
appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
75

95
--

FR
+E

N
G

Domaine 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallel bottleneck in the Quasineutrality
solver embedded in GYSELA

G. Latu — N. Crouseilles — V. Grandgirard

N° 7595

Avril 2011

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

http://hal.inria.fr/inria-00583689/fr/
http://hal.archives-ouvertes.fr

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Parallel bottleneck in the Quasineutrality

solver embedded in GYSELA

G. Latu ∗ †, N. Crouseilles †, V. Grandgirard ∗

Domaine : Mathématiques appliquées, calcul et simulation
Équipes-Projets CALVI

Rapport de recherche n° 7595 � Avril 2011 � 11 pages

Abstract: This report shows some performance results of the Quasineutraliy
Poisson solver used in the GYSELA code. The numerical schemes of this Poisson
solver is explained, and the computation and communication steps on a parallel
machine are described. Benchmarks shows several time measurement from 32
cores to 4096 cores. Present bottlenecks and problems of the parallel algorithm
are discussed. Some possible solutions are foreseen.

Key-words: Quasineutrality solver, Gyrokinetics, MPI

∗ CEA Cadarache, 13108 Saint-Paul-les-Durance Cedex
† INRIA Nancy-Grand Est & Université de Strasbourg, 7 rue Descartes, 6700 Strasbourg

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Limitations associées à la parallélisation du

solveur Quasi-neutre inclus dans GYSELA

Résumé : Ce rapport présente des prises de performances du solveur Poisson
Quasi-neutre utilisé dans le code GYSELA. Le schéma numérique de ce solveur
Poisson est décrit, ainsi que les di�érentes étapes de calculs et de communication
sur machine parallèle. Une série de benchmarks on été e�ectués de 32 à 4096
c÷urs, cela donne un aperçu des performances de ce solveur parallèle. Les
goulots d'étranglement et les limitations de l'algorithme parallèle utilisé sont
explicités. En�n, des solutions possibles sont envisagées.

Mots-clés : Solveur Quasi-neutre, Gyrocinétique, MPI

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 3

1 Introduction

Modeling turbulent transport is a major goal in order to predict con�nement is-
sues in a tokamak plasma such as ITER. Improving theoretical knowledge about
the understanding of turbulent phenomena requires the description of particles
considering their distribution in velocity. The gyrokinetic GYSELA code has
been developed in order to model the physical features and instabilities (mainly
ITG up to now) that appear at some speci�c time and space scales. This code
uses the gyrokinetic framework that considers a computational domain in �ve
dimensions: 3D in space, and 2D in velocity.

In the GYSELA code, a semi-Lagrangian solver is used to integrate Vlasov
equation [5]. A hybrid MPI/OpenMP paradigm is used to bene�t from a large
number of processors while reducing communication costs [6]. A quasineutrality
Poisson equation is considered to get electric potential from ion density, assum-
ing an adiabatic electron response within cylindrical surfaces for the moment.
The parallelization of Vlasov and Poisson solvers are tightly coupled because
large amount of distributed data are exchanged between these two parallel com-
ponents. Also, the parallel domain decomposition chosen for these solvers has an
impact on performance. This document �rstly describes the numerical scheme
and implementation of the Poisson solver. Then, a brief overview of perfor-
mances up to 4096 cores are shown. Finally, bottlenecks and possible solutions
are discussed. This report follows a previous one on the same subject [7] where
no OpenMP issues were mentioned.

2 Field solver of GYSELA

2.1 Quasineutrality equation

In tokamak con�gurations, the plasma quasineutrality approximation is cur-
rently assumed ([5, 8]). This leads to ni = ne where ni (resp. ne) is the ionic
(resp. electronic) density. On the one side, electron inertia is ignored, which
means that an adiabatic response of electrons are supposed. On the other side,
the ionic density splits into two parts. Using the notation ∇⊥ = (∂r, 1

r∂θ), the
so-called linearized polarization density npol writes

npol(r, θ, ϕ) = −∇⊥ .
[
n0(r)
B0
∇⊥Φ(r, θ, ϕ)

]
,

where n0 is the equilibrium density and B0 the magnetic �eld at the magnetic
axis. Second, the guiding-center density nGi is

nGi(r, θ, ϕ) = 2π
∫
B(r, θ)dµ

∫
dv//J (k⊥

√
2µ)f̄(r, θ, ϕ, v//, µ), (1)

where B is the magnetic �eld, f̄ denotes the ionic distribution function evolv-
ing through a Vlasov type equation, v// the parallel velocity, µ the magnetic
momentum and J is the gyroaverage operator.

