
Gysela 5D, a gyrokinetic semilagrangian parallel code

Guillaume Latu, Nicolas Crouseilles, Virginie Grandgirard and Eric Sonnendrucker
latu@labri.fr

Abstract

We are interested in solving the Vlasov equation
used to describe collective effects in plasmas. This non-
linear partial differential equation coupled with a field
equation describes the time evolution of the particle dis-
tribution in phase space. In this paper, we focuses on
a recently developed 5D parallel numerical application
dedicated to gyrokinetic simulation of Takamak sys-
tems. We got a multi-level parallelized application that
achieves a good scalability up to hundreds of processors
on a cluster of SMP nodes.

1 INTRODUCTION

In the quest for a new source of energy, understand-
ing plasma behavior is one of the most challenging
problems to overcome. Plasma are obtained in different
facilities, in particular in tokamak reactors. A kinetic
description could be used to model phenomena that
take place inside the tokamaks. These plasma are well
described by the Vlasov equation, coupled with quasi-
neutralilty equation[?]. Vlasov equation characterizes
the evolution of particle distribution in time and space
according to the electro-magnetic fields. The distribu-
tion function f(−→x ,−→v , t) represents the particle density
at a time t and (−→x ,−→v) in phase space. To describe the
most general case, one need (−→x ,−→v) ∈ Rd × Rd with
d = 3. Finding an approximation of this non-linear
partial differential Vlasov equation enables the simula-
tion of new accelerator and tokamak designs to validate
them before building the devices. For a more funda-
mental purpose, finding such an approximate solution
makes it possible for physicists to represent the behav-
ior of different physical parameter sets.

The numerical resolution of Vlasov type equations,
the solution of which depends on 6 variables plus time,
is performed most of the time using particle methods
(Particle In Cell methods) where the plasma is ap-
proached by a finite number of macro-particles [BL91].
Even if these methods give satisfying results with rel-
atively few particles, for some applications however,

it is well known that the numerical noise inherent to
the particle methods becomes too significant. Con-
sequently, methods which discretize the Vlasov equa-
tion on a phase space grid have been proposed (see
[SRBG99, FS06]) for plasma and beam physics appli-
cations. Among these Eulerian methods, we are in-
terested in the implementation of the semi-Lagrangian
method; it consists in updating the values of the dis-
tribution function at the nodes of the grid by following
the characteristics ending at these nodes backward and
interpolating the value at the bottom of the character-
istics from the known values at the previous time step.
The computation is done by integrating the character-
istic curves backward at each time step and interpolat-
ing the value at the feet of the characteristics thanks
to interpolation techniques (Lagrange or Hermite or
cubic splines for example). In fact, a time splitting
procedure [CK76] is added. One simulation time step
is split into several successive substeps: displacements
in seperate dimensions. With this scheme, the interpo-
lations are mainly performed in one or two dimensions
instead of interpolations in space having more than 3
dimensions. The computation cost is then drastically
reduced.

The present work describes a parallel implementa-
tion of the semi-Lagrangian method by using a cubic
splines interpolation method and a parallelization of
a quasi neutrality solver. The model underlying the
simuator uses a rewritten Vlasov equation that uses a
distribution function in 5D plus time [?]. In this con-
text of a 5D model, coupled with a splitting scheme, the
cubic spline interpolation seems to be a good compro-
mise between accuracy and simplicity. Nevertheless,
the standard method does not provide the locality of
the reconstruction since all the values of the distribu-
tion function for a given 2D section are necessary to
reconstruct f in each cell of this 2D section. To over-
come this problem of strong dependencies, we propose
a solution that allows us to interpolate on quasi inde-
pendant small 2D patches. Thus, we decompose 2D
domains into patches, each patch being devoted to a

set of processor. One patch computes its own local
cubic spline coefficients by solving reduced linear sys-
tems. Some adapted boundary conditions are imposed
at the interface of the patches to obtain a C1 global res-
olution which is close to the sequential resolution that
uses classical global splines. Moreover, thanks to a re-
strictive condition on the time step, the inter-processor
communications are only done between logically adja-
cent set of processors, which enables us to obtain com-
petitive results from a scalability point of view.

