4th International Conference on Pairing-Based Cryptography Yamanaka Hot Spring, Japan — December 15, 2010

Compact hardware for computing the Tate pairing over 128-bit-security supersingular curves

Nicolas Estibals

CARAMEL project-team, LORIA, Nancy Université / CNRS / INRIA

Outline of the talk

- ► Context
- ▶ Pairings-friendly curves with 128 bits of security
- ▶ Implementation and results

Hardware accelerators for pairing computation

- ► Pairings are (almost) everywhere!
 - wide range of targets and applications
 - * low-resource environment (embedded systems, smart card, ...)
 - * high-performance computation (bank server, ...)
 - non-trivial to compute
 - ★ complex mathematical structure
 - * finite field arithmetic
 - * substantial amount of computation
- ► Needs in hardware implementation
 - computation not suited to general purpose processor
 - specific targets (e.g. smart card)

Hardware accelerators for pairing computation

- ► Pairings are (almost) everywhere!
 - wide range of targets and applications
 - * low-resource environment (embedded systems, smart card, ...)
 - * high-performance computation (bank server, ...)
 - non-trivial to compute
 - * complex mathematical structure
 - * finite field arithmetic
 - * substantial amount of computation
- ► Needs in hardware implementation
 - computation not suited to general purpose processor
 - specific targets (e.g. smart card)
- Previous work on FPGA implementations
 - low-security pairings
 - most are performance-oriented designs
- ► Our goal:
 - AES-128 equivalent security
 - compact accelerator

► Bilinear pairing:

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

- ightharpoonup E elliptic curve over \mathbb{F}_q
- \blacktriangleright ℓ large prime dividing $\#E(\mathbb{F}_q)$
 - in general, $\ell \approx \#E(\mathbb{F}_q)$
 - Hasse's bound : $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$
 - thus, $\ell \approx q$
- ▶ \mathbb{F}_q -rational ℓ -torsion of E: $E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) \mid [\ell]P = \mathcal{O}\}$

► Tate pairing:

$$e: E(\mathbb{F}_q)[\ell] \times \mathbb{G}_2 \to \mathbb{G}_T$$

- ightharpoonup E elliptic curve over \mathbb{F}_q
- ▶ ℓ large prime dividing $\#E(\mathbb{F}_q)$
 - in general, $\ell \approx \#E(\mathbb{F}_q)$
 - Hasse's bound : $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$
 - thus, $\ell \approx q$
- ▶ \mathbb{F}_q -rational ℓ -torsion of E: $E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) \mid [\ell]P = \mathcal{O}\}$
- ▶ Embedding degree: k, the smallest integer s. t. $\ell \mid q^k 1$

► Tate pairing:

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mathbb{G}_T$$

- ightharpoonup E elliptic curve over \mathbb{F}_q
- \blacktriangleright ℓ large prime dividing $\#E(\mathbb{F}_q)$
 - in general, $\ell \approx \#E(\mathbb{F}_q)$
 - Hasse's bound : $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$
 - thus, $\ell \approx q$
- ▶ \mathbb{F}_q -rational ℓ -torsion of E: $E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) \mid [\ell]P = \mathcal{O}\}$
- ▶ Embedding degree: k, the smallest integer s. t. $\ell \mid q^k 1$
- ▶ Set of ℓ -th root of unity: $\mu_{\ell} = \{u \in \mathbb{F}_{a^k}^* \mid u^{\ell} = 1\}$
- ► Tate pairing:

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ightharpoonup E elliptic curve over \mathbb{F}_q
- \blacktriangleright ℓ large prime dividing $\#E(\mathbb{F}_q)$
 - in general, $\ell \approx \#E(\mathbb{F}_q)$
 - Hasse's bound : $|\#E(\mathbb{F}_q) (q+1)| \leq 2\sqrt{q}$
 - thus, $\ell \approx q$
- ▶ \mathbb{F}_q -rational ℓ -torsion of E: $E(\mathbb{F}_q)[\ell] = \{P \in E(\mathbb{F}_q) \mid [\ell]P = \mathcal{O}\}$
- ▶ Embedding degree: k, the smallest integer s. t. $\ell \mid q^k 1$
- ▶ Set of ℓ -th root of unity: $\mu_{\ell} = \{u \in \mathbb{F}_{a^k}^* \mid u^{\ell} = 1\}$
- ► Tate pairing:

