Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves

Nicolas Estibals
CARAMEL project-team, LORIA, Université de Lorraine / CNRS / INRIA, France Nicolas.Estibals@loria.fr

Joint work with:
Diego F. Aranha Institute of Computing, University of Campinas, Brazil
Jean-Luc Beuchat Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
Jérémie Detrey CARAMEL project-team, LORIA, INRIA / Université de Lorraine / CNRS, France

UNIVERSITÉ DE LORRAINE

Pairings and cryptology

- used as a primitive in many protocols and devices
- Boneh-Lynn-Shacham short signature
- Boneh-Franklin identity-based encryption

Pairings and cryptology

- used as a primitive in many protocols and devices
- Boneh-Lynn-Shacham short signature
- Boneh-Franklin identity-based encryption
- ...
- implementations needed for various targets
- online server \rightarrow high-speed software
- smart card \rightarrow low-resource hardware
- reach 128 bits of security (equivalent to AES)

What's a cryptographic pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

- where $\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right)$ and $\left(\mathbb{G}_{T}, \times\right)$ are cyclic groups of order ℓ
- The discrete logarithm problem should be hard on these groups

What's a cryptographic pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

- where $\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right)$ and $\left(\mathbb{G}_{T}, \times\right)$ are cyclic groups of order ℓ
- The discrete logarithm problem should be hard on these groups
- Bilinear map:

$$
e(a P, b Q)=e(P, Q)^{a b}
$$

What's a cryptographic pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

- where $\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right)$ and $\left(\mathbb{G}_{T}, \times\right)$ are cyclic groups of order ℓ
- The discrete logarithm problem should be hard on these groups
- Bilinear map:

$$
e(a P, b Q)=e(P, Q)^{a b}
$$

- Symmetric pairing (Type-1): $\mathbb{G}_{1}=\mathbb{G}_{2}$, exploited by some protocols

What's a cryptographic pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

- where $\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right)$ and $\left(\mathbb{G}_{T}, \times\right)$ are cyclic groups of order ℓ
- The discrete logarithm problem should be hard on these groups
- Bilinear map:

$$
e(a P, b Q)=e(P, Q)^{a b}
$$

- Symmetric pairing (Type-1): $\mathbb{G}_{1}=\mathbb{G}_{2}$, exploited by some protocols
- Choice of the groups:
- $\mathbb{G}_{1}, \mathbb{G}_{2}$: related to an algebraic curve
- \mathbb{G}_{T} : related to the field of definition of the curve

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

+ Symmetric pairing
Thanks to a distortion map
$\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
+ Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level

Larger base field: $\mathbb{F}_{2^{1223}}, \mathbb{F}_{3509}$

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

+ Symmetric pairing
Thanks to a distortion map
$\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
+ Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level

Larger base field: $\mathbb{F}_{2^{1223}}, \mathbb{F}_{3509}$

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

+ Symmetric pairing
Thanks to a distortion map
$\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
+ Small characteristic arithmetic
\Rightarrow No carry propagation
- Not suited to 128-bit security level

Larger base field: $\mathbb{F}_{2^{1223}}, \mathbb{F}_{3509}$

- Solutions to the large base field needed by supersingular curves
- (Pairing 2010) Use fields of composite extension degree: benefit from faster field arithmetic but requires careful security analysis

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

+ Symmetric pairing
Thanks to a distortion map
$\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
+ Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level

Larger base field: $\mathbb{F}_{2^{1223}}, \mathbb{F}_{3509}$

- Solutions to the large base field needed by supersingular curves
- (Pairing 2010) Use fields of composite extension degree: benefit from faster field arithmetic but requires careful security analysis
- (This work) Use genus-2 hyperelliptic curves: base field will be $\mathbb{F}_{2^{367}}$

Elliptic curves

$$
\begin{gathered}
E / K: y^{2}+h(x) \cdot y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

- In practice: K is a finite field \mathbb{F}_{q}
- $E\left(\mathbb{F}_{q}\right)$ is a finite group

Elliptic curves

- $E(K)$ is a group

$$
\begin{gathered}
E / K: y^{2}+h(x) \cdot y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