Hence, the QN equation can be written in dimensionless variables

− 1
n0(r)

∇⊥ .
[
n0(r)
B0
∇⊥Φ(r, θ, ϕ)

]
+

1
Te(r)

[
Φ(r, θ, ϕ)− 〈Φ〉θ,ϕ (r)

]
= ρ̃(r, θ, ϕ)

(2)

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 4

with Te the electronic temperature and where the de�nition of ρ̃ is given by

ρ̃(r, θ, ϕ) =
2π
n0(r)

∫
B(r, θ)dµ

∫
dv//J (k⊥

√
2µ)(f̄ − f̄eq)(r, θ, ϕ, v//, µ). (3)

In this last equation, f̄eq denotes an ionic local Maxwellian equilibrium, and
〈〉θ,ϕ the average onto the variables θ, ϕ.

The �eld solver includes several parts:

� First, the function ρ̃ is derived taking as input the function f̄ . Speci�c
methods, not described here, are used to evaluate the gyroaverage operator
J acting on (f̄ − f̄eq) in Eq. (3).

� Second, the 3D potential Φ is found in computing discrete fourier trans-
forms of ρ̃, followed by the solving of tridiagonal systems and inverse
fourier transforms.

� Finally, because of parallel work and data distributions during the previous
steps, subdomains of Φ have to be exchanged between processors.

In the sequel, we will discuss about the parallelization of these parts. In the
GYSELA code, this �eld solver is followed by another important computation
step, that produces derivatives of Φ along each spatial direction. The computa-
tion of these derivatives are needed in order to set up processes for the Vlasov
solver that comes next.

2.2 1D Fourier transforms method

The main bene�t of the method described hereafter (from a parallel work dis-
tribution point of view) is to consider only 1D FFTs in θ dimension instead of
2D FFT in (θ, ϕ), and to uncouple hardly all computations in ϕ direction. The
�rst description of this numerical scheme appears in [7].

The equation (2) averaged on (θ, ϕ) gives :

−
∂2 〈Φ〉θ,ϕ (r)

∂r2
− [

1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈Φ〉θ,ϕ (r)

∂r
= 〈ρ̃〉θ,ϕ (r) (4)

A fourier transform in θ direction gives:

Φ(r, θ, ϕ) =
∑
u Φ̂u(r, ϕ)ei u θ

ρ̃(r, θ, ϕ) =
∑
u ρ̂

u(r, ϕ)ei u θ
(5)

The equation (2) could be rewritten as:

for u > 0 :

−∂
2Φ̂u(r, ϕ)
∂r2

− [
1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂Φ̂u(r, ϕ)

∂r
+
u2

r2
Φ̂u(r, ϕ)+

Φ̂u(r, ϕ)
Zi Te(r)

= ρ̂u(r, ϕ) (6)

for u = 0 :
∂2 〈Φ〉θ (r, ϕ)

∂r2
−[

1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈Φ〉θ (r, ϕ)

∂r
+
〈Φ〉θ (r, ϕ)−〈Φ〉θ,ϕ (r)

Zi Te(r)
= 〈ρ̃〉θ (r, ϕ) (7)

The equation (4) allows one to directly �nd out the value of 〈Φ〉θ,ϕ (r) from
the data 〈ρ̃〉θ,ϕ (r). Let us de�ne the function Υ(r, θ, ϕ) as Φ(r, θ, ϕ)−〈Φ〉θ,ϕ (r).

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 5

Substracting equation (4) to equation (7) leads to

−
∂2 〈Υ〉θ (r, ϕ)

∂r2
−[

1
r

+
1

n0(r)
∂n0(r)
∂r

]
∂ 〈Υ〉θ (r, ϕ)

∂r
+
〈Υ〉θ (r, ϕ)
Zi Te(r)

= 〈ρ̃〉θ (r, ϕ)−〈ρ〉θ,ϕ (r) (8)

Let us notice that Φ̂0(r,ϕ)=〈Υ〉θ(r,ϕ)+〈Φ〉θ,ϕ(r). So, the solving of equations (4)
and (8) allows one to compute 〈Φ〉θ,ϕ(r),〈Υ〉θ(r,ϕ) and Φ̂0(r,ϕ) from the quantities
〈ρ̃〉θ(r,ϕ) and 〈ρ̃〉θ,ϕ(r).