The major drawback of Eulerian methods using uni-
form meshes is that memory consumption and com-
putation cost increase drastically when the number of
dimensions d, and grid size increase. That explains
why parallelism is required. A previous parallel sim-
ulator were designed [?]. Nevertheless, this first ap-
proach implied several global transpositions of the dis-
tribution function (the main 5D data) per time step
because of classical splines. The amount of communi-
cation induced were prohibitive from 16 processors to a
greater number of processors. This early solution does
not scale well and then were upgraded by the solution
exposed in this paper.

The present work focuses on the parallelization of
a realistic semi-lagrangian code which considers a full
tokamak system. The simulator is scalable and is able
to use hundreds of processors efficiently. The sec-
tion 2 focuses on the numerical scheme. Section 3
describes sequential algorithms of the simulator, and
their associated algorithmic costs. Section 4 depicts
the parallelization. Section 5 deals with performance
analysis and is followed by a conclusion. These cur-
rent researches are performed in an interdisciplinary
approach together with Fusion department of CEA
(DRFC) and with the INRIA CALVI project, partly
located at Strasbourg 1 University, France.

2 NUMERICAL SCHEME

The 5D model considers the following variables to
discretize the distribution function : r and θ are the
polar coordinates in the shortest cross-section of the
torus (called polöıdal section), ϕ refers to the angle
in the largest cross-section of the torus, v‖ is the ve-
locity along the ϕ dimension, µ the magnetic momen-
tum acts as a parameter that represents the polöıdal
component of the velocity. The time evolution of the
guiding-center 5D gyroaveraged distribution function
f̄t(r, θ, ϕ, v‖, µ) is governed by the gyrokinetic Vlasov
equation :

∂f̄

∂t
+

dr

dt

∂f̄

∂r
+

dθ

dt

∂f̄

∂θ
+

dϕ

dt

∂f̄

∂ϕ
+

dv‖

dt

∂f̄

∂v‖
= 0 (1)

The electric quasineutrality provides the self-
consistency of the problem, coupling the electric
potential Φt(r, θ, ϕ) (which plays a major role in the
dv‖
dt

∂f̄
∂v‖

term) to f̄ . The Φ function is found in solving

the equation (with ∇⊥ = (∂r,
1
r ∂θ)).

− 1
n0(r)

∇⊥ .

[
n0(r)
B0 ωc

∇⊥Φ
]
+

e

Te(r)
[Φ− 〈Φ〉] = Ā(r, θ, ϕ)

(2)
with

Ā(r, θ, ϕ) =
2π

mi n0(r)

∫
dµB(r, θ)J0(k⊥ρc)

∫
dv‖(f̄ − f̄eq)

(3)

The larmor radius corresponds to the notation ρc.
The ion charge is ei = Zi e, and the ion mass mi. The
magnetic configuration is a circular concentric tokamak
configuration with B0 the value of magnetic field at
r =??. The time is normalized to the inverse of the ion
cyclotronic frequency ωc = ei B0/mi.

Equations (1) and (2) are solved successively at each
time step thanks to an explicit method. One deduces
Φt from integral computations on f̄t followed by the
solving of equation (2). Then the electrostatic field
Et(r, θ, φ) = −∇Φt(r, θ, ϕ) is found. For the resolu-
tion of equation (1), we use a backward semi-lagrangian
method to compute f̄t+dt from f̄t and Et (in fact we
use too the values of ft−dt in order to get a time
scheme of second order). The principle of the semi-
lagrangian method is to compute the value of the distri-
bution function f̄t+dt on a grid of the phase space using
the property that f̄ is constant along particular phase
space curves called characteristics. So, the computa-
tion consist in computing displacements of grid points
of f̄t+dt thanks to the characteristics, followed by an
interpolation on the grid f̄t (or f̄t−dt).

