(
divx(H( f, e)), divx(J ( f ))

)
, (5-14)

and thus

L ϕ(ρ)= (〈ψ,µρ〉, Dρϕ(ρ))

+

∫
E×F

D2
ρϕ(ρ) ·

(
divx(H( f, e)), divx(J ( f ))

)
dµρ( f, e), (5-15)

where ψ( f, e) = divx(H(divx(v f ), e). Let us compute the first term in the right-
hand side of (5-15). Using (5-11), we have

ψ( f, e)= D2
x :K ( f )+ divx [R0(e) divx(J ( f ))]. (5-16)

The part 〈D2
x :K ( f ), µρ〉 = D2

x :[ρEK (M0)] is given by (5-17) below.

Lemma 5.3. Let MLB
t and MFP

t be defined by (3-6) and (3-7) respectively. The
expectation of the second moment of M0 is

E[K (M0)] = K + b
2

E[E(0)
sym
⊗ R1(E(0))], (5-17)

where bLB
= 2 and bFP

= 1.
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Proof. We compute, using (5-8),

K (MLB
0 )=

∫ 0

−∞

eσ
(

K +
[∫ 0

σ

E(r) dr
]⊗2)

dσ.

This gives

E[K (MLB
0 )] = K +

∫ 0

−∞

eσ
∫ 0

σ

∫ 0

σ

0(r − s) dr ds dσ,

where 0(t) is the covariance of (E(t)) (see (2-18)). We have also∫ 0

σ

∫ 0

σ

0(r − s) dr ds =
∫ 0

σ

(r − σ)[0(r)+0(−r)] dr.

Two successive integration by parts and (2-20) give then (5-17). Similarly, we have
by (3-7) and (5-8),

K (MFP
0 )= K +

[∫ 0

−∞

eσ E(σ ) dσ
]⊗2

.

To conclude to (5-17), we use the following Lemma 5.4. �

Lemma 5.4. For δ > 0, we have

E[Rδ(E(0))
sym
⊗ E(0)] = 2δE

[∫ 0

−∞

eδσ E(σ ) dσ
]⊗2

. (5-18)

In particular, when δ ≥ 0, E[Rδ(E(0))
sym
⊗ E(0)] is a nonnegative symmetric matrix.

Proof. We compute

E

[∫ 0

−∞

eδσ E(σ ) dσ
]⊗2

=

∫ 0

−∞

∫ 0

−∞

eδ(σ+s)E[E(s)⊗ E(σ )] dσ ds

=

∫ 0

−∞

∫ s

σ=−∞

eδ(σ+s)E[E(s)
sym
⊗ E(σ )] dσ ds (5-19)

Then we set σ ′ = σ − s, and some standard rearrangements and computations give
the formula (5-18). It is clear then that the left-hand side of (5-18) is a nonnegative
matrix when δ > 0. This is also true for δ = 0 by continuity. �

Remark 5.5. Using (5-9), we obtain

E[R0(E0)
sym
⊗ J (M0)] =

∫ 0

−∞

eσE[R0(E(0))
sym
⊗ E(σ )] dσ

= E[R1 R0(E(0))
sym
⊗ E(0)]. (5-20)
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To identify the contribution of the second part in (5-16), we adapt (5-20) to get

〈
divx [R0(e) divx(J ( f ))], µρ

〉
= ∂x j

∫ 0

−∞

eσE[R0(E j (0))∂xi (ρE i (σ ))]

= ∂x j E[R1 R0(E j (0))∂xi (ρE i (0))].

The first-order part in (5-15) is therefore (〈ψ,µρ〉, Dρϕ(ρ)), with

〈ψ,µρ〉 = D2
x :

[
ρ
(

K + b
2

E[E(0)
sym
⊗ R1(E(0))]

)]
+ divx E[R1 R0(E(0)) divx(ρE(0))]. (5-21)

This can be rewritten as

〈ψ,µρ〉 = divx(K]∇xρ+2ρ), (5-22)

where K] and 2 are given in (1-19) and (1-20) respectively. To compute the
second-order part in (5-15), we have two terms to consider: 〈J ( f )⊗ J ( f ), µρ〉
and 〈R0(e)⊗ J ( f ), µρ〉. We have already established

〈R0(e)⊗ J ( f ), µρ〉 = E[R1 R0(E(0))⊗ (ρE(0))].

By (5-9) and (5-18), we have also

〈J ( f )⊗ J ( f ), µρ〉 = E[(ρR1(E(0)))⊗ (ρE(0))].

It follows by the resolvent identity R1 R0 = R0− R1 that∫
E×F

D2
ρϕ(ρ) ·

(
divx(H( f )), divx(J ( f ))

)
dµρ( f, e)

= ED2
ρϕ(ρ) ·

(
divx

(
ρR0(E(0))

)
, divx(ρE(0))

)
. (5-23)

To sum up, we find the following expression for the limit generator L :

L ϕ(ρ)=
(
divx(K]∇xρ+2ρ), Dρϕ(ρ)

)
+ ED2

ρϕ(ρ) ·
(
divx(ρR0(E(0))), divx(ρE(0))

)
. (5-24)

Remark 5.6. Lemma 5.4 has the following consequences, that we record here, in
relation with Remark 1.2. Let us fix δ > 0 first. Assume that there is a nontrivial
vector q ∈ RN in the kernel of the matrix E[Rδ(E(0))

sym
⊗ E(0)]. By (5-18), we

obtain ∫ 0

−∞

eδσm(σ ) dσ = 0, a. s., (5-25)

where mt = E t · q. Since (mt) is stationary, (5-25) implies that (mt) is trivial.
Indeed, (5-25) remains true if we replace m(σ ) by m(σ + s) where s is arbitrary
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in R. A change of variable then shows that, almost-surely,

V (s) :=
∫ s

−∞

eδ(σ−s)m(σ ) dσ = 0.

Since V ′(s) = −δV (s)+m(s), we conclude that m(s) = 0 indeed. Another way
to reach this conclusion is to observe that, stated quite informally, we have the
formula

E[Rδθ(E(0))θ(E(0))] = δ
∫

F
|ϕ|2 dν+ E(ϕ), (5-26)

where θ is a given a test-function, ϕ = Rδθ , and

E(ϕ) := 1
2

∫
F
(A|ϕ|2− 2ϕAϕ) dν

is the Dirichlet form associated to (E t). Equation (5-26) is a consequence of the
identities

ϕ = Rδθ, θ = δϕ− Aϕ, E(ϕ)=−
∫

F
ϕAϕ dν.

We apply (5-26) to the test-function θ(e)= e · q . When δ = 0, (5-26) degenerates.
We see however that, if e 7→ e · q is not in the kernel of the Dirichlet form, then q
cannot be in the kernel of the matrix E[R0(E(0))

sym
⊗ E(0)].

5A3. First and second correctors. Recall (see (1-17), (1-18)) that

J̄m( f )=
∫∫

TN×RN
|v|m f (x, v)dxdv, Gm =

{
f ∈ L1(TN

×RN ); J̄m( f )<+∞
}
.

Let us introduce the following notation. We write a . b with the meaning that
a ≤ Cb, where the constant C may depend on R (see (2-7)), on C0

R (see (2-16)),
on various irrelevant constants, and on the dimension N .

Proposition 5.7. Let ϕ be of the form (5-3), with ξ ∈ C3(TN ) and ψ a Lipschitz
function of class C3 on R such that the derivatives ψ ( j), j ∈ {1, 2, 3} are bounded.
Let ϕ1, ϕ2 be the correctors defined by (5-4), (5-13), respectively. Then the func-
tions ϕ1, ϕ2 satisfy L]ϕi ( f, e) < +∞, L[ϕi ( f, e) < +∞ for all f ∈ G3, e ∈ F
and are in the domain of L ε. We have the estimates

|ϕ1( f, e)|. ‖ψ ′‖Cb(R)‖ξ‖C1(TN )( J̄0( f )+ J̄1( f )), (5-27)

and

|L[ϕ1( f, e)|. ‖ψ ′‖C1
b (R)
‖ξ‖2C2(TN )

(| J̄0( f )|2+ | J̄2( f )|2), (5-28)

on ϕ1 and the following estimates on ϕ2:

|ϕ2( f, e)|. ‖ψ ′‖C1
b (R)
‖ξ‖2C2(TN )

(| J̄0( f )|2+ | J̄2( f )|2), (5-29)
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and

|L[ϕ2( f, e)|. ‖ψ ′‖C2
b (R)
‖ξ‖3C3(TN )

(| J̄0( f )|3+ | J̄3( f )|3), (5-30)

for all f ∈ G3, for all e ∈ F with ‖e‖F ≤ R. The estimate

|L ϕ(ρ)|. ‖ψ ′‖Cb(R)‖ξ‖
2
C2(TN )

‖ρ‖2L1(TN )
(5-31)

is also satisfied for all ρ ∈ L1(TN ).