On the other hand, the equation (6) is su�cient to compute Φ̂u>0(r, ϕ)
from ρ̃. So one can very early start the computations associated with Φ̂u>0(r, ϕ).
The di�erent equations are solved using a LU decomposition. Moreover, variable
ϕ acts as a parameter in equation (6), allowing computations to be parallelized
(each core can manage computations associated to one ϕ value).

2.3 Parallel algorithm using 1D FFT

The following algorithm is the most parallel, up to now, imple-
mented in GYSELA1. We will work with the intermediate function
Υ(r, θ, ϕ) = Φ(r, θ, ϕ)− 〈Φ〉θ (r, ϕ). The main idea is to get 〈Φ〉θ,ϕ for solv-
ing eq. (8) and then to uncouple computations along ϕ direction in the Poisson
solver (Computation task 3 in the following list). The computation sequence is:

� Computation task 1

� integrate f̄ over v‖ direction

� Computation task 2

� compute ρ̃(r = ∗, θ = ∗, ϕ = ∗) in summing over µ direction

� Computation task 3

� perform averages 〈ρ̃〉θ(r=∗,ϕ=∗) and 〈ρ̃〉θ,ϕ(r=∗)

� get 〈Φ〉θ,ϕ from 〈ρ̃〉θ,ϕ thanks to eq. (4)

� For each ϕ value

� FFT in θ on ρ̃

� derive Φ̂u modes (∀u > 0) with eq. (6)

� compute 〈Υ〉θ(r=∗,ϕ) with eq. (8)

� add 〈Φ〉θ,ϕ+〈Υ〉θ(r=∗,ϕ) to get Φ̂0(r=∗,ϕ)

� inverse FFT in θ on Φ̂
1However, this formulation is not valid in the b? version of GYSELA and is only used for

slab geometry runs. Let us notice also, that the description of the b? version of Poisson
solver is not yet published

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 6

Algorithm 1: Full Parallelization of QN solver (f1d_fft)