3 SEQUENTIAL ANALYSIS

3.1 Global algorithm

The Vlasov equation (1) is solved by splitting it into
the three advection equations:

∂tf̄ +−−→vGC ·
−→
∇⊥f̄ = 0, (r̂θ operator)

∂tf̄ + v‖∂ϕf̄ = 0, (ϕ̂ operator)
∂tf̄ + v̇‖∂v‖ f̄ = 0. (v̂‖ operator)

Each advection consists in applying a shift operator.
A splitting of Strang [?] is employed to keep a scheme
of second order accuracy. The sequence we choose is
(v̂‖/2, ϕ̂/2, r̂θ, ϕ̂/2, v̂‖/2), where the factor 1/2 corre-
sponds to a shift over a reduced time step dt/2.

Algorithm 1: One time step in Gysela code
// Vlasov solver
Input : ft−dt and Φt

Output: ft+dt

1D splitting, operator v̂‖
2 on ft−dt (using Φt)1

1D splitting, operator ϕ̂
22

2D splitting, operator r̂θ (using Φt)3

1D splitting, operator ϕ̂
24

1D splitting, operator v̂‖
2 (using Φt)5

// Field solver
Input : ft+dt

Output: Φt+dt

Compute At+dt, integrals, gyroaverage on ft+dt6

Compute Φt+dt, with systems inversion on At+dt7

Algorithm 1 focuses on one time step of the simula-
tor. At time step t, we will present key points of the
different computations and their associated complexi-
ties.
The algorithm manipulates two types of data struc-
tures: the 5D data ft−dt, ft, ft+dt, and the 3D data
Φ and A. The sizes of those structures are parame-
terized by the discretization along the different dimen-
sions. Let #r, #θ, #ϕ, #v‖ , #µ be respectively the
number of points in each dimensions r, θ, ϕ, v‖, µ.
The size of 5D data are (#r #θ #ϕ #v‖ #µ), and for
3D data we have a size of (#r #θ #ϕ).
The Vlasov solver is composed of 5 splitting substeps.
A substep requires the computation of the shift of
each grid point, and then an interpolation using f val-
ues. The algorithmic complexity of each substep is in
Θ(#r #θ #ϕ #v‖ #µ). At the line 5 of the algorithm, a
traversal of data ft+dt is needed and the complexity is
too in Θ(#r #θ #ϕ #v‖ #µ). The computation at line
6 implies a cost of Θ(#r #θ #ϕ log(#θ) log(#ϕ)) be-
cause 2D Fast Fourier Transforms are included in the
solver.
All parts of the simulator consume significant proces-
sor time. Even if the Vlasov solver concentrates the
major part of execution time, we have to consider the
parallelization of every part to get an eventually scal-
able program. Concerning the Vlasov solver, a domain
decomposition of the phase space and consequently of
the 5D data structures will provide independent com-
putation.

4 PARALLEL ALGORITHM

4.1 Domain decomposition

Concerning the Vlasov solver, the variable µ acts as
a parameter. Then we give the responsability of each
value of µ to a given set of processors. Within a set,
a 2D domain decomposition allows us to attribute to
each processor a subdomain in (r, θ) dimensions. For a
given local (µ, r, θ) tuple, a processor stores all values
ϕ = ∗ and v‖ = ∗. This data distribution leads to a
straightforward parallelization of all parts of the Vlasov
solver, excluding the r̂θ operator part. We will see in
the sequel of the paper how to overcome the problem
raised by this operator. The algorithm 2 introduces the
computation distribution. In this algorithm, commu-
nications between processors are only required at lines
13, 25 and 26.

