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A new splitting is proposed for solving the Vlasov–Maxwell system. This splitting is based 
on a decomposition of the Hamiltonian of the Vlasov–Maxwell system and allows for 
the construction of arbitrary high order methods by composition (independent of the 
specific deterministic method used for the discretization of the phase space). Moreover, we 
show that for a spectral method in space this scheme satisfies Poisson’s equation without 
explicitly solving it. Finally, we present some examples in the context of the time evolution 
of an electromagnetic plasma instability which emphasizes the excellent behavior of the 
new splitting compared to methods from the literature.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The time evolution of an ensemble of charged particles in a plasma or a propagating beam is described by the Vlasov 
equation. This kinetic model describes the interaction of the plasma with the self-consistently generated electromagnetic 
field. The unknown of the Vlasov equation is the distribution function f (t, x, v) of the considered plasma system, which 
depends on the time t , the space x, and the velocity v . The coupling of the Vlasov equation with Maxwell’s equations takes 
into account the self-consistent fields, i.e. the electric E and magnetic field B generated by the particles in the plasma.

The so-obtained Vlasov–Maxwell system is nonlinear and thus analytical solutions are not available in general. There-
fore, numerical simulations have to be conducted in order to study realistic physical phenomena (such as magnetic field 
generation).

Historically, Particle In Cell (PIC) methods have been widely used to numerically solve high dimensional Vlasov–Maxwell 
problems. The main advantage of this class of methods is their low computational cost [2,3]. In these methods, the trajecto-
ries of macro-particles are advanced by using the characteristics curves of the Vlasov equation whereas the electromagnetic 
fields are computed by gathering the charge and current densities of the simulated particles on a grid in physical space. 
Note that this grid is at most three dimensional (as the electric and magnetic fields do not depend on velocity) whereas the 
phase space can consist of up to six dimensions.

More recently, deterministic methods have been developed [7,20,10,14,8,6,22]. In this approach, a phase space grid is 
used so that finite volumes, finite elements, or finite differences can be employed to approximate the differential operators. 
These methods usually require more memory when high dimensional problems are considered. However, they do not suffer 
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from numerical heating and statistical noise (although exact energy conserving PIC methods have been proposed recently; 
see, for example, [28]). In most of the literature, a time splitting approach is employed; in such a scheme the transport 
in the spatial variable is split from the transport in the velocity variable [33,34,30,14,4]. The electromagnetic fields are 
then advanced by approximating Maxwell’s equations using a suitable time integrator. Finally, let us emphasize that it 
is well known that for both approaches (PIC and deterministic) the Poisson equation needs to be satisfied to machine 
precision (even though Poisson’s equation is usually not solved directly in the numerical method) if long time integration is 
considered. This is the charge conservation problem [34,5,25,35,1,12].

While PIC methods provide good resolution in areas where the particle density is high, they undersample regions where 
this is not the case. Therefore, grid based methods have achieved excellent results in plasma physics problems where the 
correct treatment of the tail of the velocity distribution is important; that is, where a (relative) small density of particles 
at high velocities can have a significant impact on the dynamics of the system. Two such typical examples are the study 
of holes in the Landau problem which drive an oscillation of the bulk plasma, and the appearance of a relativistic beam in 
laser plasma interactions (see, for example, [19]).

These grid based Vlasov methods are also widely used in plasmas simulations where good accuracy is vital. However, 
such simulations are limited to an at most two-dimensional velocity space mainly due to memory constraints. This setting 
arises, for example, in the study of plasma echos (see, for example, [23]). For phenomena that require the full three-
dimensional description of the velocity space PIC codes are usually the only viable option.

Grid based solvers can be roughly divided into two classes of methods. The first class of methods proceeds by perform-
ing a space discretization that is then integrated in time by a classic time integrator (usually a Runge–Kutta method). In 
this context RKDG (Runge–Kutta discontinuous-Galerkin) methods have been developed for the Vlasov–Poisson and Vlasov–
Maxwell equations (see, for example, [8,22]). Also conservation properties and recurrence have been investigated in this 
context (see, for example, [6]).

The second class consists of the so-called semi-Lagrangian methods. In this case the characteristics are integrated back-
ward in time and a sufficiently accurate interpolation scheme is used to reconstruct the value of the numerical solution. The 
latter is usually coupled with a time splitting and has the advantage that the Courant–Friedrichs–Lewy (CFL) condition does 
not need to be satisfied. Furthermore, these methods are usually much simpler to implement, do not suffer from stability 
issues, and are not tied to a specific space discretization. However, semi-Lagrangian methods based on Lagrange or spline 
interpolation do not preserve mass in general. However, a number of conservative semi-Lagrangian methods have been de-
veloped [20,11]. Alternatively, this deficiency can be remedied by using a spectral discretization (if applicable) or by using, 
for example, the discontinuous Galerkin based discretization considered in [16].

In this work, we propose new time splitting schemes for the numerical solution of the Vlasov–Maxwell system using the 
deterministic approach outlined above. These splitting methods enjoy the following properties:

– they are symplectic, in the sense that they preserve the mechanical Hamiltonian structure of the equation;
– they can be generalized to arbitrary high order in time by composition (first order for the Lie splitting, second order for 

Strang splitting, fourth order for the triple Jump method, . . .);
– Poisson’s equation is exactly satisfied at the semi-discrete level as well as at the fully discrete level for standard space 

discretization methods;
– they can be easily combined with arbitrary high order schemes in phase space (finite volume, semi-Lagrangian, spectral, 

. . .).