- In practice: K is a finite field \mathbb{F}_{q}
- $E\left(\mathbb{F}_{q}\right)$ is a finite group
- ℓ : a large prime dividing $\# E\left(\mathbb{F}_{q}\right)$
- Use the cyclic subgroup

$$
E\left(\mathbb{F}_{q}\right)[\ell]=\{P \mid[\ell] P=\mathcal{O}\}
$$

Genus-2 hyperelliptic curves

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- use the Jacobian
$\operatorname{Jac}_{C}(K)$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- use the Jacobian
$\operatorname{Jac}_{C}(K)$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- use the Jacobian
$\operatorname{Jac}_{C}(K)$
- general form of the elements (called divisor) $D_{P}=\left(P_{1}\right)+\left(P_{2}\right)-2(\mathcal{O})$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- use the Jacobian
$\operatorname{Jac}_{C}(K)$
- general form of the elements (called divisor) $D_{P}=\left(P_{1}\right)+\left(P_{2}\right)-2(\mathcal{O})$
- degenerate form

$$
(P)-(\mathcal{O})
$$

Computing the pairing: Miller's algorithm (elliptic case)

$$
e: \quad \mathbb{G}_{1} \times \mathbb{G}_{2} \quad \longrightarrow \mathbb{G}_{T}
$$

- Reduced Tate pairing

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
& e: E\left(\mathbb{F}_{q}\right)[\ell] \times \mathbb{G}_{2} \\
& P
\end{aligned}
$$

- Reduced Tate pairing

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
e: E\left(\mathbb{F}_{q}\right)[\ell] & \times E\left(\mathbb{F}_{q^{k}}\right)[\ell] \longrightarrow \mathbb{G}_{T} \\
P & , Q
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
& e: E\left(\mathbb{F}_{q}\right)[\ell] \times E\left(\mathbb{F}_{q^{k}}\right)[] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*} \\
& P, Q \quad \longmapsto f_{\ell, P}(Q)^{\frac{q^{x}-1}{c}}
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
& e: E\left(\mathbb{F}_{q}\right)[\ell] \times E\left(\mathbb{F}_{q^{k}}\right)[] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*} \\
& P, Q \quad \longmapsto f_{\ell, P}(Q)^{\frac{q^{k^{2}-1}}{l}}
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)
- Miller functions: $f_{n, P}$

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
e: E\left(\mathbb{F}_{q}\right)\left[[] \times E\left(\mathbb{F}_{\left.q^{k}\right)}[]\right.\right. & \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{*}}^{*} \\
P, Q & \longmapsto f_{\ell, p}(Q)^{\frac{\varepsilon_{k}}{\epsilon}}
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)
- Miller functions: $f_{n, P}$
- an inductive identity

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
e: E\left(\mathbb{F}_{q}\right)[\ell] & \times E\left(\mathbb{F}_{q^{k}}\right)[\ell] \\
P & \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q_{k}^{k}}^{*} \\
P & \longmapsto f_{\ell, P}(Q)^{q^{k}-1} \ell
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)
- Miller functions: $f_{n, P}$
- an inductive identity

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

- $g_{[n] P,\left[n^{\prime}\right] P}$ derived from the addition of $[n] P$ and $\left[n^{\prime}\right] P$

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
e: E\left(\mathbb{F}_{q}\right)\left[[] \times E\left(\mathbb{F}_{\left.q^{*}\right)}[]\right.\right. & \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{*}}^{*} \\
P, Q & \longmapsto f_{\ell, P}(Q)^{\frac{\varepsilon^{*}-1}{c}}
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)
- Miller functions: $f_{n, P}$
- an inductive identity

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

- $g_{[n] P,\left[n^{\prime}\right] P}$ derived from the addition of $[n] P$ and $\left[n^{\prime}\right] P$
- compute $f_{\ell, P}$ thanks to an addition
 chain
- in practice: double-and-add $\log _{2} \ell$ iterations

Miller's algorithm (hyperelliptic case)

$$
e: \quad \mathbb{G}_{1} \times \mathbb{G}_{2} \quad \longrightarrow \mathbb{G}_{T}
$$

Miller's algorithm (hyperelliptic case)

$$
e: \operatorname{Jac}_{c}\left(\mathbb{F}_{q}\right)[\ell] \times \operatorname{Jac}_{(}\left(\mathbb{F}_{q^{*}}\right)[\ell] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{*}}^{*}
$$