Algorithm 2: One time step in parallel Gysela

// Vlasov solver
for µ, r, θ in local subdomain do in parallel1

forall ϕ, v‖ do2

1D splitting, operator v̂‖
23

end4

end5

for µ, r, θ in local subdomain do in parallel6

forall ϕ, v‖ do7

1D splitting, operator ϕ̂
28

end9

end10

for µ, r, θ in local subdomain do in parallel11

forall ϕ, v‖ do12

2D splitting, parallel operator r̂θ13

end14

end15

for µ, r, θ in local subdomain do in parallel16

forall ϕ, v‖ do17

1D splitting, operator ϕ̂
218

end19

end20

for µ, r, θ in local subdomain do in parallel21

forall ϕ, v‖ do22

1D splitting, operator v̂‖
223

end24

end25

// Field solver
Compute in parallel and broadcast At+dt26

Compute in parallel and broadcast Φt+dt27

4.2 Local spline interpolation

In this section, we present our interpolation tech-
nique based on a cubic spline method described in one
dimension [CLS06]. With a 2D tensor product of this
spline method, interpolations on a 2D subdomain is
achievable. In order to apply the r̂θ operator, we use
practically this 2D extension. Nevertheless, we explain
here, only the 1D case to simplify the explanations.

Let us consider a function f which is defined on
a global domain [xmin, xMax] ⊂ IR. This domain
is decomposed on several sub-domains called generi-
cally [xmp

, xMp−1]; each sub-domain will be devoted
to the processor p. In the following, we will use the
notation xi = xmp

+ ih, where h is the cell size:
h = (xMp − xmp)/K) and K the number of cells on a
sub-domain (K ∈ IN).

Let us now restrict the study of f : x 7→ f(x) on the
interval [xmp , xMp] with Mp = mp +K. The projection
s of f onto the cubic spline basis reads

f(x) ' s(x) =
K+1∑
ν=−1

ηνBν(x),

where Bν is the cubic B-spline (see [SRBG99]). The
interpolating spline s is uniquely determined by (K+1)
interpolating conditions

f(xi) = s(xi), ∀i = mp, ...,Mp, (4)

and the Hermite boundary conditions at both ends of
the interval in order to obtain a C1 global approxima-
tion

f ′(xmp) ' s′(xmp), f ′(xMp) ' s′(xMp). (5)

The only cubic B-spline not vanishing at point xi are
Bi±1(xi) = 1/6 and Bi(xi) = 2/3. Hence (4) yields

f(xi) = 1/6 ηi−1 + 2/3 ηi + 1/6 ηi+1, i = 0, ..., N.

On the other hand, we have B′
i±1(xi) = ±1/(2h), and

B′(xi) = 0. Thus the Hermite boundary conditions (5)
become

f ′(xmp) ' s′(xmp) = − 1
2h

ηmp−1 +
1
2h

ηmp+1,

f ′(xMp) ' s′(xMp) = − 1
2h

ηMp−1 +
1
2h

ηMp+1.

Finally, η = (ηmp−1, ...ηMp+1)T is the solution of the
(K + 3) × (K + 3) system Aη = F , where F is the
following vector

F =
[
f ′(xmp), f(xmp), ..., f(xMp), f ′(xMp)

]T
,

and A denotes the following fixed matrix

A =
1
6



−3/h 0 3/h 0 · · · 0

1 4 1 0
...

0 1 4 1
. . .

...
...

. 0
... 0 1 4 1
0 0 0 −3/h 0 3/h


.

A classical LU algorithm is used to solve the linear
system.

Approximation of the interface derivatives
In order to get accurate numerical simulations (in

a sense that we recover in the best possible way the
sequential results), one has to take care of the ap-
proximation of the derivatives at the interface of the
sub-domains. Various approximations have been im-
plemented but in order to recover the approximation of
these interface derivatives obtained by a classical global
cubic splines interpolation, we derive a new formula to
evaluate f ′(xmp) and f ′(xMp). Accurate numerical re-
sults are obtained with:

f ′left(xi) =
∑j=10

j=1 γ̃+
j fi+j ,

f ′right(xi) =
∑j=−1

j=−10 γ̃−j fi+j ,

f ′(xi) = f ′left(xi) + f ′right(xi).
(6)

We refer the reader to [CLS06] for the details of
the obtention of approximation (6) and values of
coefficients γ−j and γ+

j .