Proof. For ϕ as in (5-3), the formulas (5-11) and (5-14) read

ϕ1( f, e)= ψ ′(〈ρ, ξ〉)〈H( f, e),∇xξ〉, H( f, e)= J ( f )+ ρ( f )R0(e), (5-32)

and

L[ϕ1( f, e)= ψ ′(〈ρ, ξ〉)
[
〈Ki j ( f ), ∂2

xi x j
ξ〉+

〈
Ji ( f ), ∂xi (R0(e j )∂x j ξ)

〉]
+ψ ′′(〈ρ, ξ〉)〈H( f, e),∇xξ〉〈J ( f ),∇xξ〉, (5-33)

respectively. The two estimates (5-27), (5-28) then follow from the bounds (2-7),
(2-15) on E t and R0(e). The formula (5-12) for L ϕ and (5-28) then give (5-31).
Let us focus on the estimate (5-29) on |ϕ2( f, e)| now. For simplicity, let us denote
by ψ ′, ψ ′′, . . . the derivatives of ψ evaluated at the point 〈ρ, ξ〉. We start from the
formula (5-13), which gives

ϕ2( f, e)=
∫
∞

0
E( f,e)

[
L[ϕ1( ft , Et)−〈L[ϕ1, µρ〉

]
dt, (5-34)

where ft is obtained either by (3-3) or (3-4) with s = 0. Consider the LB-case.
There are two terms in ft and three terms in L[ϕ1, which makes at least six terms
to consider. We find more than six terms actually, because of the translations in v.
Consider the first term in (3-3). By (5-8), and for

wt :=

∫ t

0
Es(e) ds,

we have

K ( f (·−wt))= K ( f )+ J ( f )
sym
⊗wt+ρ( f )w⊗2

t , J ( f (·−wt))= J ( f )+ρ( f )wt .

In (5-33)–(5-34), and regarding the linear terms with factor ψ ′, this gives the con-
tributions

82,a = ψ
′

∫
TN

∫
∞

0
e−t E

[
K ( f )+ J ( f )

sym
⊗ wt + ρ( f )w⊗2

t
]
:D2

xξ dt dx,

and

82,b = ψ
′

∫
TN

∫
∞

0
e−t E

[
(J ( f )+ ρ( f )wt) · ∇x [R0(Et(e)) · ∇xξ ]

]
dt dx .
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Using the bound ‖wt‖F ≤ t sups∈[0,t] ‖Es(e)‖F and (2-7), (2-15), we have

|82,a|, |82,b|. ‖ψ
′
‖Cb(R)‖ξ‖C2(TN )

(
J̄0( f )+ J̄1( f )+ J̄2( f )

)
.

Since J̄1( f )≤ 1
2 J̄0( f )+ 1

2 J̄2( f ), this gives us a bound by

‖ψ ′‖Cb(R)‖ξ‖C2(TN )( J̄0( f )+ J̄2( f )).

Using (5-8) again, and still regarding the linear terms with factor ψ ′ only, we
see that the second term in the expansion (3-3) of f LB

t has the contributions

82,c = ψ
′

∫
TN

∫
∞

0
(θc(t)− θc(+∞)) dt dx,

82,d = ψ
′

∫
TN

∫
∞

0
(θd(t)− θd(+∞)) dt dx,

where

θc(t)= ρ( f )
∫ t

0
e−(t−σ)

[
K + E

(∫ t

σ

Es(e) ds
)⊗2]

:D2
xξ dσ, (5-35)

θd(t)= ρ( f )
∫ t

0
e−(t−σ)E

[∫ t

σ

Es(e) ds · ∇x [R0(Et(e)) · ∇xξ ]

]
dσ. (5-36)

By standard manipulations on the integrals in (5-35), we have

θc(t)=ρ( f )(1−e−t)K :D2
xξ+2ρ( f )

∫ t

0
e−σ

∫ σ

0

∫ σ

r
0e(t−r, t−s):D2

xξ ds dr dσ,

where the covariance 0e is defined by (2-18). The most delicate term to estimate
in 82,c is

8∗2,c=2
∫

TN
ρ( f )

∫
∞

0

∫ t

0
e−σ

∫ σ

0

∫ σ

r

[
0e(t−r, t−s)−0(s−r)

]
:D2

xξ ds dr dσ dt dx .

The other terms are bounded by ‖ξ‖C2(TN )( J̄0( f )+ J̄2( f )) using (2-7). Using also
(2-19), we have

|8∗2,c|. 2 J̄0( f )‖ξ‖C2(TN )

∫
∞

0

∫ t

0
e−σ

∫ σ

0

∫ σ

r
γmix(t − s) ds dr dσ dt

. 2 J̄0( f )‖ξ‖C2(TN )

∫
∞

0

∫ t

0
s(e−s

− e−t)γmix(t − s) ds dt.

Neglecting the term−e−t and using (2-14) gives a bound |8∗2,c|.2 J̄0( f )‖ξ‖C2(TN ).

We have also

θd(t)= ρ( f )
∫ t

0
e−σ

∫ σ

0
E
[
Et−s(e) · ∇x [R0(Et(e)) · ∇xξ ]

]
ds dσ.
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Conditioning on Gt−s , we see that

E
[
Et−s(e)⊗ R0(Et(e))

]
= Pt−s[ψ ⊗Ps R0ψ](e), ψ(e)= e. (5-37)

Indeed, given some continuous and bounded functions ϕ, θ : F→ R, the Markov
property gives

E
[
ϕ(Et−s(e))⊗ θ(Et(e))|Gt−s

]
= ϕ(Et−s(e))⊗Psθ(Et−s(e)).

Taking expectation gives

E
[
ϕ(Et−s(e))⊗ θ(Et(e))

]
= Pt−s[ϕ⊗Psθ ](e). (5-38)

The bound (2-7) allows us to extend (5-38) to the case ϕ=ψ , θ = R0ψ to establish
(5-37). By (2-13), (2-15), (2-14), we obtain∥∥∥∥∥
∫
∞

0

∫ t

0
e−σ

∫ σ

0

[
Pt−s

[
ψ · ∇x(Ps R0ψ · ∇xξ)

]
(e)

−
〈
ψ · ∇x(Ps R0ψ · ∇xξ), ν

〉]
ds dσ dt

∥∥∥∥∥
C(TN )

≤ R2
∫
∞

0

∫ t

0
e−σ

∫ σ

0
γmix(t − s) ds dσ dt‖ξ‖C1(TN ) ≤ R2

‖ξ‖C1(TN ).

Using this bound, it is easy to prove that |82,d |. ‖ξ‖C2(TN ) J̄0( f ). Let us look at
the quadratic terms with the factor ψ ′′ now. There are two terms in (3-3), so four
terms 82,e, . . . , 82,h to consider here. The first term in (3-3) has a factor e−t , like
in 8a , 8b. There is no contribution from 〈L[ϕ1, µρ〉 in 82,e,82, f ,82,g hence,
and the convergence of the integral in (5-34) is clear. Therefore, using the same
arguments as above, we obtain the estimates

|82,e|, |82, f |, |82,g|. ‖ψ
′′
‖Cb(R)‖∇xξ‖

2
C1(TN )

(| J̄0( f )|2+ | J̄1( f )|2). (5-39)

Let us illustrate this on the example of 82,g. We have

82,g = ψ
′′

∫
∞

0
e−t
∫ t

0
e−(t−σ)E

[∫ t

σ

〈ρ( f )Er (e),∇xξ〉L2(TN ) dr

×

〈
J ( f )+ ρ( f )

∫ t

0
Es(e) ds+ ρ( f )R0(Et),∇xξ

〉
L2(TN )

]
,

which gives (5-39). The last term 82,h is

82,h = ψ
′′

∫
∞

0
(θh(t)− θh(+∞)) dt,
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where

θh(t)= E

∫ t

0

∫ t

σ

∫ t

0

∫ t

σ ′
e−(t−σ)e−(t−σ

′)
〈ρ( f )Es(e),∇xξ〉L2(TN )

×
〈
ρ( f )Es′(e)+ c(t)−1ρ( f )R0(Et(e)),∇xξ

〉
L2(TN )

ds ′ ds dσ ′ dσ.