Let us duly note that this paper focuses on a time integration scheme. However, as discussed above, it can be sup-
plemented by a number of different space discretization schemes such as spectral methods, interpolation based semi-
Lagrangian methods, and finite volume methods (see [13]).

These splitting methods are based on a decomposition of the Hamiltonian of the Vlasov–Maxwell equations. Splitting 
methods are widely used in the context of systems of ordinary differential equations governed by Hamilton’s equations. In 
the case of velocity independent potentials for example, the application of the Strang splitting algorithm leads to the well 
known Störmer–Verlet method. Recently, these methods have been extensively studied in the literature (see, for example, 
[24] for an overview): as they are symplectic, they exhibit excellent long time behavior and energy preservation properties.

As far as partial differential equations are concerned, splitting methods are also well developed in the context of linear 
and semi-linear Hamiltonian equation such as the Schrödinger equation (see for instance [27,18]). However, in the case 
of strongly nonlinear equation, where the highest order derivative depends on the solution itself, the formulation as a 
Hamiltonian system is significantly less common. Nevertheless, it is well known that the Vlasov–Maxwell equations can be 
considered as an infinite dimensional Hamiltonian system (see [32,31]) where the Hamiltonian structure is non-canonical, 
and depends on the solution itself (Poisson structure). Note that for the Vlasov–Poisson system the natural splitting be-
tween spatial advection and velocity advection is also a Hamiltonian splitting (see [9]). However, this is not the case for the 
Vlasov–Maxwell system. Therefore, the Hamiltonian structure of the Vlasov–Maxwell system is of interest as it allows us 
to construct a splitting scheme which yields a priori good conservation properties. Furthermore, as we will discuss in more 
detail in Section 5, the splitting methods for the Vlasov–Maxwell equations constructed in the literature have exclusively fo-
cused on two-term splittings (motivated by the two transport terms in space and in velocity) and therefore have used rather 
ad-hoc procedures in order to obtain methods of second order. This also impedes the construction of high order methods 
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by composition (which is relatively straightforward for the Vlasov–Poisson equation, see [9]) as the resulting schemes are 
no longer symmetric.

In this paper, we outline the construction and numerical validation of these new splitting methods and apply them to 
the reduced 1 + 1/2 dimensional Vlasov–Maxwell system. Several numerical tests have been conducted and comparisons 
with two numerical schemes of the literature [34,30] are performed for Landau damping, a Weibel type instability, and a 
magnetically induced two-stream instability.

The rest of the paper is organized as follows: first, the Vlasov–Maxwell model and its Hamiltonian structure are recalled. 
Then, the Hamiltonian splitting is presented and applied to the reduced 1 +1/2 dimensional Vlasov–Maxwell system. Finally, 
numerical experiments are conducted with the new methods and comparisons with classical methods from the literature 
are performed.

2. Hamiltonian structure of the Vlasov–Maxwell system

We consider the Vlasov–Maxwell system that is satisfied by the electron distribution function f = f (t, x, v) and the 
electromagnetic fields (E, B) = (E(t, x), B(t, x)) ∈ R3 ×R3. Here, the spatial variable is denoted by x ∈ X3 (X3 being a three 
dimensional torus), the velocity variable is denoted by v ∈ R3, and the time is denoted by t ≥ 0. Using normalized units, 
the Vlasov–Maxwell system can be written (see for instance [5,21]) as

∂t f + v · ∇x f + (E + v × B) · ∇v f = 0,

∂t E = ∇x × B −
∫

R3

v f (t, x, v)dv + J (t),

∂t B = −∇x × E, (2.1)

where

J (t) = 1

|X3|
∫

X3

∫

R3

v f (t, x, v)dx dv (2.2)

with |X3| the measure of X3. The two constraints on the electromagnetic fields (E, B) are given by

∇x · E = ρ(t, x) :=
∫

R3

f (t, x, v)dv − 1, ∇x · B = 0. (2.3)

Note that if these constraints are satisfied at the initial time, they are satisfied for all times t > 0. We impose that E and B
are of zero average for all times t; that is∫

X3

E(t, x)dx =
∫

X3

B(t, x)dx = 0, (2.4)

which implies the presence of J in the system (2.1). Moreover, the total mass is preserved; that is,∫

X3

∫

R3

f (t, x, v)dx dv =
∫

X3

∫

R3

f (0, x, v)dx dv = 1

holds true for all time t > 0. Note, however, that this is not always the case when numerical approximations are consid-
ered. For a unique solution the Vlasov–Maxwell system has to be supplemented with initial conditions for the distribution 
function as well as the field variables; that is, we have to specify

f (t = 0, x, v) = f0(x, v), E(t = 0, x) = E0(x), B(t = 0, x) = B0(x).

The Hamiltonian associated with the Vlasov–Maxwell system is given by (see [32,31])

H = 1

2

∫

X3

|E|2 dx + 1

2

∫

X3

|B|2 dx + 1

2

∫

X3×R3

|v|2 f dv dx

= HE +HB +H f . (2.5)

The three terms corresponding to electric energy, magnetic energy, and kinetic energy, respectively. For a given functional 
K( f , E, B), we denote by δK/δ f , δK/δE and δK/δB the Fréchet derivatives of K with respect to f , E and B respectively.1

The Poisson bracket of two functionals K( f , E, B) and G( f , E, B), is then defined as

1 Note that in the absence of domain boundaries, this definition of functional derivative is not ambiguous. Note that the Fréchet derivative with respect 
to E and B has to be made with zero averages variations in view of condition (2.4), which implies the presence of the term J in (2.1).
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[K,G] =
∫

