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Abstract

We introduce a new numerical strategy to solve a class of oscillatory
transport PDE models which is able to capture accurately the solutions
without numerically resolving the high frequency oscillations in both space
and time. Such PDE models arise in semiclassical modeling of quantum
dynamics with band-crossings, and other highly oscillatory waves. Our
first main idea is to use the nonlinear geometric optics ansatz, which
builds the oscillatory phase into an independent variable. We then choose
suitable initial data, based on the Chapman-Enskog expansion, for the
new model. For a scalar model, we prove that so constructed model will
have certain smoothness, and consequently, for a first order approxima-
tion scheme we prove uniform error estimates independent of the (possi-
bly small) wave length. The method is extended to systems arising from
a semiclassical model for surface hopping, a non-adiabatic quantum dy-
namic phenomenon. Numerous numerical examples demonstrate that the
method has the desired properties.

1 Introduction

Many partial differential equations for high frequency waves, in particular, semi-
classical models in quantum dynamics, take the form of systems of transport or
Liouville equations with oscillatory source terms describing interband quantum
transitions that are associated with chemical reactions, quantum tunnelling,
Dirac points in graphene, etc. [33, 34, 6]. These terms contain important quan-
tum information, such as Berry connection and Berry phase, which are associ-
ated with quantum Hall effects [39]. Solving such systems are computationally
daunting since one needs to numerically resolve the small wave length (denoted
by a small parameter ε in this paper), which can be prohibitively expansive.

To efficiently solve a quantum system, or more generally high frequency
waves, a classical method is the geometric optics (GO) or WKB method, which
approximates the amplitude by a transport equation and phase by (nonlin-
ear) eiconal equation [32]. This method allows the computational mesh (∆x)
and time step (∆t) independent of ε [15]. However the approximation is not
valid beyond caustics, since the physically relevant solutions are multi-valued,
rather than the viscosity, solutions to the eiconal equation [38, 22, 12, 24].
Even the multi-valued solutions do not describe accurately caustics, quantum
tunnelling and other important non-adiabatic quantum phenomena. A more
accurate method, called the Gaussian beam or Gaussian wave packet methods,
originated independently in seismology [18, 35] and chemistry [17] communities
(see also recent developments in the math community [36, 16, 29, 27, 30, 14]),
are more accurate near caustics but need to use ∆x,∆t = O(

√
ε), and have

difficulties to handle singular potentials [26] and non-adiabatic band-crossing
phenomena [25]. For recent overviews of computational high frequency waves
and semiclassical methods for quantum dynamics, see [13, 23].

For problems that contain small or multiple time and space scales, another
framework that has found many success in kinetic and hyperbolic problems is the
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asymptotic-preserving (AP) schemes [20]. An AP scheme mimics the transition
from a microscopic model to the macroscopic one in the discrete setting, and
as a result the scheme can capture the macroscopic behavior correctly without
resolving numerically the small, microscopic behavior, thus can be used for all
range of ε with fixed ∆x and ∆t. Based on solving one model–the microscopic
one, an AP scheme undergoes the numerical transition from the microscopic to
the macroscopic scales automatically without the need to couple two different
models at different scales, which is the bottleneck of most multiscale or multi-
physical methods [11]. See recent reviews of AP methods in [21, 9]. For high
frequency wave problems, the AP framework has found successes only in dealing
with time oscillations, allowing ∆t >> O(ε) [4, 19, 2, 3, 8, 7] for a number of
physical problems. Nevertheless, for high frequency waves, the most difficult
challenge is the spatial oscillations which unfortunately demands ∆x = O(ε),
an impossible task in high space dimensions. One earlier work in this direction
was in [1], by using the WKB-basis functions the method allows ∆x = O(1),
but so far this approach has only been developed for one-dimensional stationary
Schrödinger equation (without time oscillations).

In this paper we introduce a general AP approach to efficiently solve a family
of oscillatory waves in which the phase oscillations depend on both time and
space. The problem under study takes the following form

∂tu+

d∑
k=1

Ak(x)∂xku+R(u) =
i

ε
E(t, x)Du+ Cu, t ≥ 0; x ∈ Ω ⊂ Rd,

u(0, x) = fin(x, β(x)/ε), x ∈ Ω ⊂ Rd,
(1.1)

where u = u(t, x) ∈ Cn, and Ak, D and C are given n × n real matrices.
R(u) : Cn 7→ Cn, is the source term independent of ε, the small dimensionless
wave length. The quantity E is a real valued scalar function. The initial data
fin may have an oscillatory dependence with an initial phase β(x)/ε, and in this
case we will assume that the dependence of fin on this phase is periodic. Many
semiclassal models for quantum dynamics may be written in this general form
(see an example surface hopping [6], graphene [34], and quantum dynamics in
periodic lattice [33]), in which E ≥ 0 is the gap between different energy bands.
Some high frequency wave equations also have the form of (1.1) [13]. In this
paper, we assume periodic boundary condition in space such that Ω = [0, 1]d,
although the method can be extended to more general boundary conditions.

Our main idea is to use the nonlinear geometric optics (NGO), which has
been widely studied at the theoretical level in the mathematical community last
century for nonlinear hyperbolic conservation laws [10, 28, 31, 37]. The NGO
approach builds the oscillatory phase as an independent variable. Specifically,
one introduces a function U : (t, x, τ) ∈ (0, T )×Rd × (0, 2π)→ U(t, x, τ) ∈ Cn,
which is 2π-periodic with respect to the last variable τ ∈ (0, 2π), and coincides
with the solution u of (1.1) in the sense

U(t, x, S(t, x)/ε) = u(t, x). (1.2)

We then transfer the original equation into a linear equation for the phase
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S(t, x)–unlike in GO where the phase equation is the nonlinear eikonal equation
which triggers caustics–coupled with an equation on the profile U . The main
interest of our reformulation is twofold. First the equation for S is linear and
does not depend on ε, which makes its numerical approximation simple, accurate
and inexpensive. Second, thanks to the additional degree of freedom in U , one
can, and needs to, choose suitable initial data such that U(t, x, τ) is uniformly
bounded in ε up to certain order of derivatives in time and space, which can
then be solved numerically efficiently: such initial data can be generated by
utilizing the classical Chapman-Enskog expansion [5] as was done in [7, 8] to
efficiently compute the time oscillations. As a result, our method is AP, in both
space and time, which allows correct solutions even when ∆x,∆t >> O(ε).

The paper is organized as follows. In section 2, we present in details the
strategy for highly oscillatory scalar equations in one dimension. In particular
we reformulate the problem into a new one with an additional dependence on a
well-chosen oscillation phase. We prove that this augmented problem is smooth
enough in both space and time with respect to the oscillation parameter. Based
on this reformulation, we construct a numerical scheme for which we prove that
the order of accuracy is also uniform in ε. Numerical results are performed to
assert the efficiency of our method. Then, in section 3, we extend the strategy
to a class of oscillatory hyperbolic systems with an application to a semiclassical
surface hopping model. A conclusion is finally given in section 4.

We remark that our approach, although presented here only in one space
dimension, can be generalized to higher space dimension straightforwardly. This
will be the subject of a future work.

2 One dimensional scalar equations

As an illustrative example, we first consider the following model satisfied by
u(t, x) ∈ C, x ∈ [0, 1], t ≥ 0,

∂tu+ c(x)∂xu+ r(u) =
ia(x)

ε
u, u(0, x) = u0(x), (2.1)

where the functions u0, a, c and r are given. Periodic boundary conditions are
also considered in space. In some cases, we will allow the initial data to be
oscillatory

u0(x) = fin(x, β(x)/ε) ≡ fin(x, τ) with τ =
β(x)

ε
,

where β is a given function and fin is supposed to be periodic with respect to
the second variable τ . More precise technical assumptions on all these functions
will be made later on.
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2.1 The linear case

First, we focus on the linear case r(u) = λu where λ is a constant . In this case,
we expand the initial data with respect to the periodic variable τ :

u0(x) =
∑
k∈Z

fk(x)eikβ(x)/ε,

which allows to restrict the study of (2.1) to the following equations

∂tuk + c(x)∂xuk + λuk =
ia(x)

ε
uk, uk(t = 0, x) = fk(x)eikβ(x)/ε. (2.2)

Indeed the linearity of the equation allows the use of the superposition principle,
and the solution of (2.1) can be recovered by u(t, x) =

∑
k uk(t, x).

Since (2.2) is linear, one can apply the standard Geometric Optics (GO) by
injecting the ansatz uk(t, x) = αk(t, x)eikS(t,x)/ε into (2.2). This gives

∂tαk + c(x)∂xαk + λαk +
i

ε
[∂tS + c(x)∂xS]αk =

ia(x)

ε
αk.

To remove the terms in 1/ε, one can impose the following equations on α and S

∂tαk + c(x)∂xαk + λαk = 0, α(0, x) = fk(x),

∂tS + c(x)∂xS = a(x), S(0, x) = β(x).

This gives rise to non oscillatory solutions S and αk which can be solved numer-
ically quite efficiently without numerically resolving the small time and wave-
length scales of size O(ε).

2.2 The nonlinear case

When r is nonlinear, the superposition principle cannot be applied anymore
and the GO approach does not work. Then, we utilize what was called in
the literature the nonlinear geometric optics (NGO) ansatz, namely, introduce
a function U(t, x, τ) which depends on an additional periodic variable τ , and
satisfies

U(t, x, S(t, x)/ε) = u(t, x), (2.3)

with u solution to (2.1). The equation satisfied by U writes

∂tU + c(x)∂xU +
1

ε
[∂tS + c(x)∂xS]∂τU + r(U) =

ia(x)

ε
U.