Miller's algorithm (hyperelliptic case)

$$
\left.\left.\begin{array}{rl}
e: \operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right)[\ell] & \times \operatorname{Jac}_{C}\left(\mathbb{F}_{q^{k}}\right)[\ell]
\end{array}\right) \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*}\right)
$$

- Hyperelliptic Miller functions: $f_{n, D}$
- same inductive identity

$$
\begin{aligned}
f_{1, D} & =1 \\
f_{n+n^{\prime}, D} & =f_{n, D} \cdot f_{n^{\prime}, D} \cdot g_{[n] D,\left[n^{\prime}\right] D}
\end{aligned}
$$

Miller's algorithm (hyperelliptic case)

$$
\left.\left.\begin{array}{rl}
e: \operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right)[\ell] & \times \operatorname{Jac}_{C}\left(\mathbb{F}_{q^{k}}\right)[\ell]
\end{array}\right) \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*}\right)
$$

- Hyperelliptic Miller functions: $f_{n, D}$
- same inductive identity

$$
\begin{aligned}
f_{1, D} & =1 \\
f_{n+n^{\prime}, D} & =f_{n, D} \cdot f_{n^{\prime}, D} \cdot g_{[n] D,\left[n^{\prime}\right] D}
\end{aligned}
$$

- $g_{[n] D,\left[n^{\prime}\right] D}$ derived from the addition of $[n] D$ and $\left[n^{\prime}\right] D$
- use Cantor's addition algorithm

Miller's algorithm (hyperelliptic case)

$$
\left.\left.\begin{array}{rl}
e: \operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right)[\ell] & \times \operatorname{Jac}_{C}\left(\mathbb{F}_{q^{k}}\right)[\ell]
\end{array}\right) \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*}\right)
$$

- Hyperelliptic Miller functions: $f_{n, D}$
- same inductive identity

$$
\begin{aligned}
f_{1, D} & =1 \\
f_{n+n^{\prime}, D} & =f_{n, D} \cdot f_{n^{\prime}, D} \cdot g_{[n] D,\left[n^{\prime}\right] D}
\end{aligned}
$$

- $g_{[n] D,\left[n^{\prime}\right] D}$ derived from the addition of $[n] D$ and $\left[n^{\prime}\right] D$
- use Cantor's addition algorithm
- double-and-add algorithm $\log _{2} \ell$ iterations
- iterations are more complex

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})
$$

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
\begin{aligned}
& {[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})} \\
& {[4]((P)-(\mathcal{O}))=\left(P_{4}\right)+\left(P_{4}^{\prime}\right)-2(\mathcal{O})}
\end{aligned}
$$

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
- $\# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
\begin{aligned}
& {[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})} \\
& {[4]((P)-(\mathcal{O}))=\left(P_{4}\right)+\left(P_{4}^{\prime}\right)-2(\mathcal{O})} \\
& {[8]((P)-(\mathcal{O}))=\left(P_{8}\right)-(\mathcal{O})}
\end{aligned}
$$

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
\begin{aligned}
& {[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})} \\
& {[4]((P)-(\mathcal{O}))=\left(P_{4}\right)+\left(P_{4}^{\prime}\right)-2(\mathcal{O})} \\
& {[8]((P)-(\mathcal{O}))=([8] P)-(\mathcal{O})}
\end{aligned}
$$

- octupling acts on the curve

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
\begin{aligned}
& {[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})} \\
& {[4]((P)-(\mathcal{O}))=\left(P_{4}\right)+\left(P_{4}^{\prime}\right)-2(\mathcal{O})} \\
& {[8]((P)-(\mathcal{O}))=([8] P)-(\mathcal{O})}
\end{aligned}
$$

- octupling acts on the curve
- $f_{8, D}$ has a much simpler expression than $f_{2, D}$

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add			
\#iterations	$2 m$			

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add		
\#iterations	$2 m$	$\frac{2 m}{3}$		

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2^{(3 m+1) / 2}-1, D_{1}}$

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	Optimal Ate pairing
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	$\frac{m}{6}$

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2^{2(3 m+1) / 2}-1, D_{1}}$
- Optimal Ate pairing
- distortion map ψ is much more complex
- iterations would be roughly twice as expensive
- optimal Ate pairing not considered here