Input : local block f̄(r = block, θ = block, ϕ = ∗, v// = ∗, µ)1

2

(* task 1*)3

Computation : ρ̃1 by integration in dv// of f̄4

(parallelization in µ, r, θ)5

Send local data ρ̃1(r = block, θ = block, ϕ = ∗, µ)6

Redistribute ρ̃1 / Synchronization7

Receive block ρ̃1(r = ∗, θ = ∗, ϕ = block, µ = ∗)8

9

(* task 2*)10

for local ϕ values do in parallel11

(parallelization in ϕ)12

Computation : from ρ̃1 for a given ϕ, computes ρ̃2 by applying J13

(Fourier transform in θ, Solving of LU systems in r)14

Computation : ρ̃ for a given ϕ by integration in dµ of ρ̃215

Computation : accumulation of ρ̃ values to get 〈ρ̃〉θ (r = ∗, ϕ)16

end17

Send local data 〈ρ̃〉θ(r=∗,ϕ=block)18

Broadcast of 〈ρ̃〉θ / Synchronization19

Receive 〈ρ̃〉θ(r=∗,ϕ=∗)20

21

(* task 3*)22

Computation : Solving of LU system to �nd 〈Φ〉θ,ϕ from 〈ρ̃〉θ, eq. (4)23

for local ϕ values do in parallel24

(parallelization in ϕ)25

Computation : 1D FFTs of ρ̃ on dimension (θ)26

Computation : Solving of LU systems for Φ̂ modes (u > 0), eq. (6)27

Computation : Solving of LU system for 〈Υ〉θ(r=∗,ϕ), eq. (8)28

Computation : Adding 〈Φ〉θ,ϕ to 〈Υ〉θ(r=∗,ϕ) gives Φ̂0(r=∗,ϕ)29

Computation : inverse 1D FFTs on Φ̂0 and Φ̂u>0 to get Φ(r=∗,θ=∗,ϕ)30

end31

Send local data Φ(r = ∗, θ = ∗, ϕ = block)32

Broadcast of values / Synchronization33

Receive global data Φ(r = ∗, θ = ∗, ϕ = ∗)34

Outputs : Φ(r = ∗, θ = ∗, ϕ = ∗)35

Let P be the number of cores used for a simulation run. From line 6 to line
8, a 4D function ρ̃1 is redistributed. The amount of communication represents
exchange of NrNθ NϕNµ �oats. The broadcast of lines 18 to 20 corresponds to
a small communication cost of NrNϕmax(P,Nϕ). The �nal communication of
lines 30-32 can be the biggest one (if P value is large enough) and induces the
sending of NrNθNϕP �oats.

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 7

3 Performance Analysis

3.1 Coarse view

Performances of the di�erent versions of the QN solver for one 5D test case
are presented in Table 1 (Nr = 256,Nθ = 64,Nϕ = 256,Nv‖ = 16,Nµ = 32). Note that
the Vlasov solver of the gysela code uses a parallelization based on a domain
decomposition in dimensions µ and r. So, the number of cores P is given by
the product of pµ the number of µ values with pr the number of block in di-
mension r. The number of µ values in the presented test case is pµ = 32, then
our parallel program uses a minimum of 32 cores. Then, the relative speedups
shown in Table 1 considers as a reference the execution times on 32 cores of four
computation nodes. For this runs, no OpenMP parallelization were used, in
order to show better the performance of the MPI parallelization only.

In order to give understandable performance results, we will subdivise the
algorithms into distinguishable steps. The computation of ρ̃ (task 1 and task 2)
can be decomposed in a communication part and many parallelized integral
calculations. The Poisson solver giving Φ depending on ρ̃ subdivides into several
communication steps, plus two types of computation: the redondant ones and
the parallel ones. Finally, one can gather time costs of the QN solver in Table 1
considering three main mesures:

1. the largest time spent in communication among all cores,

2. the time spent in redondant-sequential computations,
(each core has exactly the same work to do)

3. the time spent in parallel tasks.
(the largest time spent among all cores is taken)

Numerical experiments of Table 1 were performed on a cluster of 932 nodes
owned by CCRT/CEA, France. Each node hosts eight Itanium2 1.6Ghz cores
and o�ers 24GB of shared memory.

Nb. cores. 32 128 256

pr 1 4 8

communications 0.377 s 0.593 s 0.668 s

solve_seq 0.003 s 0.006 s 0.018 s

solve_par 4.078 s 1.039 s 0.528 s

Rel. speedup solve_par+_seq 1.0 3.9 7.7

Total 4.375 s 1.603 s 1.178 s

Rel. speedup 1.0 2.7 3.7

Table 1: Time measurements for one call to the QN solver in seconds and

relative speedup are given (compared to performance of 32 cores with pr = 1

and pµ = 32).

In this algorithm, almost all computations are parallelized and remain-
ing sequential parts are negligible. The speedup of the computation part
(solve_par+_seq) is impressive: 7.7 instead of 8 in the ideal case. The remain-
ing parallel overhead comes from the small sequential computation of solve_seq

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 8

and above all communication comm. This QN solver is quite e�cient and scalable
in term of load balance, nevertheless communication costs are painful.

One could think about using other methods such as multigrid or a direct
solver for the task 3 of the solver. But it won't diminish the cost of commu-
nications required for the calculation of ρ̃ (task 1), and for the �nal broadcast
(task 3). So, we could not expect a large enhancement of parallel performance
in such a way. One need �rstly to try reducing the communication costs.

3.2 Detailed pro�ling

In order to interpret �nely performance results, some detailed pro�ling is shown
in this section. The test case considered here is bigger than in the previous
subsection in order to be in a more realistic con�guration. The GYSELA runs
have used the following domain size:

Nr = 512, Nθ = 256, Nϕ = 128, Nv‖ = 32, Nµ = 32 .

The OpenMP paradigm is now activated (which was not the case in the pre-
vious section) in order to further reduce computation times. All computations
costs are lowered thanks to this �ne grain parallelization. The main idea for this
OpenMP parallelization has been to target ϕ loops. This approach is e�cient
for the computation task 1 (integrals in v‖). But for computations task 2 and
3, this strategy competes with the MPI parallelization that uses also ϕ domain
decomposition. Thus, above Nϕ cores, no parallelization gain is expected. This
fact is not a so hard constraint up to now, because communication costs are a
lot more costly than computation tasks 2 and 3 (see Table 2).

