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This work is devoted to the numerical simulation of a Vlasov–Poisson model describing a
charged particle beam under the action of a rapidly oscillating external field. We construct
an Asymptotic Preserving numerical scheme for this kinetic equation in the highly oscilla-
tory limit. This scheme enables to simulate the problem without using any time step
refinement technique. Moreover, since our numerical method is not based on the deriva-
tion of the simulation of asymptotic models, it works in the regime where the solution does
not oscillate rapidly, and in the highly oscillatory regime as well. Our method is based on a
‘‘two scale’’ reformulation of the initial equation, with the introduction of an additional
periodic variable.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In this article, we are interested in the construction of numerical schemes for collisionless kinetic equations which involve
rapid oscillations in time. Our study is done in the framework of a specific physical application, the case of a charged particle
beam in the paraxial approximation, but our strategy can be applied to other highly oscillatory kinetic models, for instance in
the physics of magnetized plasmas [15,13,14,4,5] for the guiding-center limit or the finite Larmor radius limit.

Let us first present our model. The paraxial approximation of the Vlasov–Maxwell equations concerns stationary, non col-
lisional, charged particle beams which display a predominant length scale, called the longitudinal direction, such that the
transverse width of the beam is very small compared to the typical longitudinal length. The paraxial model is obtained
by expanding the Vlasov–Maxwell model with respect to the ratio e > 0 between the characteristic lengths in the transverse
and in the longitudinal directions, we refer to [9,10] for a derivation of this model. Here, following [3,12,22], we consider the
simpler case of an axisymmetric beam (with zero angular momentum). The paraxial Vlasov–Poisson model takes then the
following form, in dimensionless variables,
@tf e þ v
e
@rf e þ ðEf e þ NeÞ@v f e ¼ 0; ð1:1Þ
where f eðt; r;vÞ is the distribution function of the particles, t P 0 corresponds to the longitudinal position coordinate (the
direction of propagation of the beam, denoted as a time here), r 2 Rþ is the radial component of the position in the transverse
plane, and v 2 R is the radial velocity in this plane. The total electromagnetic field has two contributions, the self-consistent
electric field Ef e ¼ Ef e ðt; rÞ satisfying the Poisson equation in the transverse plane, written in cylindrical symmetry as
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1
r
@rðrEf e Þ ¼

Z
R

f edv ð1:2Þ
and an external electromagnetic field Ne, chosen as in [12] under the following form
Neðt; rÞ ¼ � r
e
þ a

t
e

� �
r; ð1:3Þ
where a is a given 2p-periodic function (the so-called tension function). This system is initially defined for r P 0 but can be
extended to r 2 R by using the conventions f eðt;�r;�vÞ ¼ f eðt; r;vÞ and Ef e ðt;�rÞ ¼ �Ef e ðt; rÞ, Neðt;�rÞ ¼ �Neðt; rÞ.

To summarize, in this paper we consider the following one-dimensional Vlasov–Poisson system satisfied by f eðt; r;vÞ,
where r 2 R and v 2 R,
@tf e þ v
e
@rf e þ Ef e �

r
e
þ a

t
e

� �
r

� �
@v f e ¼ 0; f eðt ¼ 0; r;vÞ ¼ f0ðr;vÞ; ð1:4Þ

Ef e ðt; rÞ ¼
1
r

Z r

0
sqeðt; sÞds with qeðt; rÞ ¼

Z
R

f eðt; r; vÞdv : ð1:5Þ
The initial data f0 is a given smooth function. When there is no confusion we shall omit the subscript e to ease notations.
The main purpose of this work is the construction of efficient numerical methods for stiff transport equations of type (1.4)

in the limit e! 0. We seek a method that is able to capture the properties of the various scales in the considered system,
while the numerical parameters may be kept independent of the stiffness degree of these scales. Contrary to collisional ki-
netic equations in hydrodynamic or diffusion asymptotics, collisionless equations like (1.4) involve time oscillations. In this
context, the notion of two-scale convergence [1,12,11,23,8] is well-adapted in order to derive asymptotic models. However,
these asymptotic models are valid only when e is small. In this paper, we develop numerical schemes that are able to deal
with a wide range of values for e. We construct a numerical method in the so-called Asymptotic Preserving (AP) class [17]:
such schemes are consistent with the kinetic model for all positive value of e, and degenerate into consistent schemes with
the asymptotic model when e! 0.

To do this, let us first rewrite the stiff equation (1.4) in the adapted rotating frame. In this way, the main oscillations will
be filtered out, which means that they are taken into account in a change of variable. The characteristic equations associated
with (1.4) read
d
dt

r

v

� �
¼ 1

e
J

r

v

� �
þ

0
Ef ðt; rÞ þ a t=eð Þr

� �
;

where the matrix J is defined by
J ¼
0 1
�1 0

� �
:

Hence, introducing the oscillatory variable n 2 R2 defined by
n1

n2

� �
¼ e�Jt=e r

v

� �
¼

cosðt=eÞ � sinðt=eÞ
sinðt=eÞ cosðt=eÞ

� �
r

v

� �
; ð1:6Þ
the associated filtered distribution function ~f eðt; n1; n2Þ ¼ f eðt; r;vÞ satisfies
@t
~f eðt; nÞ þ ðeE~f e ðt; t=e; nÞ þ eNðt=e; nÞÞ � rn

~f eðt; nÞ ¼ 0; ~f eðt ¼ 0; �Þ ¼ f0; ð1:7Þ
where the vector field is the sum of the external field
eNðs; nÞ ¼ aðsÞðn1 cos sþ n2 sinsÞ
� sin s
cos s

� �
ð1:8Þ
and of the self-consistent field defined by
eE~f ðt; s; nÞ ¼
� sin s
cos s

� �
1

rðs; nÞ

Z rðs;nÞ

0

Z þ1

�1
s~f ðt; s cos s� v sin s; s sin sþ v cos sÞdsdv
with rðs; nÞ ¼ n1 cos sþ n2 sin s.
Let us briefly describe the strategy we propose to deal with equations like (1.7). As a matter of fact, we embed the function

~f eðt; nÞ into the family of solutions Feðt; s; nÞ of an ‘‘augmented’’ kinetic equation, where we separate the two scales t=e and t.
Assume indeed that Fe solves the equation
@tF
e þ ðeEFe ðt; s; nÞ þ eNðs; nÞÞ � rnFe ¼ �1

e
@sFe; ð1:9Þ
and that, additionally, we have
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8n 2 R2; Feð0;0; nÞ ¼ f0ðnÞ; ð1:10Þ
then it is readily seen that Feðt; t=e; nÞ satisfies the initial-value problem (1.7), so we recover ~f eðt; nÞ ¼ Feðt; t=e; nÞ. The point is,
in this two scale formulation (1.9) of (1.7), the stiffness is confined in the sole term � 1

e @sFe in the right-hand side. Reinter-
preting this singularly perturbed term as a ‘‘collision’’ operator in this collisionless context, we can obtain the asymptotic
behavior of Fe (then of ~f e) by a Chapman–Enskog expansion. In turn, this suggests a systematic method to construct Asymp-
totic Preserving numerical schemes, based on a micro–macro decomposition of F, see [20,2,7].

This paper is organized as follows. In Section 2, we present the two scale formulation in a general framework, and perform
in Section 2.1 the Chapman–Enskog expansion of F. We then discuss in Section 2.2 the crucial question of the choice of the
initial data Feð0; s; nÞ for this augmented kinetic equation (1.9). In this subsection, we state the main (formal) theoretical re-
sult of this paper, in Proposition 2.1. In Section 2.3, we compute explicitly the averaged equations for our problem in the
linear setting (when self-consistent interactions are neglected). Then, in Section 3, we present our AP numerical scheme.
In Section 3.1, we introduce the scheme, which is a second order (in time and space) Eulerian numerical scheme. In
Section 3.2, we prove formally that this scheme is Asymptotic Preserving at the limit e! 0. In Section 3.3, we show how
the micro–macro decomposition method enables to construct AP schemes in more complicated situations, such as the
diffusion limit. Finally, the last Section 4 is devoted to a series of numerical tests which characterize the properties of our
scheme.