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ► Compute thanks to Miller's iterative algorithm
 - number of iteration proportional to the size of the field
 - a multiplication over \mathbb{F}_{a^k} at each iteration

General attacks

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Pollard's ρ on the torsion subgroup $E[\ell]$
 - $\sqrt{\pi\ell/2} \approx \sqrt{\pi q/2}$ group operations
 - complexity exponential in q

General attacks

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Pollard's ρ on the torsion subgroup $E[\ell]$
 - $\sqrt{\pi\ell/2} \approx \sqrt{\pi q/2}$ group operations
 - complexity exponential in q
- ▶ Discrete logarithm in finite field multiplicative group $\mathbb{F}_{a^k}^*$
 - FFS or NFS $\rightarrow L_{a^k}[1/3, c]$
 - complexity subexponential in q^k

General attacks

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^k}^*$$

- ▶ Pollard's ρ on the torsion subgroup $E[\ell]$
 - $\sqrt{\pi\ell/2} \approx \sqrt{\pi q/2}$ group operations
 - complexity exponential in q
- ▶ Discrete logarithm in finite field multiplicative group $\mathbb{F}_{a^k}^*$
 - FFS or NFS $\rightarrow L_{a^k}[1/3, c]$
 - complexity subexponential in q^k
- ▶ k acts as a cursor to balance the complexity of the two attacks
- k = 12: optimal for the 128-bit security level

Outline of the talk

- ► Context
- ▶ Pairings-friendly curves with 128 bits of security
- ► Implementation and results

▶ Definition:

$$E/\mathbb{F}_3: y^2 = x^3 - x + b, b \neq 0$$

► Supersingular curve

⇒ Simpler curve arithmetic (efficient tripling formulae)

Definition: Definition:
$$E/\mathbb{F}_3:\ y^2=x^3-x+b, b\neq 0\\ p=36\alpha^4-36\alpha^3+24\alpha^2-6\alpha+1\\ \text{Supersingular curve}$$
 Ordinary curve

▶ Definition:

$$E/\mathbb{F}_3: y^2=x^3-x+b, b
eq 0$$

- ► Supersingular curve ⇒ Simpler curve arithmetic (efficient tripling formulae)
- ▶ Distortion map, modified pairing:

$$\delta: E(\mathbb{F}_q)[\ell] \to E(\mathbb{F}_{q^k})[\ell]$$

 $\hat{e}(P,Q) = e(P,\delta(Q))$

E/
$$\mathbb{F}_3$$
: $y^2=x^3-x+b, b\neq 0$

$$E/\mathbb{F}_p: \qquad y^2=x^3+b, b\neq 0,$$

$$p=36\alpha^4-36\alpha^3+24\alpha^2-6\alpha+1$$
Supersingular curve
Ordinary curve

- ► No distortion map

⇒ Symmetric pairing (BN cannot be used with all protocols)

▶ Definition:

$$E/\mathbb{F}_3: y^2 = x^3 - x + b, b \neq 0$$

- ► Supersingular curve ⇒ Simpler curve arithmetic (efficient tripling formulae)
- ▶ Distortion map, modified pairing:

$$\delta: E(\mathbb{F}_q)[\ell] \to E(\mathbb{F}_{q^k})[\ell]$$

 $\hat{e}(P,Q) = e(P,\delta(Q))$

⇒ Symmetric pairing (BN cannot be used with all protocols)

► Modular arithmetic ► Small characteristic field arithmetic ⇒ No carry, better suited to hardware implementation

E/
$$\mathbb{F}_3$$
: $y^2=x^3-x+b, b\neq 0$

$$E/\mathbb{F}_p: \qquad y^2=x^3+b, b\neq 0,$$

$$p=36\alpha^4-36\alpha^3+24\alpha^2-6\alpha+1$$
Supersingular curve
Ordinary curve

- ► No distortion map

▶ Definition:

$$E/\mathbb{F}_3: \ y^2 = x^3 - x + b, b \neq 0$$

- Supersingular curve ⇒ Simpler curve arithmetic (efficient tripling formulae)
- Distortion map, modified pairing:

$$\delta: E(\mathbb{F}_q)[\ell] \to E(\mathbb{F}_{q^k})[\ell]$$

 $\hat{e}(P,Q) = e(P,\delta(Q))$

 \Rightarrow Symmetric pairing (BN cannot be used with all protocols)