The coefficient c(t) is

c(t)=
∫ t

0

∫ t

σ ′
e−(t−σ

′)ds ′dσ ′ =
∫ t

0
σe−σ = 1− (t + 1)e−t .

The technique used to estimate the terms 82,c and 82,d applies here to give

|82,h|. ‖ψ
′′
‖Cb(R)‖∇xξ‖

2
C1(TN )

| J̄0( f )|2.

This concludes the estimate on ϕ2 in the LB-case. The estimate on ϕ2 in the FP-case
is obtained by the same arguments. This follows from the expressions for K ( ft),
J ( ft), which involve various terms, similar to those estimated in the LB-case. For
example, a careful computation based on (3-4) and (5-8) gives

K ( f FP
t )= ρ( f )

[
(1− e−2t)K +

(∫ t

0
e−(t−σ)Eσ (e) dσ

)⊗2]
+ e−2t K ( f )

+ e−t
[∫ t

0
e−(t−σ)Eσ (e) dσ ⊗ J ( f )+ J ( f )⊗

∫ t

0
e−(t−σ)Eσ (e) dσ

]
.

A comparable expansion for J ( f FP
t ) gives the result, like in the LB-case. Us-

ing (2-16), a careful study of the terms composing ϕ2 shows that ϕ1 and ϕ2 are of
the form (4-24) with some ξi as in Remark 4.7. By Proposition 4.6, we deduce that
L]ϕi ( f, e) < +∞, L[ϕi ( f, e) < +∞ for all f ∈ G3, e ∈ F and that ϕ1 and ϕ2

are in the domain of L ε.
There remains to prove (5-30). Compared to the development of ϕ2, when com-

puting L[ϕ2, still more terms appear, which combine the derivatives of ψ up to
the order three. However, all the questions of convergence of the integrals with
respect to t have been dealt with in the estimate of ϕ2. Although lengthy, it is not
problematic to prove (5-30): we do not expound that part thus. �

Remark 5.8 (linear test function). In Section 5C, we apply Proposition 5.7 to a
linear test-function ϕ(ρ) = 〈ρ, ξ〉L2(TN ), which means ψ ′ = 1, ψ ′′ = 0. In that
case, the bounds on the first corrector is a little bit simpler: we have

|ϕ1( f, e)|. ‖ξ‖C1(TN )( J̄0( f )+ J̄1( f )), (5-40)

|L[ϕ1( f, e)|. ‖ξ‖C2(TN )( J̄0( f )+ J̄2( f )), (5-41)

for all f ∈ G, for all e ∈ F with ‖e‖F ≤ R.
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By Theorem 4.5, Remark 4.8 and Theorem B.1, we obtain the following corol-
lary to Proposition 5.7.

Corollary 5.9. Let ϕ be of the form (5-3), with ξ ∈ C3(TN ) and ψ a Lipschitz
function of class C3 on R such that the derivatives ψ ( j), j ∈ {1, 2, 3} are bounded.
Let ϕ1, ϕ2 be the correctors defined by (5-4), (5-13) respectively. Let θ be the
correction of ϕ at order 0, 1 or 2:

θ ∈ {ϕ, ϕ+ εϕ1, ϕ+ εϕ1+ ε
2ϕ2}.

Then

Mε
θ (t) := θ( f εt , Eεt )− θ( fin, E0)−

∫ t

0
L εθ( f εs , Eεs ) ds (5-42)

and

|Mε
θ (t)|

2
−

∫ t

0
[L ε
|θ |2− 2θL εθ ]( f ε(s), Eε(s)) ds

are (Gt/ε2)-martingales.

5B. Bounds on the moments. Recall that J̄m( f ) denotes the m-th moment of f
(see (1-17)) and that Gm is the space of functions f ∈ L1(TN

× RN ) such that
J̄m( f ) <+∞.

Proposition 5.10. Let f ε0 ∈ Gm . Let ( f εt ) be the unique mild solution to (1-7) on
[0, T ] given by Proposition 4.2 or 4.4. Then, for all m ∈ N, almost-surely, for all
t ≥ 0,

J̄m( f εt )≤ C(R,m, t)[ J̄m( f ε0 )+ J̄0( f ε0 )], (5-43)

where C(R,m, t) is a constant which is bounded for t in a bounded set.

Proof. By density, we can assume that fin ∈W 2,1(TN
×RN ). We can also replace

v 7→ |v|m by v 7→ |v|mχη(v), where χη is a function with compact support which
converges pointwise to 1 when η→ 0. By the results of propagation of regularity
given in Propositions 4.2 and 4.4, the following computations are licit then. For
simplicity, we take directly χ ≡ 1. First, we have

d
dt

J̄2m( f εt )

=
1
ε2

[
J̄2m(Q f εt )+ 2m

∫∫
TN×RN

|v|2(m−1)v · Eεt f εt (x, v) dx dv
]
. (5-44)

If m = 0, then, for all t ≥ 0, almost-surely, J̄0( f εt ) = J̄0( f ε0 ) since the equation
is conservative. If m > 0, then we use the following inequality (which is a conse-
quence of Young’s inequality):

2m|v|2m−1
≤

1
2R
|v|2m

+ [2R(2m− 1)]2m−1,
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to infer, by (5-44) and (2-9), that

d
dt

J̄2m( f εt )≤
1
ε2

[
J̄2m(Q f εt )+

1
2 J̄2m( f εt )+R[2R(2m− 1)]2m−1 J̄0( f εt )

]
.

We have, in the case Q = QLB,

J̄2m(QLB f )= J̄2m(M) J̄0( f )− J̄2m( f ).
If Q = QFP, then

J̄2m(QFP f )=−2m
∫∫

TN×RN
|v|2(m−1)v ·

(
∇v f (x, v)+ v f (x, v)

)
dx dv

= (N + 2(m− 1)) J̄2(m−1)( f )− 2m J̄2m( f ).

In the first case Q = QLB, we obtain

J̄2m( f εt )≤e−t/(2ε2)J̄2m( f ε0 )+2(1−e−t/(2ε2))
[
J̄2m(M)+R[2R(2m−1)]2m−1] J̄0( f ε0 ).

This gives (5-43). If Q = QFP, we conclude similarly by a recursive argument
on m. �

5C. Tightness. For σ > 0, we denote by H−σ (TN ) the dual space of Hσ (TN ).
Let J σ1 = (Id−1x)

−σ . In the standard Fourier basis (wk) of L2(TN ), J σ1 is given
by

J σ1 wk = (1+ λk)
−σwk, λk = 4π2

|k|2, wk(x)= exp(2π ik · x).

As J σ/21 is an isometry L2(TN )→ Hσ (TN ), the norm on H−σ (TN ) is

‖3‖H−σ (TN ) =

[∑
k∈Zd

∣∣〈3, J σ/21 wk〉L2(TN )

∣∣2]1/2

. (5-45)

Proposition 5.11 (tightness). Let f ε0 ∈ G3. Let ( f εt ) be the unique mild solution
to (1-7) on [0, T ] given by Proposition 4.2 or 4.4. Then (ρεt )t∈[0,T ] is tight in the
space C

(
[0, T ]; H−1(TN )

)
.

Proof. Let us introduce the decomposition

ρε = θ ε + ζ ε, θ ε = ε divx
(
J ( f ε)+ ρ( f ε)R0(Eεt )

)
. (5-46)

Note that, contrary to ρε, which has continuous trajectories, θ ε and ζ ε are, a priori,
càdlàg processes, just like Eε. We show first that ρε is close to ζ ε in the norm of
C
(
[0, T ]; H−1(TN )

)
and then prove in a second step that (ζ ε) is tight in the Sko-

rokhod space D
(
[0, T ]; H−1(TN )

)
. In the third last step, we show that (ρεt )t∈[0,T ]

is tight in C
(
[0, T ]; H−1(TN )

)
.