2. Two scale formulation of the oscillatory equation

In this section, we introduce a general strategy in order to deal with highly oscillatory problems under the form
@t
~f e þ Aðt; t=e; n;~f eÞ ¼ 0; ~f eðt ¼ 0; �Þ ¼ f0; ð2:1Þ
where the unknown is the distribution function ðt; nÞ 2 Rþ � Rd # ~f eðt; nÞ 2 R and the vector-field ðt; s; n; f Þ# Aðt; s; n; f Þ 2 R

is a functional which is P-periodic with respect to the variable s 2 T (T denotes the torus R=PZ). Our target equation (1.7) is
under the form (2.1), with d ¼ 2 and
Aðt; s; n; f Þ ¼ eEf ðt; s; nÞ þ eNðs; nÞ� �
� rnf :
We now introduce the following ‘‘two scale formulation’’
@tF
e þ Aðt; s; n; FeÞ ¼ �1

e
@sFe; ð2:2Þ
where the unknown is the function ðt; s; nÞ 2 Rþ � T� Rd # Feðt; s; nÞ. This problem is an augmented version of (2.1). Indeed
if a function Feðt; s; nÞ solves (2.2) and satisfies additionally
8n 2 Rd; Feð0;0; nÞ ¼ f0ðnÞ; ð2:3Þ
then by differentiating Feðt; t=e; nÞ we obtain that ~f eðt; nÞ :¼ Feðt; t=e; nÞ satisfies the initial-value problem (2.1).
It is important to note that (2.2), (2.3) is not sufficient to uniquely determine the function Fe. Indeed, (2.2) is a transport

equation in the variables ðs; nÞ 2 T� Rd, so it needs an initial data prescribed for all ðs; nÞ 2 T� Rd. Therefore, (2.3) is not
enough. The question of choosing a ‘‘good’’ initial condition Fð0; s; nÞ ¼ F0ðs; nÞ for all ðs; nÞ 2 T� Rd is a delicate issue and
is discussed in Section 2.2. In fact, we will see – in a formal setting – that there is a unique way (up to order Oðe2Þ terms)
to define F0 in order to get a smooth function
ðt; s; n; eÞ 2 ½0; tfinal� � T� Rd � ½0; e0½# Feðt; s; nÞ
that satisfies (2.2) and (2.3). Here tfinal > 0 is a fixed final observation time and e0 > 0 is arbitrary. The important point here is
the assumed regularity with respect to e when this parameter goes to zero.

More precisely, our aim is to ensure that the function Fe and its two first derivatives @tF
e and @2

t Fe are bounded uniformly
as e goes to zero. Roughly speaking, this regularity is a constraint that prevents a dependency of Fe in the fast variable t=e (up
to order Oðe2Þ terms), and Fe will ‘‘only depend’’ on t; s and n. Under this condition, one can claim that we have succeeded in
separating (up to order Oðe2Þ terms) the two scales t and s ¼ t=e that were initially in (2.1). The main result of this section is
Proposition 2.1.

2.1. Chapman–Enskog expansion

In this subsection, we analyze formally the behavior of (2.2) when e! 0, assuming that its solution Fe is smooth enough.
To this aim, we carry out the Chapman–Enskog expansion of this function. The goal of this Chapman–Enskog expansion is to
provide an approximation of the solution of the augmented problem (2.2) up to Oðe2Þ terms, which will be taken at t ¼ 0 as
the initial data for this augmented problem, see Section 2.2. Consider the following linear operator, defined for all periodic
(regular) function s 2 T # hðsÞ by
Lh ¼ @sh:
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This operator is skew-adjoint with respect to the L2ðTÞ scalar product and (2.2) can be rewritten
@tF
e þ Aðt; s; n; FeÞ ¼ �1

e
LFe: ð2:4Þ
The kernel of L is the set of constant functions and the L2 projector on this kernel is the average
Ph :¼ 1
jTj

Z
T

hðsÞds; ð2:5Þ
where jTj ¼ P is the measure of T.
Moreover, L is invertible in the set of functions with zero average and, if

R
T

hðsÞds ¼ 0, we have
ðL�1hÞðsÞ ¼ ðI�PÞ
Z s

0
hðrÞdr ¼

Z s

0
hðrÞdrþ 1

jTj

Z
T

rhðrÞdr:
Performing the Chapman–Enskog expansion of Feðt; s; nÞ consists in writing
Feðt; s; nÞ ¼ Geðt; nÞ þ heðt; s; nÞ with Geðt; nÞ ¼ PðFeðt; s; nÞÞ ð2:6Þ
and deriving asymptotic equations for Ge and he when e! 0. As we said, we proceed at a formal level, and the rule that we
follow in this analysis is that Fe is assumed to be smooth with respect to all its variables (in particular with respect to the
parameter e which can be very small).

Inserting the decomposition (2.6) into (2.4) leads to
@tG
e þ @th

e þ Aðt; s; n;Ge þ heÞ ¼ �1
e

Lhe
: ð2:7Þ
Averaging this last equation with respect to s (i.e. applying P) yields, since Phe ¼ 0,
@tG
e þPðAðt; s; n;Ge þ heÞÞ ¼ 0: ð2:8Þ
Then, from (2.7) and (2.8) we deduce that he satisfies
@th
e þ ðI�PÞðAðt; s; n;Ge þ heÞÞ ¼ �1

e
Lhe

: ð2:9Þ
Now, from (2.9) and the fact that he belongs to the range of L, we deduce that
he ¼ �eL�1ð@th
e þ ðI�PÞðAðt; s; n;Ge þ heÞÞÞ: ð2:10Þ
Hence, using our smoothness assumption and in particular that we have @tF
e ¼ Oð1Þ, @2

t Fe ¼ Oð1Þ (hence Ge and he have also
bounded derivatives), we deduce from (2.10) that
he ¼ OðeÞ and @th
e ¼ OðeÞ:
From these estimates and (2.8), we deduce a first approximate equation satisfied by Ge:
@tG
e þPAðt; s; n;GeÞ ¼ OðeÞ: ð2:11Þ
Next, using again (2.10), we obtain an expression of he in terms of Ge, up to a small remainder:
he ¼ �eL�1ðI�PÞAðt; s; n;GeÞ þ Oðe2Þ ð2:12Þ
and this expression, together with (2.8), enables to derive the following equation satisfied by Ge up to second order terms:
@tG
e þPAðt; s; n;GeÞ � ePð@f Aðt; s; n;GeÞðL�1ðI�PÞAðt; s; n;GeÞÞÞ ¼ Oðe2Þ: ð2:13Þ
Finally, the function Fe can be deduced from Ge, up to second order terms, by using (2.6) and (2.12):
Fe ¼ Ge � eL�1ðI�PÞAðt; s; n;GeÞ þ Oðe2Þ: ð2:14Þ
2.2. Discussion on the initial data and main result

In the previous subsection, the Chapman–Enskog expansion was performed formally under a regularity assumption on Fe.
In this subsection, we reverse the argument and deduce from these expansions a Cauchy data for (2.2) that ensures that Fe is
regular enough (up to order Oðe2Þ terms).

A natural initial condition for (2.2) can be deduced from (2.14). Indeed, by evaluating (2.14) at t ¼ 0, one gets
Feð0; s; nÞ ¼ Geð0; nÞ � eðI �PÞ
Z s

0
ðI �PÞAð0; s; n;Geð0; nÞÞdsþOðe2Þ ð2:15Þ
and then, by taking this equation at s ¼ 0 and by using (2.3),
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f0ðnÞ ¼ Geð0; nÞ þ eP
Z s

0
ðI �PÞAð0; s; n;Geð0; nÞÞdsþOðe2Þ: ð2:16Þ
By subtracting these two identities (2.15) and (2.16), one gets
Feð0; s; nÞ ¼ f0ðnÞ � e
Z s

0
ðI �PÞAð0; s; n;Geð0; nÞÞdsþOðe2Þ: ð2:17Þ
Moreover, from (2.16), one deduces Geð0; nÞ ¼ f0ðnÞ þ OðeÞ, which can finally be inserted into (2.17) and yields
Feð0; s; nÞ ¼ f0ðnÞ � e
Z s

0
ðI �PÞAð0; s; n; f0ðnÞÞdsþOðe2Þ: ð2:18Þ
The correction term in e is important here and, as we show further, will guarantee that @tF
e and @2

t Fe remain uniformly
bounded with respect to e. By analogy with boundary value problems in collisional kinetic theory (see [27]), one can inter-
pret this term as ‘‘boundary corrector’’ (where the boundary is the initial time t ¼ 0). The interesting point in our case is that
we do not have to assume that the initial data is well-prepared since, as we said in the introduction of this section, we have a
degree of freedom on F0 which is not totally prescribed. We have then the possibility to enforce that (2.18) is satisfied (see
(2.20)).

