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Abstract

This paper presents two methods for solving the four-dimensional Vlasov equation on
a grid of the phase space. The two methods are based on the semi-Lagrangian method
which consists in computing the distribution function at each grid point by following the
characteristic curve ending there. The first method reconstructs the distribution function
using local splines which are well suited for a parallel implementation. The second method
is adaptive using wavelets interpolation: only a subset of the grid points are conserved to
manage data locality. Numerical results are presented in the second part.

1 Introduction

The Vlasov equation describes the evolution of a system of charged particles under the effects
of external or self-consistent forces. The unknown f is the distribution function of particles in
the phase space which depends on the time t ≥ 0, the physical space x ∈ IRd and the velocity
v ∈ IRd, where d is the dimension d = 1, 2, 3. This kind of model can be used for the study of
beam propagation, collisionless or gyrokinetic plasmas.

The numerical resolution of Vlasov type equations, the solution of which depends at least
on six variables plus time, is performed most of the time using PIC (Particle In Cell) methods
where the plasma is approached by a finite number of macro-particles (see [1]). Nevertheless it
is well known that for some applications, the numerical noise inherent to the particle methods
becomes too significant. Consequently, methods which discretize the Vlasov equation on a
phase space grid have been proposed (see [3, 5, 9]). Among these Eulerian methods, the semi-
Lagrangian method consists in computing directly the distribution function on a Cartesian
grid of the phase space. The computation is done by integrating the characteristic curves
backward at each time step and interpolating the value at the feet of the characteristics by
some interpolation techniques (Lagrange, Hermite or cubic splines for example). We refer the
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reader to [9] for more details on the semi-Lagrangian method and to [5] for a comparison of
Eulerian solvers dedicated to the Vlasov equation.

Eulerian methods, particularly well suited to trace halo formation generally badly described
by PIC methods, have proven their efficiency on uniform meshes in two dimensional phase space,
but when the dimensionality increases, the number of points on a uniform grid becomes very
important which makes numerical simulations challenging. For inhomogeneous systems, many
of the grid points (where no particles are present) are wasted. This is especially the case
for beam simulations where the beam moves rapidly through the phase space (due to varying
alternating-gradient focusing forces, for example). Hence, methodologies have been recently
implemented to avoid the increasing of points using uniform grid: such adaptive methods
decrease the computational cost by keeping only a subset of all grid points. Such methods use
moving distribution function grids well suited to manage data locality. For more details, we
refer the reader to [2, 8].

This work is devoted to the comparison of two solvers that simulate the four-dimensional
Vlasov equation. Even if the two methods are based on a semi-Lagrangian algorithm, the first
one requires a uniform mesh whereas the second method is an adaptive method. The uniform
method reconstructs the distribution function using local cubic splines which are well suited for
parallel simulations. Indeed, the phase space domain is decomposed into patches; each patch
is devoted to a processor and computes its own cubic spline coefficients by solving reduced
linear systems. Finally, some boundary conditions are imposed at the boundary of the patches
to get a C1 global solution (see section 3.1). This method may be particularly efficient for
problems where low density regions are of crucial importance from the physical point of view,
as in gyrokinetic simulations for example. In the adaptive method, the distribution function is
decomposed in wavelet basis at different levels such that the coefficients called details are small
whereas the function is regular. Therefore, according to a prediction procedure and a given
threshold, only the significant details are computed. The distribution function can then be
determined on the corresponding adaptive grid (see section 3.2). Adaptivity is particularly well
suited when thin structures of the distribution function occur, as in particle beam applications
or in laser-plasma interaction for example.

The model we consider throughout this paper is the scaled nonrelativistic four-dimensional
Vlasov equation coupled self-consistently with the Poisson’s equation

∂f

∂t
+ v · ∇

x
f + (E + v × B) · ∇

v
f = 0, (1.1)

where x = (x, y), v = (vx, vy) and with initial condition f(0,x,v) = f0(x,v). The self-
consistent electric field is computed from Poisson’s equations

−∆φ = ρ(t,x) =

∫

IRd

f(t,x,v)dv, E(t,x) = −∇
x
φ(t,x). (1.2)

The magnetic field can be considered external and known, but can also be governed by the
Maxwell equations. This system is standardly normalized for plasma applications using char-
acteristic quantities as the plasma frequency ωp in time, the Debye length in space and the
electron thermal velocity vth in the velocity space. For the normalization of the paraxial model
used in particle beam applications, we refer to [6].
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The rest of the paper is organized as follows: we first recall the basic principles of the semi-
Lagrangian method applied to the Vlasov equation. Next, the algorithms of the two methods
are described.