Step 1. ρε is close to ζ ε. This is a straightforward consequence of the bound on the
moments (5-43). Let us extend the notation a . b to denote the inequality a ≤ Cb,
where the factor C may depend on R, on C0

R, on N and also on sup0<ε<1 J̄m( f ε0 )
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for m = 0, . . . , 3 and on T . Note that C should not depend on ε, nor on ω. Then,
by (5-43), we have supt∈[0,T ] ‖θ

ε
t ‖H−1(TN ) . ε.

Step 2. (ζ ε) is tight in D
(
[0, T ]; H−1(TN )

)
. The bound on the moments (5-43)

shows that supt∈[0,T ] ‖ρ
ε
t ‖L2(TN ) and supt∈[0,T ] ‖θ

ε
t ‖H−1(TN ) are a. s. bounded. Since

ζ ε = ρε − θ ε, the quantity supt∈[0,T ] ‖ζ
ε
t ‖H−1(TN ) is also almost-surely bounded.

By [Jakubowski 1986, Theorem 3.1], it is sufficient therefore to prove that, for all
ξ ∈ C2(TN ), the family of real-valued processes 〈ζ ε, ξ〉 is tight in D([0, T ]). Let
us fix such a ξ , and let us set ϕ(ρ)= 〈ρ, ξ〉 and γ ε = 〈ζ ε, ξ〉. Denote by

ϕ1( f, e)=
〈
J ( f )+ ρ( f )R0(e), ξ

〉
the first corrector associated to ϕ. To obtain an estimate on the time increments
of γ ε, we introduce the perturbed test function ϕε = ϕ+ εϕ1 and the martingale
(see (5-42))

Mε(t)
= ϕε( f ε(t), Eε(t))−ϕε( f ε(0), Eε(0))−

∫ t

0
L εϕε( f ε(s), Eε(s)) ds. (5-47)

We have thus

γ εt =

∫ t

0
L εϕε( f ε(σ ), Eε(σ )) dσ +Mε(t). (5-48)

To prove that (γ εt ) is tight in D([0, T ]), we will use the Aldous criterion, [Jacod
and Shiryaev 2003, Theorem 4.5, p. 356]. Let 1 > θ > 0. Let τ1, τ2 be some
(Fε

t )-stopping times such that

τ1 ≤ τ2 ≤ τ1+ θ, τ2 ≤ T, a. s. (5-49)

By the Doob optional sampling theorem, we have

E
[
|Mε(τ2)−Mε(τ1)|

2]
= E

[
|Mε(τ2)|

2
− |Mε(τ1)|

2].
Let (Aεt ) be defined by (B-4), where L = L ε and ϕ = ϕε. By Theorem B.1,
|Mε(t)|2− Aεt is a martingale. Consequently,

E
[
|Mε(τ2)−Mε(τ1)|

2]
= E[Aετ2

− Aετ1
]. θ,

We also have

E

∣∣∣∣∫ τ2

τ1

L εϕε( f ε(s), Eε(s)) ds
∣∣∣∣2 . θ2.

Using the decomposition (5-48), we conclude that the increments of γ ε also satisfy
the estimate

E[|γ ετ2
− γ ετ1
|
2
]. θ.
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By the Markov inequality, the Aldous criterion

lim
θ→0

lim sup
ε∈(0,1)

sup
τ1,τ2

P(|γ ετ2
− γ ετ1
|> η)= 0

is satisfied for all η > 0, (the sup on τ1, τ2 being the sup over the stopping times
satisfying (5-49)). This gives the desired conclusion.

Step 3. (ρε) is tight in C([0, T ]; H−1(TN )). Using Step 1 and [Jacod and Shiryaev
2003, Lemma 3.31, p. 352], we deduce that (X ε

t ) is tight in D([0, T ];Rd). Since
(X ε

t ) is in C([0, T ];Rd), it is actually tight in C([0, T ];Rd). To establish this fact,
it is sufficient to use the relation wρ(δ)≤ 2w′ρ(δ) (t 7→ ρ(t) continuous) between
the modulus of continuity of continuous functions and the modulus of continuity
of càdlàg functions, see [Billingsley 1999, (12.10), p. 123]. �

5D. Convergence to the solution of a Martingale problem. Assume that the hy-
potheses of Proposition 5.11 are satisfied. Let εN = {εn; n ∈N}, where (εn) ↓ 0. By
the Skorokhod theorem [Billingsley 1999, p. 70], there is a subset of εN, which we
still denote by εN, a probability space (�̃, F̃, P̃), some random variables {ρ̃ε; ε∈εN},
ρ̃ on C

(
[0, T ]; H−1(TN )

)
, such that

(1) for all ε ∈ εN, the laws of ρε and ρ̃ε as C
(
[0, T ]; H−1(TN )

)
-random variables

coincide,

(2) P̃-a. s., (ρ̃ε) is converging to ρ̃ in C
(
[0, T ]; H−1(TN )

)
along εN.

By lower semicontinuity, we have P̃-a. s., for all t ∈ [0, T ], ρ̃t ∈ L1(TN ). Let
(F̃ t)t∈[0,T ] be the natural filtration of (ρ̃(t))t∈[0,T ]. Our aim is to show that the
process (ρ̃(t))t∈[0,T ] is a solution of the martingale problem associated to the limit
generator L .

Proposition 5.12 (martingale). Let ξ ∈ C3(TN ), and let ϕ be of the form (5-3),
where ψ is a Lipschitz function of class C3 on R such that the derivatives ψ ( j),
j ∈ {1, 2, 3} are bounded. Let L be the limit generator defined by (5-24). Then the
process

M̃ϕ(t) := ϕ(ρ̃(t))−ϕ(ρ̃(0))−
∫ t

0
L ϕ(ρ̃(s)) ds (5-50)

is a continuous martingale with respect to (F̃ t)t∈[0,T ]. Let

Q(ρ; ξ)= E
[
〈ρ, R0(E(0)) · ∇xξ〉〈ρ, E(0) · ∇xξ〉

]
. (5-51)

The quadratic variation of (M̃ϕ(t)) has the expression

〈M̃ϕ, M̃ϕ〉t = 2
∫ t

0
|ψ ′(〈ρ̃s, ξ〉)|

2 Q(ρ̃s; ξ) ds, (5-52)

for all t ∈ [0, T ].
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Proof. Recall that L ϕ(ρ̃(s)) is well defined by (5-31). For ϕ given by (5-3) in the
expression (5-24) of the limit generator, we get the decomposition

L ϕ(ρ)= ψ ′(〈ρ, ξ〉)〈ρ, divx(K]∇xξ)+2 · ∇xξ〉

+ψ ′′(〈ρ, ξ〉)E
[
〈ρ, R0(E(0)) · ∇xξ〉〈ρ, E(0) · ∇xξ〉

]
. (5-53)

Since ξ ∈ C3(TN ), we obtain that ρ 7→ L ϕ(ρ) is continuous for the H−1(TN )-
topology, thereby showing that the process (M̃ϕ(t)) is continuous. Let us prove
now the martingale property. Let 0≤ s ≤ t ≤ T . Let 0≤ t1 < · · ·< tn ≤ s and let 2
be a continuous and bounded function on [H−1(TN )]n . Note that F̃ s is generated
by the random variables 2(ρ̃(t1), . . . , ρ̃(tn)), for n ∈ N∗, (ti )1,n and 2 as above.
Our aim is therefore to prove that

E
[
(M̃ϕ(t)− M̃ϕ(s))2(ρ̃(t1), . . . , ρ̃(tn))

]
= 0. (5-54)

Let ϕε = ϕ+ εϕ1+ ε
2ϕ2 be the second order correction of ϕ, with ϕ1 and ϕ2 given

by Proposition 5.7. We start from the identity (see (5-42))

E
[
(Mε

ϕ(t)−Mε
ϕ(s))2(ρ

ε(t1), . . . , ρε(tn))
]
= 0, (5-55)

where

Mε
ϕ(t) := ϕ

ε( f ε(t), Eεt )−ϕ
ε( fin, Eε0)−

∫ t

0
L εϕε( f ε(s), Eεs ) ds, (5-56)

Recall that

L εϕε =L ϕ+ εL[ϕ2.