Let us formulate in the following proposition the main result of this section.

Proposition 2.1 (formal). Let Feðt; s; nÞ be the unique solution of (2.2) subject to the initial condition
8ðs; nÞ 2 T� R2; Feð0; s; nÞ ¼ Fe
0ðs; nÞ ð2:19Þ
with Fe
0 defined for all s 2 T and n 2 R2 by
Fe
0ðs; nÞ ¼ f0ðnÞ � e

Z s

0
ðI �PÞAð0; s; n; f0ðnÞÞds; ð2:20Þ
where P denotes the averaging operator defined by (2.5). Then we have
Feðt; s; nÞ ¼ eGeðt; nÞ � eL�1ðI�PÞAðt; s; n; eGeðt; nÞÞ þ Oðe2Þ; ð2:21Þ
where eGeðt; nÞ is the solution of the initial-value problem
@t
eGe þPAðt; s; n; eGeÞ � ePð@f Aðt; s; n; eGeÞðL�1ðI�PÞAðt; s; n; eGeÞÞÞ ¼ 0; ð2:22Þ

eGeð0; nÞ ¼ PFe
0ðs; nÞ ¼ f0ðnÞ � eP

Z s

0
ðI �PÞAð0; s; n; f0ðnÞÞds: ð2:23Þ
Remark 2.2. Since (2.19) and (2.20) imply (2.3), one can recover the solution ef e to the oscillatory equation (2.1) by setting
ef eðt; nÞ ¼ Feðt; t=e; nÞ:
Note that Fe is smooth, in the sense that Fe; @tF
e and @2

t Fe are uniformly bounded with respect to e. This regularity makes the
augmented problem (2.2) more suitable than (2.1) for numerical approximation. Our Asymptotic Preserving numerical
method is constructed on the two scale formulation (2.2) instead of (2.1).
Proof Proposition 2.1. Let Fe be the solution of (2.2), (2.19) and let eGe be the solution of (2.22), (2.23). Denote
eF e ¼ eGe þ ehe þ e2ve
with
 ehe ¼ �eL�1ðI�PÞAðt; s; n; eGeÞ
and where ve is a bounded corrector that is defined below (see (2.25)). Proving the Proposition amounts to proving that
Feðt; s; nÞ � eF eðt; s; nÞ ¼ Oðe2Þ:
By subtracting (2.19) and (2.23), one gets
Feð0; s; nÞ � eGeð0; nÞ ¼ �eðI�PÞ
Z s

0
ðI �PÞAð0; s; n; f0ðnÞÞds ¼ �eðI�PÞ

Z s

0
ðI �PÞAð0; s; n; eGeð0; nÞÞdsþOðe2Þ

¼ �eL�1ðI �PÞAð0; s; n; eGeð0; nÞÞdsþOðe2Þ ¼ eheð0; s; nÞ þ Oðe2Þ:
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This gives
Feð0; s; nÞ � eF eð0; s; nÞ ¼ �e2veð0; s; nÞ þ Oðe2Þ ¼ Oðe2Þ: ð2:24Þ
Let us now derive an approximate equation satisfied by eF eðt; s; nÞ. By inserting eF e in Eq. (2.4), one gets
@t
eF e þ 1

e
LeF e þ Aðt;s;n; eF eÞ ¼ @t

eGe � eL�1ðI�PÞ@f Aðt;s;n; eGeÞ@t
eGe � eL�1ðI�PÞ@tAðt;s;n; eGeÞ � ðI�PÞAðt;s;n; eGeÞ

þ eLve þAðt;s;n; eGeÞ � e@f Aðt;s;n; eGeÞðL�1ðI�PÞAðt;s;n; eGeÞÞ þOðe2Þ
¼ �PAðt;s;n; eGeÞ þ ePð@f Aðt;s;n; eGeÞðL�1ðI�PÞAðt;s;n; eGeÞÞÞ
� eL�1ðI�PÞ@f Aðt;s;n; eGeÞPAðt;s;n; eGeÞ
� eL�1ðI�PÞ@tAðt;s;n; eGeÞ� ðI�PÞAðt;s;n; eGeÞ þ eLve þAðt;s;n; eGeÞ
� e@f Aðt;s;n; eGeÞðL�1ðI�PÞAðt;s;n; eGeÞÞ þOðe2Þ
¼ eLve � eðI�PÞð@f Aðt;s;n; eGeÞðL�1ðI�PÞAðt;s;n; eGeÞÞÞ
� eL�1ðI�PÞ@tAðt;s;n; eGeÞ� eL�1ðI�PÞ@f Aðt;s;n; eGeÞPAðt;s;n; eGeÞ þOðe2Þ;
where we used (2.22) in the second equality. Hence, by defining the corrector ve as
ve ¼ L�1½ðI�PÞð@f Aðt; s; n; eGeÞðL�1ðI�PÞAðt; s; n; eGeÞÞÞ þ L�1ðI�PÞ@tAðt; s; n; eGeÞ þ L�1ðI�PÞ@f Aðt; s; n; eGeÞ

þ L�1ðI�PÞ@f Aðt; s; n; eGeÞPAðt; s; n; eGeÞ� ð2:25Þ
one gets finally
@t
eF e þ 1

e
@seF e þ Aðt; s; n; eF eÞ ¼ Oðe2Þ: ð2:26Þ
We shall now conclude by integrating the characteristics associated to this equation.
Let
wðt; s; nÞ ¼ ðFe � eF eÞðt; sþ t=e; nÞ:
From (2.2) and (2.26), one deduces
@tw ¼ �Aðt; sþ t=e; n; Feðt; sþ t=e; nÞÞ þ Aðt; sþ t=e; n; eF eðt; sþ t=e; nÞÞ þ Oðe2Þ:
Hence, using the estimate (2.24) at the initial time, a Gronwall lemma yields formally (recall that A is periodic with respect
to s)
wðt; s; nÞ ¼ Oðe2Þ
for t 2 ½0; T�, s 2 T, n 2 R2, and, finally, one has proved that
ðFe � eF eÞðt; s; nÞ ¼ wðt; s� t=e; nÞ ¼ Oðe2Þ:
The proof of Proposition 2.1 is complete. h
Remark 2.3. In fact, this averaging procedure can be pushed forward to higher orders in e by iterating further the Chapman–
Enskog procedure. Other approaches may be used to obtain formally higher order averaged models for Fe, under a higher
order initial condition, see for instance the approach developed in [24,26] which is widely used in the context of ODEs. How-
ever, the purpose of this paper being to build an AP numerical method for our problem, we stop this construction at order
Oðe2Þ. We also refer to [6] for a presentation of the so-called stroboscopic averaging in a way which is very close to the
method introduced here. Indeed, in [6], a systematic construction of high order averaged models for oscillatory equations
such as (1.7) is based on the transport equation (2.2). It is proved in this paper that, for any fixed integer N > 0, the solution
of (1.7) can be written under the form (omitting the dependencies in n for simplicity and assuming that Aðt; s; f Þ does not
depend on t)
~f eðtÞ ¼ Ue;Nðt=e;Ge;NðtÞÞ þ OðeNþ1Þ; ð2:27Þ
where Ge;NðtÞ satisfies an autonomous averaged equation of the form @tG ¼ Ae;N
av ðGÞ with Ge;Nð0Þ ¼ f0 and where

ðs; f Þ# Ue;Nðs; f Þ is a close-to-identity mapping which is 2p-periodic with respect to s and satisfies Ue;Nð0; f Þ ¼ f . The link
with our construction is the following. If we choose F0ðsÞ ¼ Ue;Nðs; f0Þ as initial data for (2.2), then the stroboscopic averaging
result says that Fðs; tÞ ¼ Ue;Nðs;Ge;NðtÞÞ þ OðeNþ1Þ, i.e. Fðs; tÞ is smooth, up to OðeNþ1Þ terms. This gives the natural generaliza-
tion of our initial data (2.20) in order to get higher order estimates. Of course, one can check that, for N ¼ 1,
Ue;1ðs; f0Þ ¼ f0 � e
Z s

0
ðI �PÞAðs; f0ðnÞÞds:



N. Crouseilles et al. / Journal of Computational Physics 248 (2013) 287–308 293
2.3. The case of a linear transport equation

In this subsection, we compute explicitly the initial condition F0 and the averaged system in the special situation of the
following linear transport equation in dimension d ¼ 2:
@t
~f e þ Eðs; nÞ � rn

~f e ¼ 0; ~f eðt ¼ 0; �Þ ¼ f0; ð2:28Þ
where the field Eðs; nÞ ¼ E1ðs; nÞ
E2ðs; nÞ

� �
is given and divergence-free. This equation is under the form (2.1) with
Aðs; n; f Þ ¼ Eðs; nÞ � rnf : ð2:29Þ
In particular, when the self-consistent Poisson field Ef is neglected, the filtered equation (1.7) associated to the paraxial beam
model (1.4) is under this form, with Eðs; nÞ ¼ eNðs; nÞ defined by (1.8) (it is a divergence-free vector field).

