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Abstract— This paper is devoted to the design of fast
parallel accelerators for the cryptographic ηT pairing on
supersingular elliptic curves over finite fields of character-
istics two and three. We propose here a novel hardware
implementation of Miller’s algorithm based on a parallel
pipelined Karatsuba multiplier. After a short description
of the strategies we considered to design our multiplier,
we point out the intrinsic parallelism of Miller’s loop and
outline the architecture of coprocessors for the ηT pairing
over F2m and F3m . Thanks to a careful choice of algorithms
for the tower field arithmetic associated with the ηT pairing,
we manage to keep the pipelined multiplier at the heart
of each coprocessor busy. A final exponentiation is still
required to obtain a unique value, which is desirable in
most cryptographic protocols. We supplement our pairing
accelerators with a coprocessor responsible for this task.
An improved exponentiation algorithm allows us to save
hardware resources.

According to our place-and-route results on Xilinx FPGAs,
our designs improve both the computation time and the area–
time trade-off compared to previously published coproces-
sors.

Keywords: Tate pairing, ηT pairing, elliptic curve, finite
field arithmetic, Karatsuba multiplier, hardware acceler-
ator, FPGA.

I. INTRODUCTION

In 2000, Mitsunari, Sakai & Kasahara [36], Sakai,
Oghishi & Kasahara [41], and Joux [25] independently
showed how to use bilinear pairings defined over al-
gebraic curves to solve cryptographic problems of long
standing. This discovery ignited an intensive research
that, until today, has produced an impressive number
of pairing-based cryptographic protocol proposals [13].
Practice has shown that one of the most efficient options
to compute bilinear pairings is to resort to the Tate
pairing operating on supersingular elliptic curves of low
embedding degrees.

Back in 1986, Miller [33], [34] presented an iterative
algorithm that can be adapted to compute the Tate pair-
ing with linear complexity with respect to the size of the
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input. Since then, significant improvements of Miller’s
algorithm were independently proposed in 2002 by Bar-
reto et al. [4] and Galbraith et al. [17]. One year later,
Duursma & Lee presented a radix-3 variant of Miller’s
algorithm especially targeted at the case of characteristic
three [14]. In 2004, Barreto et al. [3] introduced the ηT
approach, which further shortens the loop of Miller’s
algorithm. More recently, Hess, Smart, and Vercauteren
generalized these results to ordinary curves [22], [23],
[46].

We extend here the work presented in [10] and pro-
pose novel hardware architectures for computing the
ηT pairing over binary and ternary fields based on
parallel pipelined Karatsuba multipliers and enhanced
unified arithmetic operators. We stress that the modified
Tate pairing can be directly computed from the reduced
ηT pairing at almost no extra cost [7]. Our hardware
accelerators are able to compute the ηT pairing operating
on supersingular elliptic curves defined over F2691 and
F3313 in just 18.8 µs and 16.9 µs, respectively (Table V).
We note that these field sizes enjoy an associated security
equivalent to that of 105-bit and 109-bit symmetric-key
cryptosystems, respectively (Table IV).

The main strategies considered to design our parallel
pipelined multiplier are described in Section II. They
are included in a VHDL code generator that allows us
to experiment on a wide range of operators as well
as a variety of design parameters. Thanks to a judi-
cious choice of algorithms for performing tower field
arithmetic and a careful analysis of the scheduling, we
managed to keep our pipelined units always busy. This
allows us to compute one iteration of Miller’s algorithm
over ternary and binary fields in only 17 and 7 clock
cycles, respectively (Sections III and IV). We summarize
the results obtained from our FPGA implementation and
provide the reader with a thorough comparison against
previously published coprocessors in Section V.

For the sake of concision, we are forced to skip the
description of many important concepts of elliptic curve
theory. We suggest the interested reader to review [44],
[47] for an in-depth coverage of this topic.

II. PARALLEL KARATSUBA MULTIPLIERS

Before delving into the specifics of our pairing copro-
cessor architectures, we first detail here the Karatsuba
multipliers on which they extensively rely.
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We define the p-ary extension field Fpm as
Fp[x]/ (f(x)), where f is an irreducible degree-m monic
polynomial over Fp. The product of two arbitrary
elements of Fpm represented as p-ary polynomials of
degree at most m − 1 is computed as the polynomial
multiplication of the two elements modulo f . Carefully
selecting an irreducible polynomial with low Hamming
weight (i.e. trinomial, tetranomial, etc.) and low sub-
degree allows for a simple modular reduction step.

In this work, due to its subquadratic space complexity,
we opted for a variant of the classical Karatsuba multi-
plier to implement the polynomial product, while a few
extra adders and subtracters over Fp are dedicated to
performing the final reduction modulo f .

A. Variations on the Karatsuba Algorithm

The Karatsuba multiplication [27] is based on the
observation that the polynomial product c = a · b, for
a and b ∈ Fpm , can be computed as

c = aLbL +
[
(aH + aL)(bL + bH)− (aHbH + aLbL)

]
xn

+ aHbHx2n,

where n = dm2 e, a = aL + xnaH , and b = bL + xnbH .
Note that since we are working with polynomials,

there is no carry propagation. This allows one to split
the operands in a slightly different way: for instance
Hanrot and Zimmermann [21] suggested to split them
into odd- and even-degree parts. It was adapted to
multiplication over F2m by Fan et al. [15]. Since there
is no overlap between the odd and even parts at the
reconstruction step, this different method of splitting
saves approximately m additions over Fp during the
reconstruction of the product.

Another natural way to generalize the Karatsuba mul-
tiplication is to split the operands into three or more
parts, in a classical way (i.e. splitting each operand
into contiguous parts from the lowest to the highest
powers of x) or using a generalized odd/even split (i.e.
according to the degree modulo the number of split
parts). By applying this strategy recursively, in each
iteration each polynomial multiplication is transformed
into three or more subproducts of smaller degree, un-
til all the polynomial operands are reduced to single
coefficients. Nevertheless, practice has shown that it is
better to prune the recursion earlier, performing the
lowest-level multiplications using alternative techniques
that are more compact and/or faster for low-degree
operands, such as the so-called schoolbook method with
quadratic complexity, which has been selected for this
work.

B. A Pipelined Architecture for the Karatsuba Multiplier

We pipelined our multiplier architecture by means
of optional registers inserted between the computations
of the required subproducts, where the depth of the
pipeline can be adjusted according to the complexity of

the application at hand. This approach allows us to split
the critical path of the whole multiplier structure and
therefore increase its operating frequency.

In order to study a wide range of implementation
strategies, we wrote a VHDL code generator, which au-
tomatically produces the description of different variants
of Karatsuba multipliers according to several parameters
(field extension degree, irreducible polynomial, splitting
method, etc.). Our automatic tool was extremely useful
for selecting the operator that showed the highest clock
frequency, the smallest area or a good trade-off between
them.

III. REDUCED ηT PAIRING IN CHARACTERISTIC THREE

In the following, we consider the computation of
the reduced ηT pairing in characteristic three. Table I
summarizes the parameters of the algorithm and of the
supersingular curves. We refer the reader to [3], [8] for
more details about the computation of the ηT pairing.
Recall that a final exponentiation is required to obtain
a unique value, which is desirable in the context of
cryptographic protocols. As pointed out by Beuchat et
al. [9], the computations of the non-reduced pairing (i.e.
Miller’s algorithm) and of the final exponentiation do
not share the same datapath, and it seems judicious to
pipeline these two tasks using two distinct coprocessors
in order to reduce the computation time and increase the
throughput.