By (5-55), the estimates on the correctors (Proposition 5.7) and the uniform esti-
mates on the moments of ( f εt ) (Proposition 5.10), we have

E
[
(X ε

ϕ(t)− X ε
ϕ(s))2(ρ

ε(t1), . . . , ρε(tn))
]
=O(ε),

where the process (X ε
ϕ(t)) is

X ε
ϕ(t)= ϕ(ρ

ε(t))−ϕ(ρin)−

∫ t

0
L ϕ(ρε(s)) ds.

By identities of the laws, it follows that

Ẽ

[(
ϕ(ρ̃ε(t))−ϕ(ρ̃ε(s))−

∫ t

s
L ϕ(ρ̃ε(s)) ds

)
2(ρ̃ε(t1), . . . , ρ̃ε(tn))

]
=O(ε).

(5-57)
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We must examine the convergence of each terms in (5-57). By a. s. convergence
of (ρ̃ε) in C

(
[0, T ]; H−1(TN )

)
along εN, we have[

ϕ(ρ̃ε(t))−
∫ t

0
L ϕ(ρ̃ε(s)) ds

]
2(ρ̃ε(t1), . . . , ρ̃ε(tn))

→

[
ϕ(ρ̃(t))−

∫ t

0
L ϕ(ρ̃(s)) ds

]
2(ρ̃(t1), . . . , ρ̃(tn))

almost-surely when ε → 0 along εN. Since 2 is bounded and ϕ(ρ̃ε(t)) and
L ϕ(ρ̃ε(t)) are a. s. bounded by a constant (a consequence of (5-43)), we can apply
the dominated convergence theorem. This gives (5-54). Because M̃ϕ is continuous,
the quadratic variation of M̃ϕ is the unique nondecreasing process (At) such that
|M̃ϕ(t)|2 − At is a martingale. Theorem B.1 and a straightforward computation
based on (5-53) show that the right-hand side of (5-52) is indeed the quadratic
variation of M̃ϕ . �

5E. Limit SPDE.

5E1. Covariance.

Proposition 5.13. Let S be defined by (1-23). The operator S is symmetric, non-
negative and trace-class on the space L2(TN

;RN ).

Proof. It is clear that S is symmetric. That S is nonnegative means 〈Sρ, ρ〉 ≥ 0,
where 〈·,·〉 is the canonical scalar product on L2(TN

;RN ) given as the sum over
i ∈ {1, . . . , N } of the L2-scalar product of the components. By Lemma 5.4, we
have, for all ρ ∈ L2(TN

;RN ),

〈Sρ, ρ〉 = lim
δ→0

δE

∣∣∣∣∫ ∞
0

e−δt 〈ρ, E t 〉 dt
∣∣∣∣2 ≥ 0,

which shows that 〈Sρ, ρ〉 ≥ 0 indeed. Let us prove that S is trace-class. We fix an
arbitrary orthonormal basis (ζk) of L2(TN

;RN ). For all i, x , we have H(i, x, ·) ∈
L2(TN

;RN ), where H defined by (1-22) is the kernel of Q. We can use therefore
the orthonormal decomposition

H(i, x, ·)=
∑

k

〈H(i, x, ·), ζk〉ζk =
∑

k

Sζk(i, x)ζk . (5-58)

We evaluate this expansion at (i, x), sum over (i, x) and use the fact that S is
nonnegative to obtain the classical identity that expresses Trace(S) has the sum
over the set {1, . . . , N } × TN of the diagonal part (i, x) 7→ H(i, x, i, x). The
bounds (2-7), (2-15) then imply that Trace(S)≤ NR is finite. �
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To define the square-root of S we employ the usual functional calculus for sym-
metric compact operators, based on the spectral decomposition. We have

S =
∑
k∈N

λkζk ⊗ ζk, (5-59)

where (λk, ζk) are the spectral elements of S and ζ ⊗ ζ ′ is the notation for the
rank-one operator that maps ρ on 〈ρ, ζ 〉ζ ′. The square-root S1/2 of S is defined by
the formula

S1/2
=

∑
k∈N

λ
1/2
k ζk ⊗ ζk . (5-60)

We establish now the following result.

Proposition 5.14. The sum ∑
k

λk‖ζk‖
2
Hm(TN ;RN )

is finite.

We will use Proposition 5.14 in the proof of Theorem 5.19. A direct conse-
quence of Proposition 5.14 is also that we can extend S1/2 as a bounded operator
H−m(TN

;RN )→ L2(TN
;RN ):

‖S1/2z‖L2(TN ;RN ) ≤ C‖z‖H−m(TN ;RN ). (5-61)

This extension is used in Proposition 5.15 in particular.

Proof of Proposition 5.14. Recall that F = H 2m(TN
;RN ) has the standard Sobolev

norm defined by (2-1). Let α be a multi-index of length |α| ≤ m. We integrate the
identity λkζk = Sζk against (−1)|α|∂2αζk and integrate by parts to obtain the identity

λk‖∂
αζk‖

2
L2(TN ;RN )

= (−1)|α|〈∂2α
x H, ζk ⊗ ζk〉. (5-62)

Note that the procedure is valid because H ∈ H 2m(TN
×TN
;RN
×RN ), a regularity

property due to (1-22) and (2-15). Using (1-22), we have also the identity

〈∂2α
x H, ζk ⊗ ζk〉 = E〈∂2αR0(E0), ζk〉〈E0, ζk〉.

By the Parseval identity and the Cauchy–Schwarz inequality, it follows that∑
k

λk‖∂
αζk‖

2
L2(TN ;RN )

≤ E
[
‖∂2αR0(E0)‖L2(TN ;RN )‖E0‖L2(TN ;RN )

]
,

which is bounded by R2, owing to (2-7) and (2-15). This concludes the proof. �
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5E2. Representation formula. Let (ρ̃t) be the process considered in Section 5D,
defined as the a. s. limit of (ρ̃εt ). For ρ ∈ H−1(TN ), v ∈ L2(TN

;RN ) let us set

8(ρ)v =
√

2 divx(ρS1/2v). (5-63)

Proposition 5.15. Let s > 2 + N. For t ∈ [0, T ], the application t 7→ 8(ρ̃t)

is well defined as a map from U := L2(TN
;RN ) into H := H−s(TN ) and is a. s.

continuous from [0, T ] into L2(U ; H), the set of Hilbert–Schmidt operators from U
to H. Moreover, the process t 7→8(ρ̃t) is adapted for the filtration (F̃ t) generated
by (ρ̃t).

Proof. For smooth v and ρ defined on TN , we have

|〈divx(ρS1/2v), ξ〉| = |〈v, S1/2(ρ∇xξ)〉|

≤ C‖v‖L2(TN ;RN )‖ρ∇xξ‖H−m(TN ;RN ), (5-64)

where the estimate from above in (5-64) is deduced from (5-61). The norm of the
product ρ∇xξ is bounded as follows:

‖ρ∇xξ‖H−m(TN ;RN ) ≤ ‖ρ‖H−1(TN )‖ξ‖C2(TN ).

Let s1 ∈ (2+N/2, s−N/2). Using the Sobolev injection of H s1(TN ) into C2(TN ),
we get the first bound,

‖8(ρ̃t)‖L(U ;H−s1 (TN )) ≤ C‖ρ̃t‖H−1(TN ).

Then we use the fact that the injection H−s1(TN ) ↪→ H−s(TN ) = H is Hilbert–
Schmidt, to obtain the desired estimate,

‖8(ρ̃t)‖L2(U ;H) ≤ C‖ρ̃t‖H−1(TN ).

Taking into account the almost sure continuity of t 7→ ρ̃t from [0, T ] into H−1(TN ),
it is easy to conclude the proof. �

Note that t 7→ 8(ρ̃t) is a predictable L(U ; H)-valued process (because the
process is adapted and has left-continuous trajectories).