To get a constant period in the independent variable τ , we should impose the
following equation on S

∂tS + c(x)∂xS = a(x), S(0, x) = β(x). (2.4)

Then, we deduce the equation for U to

∂tU + c(x)∂xU + r(U) = −a(x)

ε
(∂τU − iU), U(0, x, β(x)/ε) = u0(x). (2.5)
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It is clear that solving (2.4) and (2.5) with any initial data U(0, x, τ) satisfy-
ing U(0, x, β(x)/ε) = u0(x) allows one to recover the desired original solution to
(2.1) through relation (2.3). Due to the extra dimension introduced by U , there
are infinitely many possible choices of such initial data. We will choose one–
which is essential–that provides a ”smooth enough” solution with respect to ε.
Indeed, from numerical point of view, this smoothness property is of paramount
importance when one wants to get a numerical scheme with a uniform accuracy
with respect to ε. We will consider two cases for which this choice is possible
and a uniform smoothness with respect to ε of the phase S and the profile U
can be obtained at any order. The first case is very simple since the models on
S and U do not depend on ε, while the second case requires more care and is
presented in the next subsection.

Case 1: a ≡ 0 with possibly oscillatory initial data: u0(x) = fin(x, β(x)/ε).
The equation on the phase S is given by (2.4) and the equation on U reduces
to

∂tU + c(x)∂xU + r(U) = 0, U(0, x, τ) = fin(x, τ).

The two equations on S and U clearly do not depend on ε and therefore numer-
ical schemes on S and U will not be restricted by the small values of ε.

Case 2: a 6= 0 with non-oscillatory initial data u0(x) = α(x). In this case
the equation for the phase S is still given by (2.4) with β(x) = 0, and the
equation on U is also given by (2.5), which can be written in terms of

V = e−iτU

where V solves

∂tV + c(x)∂xV + e−iτr(eiτV ) = −a(x)

ε
∂τV. (2.6)

Since the only condition one has to impose on V is V (0, x, 0) = u0(x) (recall
that boundary conditions are imposed in x), this gives some freedom for the
choice of the initial data for V , and the strategy of this choice will be developed
in the next subsection.

Remark 2.1. Our approach works with either oscillatory initial data, or os-
cillatory source. It does not apply to problems where oscillations are generated
from both initially data and sources. See discussions in section 2.5.

2.3 A suitable initial condition

Considering the non-oscillatory initial data (Case 2), one needs initial data
V (0, x, τ) for all τ to solve equation (2.6) . Since the only condition we have
to ensure is V (0, x, 0) = u0(x) = α(x), there is a degree of freedom in choosing
the expression of V (0, x, τ). The central idea here is to choose it in such a way
that the solution V is non-oscillatory in ε (up to certain order of time-space
derivatives). To show this construction, we will deal in this section with the
case of non-oscillatory initial data, in which case we can construct V (0, x, τ)
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in such a way that the time-space derivatives of V (up to second order) are
uniformly bounded with respect to ε.

Since the initial condition in (2.1) takes the non-oscillatory form u(0, x) =
α(x), we have S(0, x) = 0. Following [7, 8], we will construct ”well-prepared
initial data” V (0, x, τ) which ensures that the high-order time and space deriva-
tives of V are also bounded uniformly in ε, together with

V (0, x, τ = 0) = α(x). (2.7)

As a consequence, we will see that the so-obtained initial data for V provides
a non-oscillatory solution V and allows the construction of numerical schemes
with a uniform accuracy with respect to ε. Below, we will describe the method,
and we refer to [7, 8] for more details. Note that this type of initial data is
obtained by formally expanding the solution in terms of ε in the spirit of the
well-known Chapman-Enskog expansion in kinetic theory [5]. For this purpose,
we first introduce the notations

Lg = ∂τg, Πg =
1

2π

∫ 2π

0

g(τ)dτ,

and let
V 0 = ΠV, V 1 = (I −Π)V.

The operator L is skew-symmetric on L2(dτ), its kernel is the space of functions
which do not depend on τ , and Π is the L2(dτ)-orthogonal projector onto the
kernel of L. The operator L is invertible on the set of functions having zero
average in the variable τ , and

L−1g = (I −Π)

∫ τ

0

g(σ)dσ =

∫ τ

0

g(σ)dσ +
1

2π

∫ 2π

0

σg(σ)dσ,

for all g ∈ L2(dτ) such that Πg = 0. In particular

L−1(eiτ ) = −ieiτ , L−1(e−iτ ) = ie−iτ .

In addition, L−1 is a bounded operator since ‖L−1g‖L∞τ ≤ C‖g‖L∞τ and ‖L−1g‖L2
τ
≤

C‖g‖L2
τ

for all g ∈ L2(dτ) such that Πg = 0.
We now apply Π and I −Π to (2.6) to get

∂tV
0 + c(x)∂xV

0 + �[e−iτr(eiτ (V 0 + V 1))] = 0, (2.8)

∂tV
1 + c(x)∂xV

1 + (I −Π)[e−iτr(eiτ (V 0 + V 1))] = −a(x)

ε
∂τV

1. (2.9)

In particular (2.9) gives

V 1(t, x, τ) = −ε(a(x))−1L−1(I −Π)[e−iτr(eiτV 0)] +O(ε2), (2.10)

which, when applied to (2.8) and letting ε→ 0, formally yields

∂tV
0 + c(x)∂xV

0 + Π[e−iτr(eiτ (V 0))] = 0. (2.11)
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Then, one gets the following expansion for V

V (t, x, τ) = V 0(t, x) + V 1(t, x, τ)

= V 0(t, x)− ε(a(x))−1L−1(I −Π)[e−iτr(eiτV 0(t, x))] +O(ε2).(2.12)

To avoid oscillations in ε, this expansion should be satisfied at t = 0 as well.
Evaluating (2.12) at t = τ = 0 and using (2.7), this means that

α(x) = V 0(t = 0, x)−ε(a(x))−1L−1(I−Π)[e−iτr(eiτV 0(t = 0, x))]
∣∣∣
τ=0

+O(ε2),

or

V 0(t = 0, x) = α(x)+ε(a(x))−1L−1(I−Π)[e−iτr(eiτα(x))]
∣∣∣
τ=0

+O(ε2). (2.13)

Evaluating (2.12) at t = 0 and using (2.13) finally yields our suitable initial
data:

V (0, x, τ) = α(x) +
ε

a(x)

[
G(0, α)−G(τ, α)

]
,

with G(τ, α) = L−1(I −Π)[e−iτr(eiτα(x))]. (2.14)

We will see that this approach not only allows one to capture the main oscilla-
tions with phase S(t, x) and amplitude O(1), it also allows to capture oscillations
of amplitude ε.

Remark 2.2. The Chapman-Enskog expansion is conducted only to generate
the suitable initial data for V , while the equations for S and V (or U) are
not asymptotically truncated. This guarantees that our method, unless other
asymptotic methods, is accurate for all ε.

Remark 2.3. Another interest of the augmented formulation above is the fol-
lowing. Because of oscillations, in general the solution to (2.1) cannot converge
strongly but only weakly when ε → 0. However, if S is the solution to (2.4),
then one may have (in some appropriate functional space)

exp(−iS(t, x)/ε)u(t, x) = V (t, x, S(t, x)/ε) converges strongly to ū = ū(t, x)

where ū satisfies

∂tū+ c(x)∂xū+ Πe−iτr(eiτ ū) = 0, ū(0, x) = u0(x). (2.15)

We will demonstrate this numerically in section 2.7. It will be interesting to
investigate rigorously this strong convergence, but this task is beyond the scope
of this paper and is deferred to a future work.

Now we will give a theorem which states that, up to the second order, time
and space derivatives of V are bounded uniformly in ε, provided that the initial
condition is given by (2.14). First, we make the following assumptions on r and
a.
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Assumption on r. We assume in the sequel that r : R → R is a twice
differentiable function on R whose two first derivatives are bounded.

Assumption on a. a : [0, 1] → R is a C2 function satisfying a(x) ≥ a0 >
0,∀x ∈ [0, 1].

Note that the assumption on a excludes the case of band crossing. There is
no such a restriction for the actual numerical scheme, as will be demonstrated
numerically later.

For the sake of simplicity, we will restrict ourselves in the following theorem
to the case of a constant transport coefficient c(x) = c > 0. The extension to a
non-constant c(x) can easily be derived following the lines of the proof.

Theorem 2.4. Let V be the solution of (2.6) on [0, T ]. We consider the initial
data (2.14) and periodic boundary condition in x and τ variables. Then, the
time and spatial derivatives of V are bounded uniformly in ε ∈]0, 1], that is,
∃C > 0 independent of ε such that ∀t ∈ [0, T ]

‖∂pt V (t)‖L∞τ,x ≤ C, and ‖∂pxV (t)‖L∞τ,x ≤ C, for p = 0, 1, 2,

and
‖∂2
xtV (t)‖L∞τ,x ≤ C, and ‖∂τV (t)‖L∞τ,x ≤ C.

Proof of Theorem 2.4. First, we make the following change of variable

V (t, x, τ) = W (S(t, x), x, τ) (2.16)

where S satisfies
∂tS + c∂xS = a(x), S(0, x) = 0.

In the one-dimensional case, one can write the exact solution for S

S(t, x) =
1

c

[
A(x)−A(x− ct)

]
, with A(x) =

∫ x

0

a(y)dy. (2.17)

Observe that, for all x ∈ R, the phase S(t, x) is an increasing function in t, and
this property remains true in higher space dimensions. This means that the
map t 7→ s = S(t, x) can be seen as a change of variable in time. Note that
s ∈ [0, T̄ ], with T̄ ≤ (2/c)‖A‖L∞x ≤ (2/c)‖a‖L∞x . Then, W (s, x, τ) satisfies

∂sW +
c

a(x)
∂xW +

1

a(x)
e−iτr(eiτW ) = −1

ε
∂τW,

W (0, x, τ) = V (0, x, τ) = α(x) +
ε

a(x)

[
G(0, α)−G(τ, α)

]
,

with G(τ, α) = L−1(I −Π)[e−iτr(eiτα(x))]. (2.18)

We then need to prove the following result for W .
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Proposition 2.5. Let W be the solution of (2.18) on [0, T̄ ], T̄ > 0, with periodic
boundary condition in x and τ . Then, up to the second order, the time and
spatial derivatives of W are bounded uniformly in ε ∈]0, 1], that is, ∃C > 0
independent of ε such that, ∀s ∈ [0, T̄ ]

‖∂psW (s)‖L∞τ,x ≤ C, and ‖∂pxW (s)‖L∞τ,x ≤ C, for p = 0, 1, 2,

and
‖∂2
stW (s)‖L∞τ,x ≤ C.