In this linear case, the following proposition is a variant of Proposition 2.1.

Proposition 2.4 (formal). Assume that A takes the form (2.29). Let Feðt; s; nÞ be the unique solution of (2.2) subject to the initial
condition Feð0; s; nÞ ¼ F0ðs; nÞ with F0 defined for all s 2 T and n 2 R2 by
F0ðs; nÞ ¼ f0ðn� e
Z s

0
ðI �PÞEðs; nÞdsÞ; ð2:30Þ
where P denotes the averaging operator defined by (2.5). Then we have
Feðt; s; nÞ ¼ eGeðt; n� eL�1ðI�PÞEðs; nÞÞ þ Oðe2Þ; ð2:31Þ
where eGeðt; nÞ is the solution of the averaged transport equation
@t
eGe þ ðEð0Þ þ eEð1ÞÞ � rn

eGe ¼ 0; ð2:32Þ

eGeð0; nÞ ¼ f0ðn� eP
Z s

0
ðI �PÞEðs; nÞdsÞ; ð2:33Þ
and where Eð0Þ ¼ PE and Eð1Þ ¼ J�1rnD is the vector-field associated with the Hamiltonian
DðnÞ ¼ 1
jTj

Z
T

½ðI �PÞE2�ðs; nÞ
Z s

0
ðI �PÞE1ðs; nÞdsds:
Remark 2.5. This result is the Eulerian version of an averaging theorem [24,26] formulated directly in terms of the charac-
teristics equations associated to the vector field Eðs; nÞ. Indeed, consider the flow N associated to the averaged vector field:
Nðt; t0; n0Þ solves
dN
dt
¼ Eð0ÞðNÞ þ eEð1ÞðNÞ; Nðt0; t0; n0Þ ¼ n0:
Then we have Feðt; s; nÞ ¼ f0ðeNðt; s; nÞÞ þ Oðe2Þ, where eN is defined by
eNðt; s; nÞ ¼ ðI� eP
Z s

0
ðI �PÞEðs; �ÞdsÞðNð0; t; n� e

Z s

0
ðI �PÞEðs; nÞdsÞÞ:
Remark 2.6. The averaged equation (up to the order Oðe2Þ) shares the geometric structure of the initial equation (2.28).
Indeed, since E is divergence-free, so is Eð0Þ and if E is Hamiltonian, with Hamiltonian Hðs; nÞ, then Eð0Þ is Hamiltonian, with
Hamiltonian given by Hð0Þ ¼ PH. Moreover, the correction eEð1Þ is always divergence-free and Hamiltonian.
Proof Proposition 2.4. The initial data (2.30) and (2.33) can be deduced from (2.20) and (2.23) by a Taylor expansion, up to
order Oðe2Þ terms: one has indeed
f0ðnþ eBðs; nÞÞ ¼ f0ðnÞ þ eBðs; nÞ � rnf0ðnÞ þ Oðe2Þ:
Similarly, the change of variable (2.31) can be deduced from (2.21) by a Taylor expansion. Moreover, we have clearly
PAðt; s; n; eGeÞ ¼ Eð0Þ � rn

eGe. Hence, to end the proof of the proposition, we simply have to compute the first order correction
in the equation of eGe given by Proposition 2.1, i.e. the operator
G # �Pð@f Aðt; s; n;GÞðL�1ðI�PÞAðt; s; n;GÞÞÞ ¼ � 1
jTj

Z
T

E � rnðL�1ðI�PÞE � rnGÞds ¼ rn � ðDrnGÞ;
where we used that E is divergence-free and where D is the 2� 2 ‘‘diffusion’’ matrix of components
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Di;j ¼ �
1
jTj

Z
T

EiL
�1½ðI �PÞEj�ds; i; j ¼ 1;2:
In fact, this matrix D inherits the skew-symmetry property of L. Indeed, for all i; j, we have
Di;j ¼ �
1
jTj

Z
T

EiðI �PÞL�1½ðI �PÞEj�ds ¼ �
1
jTj

Z
T

½ðI �PÞEi�L�1½ðI �PÞEj�ds ¼
1
jTj

Z
T

L�1½ðI �PÞEi� ðI �PÞEjds

¼ �Dj;i:
Hence, setting D ¼ D1;2 ¼ �D2;1, the ‘‘diffusion’’ term rn � ðDrnGÞ can be simplified as
rn � ðDrnGÞ ¼ @n1 ðD@n2 GÞ � @n2 ðD@n1 GÞ ¼ ð@n1DÞ@n2 G� ð@n2DÞ@n1 G;
which is the desired result. Note that the first order model is a pure transport equation and does not include second order
derivative. h

In Appendix A, explicit computations of various terms in the averaged transport equation (2.32), (2.33) are given in a spe-
cific example that we use later for numerical experiments.
3. Asymptotic Preserving numerical schemes

In this section, we construct some Asymptotic Preserving numerical schemes for (2.2), hence for the original problem
(1.4). Let us insist on the fact that we do not base the construction of our numerical method on the approximate models de-
rived in the previous section, since we want a method which is efficient for the regimes where e small and where e ¼ Oð1Þ.

Recall that, in order to solve the filtered equation (1.7), we have introduced the augmented equation
@tF
e þ Eðt; s; nÞ � rnFe ¼ �1

e
@sFe; ð3:1Þ
where we denote for simplicity the field (which depends on the unknown Fe) by
Eðt; s; nÞ ¼ eEFe ðt; s; nÞ þ eNðs; nÞ:

After the asymptotic analysis in the previous section, and according to Proposition 2.1 (see also Proposition 2.4), we know
(see (2.30)) that a suitable initial condition for this problem is Fð0; s; nÞ ¼ F0ðs; nÞ with
F0ðs; nÞ ¼ f0 n� e
Z s

0
ðI �PÞEð0; s; nÞds

� �
; ð3:2Þ
where P denotes the averaging operator defined by (2.5). Note that this choice is asymptotically close to (2.20), up to order
Oðe2Þ terms, but is preferable since it guarantees the positivity of the initial distribution function. Under this choice, we know
two important facts:

– one recovers the solution of (1.7) by ~f ðt; nÞ ¼ Feðt; t=e; nÞ,
– the function Fe and its time derivatives @tF

e and @2
t Fe are uniformly bounded with respect to e.

In order to emphasize the role of the choice of the initial condition F0, in our numerical experiments we will also test the
most simple choice:
F0ðs; nÞ ¼ f0ðnÞ: ð3:3Þ
This choice only guarantees that Fe ¼ Ge þOðeÞ: we show below that, with this initial data, the numerical method will cap-
ture the right limit, but not the details of order OðeÞ. In the sequel, the initial condition (3.2) is referred to as ‘‘with correc-
tion’’, and the initial condition (3.3) is referred to as ‘‘without correction’’.

3.1. The numerical scheme

In this subsection, we present our AP numerical scheme. A second order finite difference discretization is applied to (3.1),
which is based on a Lax–Wendroff–Richtmyer numerical scheme (see [25,16]).

First, we introduce the time discretization tn ¼ nDt with n 2 N and the time step Dt. The phase space discretization is uni-
form so that the domain ½�nmax; nmax�2 is meshed by n1;i ¼ �nmax þ iDn and n2;j ¼ �nmax þ jDn for i; j ¼ 0; . . . ;N � 1 and
Dn ¼ 2nmax=N;N being the number of points per direction. At the boundary of the phase space domain in n, zero inflow
boundary conditions are prescribed.

For the direction s, we also use a uniform mesh of size Ds, so that s‘ ¼ ‘Ds, for ‘ ¼ 0; . . . ;Ns � 1, Ds ¼ 2p=Ns. Denoting
ni;j ¼ ðn1;i; n2;jÞ, the discrete unknown is then Fn

i;j;‘ � Feðtn; s‘; ni;jÞ. In the following description, we keep the s variable contin-
uous in order to focus on the discretization in the n1 and n2 directions. In practice, since periodic boundary conditions are
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considered in this direction s, we use fast Fourier transforms for this variable, which make straightforward the resolutions of
the implicit problems below (3.4), (3.5) (the operator @s becomes a simple multiplication operator in the Fourier variable).