Properties
In our simulator we expect to interpolate on the in-

terval [xmp−1, xMp] instead of [xmp , xMp]. In order to
extend the interpolation capability on one processor,
we compute an extra ηmp−2 coefficient . We pose the
property mpi = Mpj for pi and pj two adjacent pro-
cessors that shares the grid point xmpi

. Finally, with
these modifications, each processor has the respons-
ability to modify the values of grid points in the in-
terval [xmp , xMp−1], and have the capability to inter-
polate onto the extended interval [xmp−1, xMp]. In the
2D splitting phase, where the local splines are used,
it means that the shift of one single grid point on the
border of a subdomain must not exceed the elementary
cell width. this constraint is the main drawback of the
method, it is not possible to consider big shift (in r or
θ) during a single time step in the 2D splitting phase.

The computation of the ηmp−2 coefficient implies a
modification of the right hand side term F . We choose
to add an term f(xmp−1) to F in order to deduce the

ηmp−2 value.

Communication pattern
In the parallel implementation of the local spline

method, communications are needed between ad-
jacent processors to build the right hand side
term F . On a local processor, the known values are
(f(xi))i∈[xmp ,xMp−1]

. For processors located at the bor-
ders of the global domain (xmin = xmp or xMax = xMp),
boundary conditions (compact or periodic) are consid-
ered to retrieve the values of f needed outside of the
domain. Herefter, we enumerate the data that lacks
on the local processor to get F (excluding the specific
problems that arose at the global domain boundaries):

1. Values of f(xmp−1) and f ′left(mp) are received
from a first neighboring processor.

2. Values of f(xMp
) and f ′right(Mp) are received from

a second neighboring processor.

3. The quantities f ′right(mp) and f ′left(Mp) are com-
puted on the local processor.

Concerning the item 3, we choose practically a large
enough K to have only local calculations to compute
f ′right(mp) and f ′left(Mp). Experimentally, we have
determined a lower bound on K (Kmin = 32), that
leads to a relatively small overhead and has good
numerical stability for the local spline interpolation.
In the case of a 2D interpolation (like in the 2D
splitting phase), the F term is a matrix instead of a
vector. The assembly of F requires communications
with the 8 neighboring processors (instead of only
2 processors in the one dimensional case). On one
processor and for a 2D patch of size K1 × K2, the
number of double precision real numbers to receive
is 4 (K1 + K2 + 4). This amount of communi-
cation could be compared to the interpolation cost
of the K1×K2 points for the patch, which is Θ(K1 K2).

Limitation
Numerical experiments with the local spline method

for the 2D splitting on physical test cases have shown a
bottleneck. The shifts in direction θ are often too large
and above the limit we fixed (the width of one cell). It
were not feasable to keep this configuration, so we were
compelled to remove completely the θ parallelization in
the algorithm (2).

4.3 Field solver

The quasi-neutrality solver includes three compu-
tation parts. First, integrals are computed to get

∫
(f̄ − f̄eq) dv‖. Second, 1D discrete fourier transforms

in ϕ of the resulting function are performed (in the
equation (3)). Tridiagonal systems are solved to apply
J0(k⊥ρc) operator. Then, we get a gyroaveraged
quantity Ā after an other integration in dµ.

Third, the function Φ is found in computing 2D dis-
crete fourier transforms in (θ, ϕ) of Ā, followed by the
solving of tridiagonal systems. Thus, the equation (2)
is finally solved.

Hereafter, an algorithm that proposes a simple for-
mulation for parallelizing the first and second compu-
tation parts corresponding to the Ā calculation. The
final part, that performs the Φ computation, is redon-
dant on each processor.