We first claim that this proposition implies the result of Theorem 2.4. In-
deed, using the following straightforward relations

∂tV = ∂sW∂tS,

∂2
t V = ∂2

sW (∂tS)2 + ∂sW∂2
t S,

∂xV = ∂sW∂xS + ∂xW,

∂2
xV = ∂2

sW (∂xS)2 + ∂sW∂2
xS + ∂2

xsW (∂xS) + ∂2
xW,

∂2
txV = ∂2

sW (∂tS)(∂xS) + ∂sW∂2
txS + ∂2

sxW∂tS,

and the fact that S(t, x) given by (2.17) has its time and space derivatives
uniformly bounded (since S does not depend on ε), the estimates stated in
Theorem 2.4 hold.

Now, we focus on the proof of Proposition 2.5. To this aim, we start with
the following elementary lemma:

Lemma 2.6. Consider the following ordinary differential equation

dyε

dt
= αε(t)yε + βε(t), t ∈ [0, T ], yε(0) = yε0,

with yε, αε, βε : [0, T ] → H, H being a Banach algebra space. Assume that
there exists a constant C > 0 independent of ε such that ‖αε(t)‖H ≤ C and
‖βε(t)‖H ≤ C, ∀t ∈ [0, T ]. Then there exists a constant M > 0 independent of
ε such that ‖yε(t)‖H ≤M‖yε0‖H, ∀t ≤ T .

Proof of Lemma 2.6. The proof of Lemma 2.6 follows from the exact solution
which can be written as

yε(t) = yε0 exp

(∫ t

0

αε(s)ds

)
+

∫ t

0

[
exp

(∫ t

s

αε(u)du

)
βε(s)

]
ds.

Then, one can straightforwardly deduce from the assumptions on α and β, that
∀t ∈ [0, T ], ‖yε(t)‖H ≤M‖yε0‖H.

In the following, we will use this lemma to prove that the time and space
derivatives of W , solution of (2.18), are uniformly bounded in the space H =
L∞τ,x of bounded functions of τ and x.

10



Proof of Proposition 2.5. We first introduce the characteristic equations associ-
ated with (2.18),

ẋ(s) =
c

a(x(s))
, x(0) = x0; τ̇(s) =

1

ε
, τ(0) = τ0.

Since c is a constant, this system can be solved analytically. For A given by
(2.17), since a > 0, A is a strictly increasing function, thus its inverse A−1 is
well defined so that the solution of the differential system is

x(s) = A−1(A(x0) + cs), x(0) = x0; τ(s) = τ0 +
s

ε
, τ(0) = τ0.

This motivates the following change of variables

x̃ = A−1(A(x) + cs), τ̃ = τ +
s

ε
, (2.19)

which enables to filter out the transport terms in (2.18).

Existence and estimate of W
Using (2.19), we write the equation satisfied by W̃ (s, x, τ) = W (s,A−1(A(x)+

cs), τ + s
ε ) to get

∂sW̃ = − 1

a(x̃)
e−iτ̃r(eiτ̃W̃ ), (2.20)

where x̃ and τ̃ are given by (2.19), and with the initial condition W̃ (0, x, τ) =
V (0, x, τ) given by (2.18). Since r is a Lipschitz function, according to the
Cauchy-Lipschitz theorem in the Banach space L∞τ,x, equation (2.20) has a
unique global solution. Furthermore, since a(x̃) ≥ a0 > 0, we have

‖W̃ (s)‖L∞τ,x ≤ ‖V (0)‖L∞τ,x + C
∥∥∥∫ s

0

1

a(x̃)
e−iτ̃r(eiτ̃W̃ (σ))dσ

∥∥∥
L∞τ,x

≤ ‖V (0)‖L∞τ,x + C

∫ s

0

(1 + ‖W̃ (σ)‖L∞τ,x)dσ,

and using the Gronwall lemma, we get

sup
ε>0
‖W̃ (s)‖L∞τ,x ≤ C(1 + ‖V (0)‖L∞τ,x). (2.21)

Since the initial data V (0), given by (2.14), is uniformly bounded with respect

to ε, we deduce that W̃ , and then W , are also uniformly bounded.
We now prove that time and space derivatives, up to the second order, are

bounded uniformly in ε.

Estimate of the first time derivative
The first derivative W1 = ∂sW satisfies

∂sW1 +
c

a(x)
∂xW1 +

1

a(x)
r′(eiτW )W1 = −1

ε
∂τW1. (2.22)
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As before, we consider the change of variables (2.19) so that W̃1(s, x, τ) =
W1(s,A−1(A(x) + cs), τ + s

ε ) solves

∂sW̃1 +
1

a(x̃)
r′(eiτ̃W̃ )W̃1 = 0.

This equation enters in the framework of Lemma 2.6 with αε(s) = (1/a(x̃))r′(eiτ̃W̃ (s))

and βε(s) = 0. Under the assumption on r and the estimate (2.21) on W̃ , W̃1(s)

is uniformly bounded provided that W̃1(0) is bounded. From equation (2.18)
on W at s = 0, one has

W̃1(0) = ∂sW (0)

= −1

ε
∂τW (0)− c

a(x)
∂xW (0)− 1

a(x)
e−iτr(eiτW (0)).

The last term is bounded using the assumption on r and the fact that W (0) is
bounded. Considering the first term, with the choice of W (0) given by (2.18),
one gets ∣∣∣1

ε
∂τW (0)

∣∣∣ =
∣∣∣ 1

a(x)
(I −Π)(e−iτr(eiτα(x)))

∣∣∣
≤ C‖r(eiτα)‖L∞x,τ ≤ C(1 + ‖α‖L∞x ).

Then, for the second term, using the notations in (2.18),

∂xW (0) = α′(x)− εa′(x)

a(x)2

[
G(0, α)−G(τ, α)

]
+

ε

a(x)

[
H(0, α)−H(τ, α)

]
, (2.23)

where H(τ, α) =: ∂xG(τ, α) = L−1(I − Π)(r′(eiτα(x))α′(x)). Using the fact
that L−1 is a bounded operator on C0(T) and the assumptions on r, we get
‖G‖L∞x,τ ≤ C(1 + ‖α‖L∞x ) and ‖H‖L∞x,τ ≤ C(1 + ‖α‖L∞x )‖α′‖L∞x . Finally, we
have ∣∣∣∂xW (0)

∣∣∣ ≤ |α′(x)|+ C
∣∣∣εa′(x)

a(x)2

∣∣∣(1 + ‖α‖L∞x ) +
ε

a
‖α′‖L∞x

≤ Cε

a2
0

+ ‖α‖W 1,∞
x

[
1 + C

ε

a2
0

+ C
ε

a0

]
≤ C. (2.24)

We then conclude that W̃1(0) = ∂sW (0) is uniformly bounded. As a conse-
quence,

‖W̃1(s)‖L∞τ,x ≤ C, (2.25)

and then ∂sW is uniformly bounded in ε.
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Estimate of the second time derivative
We proceed in a analogous way for W2 = ∂2

sW = ∂sW1 by taking the time
derivative of equation (2.22), which satisfies

∂sW2 +
c

a(x)
∂xW2 +

1

a(x)
eiτr′′(eiτW )W 2

1 +
1

a(x)
r′(eiτW )W2 = −1

ε
∂τW2.

(2.26)

Using (2.19), W̃2(t, x, τ) = W2(s,A−1(A(x) + cs), τ + s
ε ) satisfies

∂sW̃2 +
1

a(x̃)
r′(eiτ̃W̃ )W̃2 +

1

a(x̃)
eiτ̃r′′(eiτ̃W̃ )W̃ 2

1 = 0.

We now use Lemma 2.6 with αε(s) = (1/a(x̃))r′(eiτ̃W̃ ) and βε(s) = (1/a(x̃))eiτ̃r′′(eiτ̃W̃ )W̃ 2
1 .

Using (2.21), (2.25) and the assumption on r, one deduces that αε(s) and
βε(s) are uniformly bounded, and one just needs to prove that the initial data

W̃2(0) = W2(0) is bounded uniformly in ε. Let us recall the expression of W2(0)
using (2.22) at s = 0

W2(0) = ∂sW1(0) = − c

a(x)
∂xW1(0)− 1

a(x)
r′(eiτW (0))W1(0)− 1

ε
∂τW1(0).

(2.27)
The second term in the right hand side is uniformly bounded since W and W1

are bounded. The terms 1
ε∂τW1(0) and c

a(x)∂xW1(0) need more care. First we

write W1(0) using (2.18)

W1(0) = ∂sW (0) = − c

a(x)
∂xW (0)− 1

a(x)
e−iτr(eiτW (0))− 1

ε
∂τW (0)

= − c

a(x)
∂xW (0)− 1

a(x)
e−iτr(eiτW (0)) +

1

a(x)
(I −Π)[e−iτr(eiτα(x))]

= − c

a(x)
∂xW (0) +

1

a(x)
e−iτ [r(eiτα(x))− r(eiτW (0))]

− 1

a(x)
Π[e−iτr(eiτα(x))]. (2.28)

Then, we compute (1/ε)∂τW1(0) using (2.18)

1

ε
∂τW1(0) = − c

aε
∂2
τxW (0) +

1

aε
∂τ

[
e−iτ [r(eiτα)− r(eiτW (0))]

]
= − c

aε

[εa′
a2

(I −Π)[e−iτr(eiτα)]− ε

a
(I −Π)[α′r′(eiτα)]

]
+

1

aε

{
−ie−iτ [r(eiτα)− r(eiτW (0))] + iαr′(eiτα)

−r′(eiτW (0))[iW (0) + ∂τW (0)]
}

= −ca
′

a3
(I −Π)[e−iτr(eiτα)] +

c

a2
(I −Π)[α′r′(eiτα)]

− i

aε
e−iτ [r(eiτα)− r(eiτW (0))] +

1

aε
r′(eiτW (0))

ε

a
(I −Π)[e−iτr(eiτα)]

+
i

aε

[
r′(eiτα)α− r′(eiτW (0))W (0)

]
.
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Using the fact that L−1 is a bounded operator on C0(T) and the smoothness
assumptions on r, one gets∣∣∣1
ε
∂τW1(0)

∣∣∣ ≤ C

a3
0

(1 + |α|) +
C

a2
0

+
1

a0ε
C|α−W (0)|+ C

a2
0

(1 + |α|) +
1

a0ε
C|α−W (0)|.