Timing measurements have been performed on Jade2 machine (CINES) host-
ing 1300 Intel-X5560 nodes of eight cores. The Table 2 reports timing extracted
from GYSELA runs. The smallest test case used 32 nodes (256 cores) while the
biggest one has run on 512 nodes (4096 cores).

Nb. cores. 256 2048 4096

pr 1 8 16

Algorithm

comp1 8.9 s 0.80 s 0.41 s

io1 3.2 s 0.67 s 0.18 s

comp2 1.1 s 0.31 s 0.31 s

io2 0.50 s 0.49 s 0.02 s

comp3 0.04 s 0.05 s 0.03 s

io3 0.36 s 1.5 s 2.5 s

Table 2: Time measurements for one call to the QN solver in seconds

In Table 2, the io1, io2, io3 steps states for communications associated
with task 1, task 2, task 3 respectively. The communication costs for exchanging
ρ̃1 values (task 1) is reduced along with the involved number of nodes. This is
explained by the fact that the overall network bandwidth is increased with large
number of nodes, while the total amount of communications remains the same.
The communication cost associated with io2 is small and mainly consits of
nodes synchronization. The io3 communication involves a broadcast of electric

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 9

potential Φ on all nodes. On 4096 cores, the communication amount is bursting
and represents a very large percentage of the timing cost of the QN solver.

Concerning computation costs, comp1, comp2, comp3 stands for computation
relative to task 1, task 2, task 3 respectively. The comp1 calculation is the
biggest CPU consumer of the QN solver; it scales well with the number of
cores, combining MPI and OpenMP parallelizations. The comp3 is the smallest
computation step and time measures are nearly constant for all number of
cores shown. In fact Nϕ cores is the upper bound of the parallel decomposition
of comp3, between 1 and Nϕ cores the speedup increases, while the speedup
and computation time are constant above this limit. The comp2 step is quite
in the same con�guration than comp3. Nevertheless, cache e�ects explain why
computation time is reduced going from 256 cores to 2048 cores.

Clearly, the main bottleneck of the QN solver is the io3 communications,
corresponding to the broadcast of electric potential Φ.

4 Perspectives

Wa can investigate some possible solutions to the bottleneck associated with
communication costs. Several proposals are given in this section2.

4.1 Suppress the �nal broadcast

The �rst idea that will certainly reduce the cost of io3 is to send only the
useful part of Φ to each node. The broadcast will be suppressed and replaced
by selective send/receive to each nodes of Φ, and derivatives of Φ along spatial
dimensions. The foreseen communications costs will be from one to three times
of the observed io1 communication cost.

4.2 Investigate other computation distributions

Let suppose we want to reduce the communication costs in improving locality
of communications (on most architectures, nodes communicate faster with their
direct neighbours). Then, we need surely to group cores that share the same
spatial subdomain (r, θ, ϕ) but have di�erent µ values, because of two reasons:

1. in task 1, one has to evaluate the integral in µ to compute ρ̃1 on a given
spatial subdomain (r, θ, ϕ);

2. in task 3, the �nal broadcast distributes the same set of data Φ to the
cores owning di�erent values of µ.

Without this new domain decomposition based �rstly on spatial decomposi-
tion (higher levels of parallelism) and then to µ subdivision (lowest level of
parallelism), it seems not possible to improve communication locality of ρ̃1

computation.

Nevertheless this approach is very far away from present GYSELA ver-
sion [6]. The parameter µ is placed at the highest level of parallelism, not at

2Acknowledgments: This work was partially suported by ANR EGYPT contract.

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 10

the lowest level one as proposed. The present µ parallelization improves the
locality of communication in the Vlasov solver. So, if we change the parallel
domain decomposition, it is likely that we will increase communication costs in
the Vlasov part, while hoping a decrease of the communication cost in the QN
solver.

4.3 Compression

One way to reduce the communication costs can be to compress the ρ̃ and the
Φ data structures. A lossy or lossless compression on (r, θ) slices can be easily
implemented while preserving the present parallelization scheme.