We then introduce the flux in n which approximates ðEn � rnÞFn
i;j by centered finite differences:
Un
i;jðF

nÞ ¼
En

1;iþ1;jF
n
iþ1;j � En

1;i�1;jF
n
i�1;j

2Dn
þ

En
2;i;jþ1Fn

i;jþ1 � En
2;i;j�1Fn

i;j�1

2Dn
;

and we also consider the following four-points average
Fn
i;j ¼ ðF

n
iþ1;j þ Fn

i�1;j þ Fn
i;jþ1 þ Fn

i;j�1Þ=4:
A first step on Dt=2 is performed to get intermediate unknowns Fnþ1=2
i;j
Fnþ1=2
i;j ¼ Fn

i;j �
Dt
2

Un
i;jðF

nÞ � Dt
2e
@sFnþ1=2

i;j : ð3:4Þ
The second step reads
Fnþ1
i;j ¼ Fn

i;j � DtUnþ1=2
i;j ðFnþ1=2Þ � Dt

2e
@sðFn

i;j þ Fnþ1
i;j Þ: ð3:5Þ
Standard results (see [16,25]) say that this numerical scheme is second order in time and phase space n for all fixed e > 0.
Recall now that the model is nonlinear due to the presence of the self-consistent electric field eEF . Let us explain how we

update the field eEnþ1
F , once Fnþ1 is known. The inversion of the Poisson equation is easier in the original variables ðr;vÞ than in

the variables n, since it takes the simple form (1.5) of an ODE in the r variable. At the continuous level, coming back to ðr;vÞ
can be done easily by introducing the function
f ðt; s; r; vÞ ¼ Fðt; s; n1; n2Þ; with
n1

n2

� �
¼ e�sJ r

v

� �
: ð3:6Þ� �
It is not that simple at the discrete level. Indeed, if ðri;v jÞ are the mesh points, then, for all given s‘, the points e�s‘ J r
v do

not necessarily coincide with mesh points ni;j. To evaluate f nþ1ðs‘; ri;v jÞ, we thus need an interpolation algorithm in dimen-
sion 2. Since this interpolation is done at each step, we choose a simple linear interpolation algorithm. To maintain the sec-
ond order accuracy in space, one should use a higher order interpolation method, but this would significantly increase the
computational cost. Then, once we known the values f nþ1

i;j for each s‘, it is easy to compute the Poisson field Enþ1
f by integrat-

ing (1.5). To deduce eEnþ1
F on the n mesh, another interpolation step is required. Finally, we also remark that our algorithm in

two steps imposes to predict the advection field E at time tnþ1=2, so a Poisson field evaluation is needed also before computing

the flux Unþ1=2
i;j .

At the final time tfinal of the simulation, we come back to the solution of our initial problem (1.4) by setting
f ðtfinal; r;vÞ ¼ Fðtfinal; tfinal=e; nÞ, so a last interpolation algorithm in the two-dimensional ðr;vÞ variable is needed, as well as
in the s variable (since tfinal=e does not necessarily coincide with a discrete s‘). Note that for the interpolation in the s
variable, a trigonometric interpolation method is used, with spectral accuracy.

3.2. Asymptotic Preserving property

In this subsection, we check formally that the numerical scheme presented above is Asymptotic Preserving (AP), as an-
nounced. We recall that such schemes must be consistent with the kinetic model for all positive value of e, and must degen-
erate into consistent schemes with the asymptotic model when e! 0.

Thanks to the implicitation of the stiff term 1
e @s, the only stability condition will be a standard CFL condition of the form

Dt 6 CDn. In the sequel, we consider for simplicity that Dt � Dn. We have already seen that, for fixed e > 0, this scheme is
consistent (and of order 2) with Eq. (3.1). We now have to examinate its behavior when e! 0.

It is convenient to analyze the asymptotics of numerical schemes written with the micro–macro decomposition tech-
nique, which was developed in [20,2] as a flexible method in order to construct Asymptotic Preserving numerical schemes
for collisional kinetic equations. Remark that, here, we have rewritten (1.7) under the ‘‘collisional form’’ (1.9) (the operator @s

plays the role of the collision operator). The micro–macro method consists in mimicking the Chapman–Enskog expansion
and decomposing the unknown Fe into a macro part Ge ¼ PFe and the remaining micro part he ¼ ðI�PÞFe. This micro part
is small when e is small (but plays an important role when e is not small, ensuring the AP property). In fact, our scheme (3.4),
(3.5) is already under a ‘‘micro–macro’’ form, thanks to the simple form of the operator L ¼ @s. Indeed, it suffices to set
Gn
i;j ¼ PFn

i;j; hn
i;j ¼ ðI�PÞFn

i;j
where P denotes the averaging operator defined by (2.5), to realize that our scheme is reformulated as follows:
Gnþ1=2
i;j ¼ Gn

i;j � Dt
2 PUn

i;jðG
n þ hnÞ;

hnþ1=2
i;j ¼ hn

i;j � Dt
2 ðI �PÞUn

i;jðG
n þ hnÞ � Dt

2e @shnþ1=2
i;j ;

8<: ð3:7Þ
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Gnþ1
i;j ¼ Gn

i;j � DtPUnþ1=2
i;j ðGnþ1=2 þ hnþ1=2Þ;

hnþ1
i;j ¼ hn

i;j � DtðI �PÞUnþ1=2
i;j ðGnþ1=2 þ hnþ1=2Þ � Dt

2e @sðhn
i;j þ hnþ1

i;j Þ:

8<: ð3:8Þ
We will proceed by an induction argument. From our choice (3.2) of initial data, we deduce that
G0 ¼ Oð1Þ; h0 ¼ �eL�1ðI �PÞU0
i;jðG

0Þ þ Oðe2Þ:
Now, assume that we have proved that
Gn ¼ Oð1Þ; hn ¼ �eL�1ðI �PÞUn
i;jðG

nÞ þ Oðe2 þ eDtÞ:
On the one side, the micro part of the first step (3.7) gives
I þ Dt
2e

L
� �

hnþ1=2
i;j ¼ hn

i;j �
Dt
2
ðI �PÞUn

i;jðG
n þ hnÞ;
from which we deduce that
hnþ1=2
i;j ¼ �eL�1ðI �PÞUn

i;jðG
nÞ þ Oðe2Þ ¼ �eL�1ðI �PÞUnþ1=2

i;j ðGnþ1=2Þ þ Oðe2 þ eDtÞ; ð3:9Þ
since Gnþ1=2 ¼ Gn þOðDtÞ and Enþ1=2 ¼ En þOðDtÞ. On the other side, the micro part of (3.8) leads to
hnþ1
i;j ¼ �2eL�1ðI �PÞUnþ1=2

i;j ðGnþ1=2Þ � hn þOðe2Þ ¼ �2eL�1ðI �PÞUnþ1=2
i;j ðGnþ1=2Þ þ eL�1ðI �PÞUn

i;jðG
nÞ þ Oðe2Þ

¼ �eL�1ðI �PÞUnþ1
i;j ðG

nþ1Þ þ Oðe2 þ eDtÞ; ð3:10Þ
which ends the induction proof.
Let us now focus on the AP property. The macro part of (3.7) gives
Gnþ1=2
i;j ¼ Gn

i;j �
Dt
2

PUn
i;jðG

n þ hnÞ ¼ Gn
i;j �

Dt
2

PUn
i;jðG

n � eL�1ðI �PÞUn
i;jðG

nÞÞ þ Oðe2Dt þ eDt2Þ: ð3:11Þ
If we now insert (3.9) into the second equation of (3.8), we then obtain
Gnþ1
i;j ¼ Gn

i;j � DtPUnþ1=2
i;j ðGnþ1=2 þ hnþ1=2Þ

¼ Gn
i;j � DtPUnþ1=2

i;j ðGnþ1=2 � eL�1ðI �PÞUnþ1=2
i;j ðGnþ1=2ÞÞ þ Oðe2Dt þ eDt2Þ: ð3:12Þ
Passing to the limit as e! 0 (for fixed Dn;Dt) in (3.11), (3.12) yields
Gnþ1=2
i;j ¼ Gn

i;j � Dt
2 PUn

i;jðG
nÞ;

Gnþ1
i;j ¼ Gn

i;j � DtPUnþ1=2
i;j ðGnþ1=2Þ;

8<:

which is a Lax–Wendroff–Richtmyer numerical discretization of the limit equation
@tGþPE � rnG ¼ 0:
This proves that our scheme is Asymptotic Preserving. Furthermore, we observe that when e is small but not zero, up to a
Oðe2Dt þ eDt2Þ remainder, the numerical scheme (3.11), (3.12) is nothing but a second order Lax–Wendroff–Richtmyer
numerical discretization for the approximate asymptotic equation (2.22) of eGe. Hence, accumulating the errors will yield
kGn � eGek1 6 Ce2 þ CeDt 6 Ce2 þ CDt2 (here C denotes a generic constant independent of e;Dt and Dn).