From (2.18), since W (0)−α = ε
a [G(0, α)−G(τ, α)] with G uniformly bounded,

one has ∣∣∣1
ε
∂τW1(0)

∣∣∣ ≤ C.

We now focus on the term ∂xW1(0) (which is the first term in the rhs of (2.27))
and take the derivative of (2.28) with respect to x

∂xW1(0) =
ca′

a2
∂xW (0)− c

a
∂2
xW (0)− a′

a2
e−iτ [r(eiτα)− r(eiτW (0))]

+
1

a
[α′r′(eiτα)− ∂xW (0)r′(eiτW (0))]

+
a′

a2
Π[e−iτr(eiτα)]− 1

a
Π[α′r′(eiτα)]. (2.29)

All the terms except the first one ∂2
xW (0) have been estimated previously. Ex-

press ∂2
xW (0) by taking the derivative of (2.23) with respect to x

∂2
xW (0) = α′′ − εa

′′a− 2(a′)2

a3
[G(τ = 0, α)−G(τ, α)]

−2
εa′

a2
∂x[G(τ = 0, α)−G(τ, α)] +

ε

a
∂2
x[G(τ = 0, α)−G(τ, α)],

where G(τ, α) = L−1(I − Π)(e−iτr(eiτα(x))) is used. Using the properties of
L−1 and of r and a, one can estimate ∂2

xW (0)

|∂2
xW (0)| ≤ ‖α′′‖L∞x +

Cε

a3
0

(1 + ‖α‖L∞x ) +
Cε

a2
0

‖α′‖L∞x +
ε

a0
‖α′′‖L∞x

≤ C. (2.30)

Thus, from (2.27), W2(0) is uniformly bounded and we conclude with Lemma
2.6 that

‖W̃2(s)‖L∞τ,x ≤ C, (2.31)

so that ∂2
sW is uniformly bounded.

First space derivative
The function Y1 = ∂xW solves the following equation

∂sY1 +
c

a
∂xY1 −

ca′

a2
Y1 −

a′

a2
e−iτr(eiτW ) +

1

a
r′(eiτW )Y1 = −1

ε
∂τY1. (2.32)
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Again the function Ỹ1(t, x, τ) = Y1(s,A−1(A(x) + cs), τ + s
ε ) satisfies

∂sỸ1 −
ca′(x̃)

a(x̃)2
Ỹ1 −

a′(x̃)

a(x̃)2
e−iτ̃r(eiτ̃W̃ ) +

1

a(x̃)
r′(eiτ̃W̃ )Ỹ1 = 0,

where we used the notation in (2.19). Then, one can use Lemma 2.6 with αε(s) =

−(1/a(x̃))r′(eiτ̃W̃ ) + (ca′(x̃)/a(x̃)2) and βε(s) = (a′(x̃)/a(x̃)2)e−iτ̃r(eiτ̃W̃ ) for
which one gets a uniform estimate thanks to the assumption on r and the
previous estimate on W̃ . Moreover, it has already been proved in (2.24) that

the initial condition Ỹ1(0) = ∂xW (0) (with W (0) given by (2.14)) is uniformly
bounded. As a consequence,

‖Ỹ1(s)‖L∞τ,x ≤ C. (2.33)

so that Y1(s) = ∂xW (s) is also uniformly bounded with repsect to ε.

Second space derivative
Considering Y2 = ∂2

xW = ∂xY1, one gets from (2.32)

∂sY2 +
c

a
∂xY2 −

2ca′

a2
Y2 − c

a′′a− 2(a′)2

a3
Y1 −

2a′

a2
r′(eiτW )Y1 +

1

a
eiτr′′(eiτW )Y 2

1

+
1

a
r′(eiτW )Y2 −

a′′a− 2(a′)2

a3
e−iτr(eiτW ) = −1

ε
∂τY2. (2.34)

Again, with the change of variable (2.19), the equation for Ỹ2(s, x, τ) = Y2(t, x+
ct, 1

cε [A(x+ ct)−A(x)] + τ) writes (using the notations introduced above)

∂tỸ2 = αε(s)Ỹ2 + βε(s),

where

αε(s) =
2ca′(x̃)

a(x̃)2
− 1

a(x̃)
r′(eiτ̃W̃ )

βε(s) = c
a′′(x̃)a(x̃)− 2(a′(x̃))2

a(x̃)3
Ỹ1 +

2a′(x̃)

a(x̃)2
r′(eiτ̃W̃ )Ỹ1 −

1

a(x̃)
eiτ̃r′′(eiτ̃W̃ )Ỹ 2

1

+
a′′(x̃)a(x̃)− 2(a′(x̃))2

a(x̃)3
e−iτ̃r(eiτ̃W̃ ),

are uniformly bounded thanks to the previous estimates and the properties of
r. One then needs to check that the initial condition Ỹ2(0) = Y2(0) = ∂2

xW (0)
is uniformly bounded, but we recall that ∂2

xW (0) has already been estimated in
(2.30). Hence, we can conclude

‖Ỹ2(s)‖L∞τ,x ≤ C, (2.35)

so that Y2 is uniformly bounded with respect to ε.
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Mixed space-time derivative
By differentiating (2.32) with respect to s, one gets the equation satisfied by

Y3 = ∂sY1 = ∂2
sxW

∂tY3+
c

a
∂xY3−

ca′

a2
Y3−

a′

a2
r′(eiτW )W1+

1

a
eiτr′′(eiτW )W1Y1+

1

a
r′(eiτW )Y3 = −1

ε
∂τY3.

(2.36)

Using (2.19), Ỹ3(t, x, τ) = Y3(s,A−1(A(x) + cs), τ + s
ε ) satisfies

∂tỸ3−
ca′(x̃)

a(x̃)2
Ỹ3−

a′(x̃)

a(x̃)2
r′(eiτ̃W̃ )W̃1+

1

a(x̃)
eiτ̃r′′(eiτ̃W̃ )W̃1Ỹ1+

1

a(x̃)
r′(eiτ̃W̃ )Ỹ3 = 0.

(2.37)

We use Lemma 2.6 with αε(s) = (ca′(x̃)/a(x̃)2)−(1/a(x̃))r′(eiτ̃W̃ ) and βε(s) =

(a′(x̃)/a(x̃)2)r′(eiτ̃W̃ )W̃1−(1/a(x̃))eiτ̃r′′(eiτ̃W̃ )W̃1Ỹ1 which are uniformly bounded
thanks to the previous estimates and the smoothness of r. One now needs to
check that the initial condition ∂sxW (0) is uniformly bounded. To do so, apply
(2.32) at s = 0 to get

∂2
sxW (0) = − c

a
∂xY1(0) +

ca′

a2
Y1(0) +

a′

a2
e−iτr(eiτW (0))− 1

a
r′(eiτW (0))Y1(0)− 1

ε
∂τY1(0)

= − c
a
∂2
xW (0) +

ca′

a2
∂xW (0) +

a′

a2
e−iτr(eiτW (0))

−1

a
r′(eiτW (0))∂xW (0)− 1

ε
∂xτW (0)

(2.38)

All the terms except the last one have already been estimated previously. Let
us focus on 1

ε∂
2
xτW (0)∣∣∣1

ε
∂2
xτW (0)

∣∣∣ =
∣∣∣− 1

ε
∂x

[ ε
a

(I −Π)[e−iτr(eiτα)]
]∣∣∣

=
∣∣∣ a′
a2

(I −Π)[e−iτr(eiτα)]− 1

a
(I −Π)[r′(eiτα)α′]

∣∣∣
≤ |a′|

a2
0

(1 + ‖α‖L∞x ) +
C

a0
‖α′‖L∞x ,

which is uniformly bounded. Then, we conclude that

‖Ỹ3(t)‖L∞τ,x ≤ C, (2.39)

so that ∂2
sxW is bounded uniformly with respect to ε.

2.4 A numerical scheme for the equation of V

In this section, we focus on the numerical analysis of a first order (in time and
space) numerical scheme for the equation of V : (2.6), with initial condition
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(2.14), in which the variable τ is kept continuous. For the sake of simplicity, our
convergence analysis will be restricted to constant and nonnegative convection
term c(x) = c. We also assume that a(x) ≥ a0 for all x ∈ [0, 1], where a0 is a
positive constant. The numerical tests, however, will not be restricted by these
assumptions.

We define a uniform grid in time tn = n∆t in a time interval [0, T ], n =
0, 1, . . . , N , N∆t = T and in space xj = j∆x, j = 0, 1, . . . , Nx, ∆x = 1/Nx in
the spatial interval [0, 1] (recall that periodic boundary conditions are considered
in space). Denoting V nj (τ) ≈ V (tn, xj , τ), τ ∈ T = [0, 2π], the numerical scheme
for (2.6) advances the solution from tn to tn+1 through

V n+1
j − V nj

∆t
+ c

V nj − V nj−1

∆x
+ e−iτr(eiτV nj ) = −a(xj)

ε
∂τV

n+1
j , (2.40)

with V 0
j (τ) given by (2.14). In this scheme, the spatial discretization is the

upwind scheme. In the following theorem, we prove that the numerical scheme
(2.40), with initial data (2.14), is not only a first order approximation of (2.6),
but more importantly this first order approximation is uniform in ε.

Theorem 2.7. Assume that a : [0, 1] → R is a C2 function satisfying a(x) ≥
a0 > 0,∀x ∈ [0, 1], and that the CFL condition c∆t/∆x < 1 is satisfied. Then
∃C > 0 independent of ∆t,∆x and ε, such that

sup
ε∈]0,1]

‖V (tn, xj)− V nj ‖L∞τ ≤ C(∆t+ ∆x), (2.41)

for all n = 0, . . . , N , n∆t ≤ T and all j = 0, . . . , Nx.