X3×R3

f

{
δK
δ f

,
δG
δ f

}
dx dv

+
∫

X3

δK
δE

·
(

∇x × δG
δB

)
− δG

δE
·
(

∇x × δK
δB

)
dx

+
∫

X3×R3

δK
δE

· ∇v f
δG
δ f

− δG
δE

· ∇v f
δK
δ f

dx dv

+
∫

X3×R3

δK
δB

· (∇v f × v)
δG
δ f

− δG
δB

· (∇v f × v)
δK
δ f

dx dv, (2.6)

where for two functions h(x, v) and k(x, v),

{h,k} =
3∑

i=1

(
∂h

∂xi

∂k

∂vi
− ∂h

∂vi

∂k

∂xi

)

denotes the standard microcanonical Poisson bracket. With this notation, the Vlasov–Maxwell system (2.1) is equivalent to 
the equation

∂tK = [K,H] = [K,HE ] + [K,HB ] + [K,H f ], (2.7)

for any functional K(t) = K( f (t), E(t), B(t)) evaluated along the solution of (2.7) (note that here, we assume that the 
solution ( f , E, B) and the functional K are smooth enough to ensure the validity of the equations).

As is outlined in the next section, this formulation provides the basis for the splitting methods proposed in this paper.

3. Hamiltonian splitting

In this section, we propose new splitting methods to compute the solution of the Vlasov–Maxwell system. These splitting 
are based on exact computations of the three parts of the Hamiltonian HE , HB and H f given by (2.5) respectively.

Let us start by detailing the equations associated with the different parts of the Hamiltonian. Note that these evolution 
equations can be derived by plugging in a representation for HE , HB , and H f into the right hand side of Eq. (2.7).

3.1. Equations for HE

The equations associated with the Hamiltonian HE are given by

∂t f + E(x) · ∇v f = 0,

∂t E = 0,

∂t B = −∇x × E. (3.1)

For a given initial data ( f0, E0, B0) at time t = 0, the solution of this system at time t is given explicitly by

f (t, x, v) = f0
(
x, v − t E0(x)

)
,

E(t, x) = E0(x),

B(t, x) = B0(x) − t∇x × E0(x). (3.2)

Formally we can write this solution as

F (t) := ( f , E, B)T (t) = exp(HEt)( f0, E0, B0)
T .

Moreover, if E0 and f0 satisfy the relation ∇x · E0 = ∫
R3 f0(x, v) dv −1, then it holds that ∇x · E(t, x) = ∫

R3 f (t, x, v) dv −1; 
this can be easily seen by the fact that E(t, x) is constant in time, and that the transformation v �→ v − t E0(x) preserves the 
volume.

Let us further remark that if ∇x · B0 = 0, then this property holds true for any later time as well. This is a consequence of 
the symplectic nature of the splitting in time we consider here. In fact, the Poisson structure described in Section 2 is only 
defined for divergenceless magnetic fields (see [32]). Therefore, any symplectic splitting inherits this property. In addition, 
this is easily shown by considering the divergence of the last equation

∇x · B(t, x) = ∇x · B0(x) − t ∇x · (∇x × E0(x)
) = ∇x · B0(x) = 0.

The previous relations can be easily carried over to the fully discrete case by using for example a spectral discretization 
in x and an interpolation procedure in v to compute f (t, x, v) from f0(x, v). The volume preservation in this case can be 
easily ensured as the advection is just a translation with constant coefficients.
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3.2. Equations for HB

The equations associated with the Hamiltonian HB are given by

∂t f + (
v × B(x)

) · ∇v f = 0,

∂t E = ∇x × B,

∂t B = 0. (3.3)

Note that in the right hand side of the first equation the following cross product term appears

v × B =
⎛
⎝ v2 B3 − v3 B2

v3 B1 − v1 B3

v1 B2 − v2 B1

⎞
⎠ =

⎛
⎝ 0 B3 −B2

−B3 0 B1

B2 −B1 0

⎞
⎠ v =: JB v.

Two important properties of this term have to be remarked. First, the k-th component of (v × B) does not depend on vk (for 
k = 1, 2, 3). Second, the 3 × 3 matrix JB is constant in time (which follows immediately from the third evolution equation).

For a given initial data ( f0, E0, B0) at time t = 0, the solution of this system at time t is therefore given explicitly by

f (t, x, v) = f0
(
x,exp(−JBt)v

)
,

E(t, x) = E0(x) + t∇x × B0(x),

B(t, x) = B0(x). (3.4)

As before, we will denote this formally by

F (t) := ( f , E, B)T (t) = exp(H Bt)( f0, E0, B0)
T .

Let us remark that if ∇x · E0 = ∫
R3 f0(x, v) dv − 1, then considering the divergence of the second equation leads to 

∇x · E(t, x) = ∇x · E0(x).
Now as JB is skew-symmetric, the transformation v �→ exp(−JBt)v preserves the volume, and we thus follow that∫

R3

f0(x, v)dv =
∫

R3

f0
(
x,exp(−JBt)v

)
dv (3.5)

which ensures that the Poisson equation is satisfied after one integration step.
Note that in contrast with the previous case, the relation (3.5) is in general difficult to ensure by standard 3D (or 2D) 

interpolation at the fully discrete level. To remedy this difficulty, one possibility is to further approximate f (t, x, v) by 
directional splitting. Indeed, due the structure of the cross product, i.e. since

v × B =
⎛
⎝ v2 B3 − v3 B2

v3 B1 − v1 B3

v1 B2 − v2 B1

⎞
⎠ ,

the evolution equation for f (t, x, v) can be written as

∂t f + (v2 B3 − v3 B2)∂v1 f + (v3 B1 − v1 B3)∂v2 f + (v1 B2 − v2 B1)∂v3 f = 0,

which can be further split into the following three equations

∂t f = −(v2 B3 − v3 B2)∂v1 f

∂t f = −(v3 B1 − v1 B3)∂v2 f

∂t f = −(v1 B2 − v2 B1)∂v3 f .