Proposition 5.16. Let (X̃ t) be the continuous H-valued martingale defined by

X̃ t = ρ̃t − ρ̃in−

∫ t

0
divx(K]∇x ρ̃s +2ρ̃s) ds. (5-65)

There exists a filtered probability space (�̂, F̂, P̂, (F̂ t)), an L2(TN
;RN )-valued

cylindrical Wiener process W defined on (�̃ × �̂, F̃ × F̂, P̃ × P̂), adapted to
(F̃ t × F̂ t)t , such that

X̃ t(ω̃, ω̂)=

∫ t

0
8(ρ̃s, ω̃, ω̂) dW (s, ω̃, ω̂), (5-66)
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where
X̃ t(ω̃, ω̂)= X̃ t(ω̃), 8(ρ̃s, ω̃, ω̂)=8(ρ̃s, ω̃),

for P̃×P̂-a. e. (ω̃, ω̂) ∈ �̃× �̂.

Proof. We apply Theorem 8.2, p. 220 in [Da Prato and Zabczyk 1992], with Q the
identity of U . The representation of X̃ t as the stochastic integral (5-66) is then a
consequence of the identity

〈X̃ , X̃〉t =
∫ t

0
8(ρ̃s)8(ρ̃s)

∗ ds, (5-67)

giving the quadratic variation of (X̃ t). It is clear that, as claimed above, X̃ t takes
values in H = H−s(TN ). Actually, ρ̃(t) being in H−1(TN ), X̃ t even takes values
in H−3(TN ). For ξ ∈ H 3(TN ), we have 〈X̃ t , ξ〉 = M̃ϕξ (t), where ϕξ (ρ) = 〈ρ, ξ〉
and M̃ϕ is defined by (5-50). The quadratic variation of the H -valued martingale
(X̃ t) is defined as

〈X̃ , X̃〉t =
∑
k,l

〈X̃k, X̃l〉tξk ⊗ ξl,

where (ξk) is an orthonormal basis of H and X̃k(t) = 〈X̃(t)ξk, ξk〉. The formula
(5-68) is true, therefore, if, and only if, for all ξ ∈ H s(TN ), the real-valued martin-
gale (M̃ϕξ (t)) has the quadratic variation

〈M̃ϕξ , M̃ϕξ 〉t =

∫ t

0
‖8(ρ̃s)

∗ξ‖2L2(TN ;RN )
ds. (5-68)

The quadratic variation of M̃ϕξ is given by the formula (5-52) with ψ(s)= s. To
conclude, we simply need to observe that, by definition of S and of Q(ρ; ξ) in
(5-51), we have

Q(ρ; ξ)= 〈S(ρ∇xξ), ρ∇xξ〉L2(TN ;RN ) = ‖S
1/2(ρ∇xξ)‖

2
L2(TN ;RN )

,

and thus Q(ρ̃s; ξ)= ‖8(ρ̃s)
∗ξ‖2L2(TN ;RN )

. �

We gather the results of Section 5D and Proposition 5.16 to give the following
theorem. It is essentially the consequence of a slight abuse of notations, denoting
by (�̃, F̃, P̃) the whole probability space (�̃× �̂, F̃ × F̂, P̃× P̂).

Theorem 5.17. Under the hypotheses of Theorem 1.1, let εN = {εn; n ∈ N}, where
(εn) is a sequence decreasing to 0. There is a subset of εN still denoted by εN,
a filtered probability space (�̃, F̃, P̃, (F̃ t)), some random variables {ρ̃ε; ε ∈ εN},
ρ̃ on C

(
[0, T ]; H−1(TN )

)
, an L2(TN

;RN )-valued cylindrical1 Wiener process W̃
defined on (�̃, F̃, P̃, (F̃ t)) such that:

1when we do not specify the covariance of the Wiener process, it is understood that it is the
identity
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(1) For all ε ∈ εN, the laws of ρε and ρ̃ε as C
(
[0, T ]; H−1(TN )

)
-random vari-

ables coincide.

(2) P̃-a. s., (ρ̃ε) is converging to ρ̃ in C
(
[0, T ]; H−1(TN )

)
along εN.

(3) The H−1(Td) process ρ̃ is (F̃ t)-predictable,

sup
t∈[0,T ]

‖ρ̃t‖L1(TN ) ≤ ‖ρin‖L1(TN ) a. s.,

and the following equality (in H−s(TN ), s > 2+ N/2) is satisfied:

ρ̃t = ρin+

∫ t

0
divx(K]∇x ρ̃s +2ρ̃s) ds+

∫ t

0
8(ρ̃s) dW̃ (s), (5-69)

for all t ∈ [0, T ], almost surely, where 8(s) is defined by (5-63).

Theorem 5.17 states that, up to subsequence, (ρε)ε∈εN
is converging in law in

the space C
(
[0, T ]; H−1(TN )

)
to a weak-L1 martingale solution to (1-25) with

initial datum ρin. This notion of “weak-L1 martingale solution” is defined in the
following section.

5E3. Limit equation.

Definition 5.18. Let ρin ∈ L1(TN ). A weak-L1 martingale solution to (1-25) with
initial datum ρin is a multiplet(

�̃, F̃, P̃, (F̃ t), W̃ , (ρ̃t)
)
,

where (�̃, F̃, P̃, (F̃ t)) is a filtered probability space, W̃ is an L2(TN
;RN )-valued

cylindrical defined on (�̃, F̃, P̃, (F̃ t)), (ρ̃t) is a process satisfying the properties
given in item (3) of Theorem 5.17.

Theorem 5.19. Let ρin ∈ L1(TN ). Two weak-L1 martingale solutions to (1-25)
that have the same initial datum ρin and are constructed on the same stochastic
basis coincide a. s.

To establish this result of pathwise uniqueness for (1-25), we will use the fol-
lowing result.

Lemma 5.20. Let K] be defined by (1-19). Let (λk, ζk) denote the spectral ele-
ments of S (see Section 5E1) and let ϕk = λ

1/2
k ζk . For all x ∈ TN , the inequality

K](x)≥ K +
∑

k

ϕk(x)⊗ϕk(x) (5-70)

is satisfied in the sense of symmetric matrices.

Proof. To establish (5-70), we use first (1-19) and (1-22), which gives

K](x)≥ K + (H(i, x, j, x))i j ,
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since b≥ 1, whereas the term in factor of (b−1) in (1-19) is a nonnegative symmet-
ric matrix by Lemma 5.4. Since ϕk = λ

1/2
k ζk , the expansion (5-58) can be rewritten

as H(i, x, j, x)=
∑

k[ϕk(x)]i [ϕk(x)] j . This gives the desired result. �

Proof of Theorem 5.19. We are given two weak-L1 martingale solutions to (1-25)
both with initial datum ρin, and the same probabilistic data (�̃, F̃, P̃, (F̃ t), W̃ ). For
simplicity of notation, we get rid of the tildes in what follows. By linearity, it is
sufficient to consider the case where ρin ≡ 0 is trivial. If (1-25) was deterministic, a
possible approach to uniqueness would be to regularize the equation, with the help
of the Yosida regularization of the operator − div(K]∇ ·). In that way, and although
ρt has no space-derivatives a priori, one can deal with the commutators that appear
when one tries to do an energy estimate for a regularization of ρ 7→ ‖ρ‖L1(TN ).
This approach does not work for (1-25), since there are actually two second-order
operators at stake there: the second one appears when we write the Itô correction
to the martingale term. Instead of proving a renormalization property therefore,
we will use a duality method. Let t∗ ∈ (0, T ] be fixed, and let ψ∗ be a given
FW

t∗ -measurable function. We consider a solution (ψ, Z) of the backward SPDE

dψ =
[
− divx(K]∇ψ)+2 · ∇ψ

]
dt −
√

2ϕ · ∇x Z dt + Z · dW (t), (5-71)

for t ∈ (0, t∗), with terminal condition

ψ(t∗)= ψ∗. (5-72)

Let us explain the notation used in (5-71) and what we mean by “solution” (ψ, Z).
The component ϕk of ϕ are defined in Lemma 5.20. Let n = [N/2] + 1. Since
m > N