We have then, for all n,
hn
i;j ¼ �eL�1ðI �PÞUn

i;jðG
nÞ þ Oðe2 þ Dt2Þ ¼ �eL�1ðI �PÞE � rn

eGe þOðe2 þ Dt2Þ;
where we recall that we have assumed Dt � Dn. Finally, in view of (2.21), we have Fn ¼ Gn þ hn ¼ Fe þOðe2 þ Dt2Þ. So far, this
analysis concerns the asymptotics e! 0. For a fixed e > 0, we already know that our scheme is of order two in time and
space, which means that there exists a constant KðeÞ > 0 only depending on e and not on Dt such that
kFn � Fek 6 KðeÞDt2. These two behaviors can be summarized in the following estimate
kFn � Fek1 6 C minðKðeÞDt2; e2 þ Dt2Þ:
This means that our scheme is in fact a second order Asymptotic Preserving in the following sense:

– for all fixed e, this scheme provides a second order approximation of the original equation (2.2);
– when e! 0, this scheme degenerates into a second order approximation of the system (2.21), (2.22), which itself

approximates the original equation (2.2) up to Oðe2Þ terms.
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3.3. Extension to the diffusion limit

The micro–macro decomposition is not only a tool to analyze the limit e! 0 (as in [20,21]), it is also a practical method
that allows to extend the construction of AP schemes to more complicated situations, see [2,18,7,19] for instance for colli-
sional kinetic problems. Let us briefly present another oscillatory example that will be developed in a future work. For sim-
plicity, we present this example in the linear setting of Section 2.3. We still consider (2.28), (2.29) but assume now that the
average of Eðs; nÞ in s vanishes: PE � 0 (this is the case for the paraxial beam model if the forcing term aðsÞ has no Fourier
component in the frequencies 0, 2 or �2). Then, the limit field Eð0Þ in (2.32) vanishes and it is convenient to rescale the time
variable in order to get a non trivial model at the limit. This amounts to considering, from the beginning, the so-called ‘‘dif-
fusion scaling’’ of (1.4) (even if the final model here will not contain any second order derivative, see the proof of Proposition
2.4: the matrix D is skew-symmetric):
@tf e þ v
e2 @xf e þ a

t
e

� �
r
e
� r

e2

� �
@v f e ¼ 0:
In this case, the associated equation in F takes the following form, where the variable s stands for t=e2:
@tF
e þ 1

e
Eðs; nÞ � rnFe ¼ � 1

e2 @sFe: ð3:13Þ
Our micro–macro scheme for (3.13) will consist in decomposing the discrete unknown as Fn
i;j ¼ Gn

i;j þ hn
i;j, where the macro

part Gn
i;j ¼ PFn

i;j and the micro part hn
i;j ¼ ðI�PÞFn

i;j are calculated by
Gnþ1=2
i;j ¼ Gn

i;j � Dt
2e PUi;jðhnÞ;

hnþ1=2
i;j ¼ hn

i;j � Dt
2e ðI �PÞUi;jðGnþ1=2 þ hnÞ � Dt

2e2 @shnþ1=2
i;j ;

8<: ð3:14Þ

Gnþ1
i;j ¼ Gn

i;j � Dt
e PUi;jðhnþ1=2Þ;

hnþ1
i;j ¼ hn

i;j � Dt
e ðI �PÞUi;jð12 ðG

nþ1 þ GnÞ þ hnþ1=2Þ � Dt
2e2 @sðhn

i;j þ hnþ1
i;j Þ:

(
ð3:15Þ
Let us briefly discuss the limit of this scheme as e! 0. Since, initially, one has h0 ¼ OðeÞ (see the discussion in Section 2.2), it
is readily seen that our semi-implicit scheme will propagate this property. For all n, one has hn ¼ OðeÞ, so the flux terms in
the equations for G in (3.14) and in (3.15) are not singular. The last equation implies that
hnþ1
i;j ¼ �eL�1ðI �PÞUi;jðGnþ1Þ þ Oðe2Þ
if this property holds true at step n. Hence, since it is true at step n ¼ 0, it holds true for all n. Consequently, one deduces
successively from the three first equations of our scheme (3.14), (3.15) that
Gnþ1=2
i;j ¼ Gn

i;j þ
Dt
2

PUi;jðL�1ðI �PÞUðGnÞÞ þ OðeÞ; ð3:16Þ

hnþ1=2
i;j ¼ �eL�1ðI �PÞUi;jðGnþ1=2Þ þ Oðe2Þ
and
Gnþ1
i;j ¼ Gn

i;j þ DtPUi;jðL�1ðI �PÞUðGnþ1=2ÞÞ þ OðeÞ: ð3:17Þ
Finally, if we discard the remainders OðeÞ, the limit scheme (3.16), (3.17) is a Lax–Wendroff–Richtmyer scheme for the limit
equation for G:
@tG�PðE � rnðL�1ðI �PÞE � rnGÞÞ ¼ 0:
The scheme (3.14), (3.15) is thus Asymptotic Preserving in the diffusion limit.

4. Numerical results

In this section, we present some numerical results for the paraxial beam model (1.4), (1.5) described in the introduction.
In particular, our aim is to validate the Asymptotic Preserving property of our scheme. For all the simulations, the function a
in the external electromagnetic field Ne defined by (1.3) is chosen as aðsÞ ¼ cos2ð2sÞ. In the first series of tests, in Section 4.1,
we solve the complete Vlasov–Poisson model. Then, in Section 4.2, we restrict our study to the linear case when the Poisson
field is set to zero, and where the asymptotic models (the limit model and its e-correction) are explicit and can be solved
analytically, which provide some additional reference solutions for small e’s.

The initial condition for (1.4) is the same for all the simulations. It is taken as a Gaussian in velocity multiplied by a reg-
ularized step function in r:



Fig. 1.
v # f 0ð
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f0ðr;vÞ ¼
4ffiffiffiffiffiffiffiffiffi
2pa
p vðrÞ exp � v2

2a

� �
; vðrÞ ¼ 1

2
erf

r þ 1:2
0:3

� �
� 1

2
erf

r � 1:2
0:3

� �
ð4:1Þ
with a ¼ 0:2. For all the simulations, the space-velocity domain is ðr;vÞ 2 ½�4;4�2. We represent on Fig. 1 this initial data for
ðr;vÞ 2 ½�2;2�2.

Let us list the numerical methods which are tested below:

– our numerical scheme (3.4), (3.5) with the initial data F0 given by (3.2), containing the OðeÞ correction term, will be
referred to as AP with correction;

– the same numerical scheme (3.4), (3.5), but with the initial data (3.3), without the correction term, will be referred to as
AP without correction;

– a splitting method for the initial, non filtered equation, (1.4), (1.5): we apply a second order time-splitting method (Strang
splitting) for (1.4), that we split into
@tf e þ v
e
@rf e ¼ 0 and @t f e þ Ef e �

r
e
þ a

t
e

� �
r

� �
@v f e ¼ 0;
each split equation being solved by a spectral method based on fast Fourier transform; this method will be referred to as the
splitting scheme;

– in the linear case (see Section 4.2), we have the analytic expression (A.5) for the exact solution Flimit of the limit model as
e! 0 – referred to as limit model – and we have (A.6) for the solution Fsecondorder of the limit model with the first correction
in e – referred to as second order model.

For all the simulations, the number of discretization points in the s direction is Ns ¼ 64, hence the derivative @s and the inte-
grals

R s
0 are calculated with a spectral accuracy. The strategy for the choice of the time step is the following. For the two AP

schemes, the time step is taken independently of e, it only has to satisfy the stability CFL condition related to our Lax–Wendr-
off–Richtmyer scheme, i.e. we always choose Dt ¼ Dn=nmax max jEj, with nmax ¼ 4 and Dn ¼ 2nmax=N;N being the number of
points in the n1 (or in the n2) direction. For the splitting scheme, we have to adapt Dt proportionally to e. The limit model and
second order model are analytic and do not require any time discretization.