Proof. First, we check that the scheme is well defined. Assuming V nj is periodic

in τ with period 2π, then it is easy to see that V n+1
j is also periodic with period

2π. We proceed in an analogous way as in [7] and introduce the operator Qj
defined from C1(T) into C0(T) by

∀τ ∈ T, (Qjg)(τ) = g(τ) +
a(xj)

ε
(∂τg)(τ). (2.42)

This operator is invertible and its inverse can be written as

∀τ ∈ T, (Q−1
j g)(τ) =

ε/a(xj)

exp(ε/a(xj)2π)− 1

∫ τ+2π

τ

exp(ε/a(xj)(θ − τ))g(θ)dθ.

Moreover, since

ε/a(xj)

exp(ε/a(xj)2π)− 1

∫ 2π

0

exp(ε/a(xj)θ)dθ = 1,

one gets
∀g ∈ C0(T), ‖Q−1

j g‖L∞τ ≤ ‖g‖L∞τ , ∀j = 0, · · · , Nx. (2.43)
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Let us now study the error of the scheme (2.40). First, we perform Taylor
expansions in time and space. On the one side, one gets

V (tn+1, xj)− V (tn, xj)

∆t

= ∂tV (tn+1, xj)−
1

∆t

∫ tn+1

tn

(t− tn)∂2
t V (t, xj)dt

= −c∂xV (tn+1, xj)− e−iτr(eiτV (tn+1, xj))−
a(xj)

ε
∂τV (tn+1, xj)

− 1

∆t

∫ tn+1

tn

(t− tn)∂2
t V (t, xj)dt.

And on the other side,

V (tn, xj)− V (tn, xj−1)

∆x
= ∂xV (tn, xj)−

1

∆x

∫ xj

xj−1

(x− xj−1)∂2
xV (tn, x)dx.

Gathering both equalities gives

V (tn+1, xj)− V (tn, xj)

∆t
+ c

V (tn, xj)− V (tn, xj−1)

∆x

= −c∂xV (tn+1, xj)− e−iτr(eiτV (tn+1, xj)) + (Rt)
n
j

− a(xj)

ε
∂τV (tn+1, xj) + c∂xV (tn, xj) + (Rx)nj ,

= −c∂x[V (tn+1, xj)− V (tn, xj)] + (Rt)
n
j + (Rx)nj

− e−iτr(eiτV (tn+1, xj))−
a(xj)

ε
∂τV (tn+1, xj)

= −c
∫ tn+1

tn

∂2
xtV (t, xj)dt+ (Rt)

n
j + (Rx)nj

− e−iτr(eiτV (tn+1, xj))−
a(xj)

ε
∂τV (tn+1, xj), (2.44)

where (Rx)nj = − c
∆x

∫ xj
xj−1

(x − xj−1)∂2
xV (tn, x)dx and (Rt)

n
j = − 1

∆t

∫ tn+1

tn
(t −

tn)∂2
t V (t, xj)dt denote the integral remainders of the previous Taylor expan-

sions.
Denoting by Enj = V (tn, xj) − V nj the error, the difference between (2.44)

and (2.40) gives

En+1
j − Enj

∆t
+ c
Enj − Enj−1

∆x
+e−iτ

[
r(eiτV (tn+1, xj))− r(eiτV nj )

]
+ c

∫ tn+1

tn

∂2
xtV (t, xj)dt

= (Rx)nj + (Rt)
n
j −

a(xj)

ε
∂τEn+1

j . (2.45)
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Here, we focus on the third term of the left hand side of (2.45)

e−iτ
[
r(eiτV (tn+1, xj))− r(eiτV nj )

]
= e−iτ

[
r(eiτV (tn+1, xj))− r(eiτV (tn, xj))

]
+ e−iτ

[
r(eiτV (tn, xj))− r(eiτV nj )

]
=

∫ tn+1

tn

r′(eiτV (t, xj))∂tV (t, xj)dt+ Enj
∫ 1

0

r′(eiτV nj + teiτEnj )dt

=: (R1)nj + Enj (R2)nj .

Hence, from (2.45), one can express the error En+1
j with respect to Enj and Enj−1

En+1
j = Q−1

j

[(
1− c∆t

∆x
− (R2)nj ∆t

)
Enj +

c∆t

∆x
Enj−1 + ∆tgnj

]
, (2.46)

whereQj is given by (2.42) and gnj = −(R1)nj +(Rx)nj +(Rt)
n
j−c

∫ tn+1

tn
∂2
xtV (t, xj)dt.

First, using Theorem 2.1 and the assumption on r, one has

‖gnj ‖L∞τ ≤ ‖(R1)nj ‖L∞τ + ‖(Rx)nj ‖L∞τ + ‖(Rt)nj ‖L∞τ + C∆t

≤ C∆t+ C∆x+ C∆t+ C∆t, (2.47)

where C is some positive constant which does not depend on ε. Second, we now
consider the L∞τ norm of (2.46) and use (2.43) to get (under the CFL condition
c∆t < ∆x)

‖En+1
j ‖L∞τ ≤

∥∥∥(1− c∆t

∆x
+ (R2)nj ∆t

)
Enj +

c∆t

∆x
Enj−1 + ∆tgnj

∥∥∥
L∞τ

≤ max
j
‖Enj ‖L∞τ + ∆t‖(R2)nj ‖L∞τ ‖E

n
j ‖L∞τ + C∆t(∆t+ ∆x)

≤ ‖En‖L∞τ (1 + C∆t) + C∆t(∆t+ ∆x),

where we denote by En = maxj=0,...,Nx |Enj |. A discrete Gronwall lemma enables
one to get the required uniform estimate

‖En‖L∞τ ≤ C(∆t+ ∆x) exp(CT ).

Remark 2.8. Higher order methods can be constructed by expanding to higher
power in ε in the Chapman-Enskog expansion presented in subsection 2.3 and
using higher order approximation scheme in time and space. We will not elab-
orate on this further in this paper.

2.5 The cases where the oscillations come from both ini-
tial data and sources

In this part, we discuss the case where we may have high-oscillations in both
the non linear PDE model and in the initial data. This corresponds to cases
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where we have a model of type (2.1) with a 6= 0 and u(0, x) = fin(x, β(x)/ε),
the function fin = fin(x, τ) being periodic in τ . The previous strategy cannot
be applied in this general case and the uniform boundness of time and space
derivatives of V at arbitrary order is no more garanteed. However, we can ensure
that the first time and space derivatives are uniformly bounded.

The case of one-mode initial data In this case, the initial condition in
(2.1) takes the form u(0, x) = fin(x, β(x)/ε) = α(x)eiβ(x)/ε. If we follow the
analysis above and try to transform the equation on u into equations on the
profile V and the oscillation phase S, then the only possibility to ensure some
minimal smoothness on the augmented problem (2.6) and (2.4) is the following
choice of the initial data

V (0, x, τ) = α(x), S(0, x) = β(x). (2.48)

In particular, the initial data for V belong to the kernel of ∂τ , and, according to
the previous analysis, this only ensures that the first time and space derivatives
are bounded. However, it is not possible to construct ”well-prepared initial
data” V (0, x, τ) so that high order time-space derivatives are also uniformly
bounded.

The case of multi-modes initial data In this case, we expand the initial
data as fin(x, β(x)/ε) =

∑
k fk(x)eikβ(x)/ε and one may decompose the solution

as u(t, x) =
∑
k uk(t, x), where each component uk satisfies

∂tuk + c(x)∂xuk + r(u)δ1k =
ia(x)

ε
uk, uk(0, x) = fk(x)eikβ(x)/ε,

and δij is the usual Kronecker symbol.
One can then apply the previous strategy, by considering the augmented

functions Uk(t, x, τ) satisfying Uk(t, x, kS(t, x)/ε) = uk(t, x). This gives

∂tUk+c(x)∂xUk+
1

ε
[∂tS+c(x)∂xS]∂τUk+r(U)δ1k =

ia(x)

ε
Uk, Uk(0, x, τ) = fk(x)eiτ ,

from which we deduce the equation for the phase S

∂tS + c(x)∂xS = a(x), S(0, x) = β(x),

and for Uk

∂tUk + c(x)∂xUk + r(U)δ1k = −a(x)

ε
[∂τUk − iUk], Uk(0, x, τ) = fk(x)eiτ .

2.6 The full numerical algorithms

In this section, details of the algorithm for solving V and S are given. Periodic
boundary conditions are considered in the x and τ directions. The uniform
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grids in time and space are defined as previously. In addition, we also use a
uniform mesh for the τ direction: τ` = `∆τ , for ` = 0, . . . , Nτ ,∆τ = 2π/Nτ .
In the following description, the variable τ is kept continuous for simplicity. In
our numerical experiments, the pseudo spectral method is used for this variable.
We denote by V nj (τ) ≈ V (tn, xj , τ) and Snj ≈ S(tn, xj) the discrete unknowns.

We start with V 0
j given by (2.14) and S0

j = 0. Then, for all n ≥ 0, the
scheme reads (assuming c > 0)

V n+1
j − V nj

∆t
+ c

V nj − V nj−1

∆x
+ e−iτr(eiτV nj ) = −a(xj)

ε
∂τV

n+1
j ,

Sn+1
j − Snj

∆t
+ c

Snj − Snj−1

∆x
= a(xj).

At the final time tf = N∆t of the simulation, we come back to the original
solution u through

u(tf , xj) = V Nj

(
τ =

SNj
ε

)
. (2.49)

Since SNj /ε does not coincide with a grid point τ`, a trigonometric interpolation
is performed. Note that higher order numerical schemes can be used and are
necessary since one needs to obtain SNj /ε which may lead to large error in (2.49)
if S is not computed accurately. In practice we will use the pseudo-spectral
method in x to solve the equation for S.