A. Computation of Miller’s Algorithm

We rewrote in Algorithm 1 the reversed-loop algo-
rithm in characteristic three described in [8], denoting
each iteration with parenthesized indices in superscript
in order to emphasize the intrinsic parallelism of the ηT
pairing. At each iteration of Miller’s algorithm, two tasks
are performed in parallel, namely: a sparse multiplica-
tion over F36m (lines 6 and 7), and the computation of
the coefficients for the next sparse operation (lines 8 to
10). We say that an operand in F36m is sparse when some
of its coefficients are trivial (i.e. either zero, one, or minus
one).

1) Sparse Multiplication over F36m : The intermediate
result R(i−1) is multiplied by the sparse operand S(i)

(Algorithm 1, lines 6 and 7). This operation is easier
than a standard multiplication over F36m , but the choice
of the sparse multiplication algorithm requires careful
attention. Bertoni et al. [6] and Gorla et al. [18] took
advantage of Karatsuba multiplication and Lagrange
interpolation, respectively, to reduce the number of mul-
tiplications over F3m at the expense of several additions.
(Note that Gorla et al. study standard multiplication over
F36m in [18], but extending their approach to sparse
multiplication is straightforward.) In order to keep the
pipeline of a Karatsuba multiplier busy, we would have
to embed in our processor a large multioperand adder
(up to twelve operands for the scheme proposed by
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TABLE I
SUPERSINGULAR CURVES OVER F3m AND F2m .

Characteristic three Characteristic two

Base field F3m , where m is coprime to 6. F2m , where m is an odd integer.

Curve equation y2 = x3 − x+ b, with b ∈ {−1, 1}. y2 + y = x3 + x+ b, with b ∈ {0, 1}.

Number of
rational points

N = 3m + 1 + µb3(m+1)/2, with

µ =

{
+1 if m ≡ 1, 11 (mod 12), and
−1 if m ≡ 5, 7 (mod 12).

N = 2m + 1 + ν2(m+1)/2, with

δ =

{
b if m ≡ 1, 7 (mod 8),
1− b if m ≡ 3, 5 (mod 8),

and ν = (−1)δ .
Embedding degree k = 6 k = 4

ψ :E(F3m)[`]−→E(F36m)[`] \ E(F3m)[`]
(x, y) 7−→ (ρ− x, yσ)

ψ :E(F2m)[`]−→E(F24m)[`] \ E(F2m)[`]
(x, y) 7−→ (x+ s2, y + sx+ t)Distortion map

with σ ∈ F32 satisfying σ2 = −1,
and ρ ∈ F33 satisfying ρ3 = ρ+ b.

with s ∈ F22 satisfying s2 = s+ 1,
and t ∈ F24 satisfying t2 = t+ s.

Tower field
F36m = F3m [σ, ρ]

∼= F3m [X,Y ]/(X2 + 1, Y 3 − Y − b)
F24m = F2m [s, t]

∼= F2m [X,Y ]/(X2 +X + 1, Y 2 + Y +X)

Final
exponentiation

M =
(
33m − 1

)
· (3m + 1)·(

3m + 1− µb3(m+1)/2
) M =

(
22m − 1

)
·
(

2m + 1− ν2(m+1)/2
)

Parameters of
Algorithms 1 and 3

λ =

{
+1 if m ≡ 7, 11 (mod 12),
−1 if m ≡ 1, 5 (mod 12),

ν =

{
+1 if m ≡ 5, 11 (mod 12), and
−1 if m ≡ 1, 7 (mod 12).

α =

{
0 if m ≡ 3 (mod 4),
1 if m ≡ 1 (mod 4),

β =

{
b if m ≡ 1, 3 (mod 8), and
1− b if m ≡ 5, 7 (mod 8).

Gorla et al.) and several multiplexers to deal with the ir-
regular datapath. This would negatively impact the area
and the clock frequency, and we prefer considering the
algorithm discussed by Beuchat et al. in [11] which gives
a better trade-off between the number of multiplications
and additions over the underlying field (Algorithm 2):
it involves 17 multiplications and 29 additions over F3m

to compute S(i) and R(i−1) · S(i).
We suggest to take advantage of a parallel Karat-

suba multiplier with seven pipeline stages to implement
Miller’s algorithm. Since the algorithm we selected for
sparse multiplication over F36m requires at most the ad-
dition of four elements of F3m , it suffices to complement
the multiplier with a four-operand adder to compute
s
(i)
3 , a(i)

j , and r
(i)
j , 0 ≤ j ≤ 5, as shown in Figure 1.

The second loop of Algorithm 2 (lines 13 to 16) requires
a small amount of additional hardware. Since the first
two multiplications of the loop involve r(i−1)

2j and r
(i−1)
2j+1 ,

respectively, we compute s(i)j on-the-fly by means of an
accumulator. Furthermore, it seems convenient to store
p
(i)
6 , p(i)

7 , and s
(i)
3 in a circular shift register.

We managed to find a scheduling that allows us

to start a new multiplication over F3m at each clock
cycle, thus keeping the pipeline busy and computing
an iteration of Miller’s algorithm in 17 clock cycles as
depicted in Figure 2. It is worth noticing that the cost of
additions over F3m is hidden and the number of clock
cycles depends only on the amount of multiplications
over F3m . We easily identify five datapaths (denoted by
the numerals À to Ä in Figures 1 and 2) between the
output of the four-operand adder and the inputs of the
parallel multiplier.

Specific attention is needed to design the register
file storing the coefficients of R(i) and the intermediate
variables a

(i)
j , 0 ≤ j ≤ 6, of the sparse multiplication

algorithm. According to our scheduling scheme, we have
to read simultaneously up to three variables from the
register file. Thus, we decided to implement it by means
of two blocks of Dual-Ported RAM (DPRAM):

• The first one is connected to input M0 of the parallel
multiplier and input A0 of the four-operand adder,
and stores the coefficients of R(i).

• According to our scheduling (Figure 2), the second
DPRAM block provides the four-operand adder
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Fig. 1. Coprocessor for the ηT pairing in characteristic three. (N.B. All control bits ci belong to {0, 1}.)
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respectively
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Fig. 2. Scheduling of Miller’s algorithm in characteristic three.
(N.B. The numerals À to Ä refer to the datapaths between the output of the four-operand adder and the inputs of the parallel multiplier in
Figure 1.)

with its fourth input, namely a
(i)
j , 0 ≤ j ≤ 5, and

r
(i−1)
j , 0 ≤ j ≤ 2.

2) Computation of the Sparse Operand: The second task
consists in computing the coefficients of the sparse
operand S(i+1) required for the next iteration of Miller’s
algorithm (Algorithm 1, lines 8 to 10). Two cubings and
an addition over F3m allow us to update the coordinates
of point P and to determine the coefficient t(i+1) of the
sparse operand S(i+1), respectively.