Each of these equations can be solved explicitly by a linear advection with constant coefficients. For example the speed of 
the advection in the v1 direction does only depend on the perpendicular velocities v2 and v3. As proposed in [30], a Strang 
splitting (or high order splitting) can be performed here.

3.3. Equations for H f

Finally, the equation associated with the Hamiltonian H f is given by

∂t f + v · ∇x f = 0,

∂t E = −
∫

R3

v f (t, x, v)dv + J (t),

∂t B = 0, (3.6)
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where J is given by (2.2). For a given initial data ( f0, E0, B0) at time t = 0, the solution at time t is given explicitly by

f (t, x, v) = f0(x − tv, v),

B(t, x) = B0(x),

E(t, x) = E0(x) −
t∫

0

∫

R3

v f0(x − sv, v)dv ds + t J (0). (3.7)

Indeed, we verify that with the expression of f (t, x, v), we have J (t) = J (0) for all times. We will denote this solution 
formally by

F (t) := ( f , E, B)T (t) = exp(H f t)( f0, E0, B0)
T .

Let us remark that the Poisson equation is propagated with time. Indeed, considering the divergence of the last equation 
leads to

∇x · E(t, x) = ∇x · E0(x) −
t∫

0

∫

R3

v · ∇x
[

f0(x − sv, v)
]

dv ds

=
∫

R3

f0(x, v)dv − 1 +
t∫

0

∫

R3

∂s
[

f0(x − sv, v)
]

dv ds

=
∫

R3

f0(x, v)dv − 1 +
∫

R3

[
f0(x − tv, v) − f0(x, v)

]
dv

=
∫

R3

f0(x − tv, v)dv − 1

=
∫

R3

f (t, x, v)dv − 1,

which implies that the splitting method proposed here satisfies the charge conservation property.
The preservation of the charge conservation at the fully discrete level relies on a good approximation of the time integral 

in the previous formula, in combination with the interpolation procedure in the v variable. We will give an example in the 
next section where E(t, x) is easily computed using Fourier spectral approximations in the x variable.

3.4. Hamiltonian splitting

The solution F (t) = ( f , E, B)T (t) of the Vlasov–Maxwell system up to first order can be written as (this is the well 
known Lie splitting)

F (t) = exp(HEt)exp(HBt)exp(H f t)F (0).

The Strang splitting scheme (which is a second order accurate splitting method) is given by

F (t) = exp(HEt/2)exp(HBt/2)exp(H f t)exp(H Bt/2)exp(H Et/2)F (0).

Higher order methods can be constructed using composition (see [24, III.3]). For example the well known triple jump 
scheme (see [24, II, Example 4.2]) based on the Strang splitting yields a method of order four, as the original Strang splitting 
is symmetric.

4. Application to the reduced 1 + 1/2 dimensional model

In this section, we apply the splitting method proposed in this paper to a fully discretized 1 + 1/2 model of the Vlasov–
Maxwell system. This model has been studied in [33,8] and retains most of the properties of the full Vlasov–Maxwell 
system. All the numerical simulations in this paper will be conducted in the framework of this reduced model.

4.1. Reduced 1 + 1/2 model

We consider the phase space (x1, v1, v2) ∈ X × R2, where X is a one-dimensional torus, and the unknown functions 
f (t, x1, v1, v2), B(t, x1) and E(t, x1) = (E1, E2)(t, x1) which are determined by solving the following system of evolution 
equations
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∂t f + v1∂x1 f + E · ∇v f + BJ v · ∇v f = 0,

∂t B = −∂x1 E2,

∂t E2 = −∂x1 B −
∫

R2

v2 f (t, x1, v)dv + J 2(t),

∂t E1 = −
∫

R2

v1 f (t, x1, v)dv + J 1(t), (4.1)

where v = (v1, v2), J i(t) = 1/|X | ∫X

∫
R2 vi f (t, x1, v) dx1 dv , i = 1, 2 (|X | denotes the measure of X) and J denotes the 

symplectic matrix

J =
(

0 1
−1 0

)
.

This reduced system correspond to choosing an initial value of the form

E(x1, x2, x3) =
⎛
⎝ E1(x1)

E2(x1)

0

⎞
⎠ and B(x1, x2, x3) =

⎛
⎝ 0

0

B(x1)

⎞
⎠

and an f depending on x1 and (v1, v2) only. Then it can be easily checked that this structure is preserved by the flow of 
(2.1) and that the equations reduce to (4.1). We refer the reader to [8] for more details.

4.2. Phase space integration

Consistent with most of the literature, we consider the periodic case in the x1 direction. Thus, one natural method in 
this direction is the Fourier spectral approximation. It simplifies the computation of the evolution corresponding to H f , 
and the exact charge conservation can be easily recovered. In the evolutions corresponding to HE and HB , we compute 
an approximation to the transport of f by using a third order finite volume numerical scheme (see [20,11]) whereas the 
equations for the electric field E and the magnetic field B are solved in Fourier space.

Let us consider the evolution corresponding to H f in more detail. By employing the Fourier transform in space (that is 
in the x1 variable) and denoting the corresponding functions by f̂k , k ∈ Z (that is, f̂k denotes the Fourier transform of f (x)
and does still depend on v1 and v2) gives

∂t f̂ + v1ik f̂ = 0, ∂t Ê1 = −
∫

R2

v1 f̂ dv + Ĵ1.