2 The semi-Lagrangian method for the Vlasov equation

The semi-Lagrangian method consists in computing approximation of the Vlasov equation (1.1)
solution, on a phase space grid using the conservation property of the distribution function f
along characteristics. More precisely, for any times s and t, we have

f(t,x,v) = f(s, X(s; t,x,v), V (s; t,x,v)),

where (X(s; t,x,v), V (s; t,x,v)) are the characteristics of the Vlasov equation which are solu-
tion of the following system

dX

ds
= V,

dV

ds
= E(s, X(s)) + V (s) × B(s, X(s)), (2.1)

with initial conditions
X(t) = x, V (t) = v.

From this property and f being known at time tn = n∆t where ∆t is the time step, we can
compute the distribution function at grid points (xi,vj) at time tn+1 in the following way:

1. Find the starting point of the characteristic ending at (xi,vj), i.e. Xn = X(tn; tn+1,xi,vj)
and V n = V (tn; tn+1,xi,vj).

2. Compute f(tn, Xn, V n) by interpolation, f being known only at mesh points at time tn.

In order to deal with the first step, a second order time discretization of (2.1) can be
performed using a time splitting procedure (see [3]), which allows the explicit solve of the
characteristics. To treat the second step, an interpolation operator has to be chosen. Even
if the semi-Lagrangian method does not require any specific interpolation scheme, numerical
experiences dictate the use of a high enough order method so that diffusion is limited. Cubic
splines or Lagrange polynomials for example present some interesting properties, and seem to
be a good compromise between a small diffusivity and a low computational cost. The semi-
Lagrangian method also permits the use of a different interpolation grid for each time step,
which is the basis of adaptive methods.

3 Two numerical methods for the Vlasov equation

3.1 The local spline interpolation

In this section, we present our interpolation technique based on a cubic spline method (see [9]).
Even if the cubic spline approach is quite standard for solving Vlasov equations, it remains a
global method since it requires the values of the distribution function on all the domain, which
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is an inconvenient from a parallelization point of view. Our approach avoids this globality.
Indeed, we decompose the phase space into several patches, each patch being devoted to one
processor. The strategy is based on adapted boundary conditions which allow to get a global
continuously derivable reconstructed solution.

Let us consider a function f which is defined on a global domain [xmin, xmax] ⊂ IR. This
domain is decomposed into several subdomains called generically [x0, xN ]; each subdomain will
be devoted to a processor. In the following, we will use the notation xi = x0 + ih, where h is
the mesh size: h = (xN − x0)/(N + 1).

Let us now restrict the study of f : x → f(x) on the generic interval [x0, xN ], N ∈ IN, where
x0 and xN are to be chosen, according to the decomposition domain. The projection s of f
onto the cubic spline basis reads

f(x) ≃ s(x) =
N+1
∑

ν=−1

ηνBν(x),

where Bν is the cubic B-spline

Bν(x) =
1

6h3







































(x − xν−2)
3 if xν−2 ≤ x ≤ xν−1,

h3 + 3h2(x − xν−1) + 3h(x − xν−1)
2

−3(x − xν−1)
3 if xν−1 ≤ x ≤ xν ,

h3 + 3h2(xν+1 − x) + 3h(xν+1 − x)2

−3(xν+1 − x)3 if xν ≤ x ≤ xν+1,
(xν+2 − x)3 if xν+1 ≤ x ≤ xν+2,
0 otherwise.

(3.1)

The interpolating spline s is uniquely determined by (N + 1) interpolating conditions

f(xi) = s(xi), ∀i = 0, ..., N, (3.2)

and the boundary conditions on the first derivative at both ends of the interval in order to
obtain a C1 global approximation

f ′(x0) ≃ s′(x0), f ′(xN ) ≃ s′(xN). (3.3)

The only cubic B-spline not vanishing at point xi are Bi±1(xi) = 1/6 and Bi(xi) = 2/3. Hence
(3.2) yields

f(xi) =
1

6
ηi−1 +

2

3
ηi +

1

6
ηi+1, i = 0, ..., N. (3.4)

On the other hand, we have B′
i±1(xi) = ±1/(2h) and B′(xi) = 0. Thus the boundary conditions

(3.3) become

f ′(x0) ≃ s′(x0) = −1/(2h) η−1+1/(2h) η1, and f ′(xN ) ≃ s′(xN ) = −1/(2h) ηN−1+1/(2h) ηN+1.
(3.5)

Finally, η = (η−1, ..., ηN+1)
T is the solution of the (N + 3) × (N + 3) system Aη = F , where F

is the following vector
F = [f ′(x0), f(x0), ..., f(xN), f ′(xN )]

T
, (3.6)
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and A denotes the following fixed matrix

A =
1

6























−3/h 0 3/h 0 · · · 0

1 4 1 0
...

0 1 4 1
. . .

...
...

. . .
. . .

. . .
. . . 0

... 0 1 4 1
0 0 0 −3/h 0 3/h























. (3.7)

The resolution of this linear system benefits from the special structure of the matrix A; indeed,
its LU decomposition can be computed once for all, and consequently, the resolution of the
system Aν = F is linear with respect to the number of unknowns.