4.4 Redondant computations

If one considers a very large number of cores to run GYSELA, redondant com-
putations could be foreseen in order to improve the �nal communication step.
Suppose that we have at least Nϕ × Nµ cores (approximately 8192 cores for
the biggest case ever run with GYSELA up to now). Then, each communicator
responsible for one µ value can compute on Nϕ cores the QN solver (compu-
tation task 3). Doing so, global computation costs are increased by a factor
Nµ, but computation time remains identical to the present timings in com-
putation task 3. Indeed, each core is responsible for computing at most one
slice Φ(r = ∗, θ = ∗, ϕ = value). The only di�erence is that Nµ cores will
redondantly compute the same slice ϕ = value. By the way, the �nal com-
munication involving all cores is avoided, because the potential Φ is known in
each µ-communicator at the end of the computation task 3. Then, communica-
tions of io3 step will take place more locally (only processors in the vincinity
communicate) than at the present day, but with the same amount of overall
communications.

References

[1] A.J. Brizard, T.S. Hahm, Foundations of nonlineargyrokinetic theory, PPPL report
4153, 2006.

[2] A.M. Dimits et al., Comparisons and physics basis of tokamak transport models and
turbulence simulations, Phys. Plasmas 7, pp. 969-983, (2000).

[3] G.W. Hammet, F.W. Perkins, Fluid models for Landau damping with application
to the ion-temperature-gradient instability, Phys. Rev. Lett. 64, pp. 3019-3022,
(1990).

[4] S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.M. Tran, B.F. Mcmillan,
O. Sauter, K. Appert, Y. Idomura, L. Villard, A global collisionless PIC code
in magnetic coordinates, Comp. Phys. Comm., 177, pp. 409-425, (2007).

[5] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, Ph. Gen-
drih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrucker, J. Vaclavik,
L. Villard, A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation,
J. Comput. Phys., 217(2), pp. 395-423, (2006).

[6] G. Latu, N. Crouseilles, V. Grandgirard, E. Sonnendrücker, Gyrokinetic
semi-Lagarngian parallel simulation using a hybrid OpenMP/MPI programming, Re-
cent Advances in PVM an MPI, Springer, LNCS, pp. 356-364, Vol. 4757,
(2007).

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

Parallel bottleneck of GYSELA's Poisson solver 11

[7] G. Latu, V. Grandgirard, N. Crouseilles, R. Belaour, E. Sonnendrücker,
Some parallel algorithms for the Quasineutrality solver of GYSELA, INRIA Re-
search Report, RR-7591, (2011). http: // hal. inria. fr/ inria-00583521/ PDF/
RR-7591. pdf .

[8] T.S. Hahm, Nonlinear gyrokinetic equations for tokamak microturbulence, Phys.
Fluids, 31, p. 2670, 1988.

[9] R. Hatzky, T.M. Tran, A. Koenis, R. Kleiber, S.J. Allfrey, Energy conserva-
tion in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven
modes in θ-pinch geometry Physics of Plasma, Vol. 9, 2002.

[10] W.W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids 26, p. 556,
(1983).

[11] Z. Lin, W.W. Lee, Method for solving the gyrokinetic Poisson equation in general
geometry, Phys. Rev. E 52, p. 5646-5652, (1995).

[12] R.G. Littlejohn, J. Math. Phys. 23, p. 742, (1982).

[13] Y. Nishimura, Z. Lin, J.L.V. Lewandowski, A �nite element Poisson solver for
gyrokinetic particle simulations in a global �eld aligned mesh, J. Comput. Phys, 214,
pp. 657-671, (2006).

[14] H. Qin, A short introduction to general gyrokinetic theory, PPPL report 4052,
2005.

RR n° 7595

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

http://hal.inria.fr/inria-00583521/PDF/RR-7591.pdf
http://hal.inria.fr/inria-00583521/PDF/RR-7591.pdf

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
05

83
68

9,
 v

er
si

on
 1

 -
6

Ap
r 2

01
1

	Introduction
	Field solver of GYSELA
	Quasineutrality equation
	1D Fourier transforms method
	Parallel algorithm using 1D FFT

	Performance Analysis
	Coarse view
	Detailed profiling

	Perspectives
	Suppress the final broadcast
	Investigate other computation distributions
	Compression
	Redondant computations