Note that for k �= 0 we have ( Ĵ1)k = 0 and that for k = 0, we have immediately (En+1
1 )k=0 = (En

1)k=0 by construction (see 
(2.4)). The first equation can be solved exactly in time, given the initial condition f̂ (tn):

∀k ∈ Z, f̂ (t) = f̂
(
tn)exp

(−iv1k
(
t − tn)),

which inserted into the second equation (which we have integrated in time from tn to tn+1) yields the approximation, for 
k �= 0,

Ên+1
1 = Ên

1 −
tn+1∫
tn

∫

R2

v1 f̂
(
tn)

exp
(−iv1k

(
t − tn)) dv dt

= Ên
1 −

∫

R2

v1 f̂
(
tn) tn+1∫

tn

exp
(−iv1k

(
t − tn)) dt dv

= Ên
1 −

∫

R2

v1 f̂
(
tn)[ −1

ikv1

(
exp(−ikv1�t) − 1

)]
dv.

For the long time properties of the numerical scheme it is vital that the total charge is conserved exactly and that Gauss’s 
law is satisfied. The charge is not part of the formulation of our numerical algorithm, but it can be shown that our scheme 
satisfies the charge conservation property. Assuming that Poisson’s equation is satisfied initially, we can prove that it is 
satisfied for all time. This is a consequence of the Poisson structure of the equation (see the discussion in Section 6 in [32]). 
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For a spectral approximation in space we also have this property: Assuming that Gauss’s law is satisfied at time tn , that is 
ikÊn

1 = ρ̂n , where ρ̂n is an approximation of the charge density ρ(t, x) in Fourier, see (2.3), we get from the last equation, 
for k �= 0

Ên+1
1 = Ên

1 −
∫

R2

v1 f̂
(
tn)[ −1

ikv1

(
exp(−ikv1�t) − 1

)]
dv

= ρ̂n

ik
+ 1

ik

∫

R2

f̂
(
tn)(exp(−ikv1�t) − 1

)
dv

= 1

ik

[
ρ̂n +

∫

R2

f̂
(
tn)

exp(−ikv1�t)dv − ρ̂n − 1

]

= 1

ik
ρ̂n+1,

which shows that Gauss’s law is also true at time tn+1, assuming sufficient accuracy in the discretization of the integral 
in v . Note that k = 0 does not pose any additional difficulties as the average of the electric field is imposed to be zero 
by total mass conservation. This is a necessary condition to impose as periodic boundary conditions do not give a unique 
solution for the electric field.

Once the three steps are solved, the global time integration is given in Section 3.4.
Before proceeding further let us briefly discuss the recurrence phenomenon. After space discretization, the solution 

created by the numerical scheme is by nature finite dimensional, whereas the exact solution in general creates higher and 
higher frequencies (as can be observed in the Landau damping phenomenon for which the energy travels to high frequencies 
in the velocity Fourier space). Hence after a time related to the discretization parameters, aliasing problems occur making 
high frequencies return to low frequencies, which prevent a correct reproduction of filamentation effects beyond small 
scales. In the literature a number of schemes suppressing these recurrence effects have been introduced (see, for example, 
[26,17]). In the simplest case such methods add a small diffusion term to the Vlasov equation. Another possibility is to put 
directly high frequencies absorbers, as presented in [15], which can be readily applied to the Hamiltonian splitting method 
introduced in this paper.

5. Numerical experiments

In this section, the Hamiltonian splitting is numerically studied by solving the 1 + 1/2 dimensional reduced Vlasov–
Maxwell system introduced in the previous section. We also compared our numerical scheme to two methods of the 
literature: VALIS (from [34], recalled in Section A.2) and Mangeney (from [30], recalled in Section A.1).

In all simulations the dimensionless form of the Vlasov–Maxwell system has been employed. Physically this means that 
the time is normalized by the inverse of the plasma frequency, length is normalized by the Debye length, and the electric 
and magnetic fields are normalized by the corresponding characteristic strength determined from the plasma frequency, the 
mass of the particles, and the unit charge. For more details we refer the reader to [8].

5.1. Landau damping

Landau damping is a classic test case for the Vlasov–Poisson equations. In this context a number of numerical schemes 
have been proposed (see e.g. [20,11,9]). However, even though the equation we try to solve does not explicitly determine 
the electric field from the charge density (as is usually done for methods constructed in the context of the Vlasov–Poisson 
equations) it clearly reduces to the Vlasov–Poisson equation if no magnetic effects are present in a given configuration. 
Compared to the simulation discussed in Sections 5.3 and 5.2 this problem does not rely on magnetic effects. Thus, it serves 
as a first, but rather limited, consistency check for the numerical schemes considered in this paper. However, the charge 
conservation property is crucial in this test; if it is not satisfied exactly, the solution of the Vlasov–Poisson system is not 
recovered.

For this test, the initial value for the distribution function f is given by

f0(x1, v1, v2) = 1

2π
e− 1

2 |v|2(1 + α cos kx1),

where x1 ∈ X = [0, 2π/k], v ∈ R2 and we have chosen α = 0.5 and k = 0.4, a configuration usually called strong (or nonlin-
ear) Landau damping. The electric field, at the initial time, is determined by Poisson’s equation, i.e.