2.7 Numerical tests

We present some tests solving (2.1) with r(u) = u2/(u2 +2|u|2), c(x) = cos2(x),
a(x) = 3/2 + cos(2x) > 0 and the following non-oscillatory initial data

u(0, x) = 1 +
1

2
cos(2x) + i

[
1 +

1

2
sin(2x)

]
, x ∈ I = [−π/2, π/2].

We compare the solution obtained by a direct method with resolved numerical
parameters (smaller than ε) and the solution obtained by the new approach
presented previously. The numerical parameters are as follows: ∆t = ∆x/2 =
|I|/N (|I| being the length of the interval I) with N = Nts for the new approach
and N = Nd for the direct approach. We choose Nτ = 64.

In Figures 1, 2, 3 and 4, we plot the `∞ error in space (as a function of a
range of Nts) between a reference solution obtained by a direct method with
resolved numerical parameters and the solution obtained by the new method.
The error is computed for different values of ε, at the final time tf = 0.1, in
different configurations.

In Figure 1, the initial data is well-prepared (given by (2.14)) and an exact
solution for S is considered. We observe on the left part of Figure 1 that for
different values of ε (ε = 1, . . . , 10−3), the new method is uniformly first order
accurate both in space and time. On the right part of Figure 1, the error is plot-
ted as a function of ε, for different values of Nts (Nts = 20, 40, 100, 200, 1000);
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each curve, corresponding to a given Nts, is almost constant, indicating that
the error is independent from ε.

In Figure 2, the initial data is well-prepared (given by (2.14)) but we now
consider a numerical calculation of the phase S. We used a first order upwind
scheme together with a first order time integrator to compute S. Hence, a
numerical error O(∆x + ∆t) is generated on S, which is divided by ε to con-
struct the approximation of u(tf , xj). This explains the behavior of the curve
associated to ε = 10−3 for instance, in the left part of Figure 2. This is also em-
phasized on the right part of Figure 2: even if the curves do not cross each other,
the error increases as ε decreases. To improve this, the numerical scheme for
S is changed to a pseudo-spectral method in space with a fourth-order Runge-
Kutta time integrator. The corresponding results are displayed in Figure 3. We
observe that, since the error on S is now very small, the uniform accuracy is
recovered.

In Figure 4, an exact calculation of the phase S is considered but now the
initial data V 0

j = u(0, xj) is not a corrected one . As expected (see [8, 7]), the
uniform accuracy is lost since the error depends on ε, but we can observe that
the numerical error is still small even for small ε.

In Figure 5, the same diagnostics as before are displayed, but we explore the
possibility for a to vanish at isolated points by considering a(x) = 1 + cos(2x).
With this choice of a, Theorem 2.4 does not apply directly. We consider the case
with a corrected initial data and an exact calculation for S. The same results
as before are obtained in the case of vanishing a: the new method is first order
uniformly accurate in ε.

Then, we consider the asymptotic model given by (2.15) for which a stan-
dard numerical approximation (first order upwind scheme in space and first
order explicit time integrator) is used to get ū(tf , x). Then, the quantity
e−iS(tf ,x)/εū(tf , x) is computed where the phase S is solved exactly. In Fig-
ure 6, the error (`∞ in space) between e−iS(tf ,x)/εū(tf , x) and the solution of
the new method is displayed as a function of ε (logarithmic scale). The error
between the two models is O(ε). This numerically justifies Remark 2.3.

Finally, in Figures 7 and 8, we illustrate the space-time oscillations arising in
the solution, with a(x) = 3/2+cos(2x) > 0. In Figure 7, the space dependence of
the real part of the solution u(tf = 1, x) is displayed for ε = 5·10−3. A reference
solution (obtained by a direct method with resolved numerical parameters Nd =
4000 and ∆t = 5 · 10−4) and the solution obtained by the new approach (with
Nts = 100 and ∆t = π/200 ≈ 0.0157, Nτ = 16, well-prepared initial data and
an exact S) are plotted in the left part of Figure 7 (the right being a zoom of
the left part). We can observe that the new method is able to capture very well
high oscillations in space.

In Figure 8, we focus on time oscillations by considering the following time
dependent quantity (root mean square type)

R(t) =
∣∣∣ ∫
I

u(t, x)xdx
∣∣∣.

The numerical quadrature for the reference solution is performed on the mesh
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Figure 1: Plot of the `∞ error for the new method with corrected initial condition
and exact computation for S. Left: error (log-log scale) as a function of Nts
(Nts = 20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3). Right:
error (log-log scale) as a function of ε for different Nts.

used for the new method. Using the same parameters as before, one can observe
that the solution of the new method fits very well with the reference solution
even when the oscillations are not resolved by the time step ∆t ≈ 0.0157. The
right part of Figure 8 is a zoom of the left part.
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Figure 2: Plot of the `∞ error for the new method with corrected initial condition
and numerical approximation for S. Left: error (log-log scale) as a function of
Nts (Nts = 20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3).
Right: error (log-log scale) as a function of ε for different Nts.
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Figure 3: Plot of the `∞ error for the new method with corrected initial condition
and an improved numerical approximation for S (pseudo-spectral in space and
4th order Runge-Kutta). Left: error (log-log scale) as a function of Nts (Nts =
20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3). Right: error
(log-log scale) as a function of ε for different Nts.
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Figure 4: Plot of the `∞ error for the new method without corrected initial
condition and exact computation for S. Left: error (log-log scale) as a function
of Nts (Nts = 20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3).
Right: error (log-log scale) as a function of ε for different Nts.
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Figure 5: Plot of the `∞ error for the new method with corrected initial condition
and exact computation for S, in the case where a vanishes (a(x) = 1 + cos(2x))
at isolated points. Left: error (log-log scale) as a function of Nts (Nts =
20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3). Right: error
(log-log scale) as a function of ε for different Nts.
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Figure 6: Plot of the `∞ error (log-log scale) between the solution of the asymp-
totic model (2.15) and the one obtained by the new method, as function of ε.
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Figure 7: Comparison between a reference solution and the solution of the new
method (with initial correction and exact computation for S), for ε = 5 · 10−3,
tf = 1. Left: space dependence of the real part of the unknown. The right part
is a zoom of the left part.
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Figure 8: Time history of R. Comparison between a reference solution and the
solution of the new method (with initial correction and exact computation for
S), for ε = 5 · 10−3, tf = 1. The right part is a zoom of the left part.

3 Extension to a class of PDE systems

In this section, we focus on systems of equations and consider the case where
u(t, x) ∈ C2 satisfies a hyperbolic system of the following form (with t ≥ 0, x ∈
R)

∂tu+A(x)∂xu+R(u) =
iE(t, x)

ε
Du+ Cu, u(t = 0, x) = u0(x), (3.1)

where R(u) = (R1(u), R2(u)) ∈ C2 is a reaction term, E is a real scalar function,
C is a 2× 2 constant matrix and

A(x) =

(
a1(x) 0

0 a2(x)

)
, D =

(
0 0
0 −1

)
, C =

(
C11 C12

C21 C22

)
.

This model is a simplified version of a more physical model to be studied in
section 3.5.

3.1 GO versus NGO

We first show that the GO approach does not work for systems like (3.1), even
in the linear case R = 0 and a non-oscillatory initial data u(0, x) = u0(x). This
is due to the non-commutativeness of the matrices C and D in general. Indeed,
let uk(t, x) = αk(t, x)eiSk(t,x)/ε, k = 1, 2. Inserting this ansatz in (3.1), one gets

∂tα1 + a1∂xα1 +
i

ε
[∂tS1 + a1∂xS1]α1 = C11α1 + C12α2e

i(S2−S1)/ε ,

∂tα2 + a2∂xα2 +
i

ε
[∂tS2 + a2∂xS2]α2 = − iE

ε
α2 + C21α1e

i(S1−S2)/ε + C21α2 .

Set

∂tS1 + a1∂xS1 = 0, S1(0, x) = 0,

∂tS2 + a2∂xS2 = −E, S2(0, x) = 0,
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thus S1(t, x) ≡ 0, while α = (α1, α2)T is governed by

∂tα+A(x)∂xα = Bα,

with

B =

(
C11 C12e

i(S2−S1)/ε

C21e
i(S1−S2)/ε C22

)
.

Clearly a solution α of this equation will be highly-oscillatory for ε small,
whereas the GO ansatz assumes that α and S are smooth. Therefore the GO
approach does not serve our goal. This motivates the NGO approach.

To do so, we consider the augmented function U(t, x, τ) such that

U(t, x, S(t, x)/ε) = u(t, x).

Then, U = (U1, U2) satisfies

∂tU1 + a1∂xU1 +
1

ε
[∂tS + a1∂xS]∂τU1 +R1(U1, U2) = C11U1 + C12U2,

∂tU2 + a2∂xU2 +
1

ε
[∂tS + a2∂xS]∂τU2 +R2(U1, U2) = − iE

ε
U2 + C21U1 + C22U2.

The equation for the phase S writes

∂tS + a2∂xS = −E, S(0, x) = 0,

and the equations for (U1, U2) become

∂tU1 + a1∂xU1 +
1

ε
[(a1 − a2)∂xS − E]∂τU1 +R1(U1, U2) = C11U1 + C12U2,

∂tU2 + a2∂xU2 +R2(U1, U2) = −E
ε

[∂τU2 + iU2] + C21U1 + C22U2.

Setting V2 = eiτU2, we finally obtain
∂tU1 + a1∂xU1+R1(U1, e

−iτV2)− C11U1 − C12e
−iτV2 =

1

ε
[E − (a1 − a2)∂xS]∂τU1,

∂tV2 + a2∂xV2 + eiτR2(U1, e
−iτV2)− C21e

iτU1 − C22V2 = −E
ε
∂τV2.

(3.2)

3.2 A suitable initial data for system (3.2)

Equation (3.2) needs initial data U1(0, x, τ) and V2(0, x, τ). This initial data
U(0, x, τ) will be chosen such that the two following conditions are satisfied:

• U(0, x, 0) = u0(x) = (f in1 (x), f in2 (x)).

• The solution to (3.2) is smooth with respect to ε: the successive derivatives
in time and space (up to some order p ≥ 1) are bounded uniformly in ε.
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The approach is similar to the scalar case, and similar notations will be used in
the following analysis.