4.1. The Vlasov–Poisson model for the beam

Our first series of simulations concern the full model (1.4), (1.5) or its filtered equivalent version (1.7).

Qualitative results for different regimes in e: Fig. 2
Let us start with a few qualitative results. We first show some 2D plots of the function at the same final time tfinal ¼ p=4,

for the three values e ¼ 1, e ¼ 0:25 and e ¼ 0:01. We compare in Fig. 2 the numerical solution obtained by AP with correction
(here N ¼ 128), to the reference solution computed with the splitting scheme with an adapted small time step. The time step
for our AP scheme is Dt ¼ 0:02 for the three values of e. These plots show a good agreement between our solution and the
reference solution: the scheme AP with correction is able to capture all the regimes in e.

Long time behavior and filamentation: Fig. 3
Now, we show that our AP scheme is able to capture very thin structures, with a numerical cost independent of e. On

Fig. 3 we plot the numerical solution obtained with the scheme AP with correction (with N ¼ 512), for a very small
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Plot of the initial data f0. Left: 2D plot of the function in the ðr; vÞ space (zoomed for ðr;vÞ 2 ½�2;2�2). Right: the two curves r # f 0ðr;0Þ and
0; vÞ.



Fig. 2. 2D plots for ðr;vÞ 2 ½�2;2�2 of the numerical solutions f eðt; r;vÞ at time t ¼ p=4. Left column: computed with AP with correction. Right column:
computed with the splitting scheme. Top line: e ¼ 1. Middle line: e ¼ 0:25. Bottom line: e ¼ 0:01.
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e ¼ 0:001 and for different times t ¼ p, t ¼ 4p, t ¼ 7p and t ¼ 10p. We observe the filamentation due to the self-consistent
Poisson field effect (compare to Fig. 11 below, obtained at t ¼ 2p without the Poisson field).

Numerical verification of the order 2 uniform accuracy with respect to e: Figs. 4–6
Let us now proceed to more quantitative tests. We plot on the three next figures the relative L2 error between the numer-

ical solutions computed with different schemes and a reference solution (computed with tiny time and space steps). The final
time (t ¼ p=16) is fixed.



Fig. 3. 2D plots for ðr; vÞ 2 ½�2;2�2 of the numerical solutions f eðt; r; vÞ with the scheme AP with correction for e ¼ 0:001, at times t ¼ p, t ¼ 4p, t ¼ 7p and
t ¼ 10p.
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Fig. 4. Plot of the relative L2 error for the scheme AP with correction. Left: error as a function of Dt for different e. Right: error as a function of e for different
Dt. Conclusion: the scheme is of order 2 and the error (nearly) does not depend on e.
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For Fig. 4, the solution is computed with the scheme AP with correction. On the left part, we represent (in logarithmic
scales) the error as a function of the time step Dt, for different values of e (from e ¼ 1 to e ¼ 10�4): the slope is always close
to 2 and the curves are very close together, indicating that the error is almost independent of e. This independence is con-
firmed on the right part of the figure, where we represent the error as a function of e, for different values of Dt: all the curves
are nearly horizontal. These curves indicate that the error produced by the scheme AP with correction is of the form CDt2,
with C independent of e. This proves experimentally the second order Asymptotic Preserving behavior of our scheme.
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For Fig. 5, the same tests are done for the scheme AP without correction, i.e. for the scheme (3.4), (3.5) with the initial data
F0ðs; nÞ ¼ f0ðnÞ. On the left part of the figure, we observe that the scheme behaves at an order 2 scheme for e ¼ Oð1Þ (e ¼ 1,
0.5 or 0.1) or for small values of e (less than 10�3). But for intermediate regimes, the curves are more chaotic. On the right
part of the figure, this feature is even more obvious: without the correction of the initial data, our scheme behaves well for
e ¼ Oð1Þ and for e very small (in fact, when the observed error is greater than e), but not for intermediate regimes. This shows
that this initial correction is really needed and this validates numerically the analysis done in Section 2.

For Fig. 6, the same tests are done for the splitting scheme (well resolved in space, we only observe the error in the time
step). On the left part of the figure, we observe that, for all fixed e, the Strang splitting scheme is of order 2 but the important
fact is that the error strongly depends on e: the smaller is e, the smaller must be the time step to maintain a constant error.
We also observe this feature on the right part of the figure. Experimentally, one can estimate that the error for the splitting
scheme is of the form CðDt=eÞ2.

Evolution of an RMS quantity and observation of the oscillations in time: Figs. 7–10
Let us now observe the evolution in time of a Root Mean Square (RMS) quantity associated to the filtered distribution

function ~f eðt; n1; n2Þ:
RMSðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

R2
n2

1
~f eðt; n1; n2Þdn

s
: ð4:2Þ
Note that, due to the filtering, this quantity does not oscillate at the limit e ¼ 0, and only the corrective terms for e > 0 are
rapidly oscillating. On Figs. 7–10, we represent respectively, for e ¼ 0:05, e ¼ 0:025, e ¼ 0:01 and e ¼ 0:005, the time history
of RMSðtÞ computed by the AP scheme with and without correction, and compare these numerical solutions to a reference
solution. In all these simulations, we take N ¼ 128 and Dt ¼ 0:02. In particular, for e ¼ 0:01 and e ¼ 0:005, the time
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Fig. 7. Time history of RMSðtÞ for e ¼ 0:05, computed by AP with correction and AP without correction. On the right: zoom of the left figure.
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oscillation is not resolved by this time step. However, in all the cases, one can observe that the solution obtained by the
scheme AP with correction fits surprisingly well with the reference solution, see in particular the zooms on the right part
of each figure: the red circles, which represent the only calculated points, are on the black reference curves, even when
the oscillation is not resolved. This is another proof of the Asymptotic Preserving property of our scheme. On the contrary,
one observes that the solution obtained with the scheme AP without correction is less accurate: it converges to the right limit
as e! 0 but it is not able to correctly give the details of order OðeÞ.
4.2. The linear case

For all the numerical tests presented in this subsection, the self-consistent electric field is neglected in the model: we now set
Ef ¼ 0 in (1.4). We are thus in the situation of the linear model of Section 2.3, for which we have analytic expressions for the
solution Flimit of the limit model and for the solution Fsecondorder of the second order model, respectively given by (A.5) and (A.6).

Qualitative results for two regimes of e: Fig. 11
As above for the nonlinear model, let us start with a few qualitative results. We first represent the 2D plot of the solution

of the linear problem, at the final time tfinal ¼ 2p, for the values e ¼ 1 and e ¼ 0:01. On the top line of Fig. 11, we represent the
plot of the reference solution ~f e

ref computed with the splitting scheme. Note that, for e ¼ 0:01 (top-right plot of the figure), the
solution cannot be distinguished from the solution of the limit model, which is simply the initial data rotated of an angle p=2
(compare with Fig. 1). Indeed, if x is given by (A.3), one has xtfinal ¼ p

2 þ 5p
9600 � p

2.
On the middle line of the same figure, we represent the 2D plot of the difference ~f e

AP � ~f e
ref , where ~f e

AP is the numerical
solution with the scheme AP with correction (N ¼ 256), for e ¼ 1 and e ¼ 0:01 and, on the bottom line of the figure, we
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Fig. 9. Time history of RMSðtÞ for e ¼ 0:01, computed by AP with correction and AP without correction. On the right: zoom of the left figure.
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represent the difference ~f e
second � ~f e

ref , where ~f e
second is the analytic solution of the second order model, for the same values of e.

We observe the following facts. The error for the AP scheme is almost the same (around 10�2) for the two values of e, whereas
for the second order model, the results are very dependent of e: for e ¼ 1, the error in L1 norm is close to 1, whereas for
e ¼ 0:01, this error is around 10�4. The second order model can be used only for small values of e (its incapacity to predict
the solution for e ¼ 1 is even clearer below on the RMS test).