∂x1 E1(t = 0, x1) =
∫

2

f0(x1, v)dv − 1,
R
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Fig. 1. Time evolution of the electric energy Epot (semi-log scale) for the Landau damping test using the Hamiltonian Strang splitting with 32 × 64 × 64 grid 
points and �t = 0.05. Top figure: nonlinear Landau damping (α = 0.5); bottom figure: linear Landau damping (α = 0.01). The analytic decay rate γ ≈ 0.066
is shown for comparison in case of the linear Landau damping.

whereas a vanishing magnetic and perpendicular electric field (i.e. E2) is prescribed in order to completely specify the initial 
value.

The quantity of interest is the potential energy stored in the electric field

Epot(t) = 1

2

∫
X

∣∣E(t, x1)
∣∣2

dx1,

and the total energy (sum of the potential and kinetic energy)

Etot(t) = Epot(t) + Ekin(t),

where

Ekin(t) = 1

2

∫
X

∫

R2

|v|2 f (t, x1, v)dv dx1.

Note that the total energy is conserved with time.
In Fig. 1, the time history of the electric energy is shown for a Strang Hamiltonian splitting, using 32 points in the 

spatial direction, 64 points in each velocity direction and a time step �t = 0.05. Note that compared to the linear case 
(i.e. α = 0.01, for example) the electric energy does only decay exponentially for a brief period of time before presenting an 
oscillating behavior for large times. The results is in a good agreement with results available in the literature (see [29]).

In Fig. 2 the time history of the total energy error is plotted for a Lie and Strang Hamiltonian splitting (the scheme 
proposed in this paper) as well as the VALIS scheme described in [34] (for more details see Appendix A). On the upper 
figure, we consider a phase space mesh of 32 × 64 × 64 and the time step is �t = 0.1. We can first observe that the three 
methods behave well as the error in energy is less than 1%. However, the Lie splitting leads to oscillations which is not the 
case when a second order charge preserving method (Strang splitting or VALIS) is used. When the numerical parameters are 
refined (lower figure), these two methods show virtually indistinguishable results (the error is about 0.1%) and we do not 
seem to experience a significant growth over the time period considered in this simulation. Let us remark that the charge 
conservation is very important with respect to energy conservation. If charge conservation is not exact, the accuracy of the 
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Fig. 2. Time evolution of the error in energy (semi-log scale) for the Landau damping test |Etot(t) − Etot(0)|. Top figure: 32 × 64 × 64 grid points and 
�t = 0.1; bottom figure: 256 × 256 × 256 grid points and �t = 0.0125.

algorithm is significantly reduced. This loss of accuracy is more pronounced if we consider an increased number of grid 
points in space. For that reason, the scheme proposed in [30] only performs satisfactorily if a significantly smaller time step 
is chosen (as compared to Hamiltonian splittings and VALIS, see Fig. 7, Section 5.3 for a comparison in the fully magnetized 
case).

5.2. Weibel instability

In this section, we will discuss an incarnation of the Weibel instability. This instability includes a genuine magnetic effect 
driven by a temperature anisotropy. Following [8] and [33], we impose the following initial particle density

f0(x1, v1, v2) = 1

π vth
√

Tr
e−(v2

1+v2
2/Tr)/v2

th
(
1 + α cos(kx1)

)
,

where x1 ∈ X = [0, 2π/k], v ∈R2 and we have chosen vth = 0.02, k = 1.25, and α = 10−4. The electric field E1 is initialized 
by solving Poisson’s equation and E2 is set to zero at t = 0. The magnetic field is prescribed as

B0(x1) = β cos(kx1),

where we have chosen β = 10−4.
From Fig. 3 we see that the electric field in the y-direction does show an exponential growth in magnitude. Following 

[36], the (analytically derived) growth rate is vth

√
Tr
2

k√
1+k2

. In Table 1 we give a comparison between this theoretical rate 
and the numerical rate computed with our algorithm for different values of Tr . As expected, for large Tr , we observe 
excellent agreement. These results are also in agreement with the numerical rates that have been reported in the literature, 
see for instance [34].

As in the previous example, we observe that the scheme proposed by Mangeney does not produce accurate results with 
respect to energy conservation, except if the chosen step size is significantly smaller than what is necessary in case of the 
VALIS or the Hamiltonian splitting scheme (several orders of magnitude). However, compared to the simulation presented 
in the previous section, for sufficiently long integration times, we observe a better energy conservation (see Fig. 4) for the 
Hamiltonian Strang splitting scheme as compared to the VALIS implementation (which is a scheme of second order as well).
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Fig. 3. Time evolution of the k = 1.25 Fourier mode of the electric and magnetic fields (semi-log scale) for Weibel instability using the Hamiltonian Strang 
splitting method (with Tr = 12). Top figure: 32 × 64 × 64 grid points and �t = 0.2; bottom figure: 256 × 256 × 256 grid points and �t = 0.0125.

Table 1
Comparison between the theoretical and numerical growth rates in the Weibel instability for k = 1.25, vth = 0.02, and various 
values of Tr . The simulations are performed using 32 × 64 × 64 grid points and �t = 0.2.

Tr Numerical value Analytic value Rel. error

12 0.03296 0.03826 0.16
24 0.05205 0.05410 0.04
48 0.07678 0.07651 0.004

Finally, let us investigate the behavior of the VALIS scheme more closely. As can be seen from Fig. 5, if a time step 
close to the CFL condition is chosen we can observe (unphysical) oscillations in the solution. Let us duly note that such 
oscillations are not present in our Hamiltonian splitting approach. In fact, we can verify that these oscillations disappear for 
the VALIS scheme when the time step size is sufficiently small. This behavior implies that for the problem under considered 
in this section, the VALIS scheme has a significantly higher computational cost compared to the Hamiltonian Strang splitting 
scheme proposed in this paper.