Recall that the ηT pairing over F3m comes in two fla-
vors: the original one involves a cubing over F36m after
each sparse multiplication. Barreto et al. [3] explained
how to get rid of that cubing at the price of two cube
roots over F3m to update the coordinates of point Q. It
is essential to consider such an algorithm here, as an
extra cubing over F36m would put even more strain on
the first task (which is already the most expensive one).
According to our results, the critical path of the circuit
is never located in a cube root operator when pairing-
friendly irreducible trinomials or pentanomials [2], [20]
are used to define F3m . If by any chance such polyno-
mials are not available for the considered extension of
F3 and the critical path is in the cube root, it is always
possible to pipeline this operation. Therefore, the cost of
cube roots is hidden by the first task.

The hardware implementation is rather straightfor-
ward (Figure 1): four registers, a cubing operator, and
a cube root operator allow us to store and update the
coordinates of points P and Q. Then, a two-operand
adder computes the sum of x(i)

P and x
(i)
Q , and the result

t(i) is memorized in a fifth register. Multiplexers select
the inputs of the parallel multiplier according to our
scheduling.

3) Initialization: The initialization step of the ηT pair-
ing (Algorithm 1, lines 1 and 2) involves a small amount
of specific hardware in order to compute x(0)

P , y(0)
P , x(0)

Q ,
and y

(0)
Q . Note that we are able to send t(i), λy(i)

P , and
−λy(i)

Q to input M1 of the parallel multiplier (Figure 1).
Assuming that the constants 0, 1, and 2 are stored in the
DPRAM block connected to input M0, we compute the
coefficients of R(−1) by means of six multiplications over
F3m :

r
(−1)
0 = t(0) · λy(0)

P , r
(−1)
3 = 0 · t(0) = 0,

r
(−1)
1 = 1 ·

(
−λy(0)

Q

)
, r

(−1)
4 = 0 · t(0) = 0, and

r
(−1)
2 = 2 · λy(0)

P = −λy(0)
P , r

(−1)
5 = 0 · t(0) = 0.

Loading the coordinates of points P and Q and perform-
ing the initialization step involves 17 clock cycles (i.e.
exactly the same number of clock cycles as an iteration
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Algorithm 1 Computation of the reduced ηT pairing in
characteristic three.†

Input: P = (xP , yP ) and Q = (xQ, yQ) ∈ E(F3m)[`].
Output: ηT (P,Q)M ∈ F∗36m .

1. x
(0)
P ← xP − νb; y(0)

P ← −µbyP ;
2. x

(0)
Q ← xQ; y

(0)
Q ← −λyQ;

3. t(0) ← x
(0)
P + x

(0)
Q ;

4. R(−1) ← λy
(0)
P · t(0) − λy

(0)
Q σ − λy(0)

P ρ;

5. for i = 0 to (m− 1)/2 do
6. S(i) ← −

(
t(i)
)2

+ y
(i)
P y

(i)
Q σ − t(i)ρ− ρ2;

7. R(i) ← R(i−1) · S(i);

8. x
(i+1)
P ← 3

√
x

(i)
P ; y

(i+1)
P ← 3

√
y
(i)
P ;

9. x
(i+1)
Q ←

(
x

(i)
Q

)3

; y
(i+1)
Q ←

(
y
(i)
Q

)3

;

10. t(i+1) ← x
(i)
P + x

(i)
Q ;

11. end for

12. return
(
R((m−1)/2)

)M
;

†Intermediate variables in uppercase belong to F36m , those in
lowercase to F3m .

of Miller’s algorithm). Therefore, our coprocessor returns
R((m−1)/2) after 17 · (m+ 3)/2 clock cycles.

B. Final Exponentiation
The second and last stage in the computation of the

ηT pairing is the final exponentiation, where the result of
Miller’s algorithm R((m−1)/2) = ηT (P,Q) is raised to the
M -th power (Algorithm 1, line 12). This exponentiation
is necessary since the non-reduced pairing ηT (P,Q) is
only defined up to N -th powers in F∗36m .

1) Improved Algorithm: In order to compute this fi-
nal exponentiation, we use the algorithm presented by
Beuchat et al. in [8]. This method exploits the special
form of the exponent M (see Table I) to achieve better
performances than with a classical square-and-multiply
algorithm. Among other computations, this final expo-
nentiation involves the raising of an element of F∗36m to
the power of 3(m+1)/2, which Beuchat et al. [8] perform
by computing (m + 1)/2 successive cubings over F∗36m .
Each of these cubings requiring 6 cubings and 6 addi-
tions over F3m , the total cost of this step is 3m+3 cubings
and 3m+ 3 additions.

We present here a new method for computing
U3(m+1)/2

for U = u0 +u1σ+u2ρ+u3σρ+u4ρ
2 +u5σρ

2 ∈
F∗36m by exploiting the linearity of the Frobenius map (i.e.
cubing in characteristic three) to reduce the number of
additions. Indeed, noting that σ3i

= (−1)iσ, ρ3i

= ρ+ ib

and (ρ2)3
i

= ρ2−ibρ+i2, we obtain the following formula
for U3i

, depending on the value of i:

U3i

= (u0 − ε1u2 + ε2u4)3
i

+ ε3 (u1 − ε1u3 + ε2u5)3
i

σ

+ (u2 + ε1u4)3
i

ρ + ε3 (u3 + ε1u5)3
i

σρ

+ u3i

4 ρ
2 + ε3u

3i

5 σρ
2,

Algorithm 2 Sparse multiplication over F36m .

Input: b ∈ {−1, 1}; t(i), y(i)
P , and y

(i)
Q ∈ F3m ; and

R(i−1) ∈ F36m .
Output: R(i) = R(i−1) · S(i) ∈ F36m , where

S(i) = −
(
t(i)
)2

+ y
(i)
P y

(i)
Q σ − t(i)ρ− ρ2.

1. for j = 0 to 5 do
2. p

(i)
j ← r

(i−1)
j · t(i);

3. end for
4. p

(i)
6 ← t(i) · t(i); p(i)

7 ← −y
(i)
P · y

(i)
Q ;

5. s
(i)
3 ← p

(i)
6 + p

(i)
7 ;

6. a
(i)
0 ← r

(i−1)
2 + p

(i)
4 ;

7. a
(i)
1 ← r

(i−1)
3 + p

(i)
5 ;

8. a
(i)
2 ← br

(i−1)
4 + p

(i)
0 + a

(i)
0 ;

9. a
(i)
3 ← br

(i−1)
5 + p

(i)
1 + a

(i)
1 ;

10. a
(i)
4 ← r

(i−1)
0 + r

(i−1)
4 + p

(i)
2 ;

11. a
(i)
5 ← r

(i−1)
1 + r

(i−1)
5 + p

(i)
3 ;

12. for j = 0 to 2 do
13. p

(i)
3j+8 ← r

(i−1)
2j · p(i)

6 ;
14. p

(i)
3j+9 ← r

(i−1)
2j+1 · p

(i)
7 ;

15. s
(i)
j ← −r

(i−1)
2j − r(i−1)

2j+1 ;
16. p

(i)
3j+10 ← s

(i)
j · s

(i)
3 ;

17. end for

18. r
(i)
0 ← −ba

(i)
0 − p

(i)
8 + p

(i)
9 ;

19. r
(i)
1 ← −ba

(i)
1 + p

(i)
8 + p

(i)
9 + p

(i)
10 ;

20. r
(i)
2 ← −a

(i)
2 − p

(i)
11 + p

(i)
12 ;

21. r
(i)
3 ← −a

(i)
3 + p

(i)
11 + p

(i)
12 + p

(i)
13 ;

22. r
(i)
4 ← −a

(i)
4 − p

(i)
14 + p

(i)
15 ;

23. r
(i)
5 ← −a

(i)
5 + p

(i)
14 + p

(i)
15 + p

(i)
16 ;

24. return r
(i)
0 + r

(i)
1 σ + r

(i)
2 ρ+ r

(i)
3 σρ+ r

(i)
4 ρ2 + r

(i)
5 σρ2;

with ε1 = −ib mod 3, ε2 = i2 mod 3, and ε3 = (−1)i.
Thus, according to the value of (m+ 1)/2 modulo 6, the
computation of U3(m+1)/2

will still require 3m+3 cubings
but at most only 6 additions or subtractions over F3m .