Algorithm 3: Partial parallelization of QN solver
Input : f(r = block, θ = block, ϕ = ∗, v‖ = ∗, µ)

Output: Φ(r = ∗, θ = ∗, ϕ = ∗)

// Part 1
Integration in dv‖ of f (parallel in r, θ, µ)1

Send local data
R

f dv‖(r = block, θ = block, ϕ = ∗, µ)2

Redistribution & Synchronization3

Receive block
R

f dv‖(r = ∗, θ = ∗, ϕ = block, µ = ∗)4

// Part 2
Application of operator J0 (parallel in ϕ).5

Integrals in dµ to get Ā (parallel in ϕ).6

Send block Ā(r = ∗, θ = ∗, ϕ = block)7

Broadcast of Ā / Synchronization8

Receive global data Ā(r = ∗, θ = ∗, ϕ = ∗)9

// Part 3
2D FFT on dimensions (θ,ϕ) (not parallel),10

Solving quasi neutrality equation (not parallel),11

Inverse FFT 2D on dim. (θ,ϕ) (not parallel)12

This relatively simple parallelization allows us to
keep the same global scheme to compute the 3D struc-
ture Φ as in the sequential previous version. The first
and second parts of the algorithm lead to a good load
balancing. The bad point is the redistribution of data
needed line 3 in order to apply afterwards the J0 opera-
tor. This type of communication could not be avoided,
becauseforf the numerical method used to apply J0, we
expect data covering global domain in variables r and
θ.

The global algorithm has the constraint that each
processor must know the data Φ to perform the split-
tings in the Vlasov solver. So, the big amount of com-
munications, caused by the broadcast of line 8, would
be difficult to remove. Another problem raised by this
procedure is the redondant computation in part 2 on
all processors.

5 PERFORMANCE ANALYSIS

5.1 Efficiency of the parallelization

Numerical experiments were performed on a
cluster of IBM 16-core nodes located at Bordeaux,
France. Each node hosts Power5 processors and
offers 27GB of shared memory. Performances for
one of the smallest 5D test case are presented in
table 1 (#r = 128, #θ = 128, #ϕ = 32, #v‖ = 32, #µ=16). The
number of µ values is 16. For this configuration, our
parallel program uses 16 processors at the minimum.
So, the relative efficiency shown in table 1 considers
as a reference the execution times on 16 processors of
a single 16-way node. Let us recall that we are limited
to 2D patch of width Kmin = 32 at the minimum (see
subsection 4.2) and we do not have parallelization on
variable θ; so, the (r, θ) domain could be decomposed
up to only procr =4 subdomains.

The 1D splittings are perfectly parallel and scalable,
because no overhead in computation nor in communi-
cation is needed. However, the 2D splitting requires a
communication step to transmit boundary coefficient
and derivatives. Furthermore, the 2D interpolation on
small patches induces a computation overhead in com-
parison to the global spline method. These two facts
explain why the efficiency decays whenever procr in-
creases. About the field solver, the part 1 is very scal-
able because computation is equally distributed onto
processors. The part 2 is scalable up to 32 proces-
sors only, because the parallelization is on variable ϕ
and this test case consider few values for ϕ: #ϕ = 32.
Concerning the part 3 which is redondantly computed
in all processes, there is no scalability to expect. The
communication overhead of the field solver is not pre-
dominant compared to computation times of the field
solver. But, it would not be useful to find a better par-
allelization of part 3, if it induces a significant increase
of communications.

5.2 Hybrid approach

The designed parallel simulator achieves good per-
formances. Nevertheless, the limitation on the maxi-
mum number of processors that can be used, requires
that we investigate other possible levels of parallelism.
A refinement of the MPI parallelization would require
a fair amount of code restructuring and would im-
ply new communication schemes. However, the MPI
and OpenMP programming models can be combined
into a hybrid paradigm to exploit levels of parallelism
at a finer grain, without heavy code manipulation.

The hybrid approach is suitable for clusters of SMP
nodes where MPI provides communication capability
across nodes and OpenMP exploits loop level paral-
lelism within a node.

We add several parallels loop in all parts of the al-
gorithm 2. A parallelization in variable ϕ is adequate
for the 1D splitting in v‖, the 2D splitting in (r, θ) and
in the first two parts of the Field solver. A parallel
loop in θ allows a simple formulation in the 1D split-
ting in ϕ. Different parallel loops are successively used
in the third part of the Field solver to get a qualitative
OpenMP code.