5.3. Two-stream instability

As the final example, we will consider the two-stream instability. That is, the initial particle density is constructed from 
two Gaussian velocity profiles which are different with respect to their mean velocity

f0(x1, v1, v2) = 1

2πβ
e−v2

2/β
(
e−(v1−0.2)2/β + e−(v1+0.2)2/β

)
,

where x1 ∈ X = [0, 2π ], v ∈ [−0.4, 0.4]2 and β = 2 · 10−3. The resulting instability is usually driven by a perturbation in the 
particle density. However, as we are more interested in magnetic effects we will drive the instability by a perturbation in 
the magnetic field only

B0(x1) = α sin(x1),

where we have chosen α = 10−3.
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Fig. 4. Weibel test: time evolution of the total energy error |E(t) −E(0)| (semi-log scale). Top figure: 32 × 64 × 64 grid points and �t = 0.2; bottom figure: 
256 × 256 × 256 grid points and �t = 0.0125.

Fig. 5. Weibel test: time evolution of the first mode of E2 (semi-log scale). Comparison between VALIS and Strang splitting scheme using 32 × 64 × 64 grid 
points.

The result of the simulation is shown in Fig. 6. Even though we drive the instability by a magnetic perturbation only, we 
observe, after an initial oscillatory regime, an exponential increase and a saturation in the electric field.

In Fig. 7 the error in energy for different schemes is shown. Note that for the scheme proposed by Mangeney, even 
for a relatively coarse space discretization, the step size has to be reduced by at least an order of magnitude in order to 
get comparable results to the VALIS and Hamiltonian Strang splitting schemes. In addition, we observe that, especially for 
a sufficiently fine space discretization, the error in energy for the VALIS and our Hamiltonian Strang splitting scheme is 
almost indistinguishable.
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Fig. 6. Time evolution of the electric, potential and total energies (semi-log scale) for the two-stream instability test using the Strang splitting scheme with 
32 × 64 × 64 grid points and a time step of �t = 0.1.

Fig. 7. Time evolution of the error in energy |Etot(t) − Etot(0)| (semi-log scale) of the two-stream instability test. Top figure: 32 × 64 × 64 grid points and 
�t = 0.1 for VALIS, Strang and Lie, and �t = 0.01 for Mangeney; bottom figure: 256 × 256 × 256 grid points and �t = 0.0125.

5.4. Order

To conclude the discussion we consider the order achieved by Hamiltonian Lie and Strang splitting schemes as well as 
for the triple jump scheme. The order of the triple jump scheme is of particular interest as the results provided in this 
section demonstrate that we can in fact use composition to obtain a method that is of order four. The numerical results 
for the Weibel instability are shown in Table 2 for a space discretization using 64 grid points and in Table 3 for a space 
discretization using 256 grid points. In both cases we compute the l1 error of the field variables (i.e. the two components 
of the electric field and the single component of the magnetic field) by using a reference solution for which a sufficiently 
small time step has been chosen.
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Table 2
Order determination for the Hamilton Lie, Strang, and triple jump splitting scheme in case of the 
Weibel instability introduced in Section 5.2. In these simulations 64 grid points are used in each 
dimension and the system is integrated up to final time t = 1.

Stepsize l1 error Order

Lie splitting scheme
0.2 1.881556551139132e−06
0.1 8.769892305391039e−07 1.1013
0.05 4.237597343971976e−07 1.04931
0.025 2.083331679902264e−07 1.02435
0.0125 1.033058984634212e−07 1.01197
0.00625 5.144678908873264e−08 1.00577

Strang splitting scheme
0.2 2.124324456920513e−07
0.1 5.27651798019974e−08 2.00935
0.05 1.315400004930548e−08 2.00408
0.025 3.276015657686228e−09 2.00549
0.0125 8.068242472080718e−10 2.02162
0.00625 1.86093775964047e−10 2.11622

Triple jump splitting scheme
0.2 1.321445314225445e−08
0.1 8.095000243664432e−10 4.02894
0.05 5.162111972126581e−11 3.971
0.025 2.031275496535852e−12 4.6675
0.0125 4.297134131610342e−13 2.24094

Table 3
Order determination for the Hamilton Lie, Strang, and triple jump splitting scheme in case of the 
Weibel instability introduced in Section 5.2. In these simulations 256 grid points are used in each 
dimension and the system is integrated up to final time t = 1.

Stepsize l1 error Order

Lie splitting scheme
0.2 1.823383817066824e−06
0.1 8.465392041182712e−07 1.10697
0.05 4.082184424389359e−07 1.05224
0.025 2.004799316967084e−07 1.02588

Strang splitting scheme
0.2 2.271250317272867e−07
0.1 5.640193594261031e−08 2.00967
0.05 1.407771489982866e−08 2.00233
0.025 3.51820025143404e−09 2.0005

Triple jump splitting scheme
0.05 5.922461122797243e−11
0.025 3.371093950592525e−12 4.13491

6. Conclusion

In this work, a new time splitting is proposed for the numerical solution of the Vlasov–Maxwell system. This splitting 
is based on a decomposition of the Hamiltonian of the Vlasov–Maxwell system. Each step can be solved exactly in time so 
that the error is only due to the splitting procedure (first order for Lie, second order for Strang, fourth order for the triple 
jump scheme). In addition to the fact that methods of arbitrary high order can be constructed by composition, we prove 
that when one uses a spectral method for the spatial discretization, the charge is exactly preserved. Several numerical tests 
show the very good behavior of the splitting compared to methods from the literature, especially regarding the conservation 
of total energy.