2) Hardware Implementation: Our first attempt at com-
puting the final exponentiation was to use the unified
arithmetic operator introduced by Beuchat et al. [8].
Unfortunately, due to the sequential scheduling inherent
to this operator, it turned out that the final exponen-
tiation algorithm required more clock cycles than the
computation of Miller’s algorithm by our coprocessor.
We therefore had to consider a slightly more parallel
architecture.

Noticing that the critical operations in the final ex-
ponentiation algorithm were multiplication and long
sequences of cubings over F3m , we designed the co-
processor for arithmetic over F3m depicted in Figure 3.
Besides a register file implemented by means of DPRAM,
our coprocessor embeds a parallel–serial multiplier [45]
processing D coefficients of an operand at each clock
cycle (typically D = 13 or 14), along with a novel
unified operator supporting addition, subtraction, ac-
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cumulation, Frobenius map (i.e. cubing), and double
Frobenius map (i.e. raising to the ninth power). This
architecture allowed us to efficiently implement the final
exponentiation algorithm described for instance in [8],
while taking advantage of the improvement proposed
above.

3) Using Inverse Frobenius Maps: We adapt here the
idea behind the square-root-and-multiply algorithm
for exponentiation over binary finite fields given by
Rodrı́guez-Henrı́quez et al. in [37].

From the final exponentiation algorithm given in [8],
it can be noticed that Frobenius maps over F3m (i.e.
cubings) are needed only to perform an inversion over
F∗3m [8, Algorithms 10 and 11] and for raising an element
of F∗36m to the power of 3(m+1)/2, as already discussed
in Section III-B.1.

As far as the inversion is concerned, note that the
first two lines of [8, Algorithm 10] are dedicated to
computing u = d(3m−3)/2 thanks to successive cubings
and multiplications, where d ∈ F∗3m is the element to be
inverted. It is actually also possible to compute that same
element by means of only cube roots and multiplications
by making use of the identity 3i√

z = z3m−i

for all
z ∈ F3m , derived from Fermat’s little theorem. Indeed,
considering the family of elements (wi)0≤i<m such that
wi = d(3m−3m−i)/2, we note that w1 = d3m−1

= 3
√
d and

u = d(3m−3)/2 = wm−1. Since for any two integers n and
n′ we also have

wn+n′ = d(3m−3m−n)/2 · d(3m−n−3m−n−n′ )/2 = wn · 3n√
wn′ ,

it follows that, given an addition chain of length l for
m − 1, we can compute u = wm−1 in l multiplications
and m−1 cube roots over F3m . This has to be compared
to the l multiplications and m−1 cubings required in [8,
Algorithm 10] to obtain the same u.

As for the raising of an element of F∗36m to the power of
3(m+1)/2, also part of the final exponentiation algorithm,
we simply apply Fermat’s little theorem once more to see
that z3(m+1)/2

= 3(m−1)/2√
z for all z ∈ F3m . Thus, we can

directly trade the 3m+ 3 required cubings (as explained
in the analysis given in Section III-B.1) for 3m − 3 cube
roots over F3m .

Hence, from the previous considerations, it is possible
to replace all Frobenius maps (cubings) by inverse Frobe-
nius maps (cube roots) in the final exponentiation. This is
particularly interesting since the irreducible polynomial
used to represent F3m was carefully chosen to allow
for low-complexity cubings and cube roots, as both are
required for the computation of the non-reduced ηT
pairing. Furthermore, it appears that for the considered
irreducible trinomials, the complexity of the cube root is
always lower than that of the cubing. This is shown in
Table II, where the third column reports the total num-
ber of required additions/subtractions over F3, and the
fourth column indicates the largest number of elements
of F3 that need to be added/subtracted to one another to
compute a coefficient of the result (for instance, cubing

over F397 requires summing at most four elements of F3

at a time).

TABLE II
FROBENIUS VS. INVERSE FROBENIUS MAPS IN CHARACTERISTIC

THREE, AND THEIR INFLUENCE ON THE COPROCESSOR OF FIGURE 3.

Field representation Op.
Total # Max. # of Area Freq.
of add. elements [slices] [MHz]

F3[x]/(x97 + x16 − 1)
(·)3 106 4 4704 185
3√ · 96 3 4722 192

F3[x]/(x167 − x71 + 1)
(·)3 229 5 7607 160
3√ · 166 3 7682 175

F3[x]/(x193 + x64 − 1)
(·)3 234 4 9265 179
3√ · 192 3 9092 179

F3[x]/(x239 − x5 + 1)
(·)3 242 4 11589 179
3√ · 238 3 11848 177

F3[x]/(x313 − x187 − 1)
(·)3 558 6 15073 141
3√ · 312 3 15117 172

In order to assess the impact of replacing the Frobenius
and double-Frobenius operators by inverse-Frobenius
(cube root) and double-inverse-Frobenius (ninth root)
operators in the architecture presented in Figure 3, we
implemented the different variants on Xilinx Virtex-4
LX FPGAs (xc4vlx40-11). The place-and-route results,
reported in the last two columns of Table II, show
that the use of cube roots usually shortens the critical
path, even though the circuits are then slightly larger,
as the cubing formulae generally involve more common
subexpressions which can then share the same logic and
decrease the total resource usage. All in all, it appears
that relying on inverse Frobenius maps to compute the
final exponentiation is by and large an effective opti-
mization.

IV. REDUCED ηT PAIRING IN CHARACTERISTIC TWO

An approach similar to that of characteristic three
allowed us to design a parallel coprocessor for the
reduced ηT pairing in characteristic two. The supersin-
gular curves and the parameters of the algorithm are
summarized in Table I.

A. Computation of Miller’s Algorithm

Applying the strategy we used for characteristic
three to the case of characteristic two, we adopted the
reversed-loop algorithm described in [7], which we recall
here in Algorithm 3. However, the scheduling turns out
to be slightly more difficult than in characteristic three
since we have to perform three tasks in parallel at each
iteration of Miller’s algorithm.