In order to measure the scalability of the new hy-
brid simulator on a medium-sized parallel machine, we
presents hereafter a 4D test case with #µ = 1. The
variable µ corresponds to the coarser level of paral-
lelism. So, if we imagine running the same test case in
a 5D configuration (with #µ = 16) on 16 times more
processors, we should observe very similar scalability
performances.

In table 2, a 4D test case illustrates the
competitive performance of the hybrid approach
(#r256, #θ = 256, #ϕ = 128, #v‖ = 64, #µ=1). Each part
shows a good speedup factor, excluding the only one
that does not benefits from OpenMP : the communi-
cation phases of the Field solver.

6 CONCLUSION

We described the parallelization of a numerical sim-
ulator that solves a 5D Vlasov system. Multiple levels
of parallelism are used by combining message passing
and OpenMP parallelization. Amost every steps of the
original algorithm benefits from this hybrid approach.
The scalability is really impressive on a cluster of SMP
nodes.

References

[BL91] C.K. Birdsall and A.B. Langdon. Plasma
Physics via Computer Simulation. Institute
of Physics Publishing, Bristol and Philadel-
phia, 1991.

[CK76] C.Z. Cheng and Georg Knorr. The integra-
tion of the vlasov equation in configuration
space. J. Comput Phys., 22:330, 1976.

[CLS06] N. Crouseilles, G. Latu, and E. Son-
nendrücker. Hermite spline interpolation
on patches for a parallel solving of the
vlasov-poisson equation. Technical Re-
port 5926, Research report INRIA, 2006.
http://hal.inria.fr/inria-00078455/en/.

[FS06] F. Filbet and E. Sonnendrücker. Modeling
and numerical simulation of space charge
dominated beams in the paraxial approxi-
mation. In M3AS, volume 16, pages 763–
784, 2006.

[SRBG99] E. Sonnendrücker, J. Roche, P. Bertrand,
and A. Ghizzo. The semi-lagrangian
method for the numerical resolution of
the vlasov equations. J. Comput. Phys.,
149:201–220, 1999.

Time Efficiency Time Efficiency Time Efficiency

Nb. processors 16 (procr = 1) 32 (procr = 2) 64 (procr = 4)

Advections

advection 1D (ϕ) 8.69 100 4.28 101 2.11 103

advection 1D (v//) 9.76 100 4.90 100 2.43 100

advection 2D (r, θ) 21.90 100 11.21 98 5.95 92

Field solver

field solver (parts 1,2) 1.04 100 0.54 97 0.27 96

field solver (part 3) 0.20 100 0.20 50 0.20 25

field solver (comm.) 0.03 100 0.06 27 0.08 10

Table 1. Relative efficiency and computation time in seconds for a single time step of a small test

case #r = 128,#θ = 128,#ϕ = 32,#v‖ = 32,#µ=16 (procr the number of processors to compute one µ)

Time Efficiency Time Efficiency Time Efficiency Time Efficiency Time Efficiency

Nb. processors 4 (nbt = 1) 8 (nbt = 2) 16 (nbt = 4) 32 (nbt = 8) 64 (nbt = 16)

Advections

advection 1D (ϕ) 83.30 100 41.51 100 21.82 95 10.80 96 5.38 97

advection 1D (v//) 80.88 100 39.38 103 20.00 101 10.12 100 5.07 100

advection 2D (r, θ) 187.72 100 94.70 99 47.61 99 24.06 98 12.32 95

Field solver

Field solver (parts 1,2) 7.03 100 3.62 97 1.87 94 1.00 88 0.56 79

Field solver (part 3) 6.15 100 3.19 96 2.00 77 0.90 86 0.44 88

Field solver (comm.) 0.09 100 0.08 60 0.08 29 0.09 13 0.11 5

Table 2. Relative efficiency and computation time in seconds for a single time step of a medium test

case #r = 256,#θ = 256,#ϕ = 128,#v‖ = 64,#µ=1 (procr = 4 the number of MPI processes and nbt the

number of threads within each MPI process)