Accuracy of the limit model and of the second order model: Fig. 12
Let us confirm more quantitatively the above observations. In the next table, we give the relative L1 errors between the

approximate solutions and the reference solution (still at time tfinal ¼ 2p and, for the AP scheme, we take N ¼ 256). This error
is defined by
error ¼
k~f e

approx � ~f e
refkL1

k~f e
refkL1

:

e
 1
 0.5
 0.25
 0.1
 0.01
Error for AP with correction (%)
 1.8
 1.5
 1.5
 1.4
 1.3

Error for the second order model (%)
 18
 4
 1
 0.15
 0.001

Error for the limit model (%)
 37
 18
 8.6
 3.3
 0.3



Fig. 11. 2D plots of f eðt; r; vÞ for ðr;vÞ 2 ½�2;2�2 for the linear beam model at time t ¼ 2p. Top line: reference solutions computed with the splitting scheme,
for e ¼ 1 and e ¼ 0:01. Middle line: difference between the reference solutions and the numerical solutions with the scheme AP with correction. Bottom line:
difference between the reference solutions and the numerical solutions with the scheme second order model.
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This table indicates that the error produced by the scheme AP with correction is independent of e (as we shown in the pre-
vious subsection for the nonlinear case), and that the limit model and the second order model seem respectively of orders 1
and 2 in e. On Fig. 12, we illustrate numerically the accuracies of these two asymptotic models with respect to e by plotting in
logarithmic scales the L1ð½0; tfinal�Þ norm of the difference RMSapproxðtÞ � RMSreferenceðtÞ, for these two models. One can check on
this figure that the errors produced by these models are respectively OðeÞ and Oðe2Þ. In other terms, we confirm numerically
the results given by Proposition 2.4.
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Evolution of the RMS: Figs. 13–15
We now observe the evolution in time of the RMS quantity defined by (4.2). On Figs. 13–15, we represent respectively, for

e ¼ 1, e ¼ 0:25 and e ¼ 0:05, the time history of RMSðtÞ computed by the AP scheme in the linear case, with and without
correction, and compare these numerical solutions to a reference solution and to the solutions of the limit model and of
the second order model. In all these simulations, we take N ¼ 64 and Dt ¼ 0:02. In all the cases, one can observe that the
solution obtained by AP with correction fits very well with the reference solution (see the zooms on the right part of each
figure) even when the oscillation is not well resolved. As for the nonlinear case, one observes that the solution obtained with
AP without correction is less accurate when e is small and is not able to reproduce the details of order OðeÞ.

One also observes that the limit model is only able to give the averaged behavior of the curve. The second order model is
much better and follows the oscillations for small values of e. On Fig. 15, for e ¼ 0:05, its solution coincides with the reference
solution and is more precise than AP with correction. Recall indeed that the error made by the scheme AP with correction is
proportional to Dt2 þ Dn2 � 0:02 whereas the error made by the second order model is proportional to e2 � 0:002. Indeed, in
this linear context, the second order model is analytic and does not produce any error in time or space. Obviously, in a more
general case, the second order model will also generate an error due to its space–time discretization. On Fig. 14, for e ¼ 0:25
(e2 � 0:06), the errors made by the two methods AP with correction and second order model are comparable. Finally, on Fig. 13,
for e ¼ 1, it appears again that the error made by the second order model is of order Oð1Þ: this confirms that this averaged
model is useless when e is not small.
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Fig. 14. Time history of RMSðtÞ for e ¼ 0:25, in the linear situation, computed with AP (with or without correction), with the limit model and with the second
order model. On the right: zoom of the left figure.
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5. Conclusion

In this work, we have presented a general strategy to construct the so-called Asymptotic Preserving (AP) numerical
schemes for a family of highly oscillatory problems. Although we focus on the particular case of a charged particle beam
to illustrate our strategy, the approach may be applied to many known physical models belonging to this family of highly
oscillatory problems. Averaged models are usually used to approximate this type of problems but these models are not rel-
evant in the intermediate regime since they miss important informations from the original problem.

The starting idea in this construction is to write the oscillatory problem into a ‘‘two scale’’ formulation where the rapid
and slow time scales are separated, making the new distribution function more regular in some sense. The new structure
then suggests to follow a similar strategy as in the collisional case to develop AP schemes on this formulation. However
the completely different nature of highly oscillatory problems (compared to collisional kinetic equations) induces new
important difficulties. First, the two scale formulation is overdetermined in the sense that a large family of initial data for
this formulation is allowed. We show in this paper that there is a suitable choice to make on this initial data in order to main-
tain the regularity of the distribution function at different orders of the oscillation parameter. More precisely, the initial data
is chosen to fit with a Chapman–Enskog like expansion which ensures a separation of the rapid and slow time scales at dif-
ferent orders of the expansion. Based on this formulation, we then derive an Asymptotic Preserving scheme for the original
problem and show that time–space discretizations of order 2 are necessary to numerically observe the fine structures and
filamentations that are generated by the coupling of Vlasov and Poisson equations. Several numerical tests are performed to
show the efficiency of our strategy: uniform accuracy and ability to capture the oscillations of different magnitudes and the
long time behavior.
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We emphasize that the AP property of our scheme is shown by making links with the so-called micro–macro decompo-
sition, which is known to be a flexible tool to develop AP schemes in the context of collisional kinetic equations. In particular,
this decomposition may be used to extend the present approach to other highly oscillatory problems such as the charged
particle beam with a diffusion scaling, the guiding-center asymptotics and the finite Larmor radius approximation. This will
be the subject of future works.

Appendix A. Explicit calculations of the approximated models in an example

In this appendix, we compute explicitly the averaged models given in Proposition 2.4 in terms of the Fourier coefficients
of the field E. Here, the period is taken as jTj ¼ P ¼ 2p. Introduce the decomposition of the two (real-valued) components of
the vector field E on the Fourier basis:
Ejðs; nÞ ¼
X
k2Z

Ak;jðnÞeiks for j ¼ 1;2;
with A�k;j ¼ Ak;j for all k 2 Z and j ¼ 1;2. Then direct calculations yield
Eð0Þj ¼ A0;j for j ¼ 1;2 and D ¼ 2Im
X
k2N	

1
k

Ak;1Ak;2: ðA:1Þ
We now calculate the quantities defined in Proposition 2.4 in a specific example that we use later for numerical experiments.
In the beam model (1.7), if we neglect the Poisson field, then we have E ¼ eEapp defined by (1.8). Choosing aðsÞ ¼ cos2ð2sÞ, one
computes from (1.8) the Fourier coefficients of E1 and E2:
E1 ¼
1

16
ð�4n2 þ ð3n2 þ in1Þe2is � 2n2e4is þ ðn2 þ in1Þe6is þ c:c:Þ;

E2 ¼
1

16
ð4n1 þ ð3n1 � in2Þe2is þ 2n1e4is þ ðn1 � in2Þe6is þ c:c:Þ:
Hence, we obtain by simple integrations
P
Z s

0
ðI�PÞE ¼ D0n and L�1ðI�PÞE ¼ D1ðsÞn ðA:2Þ
(recall that P denotes the averaging operator defined by (2.5)), with
D0 ¼
1

12
�1 0
0 1

� �
;

D1 ¼
1

48
3 cosð2sÞ þ cosð6sÞ 9 sinð2sÞ � 3 sinð4sÞ þ sinð6sÞ

9 sinð2sÞ þ 3 sinð4sÞ þ sinð6sÞ �3 cosð2sÞ � cosð6sÞ

� �
;

and also, from (A.1), we obtain that the averaged vector field (up to order Oðe2Þ terms) is the following Hamiltonian vector
field:
Eð0Þ þ eEð1Þ ¼ J�1rnH;
with
H ¼ x
2
ðn2

1 þ n2
2Þ; x ¼ x0 þ ex1 ¼

1
4
þ 5e

192

� �
: ðA:3Þ
The averaged equation (2.32), (2.33) for eGe is thus the equation of a rotation in the phase space and has an explicit solution:
eGeðt; nÞ ¼ eGeð0; etxJnÞ ¼ f0ððI� eD0ÞetxJnÞ: ðA:4Þ
We have thus analytic expressions for the solution of the limit model as e! 0 and also for the solution of a next order
approximation, which are then easy to implement numerically. The solution of the limit model reads (see [12])
F limitðt; s; nÞ ¼ f0ðetx0JnÞ ðA:5Þ
and the solution of the second order model will be
Fsecondorderðt; s; nÞ ¼ f0ððI� eD0ÞetxJðI� eD1ðsÞÞnÞ: ðA:6Þ
This last relation is obtained by using successively (2.31), (A.4) and recalling that D0 and D1 are given by (A.2). Indeed, one
has
Feðt; s; nÞ ¼ eGeðt; ðI � eD1ÞnÞ þ Oðe2Þ ¼ eGeð0; etxJðI � eD1ÞnÞ þ Oðe2Þ ¼ f0ððI� eD0ÞetxJðI� eD1ðsÞÞnÞ þ Oðe2Þ:
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