1) Sparse Multiplication over F24m : The intermediate
result F (i−1) computed during the previous iteration
is multiplied by the sparse operand G(i) = g

(i)
0 +

g
(i)
1 s + t by means of a parallel Karatsuba multiplier

(Algorithm 3, lines 13 and 14). This operation is easier
than the standard multiplication over F24m and requires
only 6 multiplications and 14 additions over the base
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0 1

0 1

0 1

(mod f )
×x
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×xD−1
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0

c31

−1

11

−1 1

0 11 0

0 1

$0
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1
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c7–c12

c13

c0–c5

c6

10c14

c15

0

c16

0 1

0 1

c17

c18

c19

c20

c21

c22

c23

c25

c26

c27

c28

c29
c30

c24

A A

$62
B B

Parallel–serial multiplier
(D digits per clock cycle)

Add./sub./acc.
Frobenius/Frob.2

DPRAM

(·)3

(·)3

Fig. 3. Coprocessor for the final exponentiation of the ηT pairing in characteristic three. (N.B. All control bits ci belong to {0, 1}.)

Algorithm 3 Computation of the reduced ηT pairing in
characteristic two.†

Input: P = (xP , yP ), Q = (xQ, yQ) ∈ E(F2m)[`].
Output: ηT (P,Q)M ∈ F∗24m .

1. x
(0)
P ← xP ; y

(0)
P ← yP + δ̄;

2. x
(0)
Q ← xQ; y

(0)
Q ← yQ;

3. u(0) ← x
(0)
P + α; v(0) ← x

(0)
Q + α;

4. w(0) ← y
(0)
P + y

(0)
Q + β;

5. g
(0)
0 ← u(0) · v(0) + w(0);

6. g
(0)
1 ← u(0) + v(0) + α; g(0)

2 ← v(0) +
(
x

(0)
P

)2

;

7. x
(1)
P ←

√
x

(0)
P ; y

(1)
P ←

√
y
(0)
P ;

8. x
(1)
Q ←

(
x

(0)
Q

)2

; y
(1)
Q ←

(
y
(0)
Q

)2

;

9. u(1) ← x
(1)
P + α; v(1) ← x

(1)
Q + α;

10. w(1) ← y
(1)
P + y

(1)
Q + β;

11. F (−1) ←
(
g
(0)
0 + g

(0)
2

)
+
(
g
(0)
1 + 1

)
s+ t;

12. for i = 0 to m−1
2 do

13. G(i) ← g
(i)
0 + g

(i)
1 s+ t;

14. F (i) ← F (i−1) ·G(i);

15. g
(i+1)
0 ← u(i+1) · v(i+1) + w(i+1);

16. g
(i+1)
1 ← u(i+1) + v(i+1) + α;

17. x
(i+2)
P ←

√
x

(i+1)
P ; y

(i+2)
P ←

√
y
(i+1)
P ;

18. x
(i+2)
Q ←

(
x

(i+1)
Q

)2

; y
(i+2)
Q ←

(
y
(i+1)
Q

)2

;

19. u(i+2) ← x
(i+2)
P + α; v(i+2) ← x

(i+2)
Q + α;

20. w(i+2) ← y
(i+2)
P + y

(i+2)
Q + β;

21. end for

22. return
(
F ((m−1)/2)

)M
;

†Intermediate variables in uppercase belong to F24m , those in
lowercase to F2m .

Algorithm 4 Sparse multiplication over F24m [7].

Input: G(i) = g
(i)
0 + g

(i)
1 s+ t ∈ F24m and

F (i−1) = f
(i−1)
0 + f

(i−1)
1 s+ f

(i−1)
2 t+ f

(i−1)
3 st ∈ F24m .

Output: F (i) = G(i) · F (i−1).
1. a

(i)
0 ← g

(i)
0 + g

(i)
1 ; a

(i)
1 ← f

(i−1)
0 + f

(i−1)
1 ;

2. a
(i)
2 ← f

(i−1)
2 + f

(i−1)
3 ;

3. m
(i)
0 ← g

(i)
0 · f

(i−1)
0 ; m(i)

1 ← g
(i)
1 · f

(i−1)
1 ;

4. m
(i)
2 ← a

(i)
0 · a

(i)
1 ; m

(i)
3 ← g

(i)
0 · f

(i−1)
2 ;

5. m
(i)
4 ← g

(i)
1 · f

(i−1)
3 ; m(i)

5 ← a
(i)
0 · a

(i)
2 ;

6. f
(i)
0 ← m

(i)
0 +m

(i)
1 + f

(i−1)
3 ;

7. f
(i)
1 ← m

(i)
0 +m

(i)
2 + f

(i−1)
2 + f

(i−1)
3 ;

8. f
(i)
2 ← m

(i)
3 +m

(i)
4 + f

(i−1)
0 + f

(i−1)
2 ;

9. f
(i)
3 ← m

(i)
3 +m

(i)
5 + f

(i−1)
1 + f

(i−1)
3 ;

10. return f
(i)
0 + f

(i)
1 s+ f

(i)
2 t+ f

(i)
3 st;

field F2m , as explained in Algorithm 4. Thanks to the
careful scheduling given in Figure 5, the intermediate
variables a(i)

0 , a(i)
1 , and a

(i)
2 (Algorithm 4, lines 1 and 2)

are generated on-the-fly by means of two accumulators.
(Note that in order to share the control bits c15 and
c16 between both accumulators, we compute a

(i)
0 twice

at each iteration of Miller’s algorithm.) The addition
of at most four operands belonging to F2m allows for
computing f

(i)
j , 0 ≤ j ≤ 3 (Algorithm 4, lines 6 to 9).

It is worth mentioning that the datapath between
the output of the four-operand adder and the parallel
multiplier is much simpler than in characteristic three:
it suffices to delay f

(i)
j , 0 ≤ j ≤ 3, by one clock cycle

and there is therefore no need for a memory block to
store the operands of the multiplier. Dealing with inputs
A0 and A1 of the four-operand adder is unfortunately
more difficult because of data dependencies between the
coefficients of F (i−1) and F (i) in Algorithm 4. According
to our scheduling, we update the coefficients of F (i)
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c21

c20

β

f
(−1)
j

y
(i+1)
P

c1 0 1

x
(i+1)
Q

y
(i+1)
Q

x
(i+1)
P

c9

α

c4u(i+1) c5 v(i+1)

c11

c12

c19

c18–c17

c14–c13

c15

c16

c10 1 0

c220 1

c23

c26 0 1

m
(i)
0 or m(i)

3

A1 A2 A3A0

c25

f
(i)
j , 0 ≤ j ≤ 3

0110 00

(5 pipeline stages)

M0 M1

Fully parallel Karatsuba multiplier

c6

c7

w(i+1)

c8g
(i)
0

11

01

10

00

1

c3 0

c2

1

0

1

xP , xQ, yP , and yQ

c0

g
(0)
2

α

g
(i)
1

0100 10

u(i+1) · v(i+1)

v(i+1) · u(i+1),

m
(i)
0 ← g

(i)
0 · f

(i−1)
0 , m(i)