We decompose the solutions U1 and V2 as U1 = U0
1 +U1

1 and V2 = V 0
2 +V 1

2 ,
where U0

1 = ΠU1 and V 0
2 = ΠV2. Injecting the decomposition into (3.2) and

applying (I −Π) to (3.2), one gets

∂tU
1
1 + a1∂xU

1
1 + (I −Π)[R1(U1, e

−iτV2)]− C11U
1
1 − C12(I −Π)[e−iτV2]

= −1

ε
[E + (a1 − a2)∂xS] ∂τU

1
1 ,

∂tV
1
2 + a2∂xV

1
2 + (I −Π)[eiτR1(U1, e

−iτV2)]− C21(I −Π)[eiτU1]− C22V
1
2

= −E
ε
∂τV

1
2 .

(3.3)
Assuming for simplicity that R1 = R2 = 0, this implies that

U1
1 =

εC12

E + (a1 − a2)∂xS
L−1

(
e−iτ

)
V 0

2 +O(ε2),

V 1
2 = −εC21

E
L−1

(
eiτ
)
U0

1 +O(ε2),

which explicitly gives (using L−1(e±iτ ) = ∓ie±iτ )

U1
1 =

iεC12e
−iτ

E + (a1 − a2)∂xS
V 0

2 +O(ε2), V 1
2 = − iεC21e

iτ

E
U0

1 +O(ε2).

This yields

U1(t, x, τ) = U0
1 (t, x) +

iεC12e
−iτ

E(t, x) + (a1(x)− a2(x))∂xS(t, x)
V 0

2 (t, x) +O(ε2),

U2(t, x, τ) = V 0
2 (t, x)e−iτ − iεC21

E(t, x)
U0

1 (t, x) +O(ε2).

To find the suitable initial condition for U1 and V2, one uses Uk(t = 0, x, 0) =
f ink (x), k = 1, 2, so that one needs to solve the following system in (U0

1 , V
0
2 )(0, x)

U0
1 (0, x) +

iεC12

E(0, x)
V 0

2 (0, x) = f in1 (x), V 0
2 (0, x)− iεC21

E(0, x)
U0

1 (0, x) = f in2 (x).

The solutions are

U0
1 =

1

E2 − ε2C21C12

(
E2f in1 − iC12εEf

in
2

)
V 0

2 =
1

E2 − ε2C21C12

(
iεC21Ef

in
1 + E2f in2

)
.
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Thus, the initial conditions with first order correction writes
U1(0, x, τ) = f in1 +

iεEC12

E2 − ε2C12C21

(
e−iτ − 1

)
f in2 ,

U2(0, x, τ) =
iεEC21

E2 − ε2C12C21

(
e−iτ − 1

)
f in1 + e−iτf in2 .

(3.4)

3.3 A numerical scheme for the 2× 2 system (3.2)

Denoting Un1 (x, τ) ≈ U1(tn, x, τ) and V n2 (x, τ) ≈ V2(tn, x, τ) the approximations
of the solution to (3.2) which satisfy the following numerical (semi-discrete in
time) scheme

Un+1
1 − Un1

∆t
+ a1∂xU

n
1 − C11U

n
1 − C12e

−iτV n2

= −1

ε
[En + (a1 − a2)∂xS

n] ∂τU
n+1
1 ,

V n+1
2 − V n2

∆t
+ a2∂xV

n
2 − C21e

iτUn1 − C22V
n
2 = −E

n

ε
∂τV

n+1
2 ,

(3.5)
whereas for the phase S, we use

Sn+1 − Sn

∆t
+ a2∂xS

n = −En.

At initial time n = 0, we use the corrected initial condition (3.4). For the space
approximation, we use the psuedo-spectral scheme in the periodic variable τ and
a first order upwind scheme for the transport terms in x (high order methods
will be used for the approximation of S (as discussed in the scalar case), as well
as semi-Lagrangian method). Then, from (Un1 (x, τ), V n2 (x, τ), Sn(x)), we can
construct an approximation of u(tn, x) = (u1(tn, x), u2(tn, x)) solution to (3.1)
through the relation

u1(tn, x) = Un1 (x, τ = Sn(x)/ε), u2(tn, x) = e−iS
n(x)/εV n2 (x, τ = Sn(x)/ε),

where the evaluation at τ = Sn(x)/ε is performed by trigonometric interpolation
since the solution are periodic with respect to the τ variable.

3.4 Numerical results

This section is devoted to numerical illustration of the new approach for the case
of 2x2 systems. We solve (3.1) with a1(x) = 1, a2(x) = 4, R(u) = 0, E(t, x) =
3/2 + cos(x), and

C =

(
0 1
−1 0

)
.
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We consider the following initial condition

u(t = 0, x) =
(

1 +
1

2
cos(x) + i sin(x), 1 +

1

2
cos(x) + i sin(x)

)
, x ∈ [0, 2π].

As in the scalar case, we compare the solution obtained by a direct method
(time splitting with exact (in time) integration of each substep) and by the new
approach. The direct method uses resolved parameters so its solution provides
a reference which will be compared to the solution of the new method. For this
latter method, the following numerical parameters are used: ∆x = 2π/Nts,∆t =
∆x/(2 max(a1, a2)), Nτ = 64, where Nts is the number of (uniform) grid points
in the spatial direction.

In the following figures, we are interested in the `∞ error in space (for dif-
ferent values of Nts) at the final time tf = 0.1, between the new method and
the reference solution, for different values of ε.

In Figure 9, the solution obtained with the new method is computed with
the corrected initial condition and with an exact solution for the phase S. We
plot the `∞ error for different values of ε as a function of Nts (left part) and
the `∞ error as a function of ε for different Nts (right part). As in the scalar
case, the uniform accuracy is observed: the order of accuracy is independent of
ε and the error is constant with respect to ε.

In Figure 10, we study the influence of the numerical approximation of S on
the error. We used for the approximation of S a first order upwind scheme in
space with a first order time integrator. We plot the same diagnostics as before.
As in the scalar case, we observe a bad behavior when ε becomes small. Then,
in Figure 11, we consider an improved numerical approximation of S by using a
pseudo-spectral method in space with a 4th-order Runge-Kutta time integrator.
We then observe that the uniform accuracy is recovered.

In Figure 12, an exact computation of S is used but the initial data is not
corrected. Again, we plot the `∞ error. As expected the uniform accuracy is
lost, in particular in the intermediate regime.

Finally, in the following figures, we illustrate the performances of the new
method using the same data as before except the initial condition

u(t = 0, x) =
(

1 +
1

2
cos(x), 1 +

1

2
cos(x)

)
, x ∈ [0, 2π].

We compare a reference solution (computed with a direct method using resolved
numerical parameters Nd = 4000,∆t = 10−4) and the solution of the new
method at tf = 1, for ε = 0.01. For the new method, we choose Nτ = 8,
a well-prepared initial condition, an exact phase S and different values of Nts
are considered. In Figure 13, we plot the real and imaginary part of the first
component of the solution as a function of space for Nts = 20, 40, 100 (and
∆t = 2π/(2Nts max(a1, a2))). Even with a very coarse mesh, we observe that
the new method is able to capture the high space oscillations of the solution. In
Figure 14, the real part of the second component of the solution is displayed as
a function of x, for Nts = 20, 40, 100. On the right column (which is a zoom of
the left one), we see that the new solution almost coincides with the reference
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Figure 9: Plot of the `∞ error for the new method with corrected initial condition
and exact computation for S. Left: error (log-log scale) as a function of Nts
(Nts = 20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3). Right:
error (log-log scale) as a function of ε for different Nts.
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Figure 10: Plot of the `∞ error for the new method with corrected initial condi-
tion and numerical approximation for S. Left: error (log-log scale) as a function
of Nts (Nts = 20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3).
Right: error (log-log scale) as a function of ε for different Nts.
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Figure 11: Plot of the `∞ error for the new method with corrected initial condi-
tion and an improved numerical approximation for S (pseudo-spectral in space
and 4th order Runge-Kutta). Left: error (log-log scale) as a function of Nts
(Nts = 20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3). Right:
error (log-log scale) as a function of ε for different Nts.
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Figure 12: Plot of the `∞ error for the new method without corrected initial con-
dition and an exact computation for S. Left: error (log-log scale) as a function
of Nts (Nts = 20, 40, 100, 200, 1000) for different values of ε (ε = 1, . . . , 10−3).
Right: error (log-log scale) as a function of ε for different Nts.
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one even if the spatial mesh ∆x ≈ 0.31, 0.15, 0.06 is large compared to the size
of the smallest oscillations (of order ε = 0.01).

3.5 An application to a semiclassical surface hopping model

We now show that the general approach described above can be applied to
efficiently solve the following semiclasscial surface hopping model, introduced in
[6]:

∂tf
+ + p · ∇xf+ −∇x(U + E) · ∇pf+ = b

i
f i + bif

i
,

∂tf
− + p · ∇xf− −∇x(U − E) · ∇pf− = −bif i − bif i,

∂tf
i + p · ∇xf i +∇xU · ∇pf i = −i2E

ε
f i + bi(f− − f+) + (b+ − b−)f i,

(3.6)
where (f+(t, x, p), f−(t, x, p), f i(t, x, p)) ∈ R×R×C, (t, x, p) ∈ R+×Rd×Rd,
and b± ∈ C, bi ∈ C, U ∈ R, E ∈ R are given functions depending only on the
space variable x. We denote also by

(f+(0, x, p), f−(0, x, p), f i(0, x, p)) = (f+
in(x, p), f−in(x, p), f iin(x, p))

the initial conditions.
This model approximates semiclassically the nucleaonic Schrödinger system

arising from the Born-Oppenheimer approximation with non-adiabatic correc-
tions. The right hand side describes the interband transition between different
potential energy surfaces (2E is the band gap between two energy surfaces), and
the coefficients are related to Berry connection. We refer to [6] for more details.