- ► Modular arithmetic ► Small characteristic field arithmetic ⇒ No carry, better suited to hardware implementation
- ▶ Small embedding degree (k = 6)
- ightharpoonup Optimal embedding degree (k = 12)
- \Rightarrow Larger field of definition for the same security level. For 128 bits of security: \mathbb{F}_q with $q \approx 3^{500}$ \mathbb{F}_p with p a 256-bit prime.

$$E/\mathbb{F}_p: \qquad y^2 = x^3 + b, b \neq 0, \ p = 36\alpha^4 - 36\alpha^3 + 24\alpha^2 - 6\alpha + 1$$

- ► No distortion map

Supersingular elliptic curves

▶ Definition:

$$E/\mathbb{F}_3: y^2 = x^3 - x + b, b \neq 0$$

- ➤ Supersingular curve

 ⇒ Simpler curve arithmetic (efficient tripling formulae)
- ▶ Distortion map, modified pairing:

$$\delta: E(\mathbb{F}_q)[\ell] \to E(\mathbb{F}_{q^k})[\ell]$$
$$\hat{e}(P, Q) = e(P, \delta(Q))$$
$$\Rightarrow \text{Symmetric pairing}$$

- ► Small characteristic field arithmetic
 ⇒ No carry, better suited to hardware implementation
- ▶ Small embedding degree (k = 6)⇒ Larger field of definition for the same security level. \mathbb{F}_q with $q \approx 3^{500}$

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^6})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^6}^*$$

- ▶ Arithmetic of \mathbb{F}_{q^6} over \mathbb{F}_q :
 - tower field fixed by pairing construction
 - already optimized by previous works
 - Critical operation: products in \mathbb{F}_q

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^6})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^6}^*$$

- tower field fixed by pairing construction
- already optimized by previous works
- Critical operation: products in \mathbb{F}_q
- ightharpoonup Arithmetic of \mathbb{F}_q
 - traditionally implemented in hardware
 - does not scale to the 128-bit security level

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^6})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^6}^*$$

- ▶ Arithmetic of \mathbb{F}_{a^6} over \mathbb{F}_a :
 - tower field fixed by pairing construction
 - already optimized by previous works
 - Critical operation: products in \mathbb{F}_q
- ightharpoonup Arithmetic of \mathbb{F}_q
 - traditionally implemented in hardware
 - does not scale to the 128-bit security level
- ► Idea: lower the soft/hardware frontier
 - insert \mathbb{F}_{3^m} in the tower field
 - implement it in hardware

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^6})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^6}^*$$

- ▶ Arithmetic of \mathbb{F}_{a^6} over \mathbb{F}_a :
 - tower field fixed by pairing construction
 - already optimized by previous works
 - Critical operation: products in \mathbb{F}_q
- ightharpoonup Arithmetic of \mathbb{F}_q
 - traditionally implemented in hardware
 - does not scale to the 128-bit security level
- ▶ Idea: lower the soft/hardware frontier
 - insert \mathbb{F}_{3^m} in the tower field
 - implement it in hardware
 - use subquadratic multiplication algorithm for \mathbb{F}_q over \mathbb{F}_{3^m}

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^6})[\ell] \to \mu_\ell \subset \mathbb{F}_{q^6}^*$$

- ▶ Arithmetic of \mathbb{F}_{a^6} over \mathbb{F}_a :
 - tower field fixed by pairing construction
 - already optimized by previous works
 - Critical operation: products in \mathbb{F}_q
- ightharpoonup Arithmetic of \mathbb{F}_q
 - traditionally implemented in hardware
 - does not scale to the 128-bit security level
- ► Idea: lower the soft/hardware frontier
 - insert \mathbb{F}_{3^m} in the tower field
 - implement it in hardware
 - use subquadratic multiplication algorithm for \mathbb{F}_q over \mathbb{F}_{3^m}
- Problem:
 - field with composite extension degree
 - allows some additional attacks

Weil Descent-based attacks

▶ We now consider:

$$E(\mathbb{F}_{3^{m \cdot n}})[\ell]$$
 with m prime and n small

▶ Weil descent (or Weil restriction to scalar) apply:

$$E(\mathbb{F}_{3^{m \cdot n}}) \cong W_E(\mathbb{F}_{3^m})$$

Weil Descent-based attacks

▶ We now consider:

$$E(\mathbb{F}_{3^{m \cdot n}})[\ell]$$
 with m prime and n small

▶ Weil descent (or Weil restriction to scalar) apply:

$$E(\mathbb{F}_{3^{m \cdot n}}) \cong W_E(\mathbb{F}_{3^m})$$

- ► Gaudry-Hess-Smart attack:
 - $W_E(\mathbb{F}_{3^m})$ might map to $Jac(\mathcal{C})$, with \mathcal{C} a curve of genus at least n
 - index calculus algorithm: solve DLP in $\tilde{O}((3^m)^{2-\frac{2}{n}})$