1 ← g
(i)
1 · f

(i−1)
1 ,

m
(i)
2 ← a

(i)
0 · a

(i)
1 ,

m
(i)
5 ← a

(i)
0 · a

(i)
2

a
(i)
0 ← g

(i)
0 + g

(i)
1 a

(i)
1 ← f

(i−1)
0 + f

(i−1)
1 or

a
(i)
2 ← f

(i−1)
2 + f

(i−1)
3

g
(i+1)
0 ← u(i+1) · v(i+1) + w(i+1),

g
(i+1)
1 ← u(i+1) + v(i+1) + α,

g
(0)
2 ← v(0) +

(
x

(0)
P

)2

w(i+2)← y
(i+2)
P + y

(i+2)
Q + β

v(i+2)← x
(i+2)
Q + α, and

u(i+2)← x
(i+2)
P + α,

f
(−1)
3 ← 0

f
(−1)
1 ← g

(0)
1 + 1,

f
(−1)
0 ← g

(0)
0 + g

(0)
2 ,

f
(−1)
2 ← 1, and

and f
(i−1)
3

0, f (i−1)
2 ,

FI
FO

m
(i)
3 ← g

(i)
0 · f

(i−1)
2 , m(i)

4 ← g
(i)
1 · f

(i−1)
3 ,

0 1 c24

f
(i−1)
3

f
(i)
0 ← f

(i−1)
3 + 0 +m

(i)
0 +m

(i)
1 ,

f
(i)
1 ← f

(i−1)
3 + f

(i−1)
2 +m

(i)
0 +m

(i)
2 ,

f
(i)
2 ← f

(i−1)
0 + f

(i−1)
2 +m

(i)
3 +m

(i)
4 ,

f
(i)
3 ← f

(i−1)
1 + f

(i−1)
3 +m

(i)
3 +m

(i)
5

√
· (·)2

f
(i−1)
1

f
(i)
0 , f (i)

1 ,

f
(i−1)
0 , and FI

FO

x
(i+2)
Q ←

(
x

(i+1)
Q

)2

, and y
(i+2)
Q ←

(
y

(i+1)
Q

)2

x
(i+2)
P ←

√
x

(i+1)
P , y(i+2)

P ←
√
y

(i+1)
P ,

Fig. 4. Coprocessor for the ηT pairing in characteristic two. (N.B. All control bits ci belong to {0, 1}.)
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A0

A1

A2

A3

0

Inputs of the multiplier

M1

Output of the parallel multiplier:

Latency: 5 clock cycles

Inputs of the parallel multiplier:

f
(i−1)
3f

(i−1)
3

f
(i−1)
2

m
(i)
0 m

(i)
0

m
(i)
2m

(i)
1

f
(i)
1f

(i)
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f
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Fig. 5. Scheduling of Miller’s algorithm in characteristic two.

in the following order: f (i)
0 , f (i)

1 , f (i)
2 , and eventually

f
(i)
3 . Since f

(i)
2 and f

(i)
3 depend on f

(i−1)
0 and f

(i−1)
1 ,

respectively, we have to keep a copy of those values
until the end of the i-th iteration of Miller’s algorithm.
Instead of including a DPRAM block in our design,
we propose a solution based on two small FIFOs (see
Figure 6 for details). An advantage of characteristic two
over characteristic three is that the register file is smaller
in terms of circuit area and requires fewer control bits.

2) Computation of g0 and g1: Both coefficients g(i+1)
0 and

g
(i+1)
1 (Algorithm 3, lines 15 and 16) are involved in the

next sparse multiplication and thus have to be computed
in beforehand. The product u(i+1) ·v(i+1) is evaluated by
means of our parallel Karatsuba multiplier. Then, two-
operand adders allow for working out g(i+1)

0 and g
(i+1)
1 .

3) Computation of u, v, and w: The three values u(i+2),
v(i+2), and w(i+2) (Algorithm 3, lines 17 to 20) will
be required to calculate g

(i+2)
0 and g

(i+2)
1 during the

next iteration of Miller’s algorithm. Here we have to
work with the coordinates of points P and Q that are
stored in a FIFO and updated by means of squaring and
square-root operators, respectively (see Section IV-A.6).
Then, an accumulator allows for computing w(i+2) in
two clock cycles. Depending on the values of α and β,
1-bit adders (i.e. XOR gates) are necessary to calculate
the least significant bit of u(i+2), v(i+2), and w(i+2).

4) Choosing the Adequate Karatsuba Multiplier: In these
settings, a Karatsuba multiplier with 5 pipeline stages
can be kept busy during the computation of the main
loop, as shown in Figure 5. Since we have to carry out 7

multiplications over F2m at each iteration, the calculation
time for the full loop is equal to 7 ·(m+1)/2 clock cycles.
It is again crucial to consider an algorithm with inverse
Frobenius maps (i.e. square roots) in order to avoid
squaring F (i) at each iteration of Miller’s algorithm (see
for instance [7] for a survey of algorithms for the Tate
pairing over supersingular curves in characteristic two).
Such an operation would lengthen the computation time
and pipeline bubbles would be inserted in the multiplier.

5) Initialization: The initialization step requires specific
attention. In order to start multiplying u(0) by v(0) as
soon as possible (Algorithm 3, line 5), we load the
coordinates of points P and Q in the following order:
xP , xQ, yP , and yQ. Thus, u(0) and v(0) are available after
two clock cycles. Thanks to this scheduling, we complete
the initialization step in 15 clock cycles.

6) Irreducible Pentanomials Suitable for Low-Complexity
Square-Root Computation: Although irreducible trinomi-
als allowing for simple computations of squarings and
square roots exist in some binary finite fields, as detailed
in [37], this was not the case for several fields considered
in this work (see Table III). To tackle this issue, we
present here a novel family of irreducible square-root-
friendly pentanomials that, to the best of our knowledge,
has not been proposed before in the literature.

Let m and d be two odd positive integers with d < m/2
and such that the degree-m monic polynomial

f(x) = xm + xm−d + xm−2d + xd + 1

is irreducible over F2. We then represent the binary
extension field F2m as F2[x]/ (f(x)).

Note that, reducing modulo f , we have xm+2d+1 +
xm+1 +xm−2d+1 +x3d+1 = x, where all the exponents on
the left-hand side are even. It then follows that

√
x = x

m+2d+1
2 + x

m+1
2 + x

m−2d+1
2 + x

3d+1
2 .

Therefore, using this expression for
√
x, we can compute

the square root of an element a ∈ F2m as [16]

√
a =

m−1
2∑
i=0

a2ix
i +
√
x

m−3
2∑
i=0

a2i+1x
i mod f(x).

Furthermore, one can show that if (2m − 1)/7 ≤ d ≤
(2m+ 1)/5 then the complete computation of the square
root (i.e. including the reduction modulo f ) will require
the addition of at most three elements of F2 at a time
for each coefficient of the result. And finally, choosing
d ≥ (m− 1)/6 ensures that a squaring will involve only
additions of at most four operands.

As reported in Table III, three pentanomials of this
family have been selected to represent the finite fields
F2557 , F2613 , and F2691 , with d = 197, 185, and 243,
respectively.

B. Final Exponentiation
The final exponentiation (Algorithm 3, line 22) is

carried out according to the algorithms proposed in [7]
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Fig. 6. Contents of the register file of our coprocessor for the ηT pairing in characteristic two.

TABLE III
FROBENIUS VS. INVERSE FROBENIUS MAPS IN CHARACTERISTIC TWO.