As explained above, the general idea is to introduce a phase S(t, x, p) de-
signed to follow the main oscillations in this model. We then consider the phase
S(t, x, p), solution to

∂tS + p · ∇xS +∇xU · ∇pS = 2E, S(0, x, p) = 0, (3.7)

and introduce the augmented unknowns (F±, F i)(t, x, p, τ) satisfying

f±(t, x, p) = F±(t, x, p, S(t, x, p)/ε), f i(t, x, p) = F i(t, x, p, S(t, x, p)/ε).

One then has:

∂tF
+ + p · ∇xF+ −∇x(U + E) · ∇pF+ =

−1

ε
(2E −∇x(2U + E) · ∇pS) ∂τF

+ + b
i
F i + biF

i
,

∂tF
− + p · ∇xF− −∇x(U − E) · ∇pF− =

−1

ε
(2E −∇x(2U − E) · ∇pS) ∂τF

− − biF i − biF i,

∂tF
i + p · ∇xF i +∇xU · ∇pF i =

−2E

ε

(
∂τF

i + iF i
)

+ bi(F− − F+) + (b+ − b−)F i. (3.8)
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Figure 13: The first component of the solution (left column: real part, right
column: imaginary part) as a function of x at time tf = 1, ε = 0.01. Compar-
ison between the reference solution (with Nd = 4000,∆t = 10−4) and the new
method with Nts = 100, 40, 20 (from top to bottom).
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Figure 14: The real part of the second component of the solution as a function
of x at time tf = 1, ε = 0.01. Comparison between the reference solution (with
Nd = 4000,∆t = 10−4) and the new method with Nts = 100, 40, 20 (from top
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Let Gi = eiτF i, then

∂tF
+ + p · ∇xF+ −∇x(U + E) · ∇pF+ = −E

+

ε
∂τF

+ + b
i
e−iτGi + bieiτG

i
,

∂tF
− + p · ∇xF− −∇x(U − E) · ∇pF− = −E

−

ε
∂τF

− − bie−iτGi − bieiτGi,

∂tG
i + p · ∇xGi +∇xU · ∇pGi = −2E

ε
∂τG

i + bieiτ (F− − F+) + (b+ − b−)Gi,

(3.9)
where E± = 2E−∇x(2U ±E) ·∇pS. This system needs initial data F (0, x, p, τ)
and Gi(0, x, p, τ), which will be determined in a such way that the corresponding
solution is smooth with respect to ε. We proceed as in Section 3.2 for the 2× 2
model. Let

F±0 = ΠF±, F±1 = (I −Π)F±, Gi0 = ΠGi, Gi1 = (I −Π)Gi.

We have
Gi = Gi0 − i

ε

2E
bieiτ (F−0 − F

+
0 ) +O(ε2),

F+ = F+
0 + i εE+

(
b
i
e−iτGi0 − bieiτG

i

0

)
+O(ε2),

F− = F−0 − i
ε

E−
(
b
i
e−iτGi0 − bieiτG

i

0

)
+O(ε2).

(3.10)

To fit with the initial data (f+
in, f

−
in, f

i
in), we set

Gi0 − i
ε

2E
bi(F−0 − F

+
0 ) = f iin,

F+
0 + i

ε

E+

(
b
i
Gi0 − biG

i

0

)
= f+

in,

F−0 − i
ε

E−
(
b
i
Gi0 − biG

i

0

)
= f−in.

This gives

F+
0 = f+

in − i
ε

E+

(
b
i
f iin − bif

i

in

)
,

F−0 = f−in + i
ε

E−
(
b
i
f iin − bif

i

in

)
,

Gi0 = f iin − i
ε

2E
bi(f+

in − f
−
in).

Reporting these expressions in (3.10) yields

F+(0, x, p, τ) = f+
in − i εE+

(
b
i
f iin
(
1− e−iτ

)
− bif iin

(
1− e−iτ

))
,

F−(0, x, p, τ) = f−in + i εE−

(
b
i
f iin
(
1− e−iτ

)
− bif iin

(
1− e−iτ

))
,

Gi(0, x, p, τ) = f iin + i ε2E b
i
(
eiτ − 1

)
(f+
in − f

−
in).

(3.11)
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3.6 Numerical results

We consider the following initial conditions for (3.6) with x, v ∈ [−2π, 2π]

f+(t = 0, x, p) = f−(t = 0, x, p) = (1 + 0.5 cos(x))
e−p

2/2

√
2π

,

fi(t = 0, x, p) =
[
(1 + 0.5 sin(x)) + i(1 + 0.5 cos(x))

]e−p2/2√
2π

,

and the following expression for E, bi and b±

E(x) = 1− cos(x/2) + ε, bi(x, p) = −1

2
sin(p+ 1), b± = 0.

Notice that with this choice of E, the narrowest band gap 2E = 2ε which
describes the so-called ”avoided-crossing” case (see [6]). We will compare a
direct simulation of the model (3.6) (using time splitting and pseudo-spectral
methods in space) with our new approach (3.9) (using time splitting, pseudo-
spectral methods in space also and the well-prepared initial condition (3.11)).
Moreover, periodic boundary conditions are considered in both x and p.

In the sequel, we detail the steps of the two methods (direct and new).
First, we introduce the following notations: A = (−∇x(U + E),−∇x(U −
E),∇xU,∇xU), and E = (−E+,−E−,−2E/ε,−2E/ε) whereas the matrix Bτ is
given by

Bτ =


0 0 2bi cos τ 2bi sin τ
0 0 −2bi cos τ −2bi sin τ
−bi cos τ bi cos τ 0 0
−bi sin τ bi sin τ 0 0

 ,

and B by

B =


0 0 2bi 0
0 0 −2bi 0
−bi bi 0 2E/ε
0 0 −2E/ε 0

 .

Then, the direct numerical scheme for (3.6) writes (with f = (f+, f−, Re(f i),
Im(f i)) ∈ R4)

• solve ∂tf + p∂xf = 0 with spectral method in space and exact integration
in time,

• solve ∂tf +A∂pf = 0 with spectral method in space and exact integration
in time,

• solve ∂tf = Bf (with B a 4x4 matrix given above) exactly in time.

The numerical scheme for (3.9) is (with F = (F+, F−, Re(Gi), Im(Gi)) ∈ R4)

• solve ∂tF +p∂xF = 0 with spectral method in space and exact integration
in time,
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• solve ∂tF+A∂pF = 0 with spectral method in space and exact integration
in time,

• solve ∂tF = BτF (with Bτ a 4x4 matrix given above) exactly in time,

• solve ∂tF = 1
εE∂τF with a pseudo-spectral method in τ and an implicit

Euler scheme in time (exact time integration in the Fourier space can also
be done).

The equation (3.7) on S is solved using a time splitting method (between trans-
port and right hand side) and spectral methods are used in (x, p).

In Figure 15, we plot the space dependence of the solution f(tf = 2, x, p = 0)
and of the densities ρ(tf = 2, x) =

∫
R f(tf = 2, x, p)dp, for ε = 1 for the direct

and the new methods. The reference solution uses ∆t = 0.05, Nx = 256,
Np = 64 whereas for the new method, we choose ∆t = 0.05, Nx = 32, Np = 64
and Nτ = 8. First, we observe that the new method captures well the solution
for both diagnostics. Second, the CPU time is about 15 s for the reference
method whereas for the new method, it is about 1 min.

In Figures 16 and 17, we consider the same diagnostics as before, but with
ε = 1/32. The reference solution uses now ∆t = 0.02, Nx = 512, Np = 64
whereas we still choose ∆t = 0.05, Nx = 32, Np = 64 and Nτ = 8 for the
new method. Then, the CPU time for the reference method is now 75 s and is
still 1 min for the new method. Even for this value of ε, the solution is highly
oscillatory (the f i part in particular) and the new method behaves very well
even its mesh is coarser than the spatial oscillations.

Finally, in Figures 18 and 19, we consider ε = 1/256 and tf = 0.2. The
numerical parameters for the reference method have been chosen to resolve the
space-time oscillations (∆t = 0.0005, Nx = 4096, Np = 64) so that the CPU
time is 1420 s. The numerical parameters of the new method are still fixed (so
as its CPU time). The same conclusions as before arise.
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4 Conclusion

In this work, for a class of highly oscillatory hyperbolic systems of transport
equations, we introduced a new numerical method which allows one to obtain
accurate numerical solutions with mesh size and time step independent of the
(possibly very small) wave length. The central ideas include a geometric optics
based ansatz, which builds the oscillatory phase into an independent variable,
and a suitably chosen initial data derived from the Chapman-Enskog expansion.
For a scalar model we prove that a first order approximation the converges with
a first order accuracy uniformly in the wave length, and the method is also
extended for a system that arises in semiclassical modeling of surface hopping,
which deals with quantum transition between different energy bands. Numerous
numerical examples demonstrate that the method has the desired property of
capturing the point-wise solutions of highly oscillatory waves with mesh sizes
much larger than the wave length. .

In the future, we will extend the method to higher dimensions, conduct more
theoretical investigation on the method for systems, and study other interesting
non-adiabatic quantum dynamics problems.
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Figure 15: ε = 1. From top left to bottom right: space dependence of f+, f−,
Re(f i) and Im(f i) at p = 0, and space dependence of the densities ρ+, ρ−,
Re(ρi) and Im(ρi).
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Figure 16: ε = 1/32. First line: space dependence of f+, Re(f i) and Im(f i) at
p = 0. Second line: space dependence of f−, Re(f i) (zoom) and Im(f i) (zoom)
at p = 0.
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Figure 17: ε = 1/32. First line: space dependence of the densities ρ+, Re(ρi)
and Im(ρi). Second line: space dependence of ρ−, Re(ρi) (zoom) and Im(ρi)
(zoom).
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Figure 18: ε = 1/256. First line: space dependence of f+, Re(f i) and Im(f i) at
p = 0. Second line: space dependence of f−, Re(f i) (zoom) and Im(f i) (zoom)
at p = 0.
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Figure 19: ε = 1/256. First line: space dependence of the densities ρ+, Re(ρi)
and Im(ρi). Second line: space dependence of ρ−, Re(ρi) (zoom) and Im(ρi)
(zoom).
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