2 + n, Proposition 5.14 and the usual Sobolev’s embedding show that ϕ is an
element of `2(N;Cn(TN )). The products ϕ · ∇x Z and Z · dW (t) stand for∑

k

ϕk · ∇x Zk,
∑

k

Zk dβk(t),

respectively. Here, we use the decomposition (see Proposition 4.1 of [Da Prato and
Zabczyk 1992])

S1/2W (t)=
∑

k

ϕkβk(t),

where (β1(t), β2(t), . . .) is a family of independent one-dimensional Wiener pro-
cesses. By P we denote the σ -algebra of predictable sets, based on the filtra-
tion (Ft). A couple (ψ, Z) is said to be solution to (5-71)–(5-72) on (0, t∗) if

(1) ψ ∈ L2
(
�× (0, t∗),P, H 2(TN )

)
, Z ∈ L2

(
�× (0, t∗),P, `2(N; H 1(TN ))

)
,

(2) ψ ∈ C([0, t∗]; L2(TN )) almost surely,
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(3) for all t ∈ [0, t∗], almost surely,

ψ(t, x)=ψ∗(x)+
∫ t∗

t

[
divx(K](x)∇ψ(s, x))−2(x) ·∇ψ(s, x)

]
ds

+
√

2
∫ t∗

t
ϕ(x) · ∇x Z(s, x) ds−

∫ t∗

t
Z(s) · dW (s), (5-73)

for a. e. x ∈ TN .

Equation (5-71) is superparabolic in the sense of Assumption 2.2 of [Du and Meng
2010]. This is an application of the estimate (5-70). By Theorem 2.2 in [Du
and Meng 2010], a solution (ψ, Z) to (5-71)–(5-72) as above does exist, provided
ψ∗ ∈ L2

(
�,FW

t∗ , H 1(TN )
)
. Actually, Theorem 2.2 of [Du and Meng 2010] applies

in the case where W is a finite-dimensional Wiener process. However, as asserted
in Remark 2.3 of [Du and Meng 2010], the result continues to hold in the case
of the cylindrical Wiener process W as considered here. This assertion must be
specified a bit however. Indeed, recasting the condition (2.4) of [Du and Meng
2010] in our framework, we need a bound on the quantity[∑

k

Lip(ϕk)
2
]1/2

. (5-74)

As ϕ ∈ `2(N;Cn(TN )) (recall Proposition 5.14), the quantity (5-74) is indeed
finite. Similarly, using Theorem 2.3 of [Du and Meng 2010] and the fact that
ϕ ∈ `2(N;Cn(TN )), we get the higher differentiability property

ψ ∈ L2(�× (0, t∗),P, H n+2(TN )
)
, Z ∈ L2(�× (0, t∗),P, `2(N; H n+1(TN ))

)
,

provided ψ∗ ∈ L2(�,FW
t∗ , H n+1(TN )). Since n> N/2, this shows that (ψ, Z) have

respectively C2 and C1 regularity in x . In particular, (5-73) is satisfied pointwise,
for every x ∈ TN . By subtracting (5-73) written at t = 0, we obtain

ψ(t, x)= ψ(0, x)−
∫ t

0

[
divx(K](x)∇ψ(s, x))−2(x) · ∇ψ(s, x)

]
ds

−
√

2
∫ t

0
ϕ(x) · ∇x Z(s, x) ds+

∫ t

0
Z(s) · dW (s), (5-75)

for every x ∈ TN. Let Jδ be the regularizing operator defined by convolution with
an approximation of the unit on TN. By testing (5-69) with a function J ∗δ ξ , we
obtain the regularized equation

ρδ(t, x)= ρδ(0, x)+
∫ t

0
divδ(K]∇ρ(s, x))+2(x)ρ(s, x)) ds

+
√

2
∫ t

0
divδ(ρ(s, x)ϕ(x) · dW (s)), (5-76)
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where ρδ = Jδρ, divδ = Jδ divx . We apply the Itô formula to the two diffusions
(5-75) and (5-76), take expectancy and integrate the result with respect to x . Since
ρδ(0)= 0, this gives the identity

E〈ρδ(t∗), ψ∗〉

= E

∫ t∗

0

〈
(ρ− ρδ)(s), div(K]∇ψ(s))−2 · ∇ψ(s)−

√
2ϕ · ∇Z(s)

〉
ds

+ E

∫ t∗

0

〈
ρ(s), div(K](∇δ −∇)ψ(s))−2 · (∇δ −∇)ψ(s)

−
√

2ϕ · (∇δ −∇)Z(s)
〉

ds, (5-77)

where we use the duality product between L1(TN ) and C(TN ) and the notation
∇δ = ∇ J ∗δ . The regularity of (ψ, Z) is sufficient to justify that, in the limit δ→ 0,
(5-77) gives E〈ρ(t∗), ψ∗〉 = 0. Since, in the class L2

(
�,FW

t∗ , H n+1(TN )
)
, ψ∗ is

arbitrary, this implies ρ(t∗)= 0 almost surely. �

5E4. Conclusion. We use the argument of Gyöngy and Krylov [1996, Lemma 1.1].
We deduce that (1-25) has a weak-L1 solution, strong in the probabilistic sense:
there does exist a weak-L1 martingale solution with probabilistic data that coin-
cides with a set of probabilistic data prescribed in advance. Moreover, weak-L1

martingale solutions with given initial datum to (1-25) are unique. Consequently,
the whole sequence (ρε) considered in Theorem 5.17 is converging in law to the
weak-L1 martingale solution to (1-25) with initial datum ρin. This concludes the
proof of Theorem 1.1.

Appendix A: Resolution of the unperturbed equation

Consider the LB case first. By integration with respect to v in the equation

∂t ft + E(t, s; e) · ∇v ft + ft = ρ( ft)M, (A-1)

one checks that

ρ( ft)= ρ( f ) for all t ≥ 0.

Therefore, the formula (3-3) is simply the Duhamel formula associated to the PDE
(A-1). In the FP case, instead of working on the PDE

∂t ft + E(t, s; e) · ∇v ft = QFP ft , (A-2)

we work on the solution Vt to the equation

dVt = (−Vt + E(t, s; e)) dt +
√

2 dBt , t ≥ s. (A-3)
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If Vs has the law of density f with respect to the Lebesgue measure on RN , then by
(1-12) (with no dependence on x here), we obtain, by explicit integration in (A-3),∫

RN
ϕ(v) f FP

s,t (v) dv

=

∫
RN

∫
RN
ϕ

(
e−(t−s)v+

∫ t

s
e−(t−σ)E(σ, s; e) ds+

√
1− e−2(t−s)w

)
×M(w) f (v) dw dv.

A change of variable gives (3-4) then.

Appendix B: Martingale property of Markov processes

In this section, we make the connection between a Markov process and the Martin-
gale problem associated to its generator. Although this is a fundamental topic, we
found complete references (of formula (B-3), giving the expression of the quadratic
variation in terms of the integral of the carré du champ operator) only in the case
of finite-dimensional state spaces. Theorem B.1 is given for functions ϕ ∈ BC(E)
(continuous and bounded functions). Some standard argument, using truncates,
allow a generalization to Lipschitz functions, as long as the processes at stake have
sufficient moments. This generalization of Theorem B.1 is used in the proof of
Proposition 5.12 for instance.

Let E be a Polish space. Let (X t) be an E-valued time-homogeneous Markov
process with respect to a filtration (Ft), with Markov semigroup (Pt). The genera-
tor L associated to (Pt) is defined by means of the bounded pointwise convergence
[Priola 1999]. Let 1t = t−1(Pt − Id). A function ϕ of BC(E) is in D(L ) if the
family (1tϕ)0<t<1 is bounded for the norm ‖ϕ‖BC(E) = supx∈E |ϕ(x)| and if there
exists ψ ∈ BC(E) such that

1tϕ(x)→ ψ(x)

when t→ 0+ for all x ∈ E . We set then L ϕ = ψ .