Field representation Op.
Total # Max. # of
of add. elements

F2[x]/(x239 + x81 + 1)
(·)2 159 3√
· 119 2

F2[x]/(x313 + x79 + 1)
(·)2 195 3√
· 156 2

F2[x]/(x457 + x61 + 1)
(·)2 258 3√
· 228 2

F2[x]/(x557 + x360 + x197 + x163 + 1)
(·)2 752 4√
· 688 3

F2[x]/(x613 + x428 + x243 + x185 + 1)
(·)2 883 4√
· 733 3

F2[x]/(x691 + x448 + x243 + x205 + 1)
(·)2 932 4√
· 849 3

and [42], [43] for ν = 1 and ν = −1, respectively. We
took advantage of the algorithm introduced in [12] when
raising to the (2m + 1)-st power over F24m . Here again,
the linearity of the Frobenius map allows us to reduce
the number of additions when computing U2(m+1)/2

for
U = u0 + u1s + u2t + u3st ∈ F∗24m . Noting that s2

i

=
s + γ1 and t2

i

= t + γ1s + γ2, where γ1 = i mod 2 and

γ2 = b i2c mod 2, we obtain the following formula for U2i

,
depending on the value of i modulo 4:

U2i

= (u0 + γ1u1 + γ2u2 + γ3u3)2
i

+(u1 + γ1u2 + γ2u3)2
i

s

+(u2 + γ1u3)2
i

t+ u2i

3 st,

where γ3 = 1 when i mod 4 = 1, and γ3 = 0 otherwise.
According to the value of (m + 1)/2 mod 4, the compu-

tation of U2
m+1

2 requires 2m + 2 squarings and at most
four additions over F2m .

Here again, a hybrid arithmetic operator, similar to the
one used in the case of characteristic three (see Figure 3),
allows us to perform the final exponentiation in slightly
less clock cycles than Miller’s algorithm without impact-
ing too much on the resource usage. The architecture is
very similar to that of characteristic three, except that
we removed the multiplications by 1 and −1, which are
useless in characteristic two, and replaced the double-
cubing by a triple-squaring operator, to accommodate
for the longer chains of successive Frobenius maps in
the final exponentiation algorithm. The parallel–serial
multiplier processes here between D = 15 and D = 17
coefficients of its second operand per clock cycle.
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It is worth noting that the trick of trading Frobenius
for inverse Frobenius maps used for the final exponen-
tiation in characteristic three can also be applied to the
case of characteristic two. Indeed, as reported in Table III,
the complexity of the square root is always lower than
that of the squaring over the considered finite fields.

However, putting this optimization into practice hap-
pens to be more complex than in characteristic three.
Apart from the Frobenius maps required for the in-
version over F∗2m and for the raising to the power
of 2(m+1)/2 over F∗24m , further squarings are actually
necessary to raise elements of F∗24m to the (22m − 1)-st
and (2m + 1)-st powers, as per [7, Algorithm 3] and [12,
Algorithm 3] respectively.

These few squarings could be replaced by actual
multiplications, which would then slightly increase the
number of clock cycles required to compute the final
exponentiation. Alternatively, we could take the fourth
root of the result, which by linearity of the square root
would then cancel all the extra Frobenius maps, but we
would then end up computing a fixed power of the ηT
pairing and not the ηT pairing itself.

However, observing that in characteristic two the crit-
ical path of the whole pairing accelerator lies in the
non-reduced-pairing coprocessor and not in the final-
exponentiation one, this is actually a moot point as there
is no use trying to shorten further the critical path in the
final exponentiation. We therefore decided against using
this optimization altogether in the case of characteristic
two.

V. RESULTS AND COMPARISONS

A. Comparison with Previous Works

Thanks to our automatic VHDL code generator, we
designed several versions of the proposed architectures
and prototyped our coprocessors on Xilinx Virtex-II Pro
and Virtex-4 LX FPGAs with average speedgrade. Ta-
ble IV details the specifics of the considered supersin-
gular curves, while Table V provides the reader with a
comparison between our work and accelerators for the
Tate and ηT pairings over supersingular (hyper)elliptic
curves published in the open literature. (Note that our
comparison remains fair since the Tate pairing can be
computed from the ηT pairing at no extra cost [7].)
Finally, these results are summarized in Figure 7, where
post-place-and-route computation time and area–time
product estimations are plotted against the achieved
level of security.

In the presented benchmarks, the logic resource usage
is given in terms of slices, which is the usual metric on
Xilinx FPGAs. Each slice comprises two 4-input look-up
tables and two 1-bit flip-flops. Furthermore, it is worth
noting that even though our coprocessors also make use
of some embedded memory blocks as register files, they
are by far not a critical resource and are therefore not
reported in the benchmarks.

Our architectures are also much faster than software
implementations. Mitsunari wrote a very careful multi-
threaded implementation of the ηT pairing over F397 and
F3193 [35]. He reported a computation time of 92 µs and
553 µs, respectively, on an Intel Core 2 Duo processor
(2.66 GHz). Interestingly enough, his software library
outperforms several hardware architectures proposed by
other researchers for low levels of security. When we
compare his results with our work, we note that the
gap between software and hardware increases when
considering larger values of m. The computation of the
ηT pairing over F3193 on a Virtex-4 LX FPGA with a
medium speedgrade is for instance roughly fifty times
faster than software. This speedup justifies the use of
large FPGAs which are now available in servers and
supercomputers such as the SGI Altix 4700 platform.

Kammler et al. [26] reported the first hardware im-
plementation of the Optimal Ate pairing [46] over a
Barreto–Naehrig (BN) curve [5], that is an ordinary curve
defined over a prime field Fp with embedding degree
k = 12. The proposed design is implemented with a 130
nm standard cell library and computes a pairing in 15.8
ms over a 256-bit BN curve. It is however difficult to
make a fair comparison between our respective works
since the level of security and the target technology are
not the same.

B. Characteristic Two vs. Characteristic Three

It is worth noting that, in order to achieve the same
level of security for the ηT pairing over supersingular
curves in characteristics two and three, the extension
degree m of F2m has to be larger than that of F3m′ . More
precisely, we have the ratio

m

m′
=

3 log 3
2 log 2

≈ 2.4,

since the embedding degree is 6 in characteristic three,
against 4 in characteristic 2. This ratio also applies
asymptotically to the number of iterations in Miller’s
algorithm, which is (m+1)/2 and (m′+1)/2, respectively.

However, the arithmetic over F24m required for the
computation of the pairing in characteristic two is much
simpler that the arithmetic over F36m′ : one iteration of
Miller’s algorithm requires only 7 multiplications over
F2m , against 17 multiplications over F3m′ in the case of
characteristic three. Coincidentally, the ratio between the
two is also 17/7 ≈ 2.4.

Thus, although necessitating 2.4 times as many itera-
tions as in characteristic three, the ηT pairing over F2m

requires almost exactly as many products over the base
field as the ηT pairing over F3m′ . Furthermore, a smaller
extension degree m′ compensates for the arithmetic over
F3 being more expensive than that over F2.

That close similarity in terms of performances between
characteristics two and three at a constant level of secu-
rity, as hinted at by this short analysis, can actually be
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TABLE IV
SUPERSINGULAR ELLIPTIC CURVES CONSIDERED IN THIS PAPER.