Several further perspectives of this work can be envisaged. First, a generalization to finite volumes methods for the 
spatial discretization can be performed, taking care of the charge conservation property. We are confident this can be 
achieved by combining ideas of [34,12,13]. Second, the search of optimized coefficients for high order splitting would be of 
great interest; this study is postponed to a future work. Finally, considering more realistic problems in 4 or 5 dimensions 
will require the parallelization of the code in the context of distributed memory architectures (i.e. using MPI). Due to the 
fact that the VALIS method requires more temporary variables than the splitting method proposed in this paper, a more 
efficient MPI parallelization of our Hamiltonian splitting seems to be possible and this will constitute further research.



238 N. Crouseilles et al. / Journal of Computational Physics 283 (2015) 224–240
Appendix A. Other algorithms

In this appendix we present some algorithms found in the literature [34]. The algorithms only differ from the com-
putation of the Maxwell equations. The computation of the distribution function through the Vlasov equation is always 
performed using a Strang splitting.

– f̂ 
 = f̂ n exp(−ikv1�t/2) solution of ∂t f + v1∂x1 f = 0 on �t/2,
– compute f 

 by solving ∂t f + (E + BJ v) · ∇v f = 0 on �t , using a splitting procedure,
– f̂ n+1 = f̂ 

 exp(−ikv1�t/2) solution of ∂t f + v1∂x1 f = 0 on �t/2.

A.1. Predictor–corrector

At time tn , the electric field En and the magnetic field Bn−1/2 are known, together with f n .

– compute the current Jn
1,2(x1) =

∫
R2 v1,2 f n(x1, v) dv

– compute Bn+1/2 = Bn − �t/2∂x1 En
2

– compute En+1/2
2 = En

2 − �t/2∂x1 (Bn−1/2 + Bn+1/2)/2 − �t/2 Jn
2

– compute En+1/2
1 = En

1 − �t/2 Jn
1

– compute f n+1 with Strang splitting, the fields (En+1/2, Bn+1/2) being known at time tn+1/2,
– compute the current Jn+1

1,2 = ∫
R2 v1,2 f n+1(x1, v) dv

– compute En+1
2 = En

2 − �t∂x1 Bn+1/2 − �t/2( Jn
2 + Jn+1

2 )

– compute En+1
1 = En

1 − �t/2( Jn
1 + Jn+1

1 )

A.2. VALIS

At time tn , the electric field En and the magnetic field Bn−1/2 are known, together with f n .
Note that this algorithm conserves the charge.

– compute the current Jn
1,2(x1) =

∫
R2 v1,2 f n(x1, v) dv

– compute Bn+1/2 = Bn − �t/2∂x1 En
2

– compute En+1/2
2 = En

2 − �t/2∂x1 (Bn−1/2 + Bn+1/2)/2 − �t/2 Jn
2

– compute En+1/2
1 = En

1 − �t/2 Jn
1

– compute f n+1 and the current
• from f̂ 
 , compute and store Ĵ 


1,2 = ∫
R2 v1,2 f̂ 
 dv = ∫

R2 f̂ n(exp(−ikv1,2�t/2) − 1)/(ik�t/2) dv

• compute f 

 by solving the (conservative) advection in v1, v2, the fields being known at time tn+1/2,
• from f̂ n+1, compute and store Ĵ 



1,2 = ∫
R2 v1,2 f̂ n+1 dv = ∫

R2 f̂ 

(exp(−ikv1,2�t/2) − 1)/(ik�t/2) dv

– compute the current Ĵ n+1/2
1,2 = ( Ĵ 


1,2 + Ĵ 


1,2)/2,

– compute En+1
2 = En

2 − �t∂x1 Bn+1/2 − �t Jn+1/2
2

– compute En+1
1 = En

1 − �t Jn+1/2
1

In [34], the current is extracted from the two x1-advection steps. Using Fourier transforms, it is written

f̂ 
 = f̂ n exp(−ikv1�t/2) = f̂ n − ik
�t

2
f̂ n[exp(−ikv1�t/2) − 1

]
/(ik�t/2),

which becomes, after integration in v ∈ R2, ρ̂
 = ρ̂n − ik �t
2 Ĵ 


1 with

Ĵ 

1 =

∫

R2

f̂ n[exp(−ikv1�t/2) − 1
]
/(ik�t/2)dv.

Similarly the second part of the current is denoted by

Ĵ 


1 =

∫

R2

f̂ 


[
exp(−ikv1�t/2) − 1

]
/(ik�t/2)dv.

Gathering these two steps, we can compute the density at time tn+1 by integrating in v each step of the splitting for f

ρ̂n+1 = ρ̂

 − ik
�t

Ĵ 


1
2
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= ρ̂
 − ik
�t

2
Ĵ 



1 (since the advection in v is conservative)

= ρ̂n − ik
�t

2
Ĵ 


1 − ik
�t

2
Ĵ 



1

= ρ̂n − ik
�t

2

[
Ĵ 


1 + Ĵ 


1

]

= ρ̂n − ik�t Ĵn+1/2
1

Assuming the Poisson equation satisfied at time tn , we get ikÊn
1 = ρ̂n and since the current is used Ĵ n+1/2

1 to advance the 
Ampère equation Ên+1

1 = Ên
1 − �t Ĵ n+1/2

1 , we have

ρ̂n+1 = ikÊn
1 + ik

(
Ên+1

1 − Ên
1

) = ikÊn+1
1 ,

which is exactly the Poisson equation at time tn+1. Note that this can be generalized for a finite volume method following 
the ideas of [34].
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