Theorem B.1. Let E be a Polish space. Let (X t) be an E-valued time-homogeneous
Markov process with respect to a filtration (Ft), with Markov semigroup (Pt) of
generator L : for all ϕ ∈ BC(E)

E[ϕ(X t+s)|Ft ] = (Psϕ)(X t). (B-1)

Assume that t 7→ Ptϕ(x) is continuous, for all ϕ ∈ BC(E), x ∈ E. Assume that
(ω, t) 7→ X t(ω) is measurable �×R+→ E. Then, for all ϕ in the domain of L ,

Mϕ(t) := ϕ(X t)−ϕ(X0)−

∫ t

0
L ϕ(Xs) ds (B-2)
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is a (Ft)-martingale. Assume furthermore that |ϕ|2 is in the domain of L . Then
the process (Z t) defined by

Z t := |Mϕ(t)|2−
∫ t

0
(L |ϕ|2− 2ϕL ϕ)(Xs) ds, (B-3)

is a martingale.

Remark B.2. Assume that (X t) is càdlàg. Then the process

At :=

∫ t

0
(L |ϕ|2− 2ϕL ϕ)(Xs) ds (B-4)

is continuous and adapted, and thus predictable. Consequently, (At) is the pre-
dictable quadratic variation 〈Mϕ,Mϕ〉t , [Jacod and Shiryaev 2003, p. 38], of Mϕ:
this is the compensator, [Jacod and Shiryaev 2003, p. 32], of the quadratic variation
[Mϕ,Mϕ]t , [Jacod and Shiryaev 2003, p. 51], of Mϕ .

Note that we assume also continuity from the left of t 7→ Ptϕ(x) in Theorem B.1.
If ϕ ∈ D(L ), this ensures that t 7→ Ptϕ(x) is differentiable, with d

dt Ptϕ(x) =
PtL ϕ(x), [Priola 1999, Proposition 3.2].

Proof of Theorem B.1. Let 0≤ s ≤ t . By the Markov property (B-1), we have

E[Mϕ(t)|Fs] −Mϕ(s)= E[Mϕ(t)−Mϕ(s)|Fs]

= Pt−sϕ(Xs)−ϕ(Xs)−

∫ t

s
[Pσ−sL ϕ](Xs) dσ.

We use the relation d
dt Ptϕ(x)= PtL ϕ(x) to obtain the martingale property. Indeed,

this gives

Pt−sϕ−ϕ =

∫ t

s
Pσ−sL ϕ dσ,

and thus E[Mϕ(t)|Fs]−Mϕ(s)= 0. The proof of the martingale property for (B-3)
is divided in several steps. By C(ϕ), we will denote any constant that depend on
ϕ and may vary from lines to lines. We fix a subdivision σ = (ti )0,n of [0, T ]. In
a first step, we show that

At = lim
|σ |→0

n−1∑
i=0

E
[
At∧ti+1 − At∧ti |Fti

]
, (B-5)

with a convergence in L2(�). Indeed, we have

At =

n−1∑
i=0

At∧ti+1 − At∧ti , (B-6)
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and ζ(ti+1) := At∧ti+1 − At∧ti − E[At∧ti+1 − At∧ti |Fti ] satisfies

E[ζ(ti )ζ(t j )] = 0, i 6= j, |ζ(ti+1)| ≤ C(ϕ)(ti+1− ti ), (B-7)

where C(ϕ)= ‖L ϕ2
‖BC(E)+ 2‖ϕ‖BC(E)‖L ϕ‖BC(E). It follows that

E

∣∣∣∣n−1∑
i=0

ζ(ti+1)

∣∣∣∣2 = E

n−1∑
i=0

|ζ(ti+1)|
2
≤ C(ϕ)T |σ |,

which tends to 0 when |σ | → 0. Using (B-6), we obtain (B-5). In a second step
we prove that

|Mϕ(ti+1)−Mϕ(ti )|2 = |ϕ(X ti+1)−ϕ(X ti )|
2
+ Rti ,ti+1, (B-8)

with

E

n−1∑
i=0

|Rti ,ti+1 | =O(|σ |1/2). (B-9)

By definition of Mϕ(t), (B-8) is satisfied with a remainder term

Rti ,ti+1 =

∣∣∣∣∫ ti+1

ti
L ϕ(Xs) ds

∣∣∣∣2− 2
(
ϕ(X ti+1)−ϕ(X ti )

)∫ ti+1

ti
L ϕ(Xs) ds. (B-10)

Using the fact that ϕ2
∈ D(L ), we have also

|ϕ(X ti+1)−ϕ(X ti )|
2
= Mϕ2(ti+1)−Mϕ2(ti )− 2ϕ(X ti )(Mϕ(ti+1)−Mϕ(ti ))

+

∫ ti+1

ti
L ϕ2(Xs) ds− 2ϕ(X ti )

∫ ti+1

ti
L ϕ(Xs) ds.

It follows that

E
[∣∣ϕ(X ti+1)−ϕ(X ti )

∣∣2|Fti
]

=

∫ ti+1

ti
E
[(

L ϕ2(Xs)− 2ϕ(X ti )L ϕ(Xs)
)
|Fti

]
ds. (B-11)

Taking expectation in (B-11), we get the following bound.

E[|ϕ(X ti+1)−ϕ(X ti )|
2
] ≤ Cϕ(ti+1− ti ). (B-12)

Consider now the cross-product term in the right-hand side of (B-10). Using
Young’s inequality with a parameter η > 0, we see that the term E|Rti ,ti+1 | can
be bounded by

(1+ η−1)E

∣∣∣∣∫ ti+1

ti
L ϕ(Xs) ds

∣∣∣∣2+ ηE[|ϕ(X ti+1)−ϕ(X ti )|
2
],



DIFFUSION-APPROXIMATION IN STOCHASTICALLY FORCED KINETIC EQUATIONS 51

and thus, taking η= (ti+1− ti )1/2, bounded from above by C(ϕ)(ti+1− ti )3/2. This
gives (B-9). The third step establishes the limit

At = lim
|σ |→0

n−1∑
i=0

E
[∣∣Mϕ(ti+1)−Mϕ(ti )

∣∣2|Fti
]
, (B-13)

with a convergence in L1(�). To that purpose, we note that (B-8) shows that we
can replace the increment Mϕ(ti+1)−Mϕ(ti ) by the increment ϕ(ti+1)− ϕ(ti ) in
the right-hand side of (B-13). This gives an error term ε1(|σ |) which converges to
0 in L1(�), taking (B-9) into account. By (B-5) and(B-11), we deduce that

At −

n−1∑
i=0

E
[∣∣Mϕ(ti+1)−Mϕ(ti )

∣∣2|Fti
]
= ε2(|σ |)+ r(t, σ ), (B-14)

where ε2(|σ |) converges to 0 in L1(�) and

|r(t, σ )| ≤ 2
n−1∑
i=0

∫ ti+1

ti

∣∣(ϕ(X ti )−ϕ(Xs))L ϕ(Xs)
∣∣ ds.

We have in particular

|r(t, σ )| ≤ C(ϕ)
n−1∑
i=0

∫ ti+1

ti
|ϕ(X ti )−ϕ(Xs)| ds

and an estimate similar to (B-12) (obtained working on the increment ϕ(Xs)−ϕ(X ti )

instead of ϕ(X ti+1)−ϕ(X ti )) shows that

E|ϕ(Xs)−ϕ(X ti )|
2
≤ C(ϕ)(s− ti ). (B-15)

We deduce that r(t, σ ) is converging to 0 in L2(�) when |σ | → 0. At last, let us
show that Z t =|Mϕ(t)|2−At is a martingale. Let 0≤ s< t . Set tn+1=min{ti ; ti ≥ t},
tl+1=min{ti ; ti ≥ s}. We may assume tn ≥ s. Then E[Z t− Zs |Fs] is the limit when
|σ | → 0 of the quantity

E

[
|Mϕ(t)|2− |Mϕ(s)|2−

n−1∑
i=l

E
[∣∣Mϕ(ti+1)−Mϕ(ti )

∣∣2|Fti
]∣∣Fs

]
. (B-16)

By the tower property E[E[Y |Fti ]|Fs] = E[Y |Fs] if ti ≥ s, and the usual cancellation
properties for martingales, (B-16) is equal to

E
[
|Mϕ(t)−Mϕ(tn)|2+ E

[∣∣Mϕ(s)−Mϕ(tl)
∣∣2|Ftl

]∣∣Fs

]
. (B-17)

Using (B-15), we see that (B-17) tends to zero in L1(�). This gives the desired
result E[Z t − Zs |Fs] = 0. �
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