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	This paper Optimal Eta pairing
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	$\frac{m}{6}$

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2^{(3 m+1) / 2}-1, D_{1}}$
- Optimal Ate pairing
- distortion map ψ is much more complex
- iterations would be roughly twice as expensive
- optimal Ate pairing not considered here
- Optimal Eta pairing

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	This paper Optimal Eta pairing
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	$\frac{m}{6}$

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2(3 m+1) / 2-1, D_{1}}$
- Optimal Ate pairing
- distortion map ψ is much more complex
- iterations would be roughly twice as expensive
- optimal Ate pairing not considered here
- Optimal Eta pairing
- cannot use 2^{m}-th power Verschiebung: does not act on the curve

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	This paper Optimal Eta pairing
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	$\frac{m}{3}$

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2^{(3 m+1) / 2}-1, D_{1}}$
- Optimal Ate pairing
- distortion map ψ is much more complex
- iterations would be roughly twice as expensive
- optimal Ate pairing not considered here
- Optimal Eta pairing
- cannot use 2^{m}-th power Verschiebung: does not act on the curve
- but can use $2^{3 m}$-th power Verschiebung
- 33\% improvement compared to Barreto et al.'s work

Considering degenerate divisors

- Some protocols allow to choose the form of one or two input divisors
- Consider degenerate divisors of the form

$$
(P)-(\mathcal{O})
$$

- only 2 coordinates in $\mathbb{F}_{2^{m}}$ to represent such a divisor (instead of 4 coordinates for a general one)
- since octupling acts on the curve:

$$
[8]((P)-(\mathcal{O}))=([8] P)-(\mathcal{O})
$$

- we can work with a point!

Considering degenerate divisors

- Some protocols allow to choose the form of one or two input divisors
- Consider degenerate divisors of the form

$$
(P)-(\mathcal{O})
$$

- only 2 coordinates in $\mathbb{F}_{2^{m}}$ to represent such a divisor (instead of 4 coordinates for a general one)
- since octupling acts on the curve:

$$
[8]((P)-(\mathcal{O}))=([8] P)-(\mathcal{O})
$$

- we can work with a point!
- We may compute the pairing of
- two general divisors (GG)
- one degenerate and one general divisor (DG)
* halves the amount of computation
* lot of protocols allow this
- two degenerate divisors (DD)
* halves again the amount of computation
\star some protocols still compatible

Software implementation

- Implementations for Intel Core 2

Computation time ($\times 10^{6}$ cycles)

Software implementation

- Implementations for Intel Core 2 and Nehalem architecture
- Use of the native binary field multiplier on Nehalem

Computation time ($\times 10^{6}$ cycles)

Hardware implementation

- Optimal Eta pairing on general divisors
- Implemented on a finite field coprocessor $\mathbb{F}_{2^{367}}$
- addition
- multiplication
- Frobenius endomorphism
- Post place-and-route estimations on a Virtex 6-LX 130 T results

Implementation	Curve	Area (device usage)	Time $(\mathbf{m s})$	Area \times time
Cheung et al.	$E\left(\mathbb{F}_{p_{254}}\right)$	35%	0.57	4.03
Ghosh et al.	$E\left(\mathbb{F}_{2^{1223}}\right)$	76%	0.19	2.88
Estibals	$E\left(\mathbb{F}_{3^{5.97}}\right)$	8%	1.73	2.68
This work	$C_{0}\left(\mathbb{F}_{2^{367}}\right)(\mathrm{GG})$	7%	3.09	4.30

Conclusion

- A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings

Conclusion

- A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings
- Most efficient symmetric pairing implementation
- for both software and hardware
- when at least one divisor is degenerate (DG and DD case)
- First hardware implementation of a genus-2 pairing reaching 128 bits of security

Conclusion

- A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings
- Most efficient symmetric pairing implementation
- for both software and hardware
- when at least one divisor is degenerate (DG and DD case)
- First hardware implementation of a genus-2 pairing reaching 128 bits of security
- Perspectives
- Implement optimal Ate pairing on this curve (work in progress)
- Use theta functions for faster curve arithmetic

Thank you for your attention!

Questions?