Field Curve equation Co-factor(s)
ECC security MOV security

Security†(log2 `) (log2 #Fpkm )

F2239 y2 + y = x3 + x+ 1 1 119 bits 956 bits 67 bits

F2313 y2 + y = x3 + x
5 · 1933526201 · 307168226569

97 bits 1252 bits 75 bits· 338431049916629
F2457 y2 + y = x3 + x+ 1 1 228 bits 1828 bits 88 bits
F2557 y2 + y = x3 + x 5 277 bits 2228 bits 96 bits
F2613 y2 + y = x3 + x 5 305 bits 2452 bits 100 bits
F2691 y2 + y = x3 + x 5 344 bits 2764 bits 105 bits

F397 y2 = x3 − x+ 1 7 75 bits 922 bits 66 bits
F3167 y2 = x3 − x+ 1 7 131 bits 1588 bits 83 bits
F3193 y2 = x3 − x− 1 1 153 bits 1835 bits 89 bits
F3239 y2 = x3 − x− 1 1 189 bits 2273 bits 97 bits
F3313 y2 = x3 − x+ 1 7 · 37561 · 477013 230 bits 2977 bits 109 bits

†Security is given here as the required key length for a symmetric-key cryptosystem of equivalent security.
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Fig. 7. Performance comparison in terms of pairing computation time (top) and area–time (AT) product (bottom) between the proposed
architectures and the coprocessors published in the literature, on Virtex-II Pro (left) and Virtex-4 (right) FPGAs.
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TABLE V
HARDWARE ACCELERATORS FOR THE TATE AND ηT PAIRINGS.

Curve
Security

FPGA
Area Frequency Calculation Area–time

[bits] [slices] [MHz] time [µs] product
Kerins et al. [30] E(F397) 66 xc2vp125 55616 15 850 47.3
Kömürcü & Savas* [31] E(F397) 66 xc2vp100 14267 77 250.7 3.6
Ronan et al. [38] E(F397) 66 xc2vp100-6 15401 85 183 2.8
Grabher & Page [19] E(F397) 66 xc2vp4-6 4481 150 432.3 1.9
Jiang [24] E(F397) 66 xc4vlx200-11 74105 78 20.9 1.55
Beuchat et al. [7] E(F397) 66 xc2vp20-6 4455 105 92 0.41
Beuchat et al. [11] E(F397) 66 xc2vp30-6 10897 147 33 0.36
This work† E(F397) 66 xc2vp50-6 18367 147 5.78 0.106

E(F397) 66 xc4vlx60-11 18701 192 4.42 0.083
Shu et al. [43] E(F2239) 67 xc2vp100-6 25487 84 41 1.04
Shu et al. [43] E(F2239) 67 xc4vlx200-10 29920 100 36.5 1.09
Beuchat et al. [7] E(F2239) 67 xc2vp20-6 4557 123 107 0.49
This work E(F2239) 67 xc2vp50-6 15919 190 4.49 0.071

E(F2239) 67 xc4vlx60-11 16203 247 3.46 0.056
Keller et al. [28] E(F2251) 68 xc2v6000-4 27725 40 2370 65.7
Keller et al. [29] E(F2251) 68 xc2v6000-4 13387 40 2600 34.8
Li et al. [32] E(F2283) 72 xc4vfx140-11 55844 160 590 32.9
Shu et al. [43] E(F2283) 72 xc2vp100-6 37803 72 61 2.3
Shu et al. [43] E(F2283) 72 xc4vlx200-10 36481 100 46.1 1.68
Ronan et al. [39] E(F2313) 75 xc2vp100-6 41078 50 124 5.1
Ronan et al. [40] C(F2103) 75 xc2vp100-6 30464 41 132 4.02
This work E(F2313) 75 xc2vp70-6 22395 154 7.24 0.162

E(F2313) 75 xc4vlx80-11 23254 235 4.73 0.110
This work† E(F3167) 83 xc2vp100-6 40765 118 12.3 0.50

E(F3167) 83 xc4vlx100-11 40974 175 8.24 0.34
Barenghi et al. [1] E(Fp512) 87 xc2v8000-5 33857 135 1610 54.5
Shu et al. [43] E(F2457) 88 xc4vlx200-10 58956 100 100.8 5.94
This work E(F2457) 88 xc2vp100-6 42965 147 11.0 0.47

E(F2457) 88 xc4vlx100-11 44223 215 7.52 0.33
Beuchat et al. [7] E(F2459) 89 xc2vp20-6 8153 115 327 2.66
Beuchat et al. [7] E(F3193) 89 xc2vp20-6 8266 90 298 2.46
This work† E(F3193) 89 xc2vp100-6 46135‡ 130 12.8 0.59

E(F3193) 89 xc4vlx200-11 47260 179 9.33 0.44
Shu et al. [43] E(F2557) 96 xc4vlx200-10 37931 66 675.5 25.62
This work E(F2557) 96 xc4vlx200-11 55156 149 13.2 0.73
This work E(F3239) 97 xc4vlx200-11 66631 179 11.5 0.77
This work E(F2613) 100 xc4vlx200-11 62418 143 15.1 0.95
This work E(F2691) 105 xc4vlx200-11 78874 130 18.8 1.48
This work† E(F3313) 109 xc4vlx200-11 97105‡ 159 16.9 1.64

*No final exponentiation, non-reduced pairing only.
†The inverse Frobenius map was preferred over the Frobenius map to compute the final exponentiation, as per Section III-B.3.
‡The design exceeds the FPGA’s capacity: the ηT pairing and final-exponentiation coprocessors were placed-and-routed
separately.

observed in the place-and-route results of our coproces-
sors (Figure 7), even though characteristic two appears
to have a slight advantage for low security.

VI. CONCLUSION

We proposed novel architectures based on a parallel
pipelined Karatsuba multiplier for the ηT pairing in
characteristics two and three. The main design challenge

we faced was to keep the pipeline continuously busy.
Accordingly, we modified the scheduling of Miller’s
algorithm in order to introduce more parallelism in the
pairing computation. We also presented a faster way
to perform the final exponentiation by exploiting the
linearity of the Frobenius map and/or taking advantage
of a simpler inverse Frobenius map in certain cases.
Both software and hardware implementations can bene-
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fit from these techniques.
To our knowledge, the implementation of our designs

on several Xilinx FPGA devices improved both the
computation time and the area–time trade-off of all the
hardware pairing coprocessors previously published in
the open literature [1], [7], [11], [19], [24], [28]–[31], [38]–
[40], [42], [43].

However, as of today, the design of pairing accelera-
tors providing a level of security equivalent to that of
AES-128 remains a problem of major interest. Although
Kammler et al. [26] proposed a first solution over a
Barreto–Naehrig curve, several questions remain open.
For instance, is it possible to achieve such a level of
security in hardware with supersingular (hyper)elliptic
curves at a reasonable cost in terms of computation time
and circuit area? Since several protocols rely on such
curves, it seems crucial to us to address this topic in a
near future.

Another interesting direction for further work is to
investigate the use of the hybrid operator (Figure 3) to
compute the complete Tate pairing and not only the fi-
nal exponentiation. From our experiments, this operator
should offer a competitive balance between the area-
efficient unified operators of [7] and the latency-oriented
architectures presented here.
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