Let us focus now on the approximation of f ′. To get accurate numerical results, boundary
conditions need a special attention. Indeed, in being as closer as possible to the sequential
code, the value of the derivatives has to be very close to the approximation (3.3) given by
the global resolution. To that purpose, we perform a new approximation derived using the
spline coefficients; we refer the reader to [4] for the details of the derivation, but the final
approximation requires 21 points centered at the boundary point.

3.2 The adaptive method

In this method, our purpose is to be able of refined or derefined the phase space grid adaptively
in time, which will be updated using a multi-resolution technique. We use interpolating wavelets
based on Lagrange polynomial interpolation of odd degree which provide a natural way to
extend the semi-Lagrangian procedure to an adaptive grid (see [8] for more details).

In 1D, we represent the distribution function on a wavelet basis functions at different scales.
Denoting by ϕj

k the basis functions at level j such that ϕj

k(x
j

k) = 1 and ϕj

k(x
j

l ) = 0 if l 6= k, we
can write the grid distribution function f j taking value cj

k at grid point xj

k as

f j(x) =
∑

k

cj

k ϕj

k(x).

Then the framework of interpolating wavelets allows us to equivalently define a grid function
fj+1 defined at a finer level j + 1 on a grid Gj+1 as

f j+1(x) =
∑

k

cj+1

k ϕj+1

k (x) =
∑

k

cj

k ϕj

k(x) +
∑

k

dj

k ϕj

k(2x − 1),

either by the sequence (cj+1

k )k∈Z or by the sequences (cj

k)k∈Z where cj+1

2k = cj

k and (dj

k)k∈Z where

dj

k = cj+1

2k+1
− P2N−1(x

j+1

2k+1
) = cj+1

2k+1
−

N
∑

n=1−N

αn cj

k+n = cj+1

2k+1
−

N
∑

n=1−N

αn cj+1

2k+2n,

where P2N−1 is the Lagrange interpolating polynomial of degree N − 1. We can then compress
it by eliminating detail coefficients dj

k which are naturally small where the distribution function
is regular, and accordingly remove the associated grid points.
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The four-dimensional description of f is done using a tensor product representation. Defin-
ing the index set I4 = {α = (α1, α2, α3, α4) ∈ {0, 1}4}, the distribution function is approxi-
mated, in a hierarchical approximation from a coarser level j0 to a finer level j1, by

f(x, y, vx, vy) =
∑

K

cj0,0
K

φj0,0
K

(x, y, vx, vy) +

j1
∑

j=j0

∑

K

∑

α∈I
α6=0

dj,α
K

φj,α
K

(x, y, vx, vy), (3.8)

where we have φj,α
K

(x, y, vx, vy) = ϕj,α1

k1
(x) ϕj,α2

k2
(y) ϕj,α3

k3
(vx) ϕj,α4

k4
(vy) with ϕj,0

k (·) = ϕ(2j · −k)

and ϕj,1

k (·) = ϕ(2j(2 · −1) − k) for any k. Here ϕ denotes the scaling function at the coarsest
level such that ϕj

k(·) = ϕ(2j · −k) for any k and j. From (3.8), we can compute the compressed
distribution function keeping only the significant details dj,α

K
and built the corresponding four-

dimensional phase space grid.
This formula also allows us to compute adaptively the space charge density ρ in order to

solve Poisson’s equation (1.2) as well as the moments of order 1 and 2 in x, y, vx and vy in
order to compute the RMS quantities needed for diagnostics. This considerably reduces the
number of operations needed as it uses only points of the adaptive grid.

The numerical algorithm is then initialize by creating an initial adaptive grid by construc-
tion of a hierarchical approximation of the initial distribution f0 and remove the grid points
corresponding to coefficients less than a specific threshold.

The time loop is based on compression-prediction step and a backward advection step. We
first compress the distribution function f as for f0 and built the corresponding adaptive grid.
Then we predict the adaptive grid at next time step by transporting the grid points along the
particle orbits and adding all the grid points around the advanced points, in a square of width
the size of the scaling function at this level, at the given level and one level finer.

In the second step, for each new grid point, we follow the characteristics backward and
compute by interpolation the value of the distribution function at its origin from the old values,
and therefore obtain the new values on the predicted grid. Note that, the predicted grid is
at the end enhanced so that it becomes a well formed tree needed to perform the wavelet
decomposition. This is an additional step compared to the usual semi-Lagrangian method.

Actually, we use a full time-splitting to only compute one-dimensional advections in x, y,
vx and vy directions, which is inspired by the idea of Strang (in a semi-Lagrangian framework,
see e.g. [3]) in order to keep the method second order in time.

Adaptivity allows us to significantly reduce the memory needed as well as the computational
time. Note that we also have optimized the data structure in order to still be more efficient
and in the purpose of parallelization (see e.g. [7]).
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