Weil Descent-based attacks

▶ We now consider:

$$E(\mathbb{F}_{3^{m \cdot n}})[\ell]$$
 with m prime and n small

▶ Weil descent (or Weil restriction to scalar) apply:

$$E(\mathbb{F}_{3^{m \cdot n}}) \cong W_E(\mathbb{F}_{3^m})$$

- ► Gaudry-Hess-Smart attack:
 - $W_E(\mathbb{F}_{3^m})$ might map to $Jac(\mathcal{C})$, with \mathcal{C} a curve of genus at least n
 - index calculus algorithm: solve DLP in $\tilde{O}((3^m)^{2-\frac{2}{n}})$
- ► Static Diffie-Hellman problem
 - leakage when reusing private key (e.g. ElGamal encryption)
 - Granger's attack: complexity in $\tilde{O}((3^m)^{1-\frac{1}{n+1}})$
 - revoke key after a certain amount of use is an effective workaround

Suitable curves for 128-bit security level

			Cost of the attacks (bits)			
p^m	n	$\log_2\ell$	Pollard's ρ	FFS		
3 ⁵⁰³	1	697	342	132		
3 ⁹⁷	5	338	163	130		
3 ⁶⁷	7	612	300	129		
3 ⁵³	11	672	330	140		
3 ⁴³	13	764	376	138		

Suitable curves for 128-bit security level

			Cost of the attacks (bits)			
p ^m	n	$\log_2\ell$	Pollard's ρ	FFS	GHS	SDH
3 ⁵⁰³	1	697	342	132	_	_
3 ⁹⁷	5	338	163	130	245	128
3 ⁶⁷	7	612	300	129	182	92
3 ⁵³	11	672	330	140	152	77
3 ⁴³	13	764	376	138	125	63

Suitable curves for 128-bit security level

			Cost of the attacks (bits)			
p ^m	n	$\log_2 \ell$	Pollard's ρ	FFS	GHS	SDH
3 ⁵⁰³	1	697	342	132	_	_
3 ⁹⁷	5	338	163	130	245	128
3 ⁶⁷	7	612	300	129	182	92
3 ⁵³	11	672	330	140	152	77
3 ⁴³	13	764	376	138	125	63

Outline of the talk

- Context
- ▶ Pairings-friendly curves with 128 bits of security
- ▶ Implementation and results

Experimental setup

▶ Full Tate pairing computation over $E(\mathbb{F}_{3^{97\cdot5}})$

	×	+	$(.)^3$
F ₃₉₇	37289	253314	21099

Experimental setup

▶ Full Tate pairing computation over $E(\mathbb{F}_{3^{97\cdot 5}})$

	×	+	$(.)^3$
F ₃₉₇	37289	253314	21099

- ► Finite field coprocessor
 - Prototyped on Xilinx Virtex-4 LX FPGAs
 - Post-place-and-route timing and area estimations

Calculation time

Calculation time

Calculation time

Area-Time product

Area-Time product

Area-Time product

Comparison with ASIC and software

	Supersingular	BN-curves
	curves	DIV-cuives
FPGA	2.11 ms	52 ms
	(This Work)	(Ghosh <i>et al.</i> , 2010)
ASIC	_	2.91 ms
		(Fan <i>et al.</i> , 2009)
Software	7.59 ms	0.92 ms
(2.4 GHz Intel Core2)	(Beuchat <i>et al.</i> , 2009)	(Aranha <i>et al.</i> , 2010)

Conclusion

- ▶ Compact, yet reasonably fast, accelerator for pairings with 128 bits of security
 - supersingular elliptic curve
 - low characteristic
 - take advantage of the sub-optimal k to implement efficient field arithmetic

Conclusion

- ▶ Compact, yet reasonably fast, accelerator for pairings with 128 bits of security
 - supersingular elliptic curve
 - low characteristic
 - take advantage of the sub-optimal k to implement efficient field arithmetic
- ▶ Implement this pairing on more curves:
 - better understanding of the software/hardware frontier
 - hopefully improve performance
 - try higher security level
 - study genus-2 supersingular curves

Thank you for your attention Questions?