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Hardware accelerators for pairing computation

» Pairings are (almost) everywhere!

wide range of targets and applications

* low-resource environment (embedded systems, smart card, . ..)
* high-performance computation (bank server, .. .)

non-trivial to compute

* complex mathematical structure
* finite field arithmetic
* substantial amount of computation

» Needs in hardware implementation

computation not suited to general purpose processor
specific targets (e.g. smart card)
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Hardware accelerators for pairing computation

» Pairings are (almost) everywhere!

wide range of targets and applications

* low-resource environment (embedded systems, smart card, . ..)
* high-performance computation (bank server, .. .)

non-trivial to compute

* complex mathematical structure
* finite field arithmetic
* substantial amount of computation

» Needs in hardware implementation

computation not suited to general purpose processor
specific targets (e.g. smart card)

» Previous work on FPGA implementations
low-security pairings

most are performance-oriented designs

» Our goal:

AES-128 equivalent security
compact accelerator
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Tate pairing

» Bilinear pairing:
€ Gl X GQ — GT
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Tate pairing

» E elliptic curve over F,

» ¢ large prime dividing #E(F,)

in general, { ~ #E(F,)
Hasse's bound : [#E(F,) — (9 +1)| <2\/q
thus, / ~ q

» [F,-rational (-torsion of E: E(F4)[¢] = {P € E(Fq) | [(]P = O}

» Tate pairing:
e: E(Fy)[/] x Gy — Gt
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Tate pairing

» E elliptic curve over F,

» ¢ large prime dividing #E(F,)

in general, { ~ #E(F,)

Hasse's bound : [#E(F,) — (9 +1)| <2\/q

thus, / ~ q
» [F,-rational (-torsion of E: E(F4)[¢] = {P € E(Fq) | [(]P = O}
» Embedding degree: k, the smallest integers. t. £ | gk —1

» Set of /-th root of unity: py = {u € [F’;k | uf =1}

» Tate pairing:
e: E(Fq)[l] x E(Fge)[l] = jue C D:Zk
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Tate pairing

» E elliptic curve over F,

» ¢ large prime dividing #E(F,)
in general, { ~ #E(F,)
Hasse's bound : [#E(F,) — (9 +1)| <2\/q
thus, / ~ q

» [F,-rational (-torsion of E: E(F4)[¢] = {P € E(Fq) | [(]P = O}
» Embedding degree: k, the smallest integers. t. £ | gk —1
> Set of (-th root of unity: py = {u € F, | ut =1}

» Tate pairing:
e: E(Fq)[f] x E(Fg)[l] = e C F o

» Compute thanks to Miller's iterative algorithm

number of iteration proportional to the size of the field
a multiplication over [« at each iteration
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General attacks

e : E(Fo)[f] % E(Fg)[l] = e C Fi

» Pollard’s p on the torsion subgroup E[/]

\/7l/2 ~ \/7q/2 group operations

complexity exponential in g
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General attacks

e E(Fg)[] x E(Fg)[f] = 1 C Fy

» Pollard’s p on the torsion subgroup E[/]

\/7l/2 ~ \/7q/2 group operations

complexity exponential in g

» Discrete logarithm in finite field multiplicative group Pc;k

FFS or NFS — L [1/3, ¢]
complexity subexponential in g*
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General attacks

e E(Fq)[(] x E(Fg)[] = pe C Fi

» Pollard’s p on the torsion subgroup E[/]

\/7l/2 ~ \/7q/2 group operations

complexity exponential in g

» Discrete logarithm in finite field multiplicative group Pc;k

FFS or NFS — L [1/3, ¢]
complexity subexponential in g*

» k acts as a cursor to balance the complexity of the two attacks

» k = 12: optimal for the 128-bit security level
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Outline of the talk

» Pairings-friendly curves with 128 bits of security
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Supersingular elliptic curves Vs. Barreto—Naehrig curves

» Definition: » Definition:

E/F3: y>=x3—x+b,b#0 E/F,: y2=x34+b,b#0,
p = 36a* — 3603 + 24a% — 6a + 1

» Supersingular curve » Ordinary curve
= Simpler curve arithmetic (efficient tripling formulae)

N. Estibals — Compact hardware for 128-bit-security Tate pairing 6 /18



Supersingular elliptic curves Vs. Barreto—Naehrig curves

» Definition: » Definition:
E/F3: y>=x3—x+b,b#0 E/F,: y2=x34+b,b#0,
p = 36a* — 360 + 240% — 6 + 1

» Supersingular curve » Ordinary curve
= Simpler curve arithmetic (efficient tripling formulae)

» Distortion map, modified pairing: » No distortion map

51 E(Fg)[f] — E(Fg)[/]
&(P, Q) = e(P,4(Q))

= Symmetric pairing (BN cannot be used with all protocols)
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Supersingular elliptic curves

» Definition:

E/F3: y>=x3—x+b,b#0

» Supersingular curve
= Simpler curve arithmetic

» Distortion map, modified pairing:

5 E(F)[] — E(Fg)[1]
&(P, Q) = e(P,4(Q))
= Symmetric pairing (BN can

» Small characteristic field arithmetic

Vs. Barreto—Naehrig curves

» Definition:

E/F,: y2=x34+b,b#0,

p = 36a* — 3603 + 24a% — 6a + 1

» Ordinary curve
(efficient tripling formulae)

» No distortion map

not be used with all protocols)

» Modular arithmetic

= No carry, better suited to hardware implementation

» Small embedding degree (k = 6)

» Optimal embedding degree (k = 12)

= Larger field of definition for the same security level. For 128 bits of security:

Fq with g = 3900
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Supersingular elliptic curves

» Definition:

E/F3: y>=x3—x+b,b#0

» Supersingular curve
= Simpler curve arithmetic (efficient tripling formulae)

» Distortion map, modified pairing:

51 E(Fg)[f] — E(Fg)[/]
&(P, Q) = e(P,4(Q))

= Symmetric pairing
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Which field of definition?

e : E(Fo)[f] x E(Fyo)[] = e C Fi

» Arithmetic of [qu over Fg:

q tower field fixed by pairing construction
already optimized by previous works
Critical operation: products in F,

Fq
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Which field of definition?

e : E(Fo)[f] x E(Fgo)[f] — e C Fi

» Arithmetic of [qu over Fg:

Foe tower field fixed by pairing construction
already optimized by previous works
Critical operation: products in F,
Arithmetic of F
Software » Arithmetic of I
Hardware @77 traditionally implemented in hardware
does not scale to the 128-bit security level
F3
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e : E(Fo)[f] x E(Fgo)[f] — e C Fi

» Arithmetic of [qu over Fg:

q tower field fixed by pairing construction
already optimized by previous works
Critical operation: products in Fq

» Arithmetic of F,

Software .
............ g [Fq = F3mn

Hardware traditionally implemented in hardware

does not scale to the 128-bit security level

» l|dea: lower the soft/hardware frontier

insert F3m in the tower field
implement it in hardware

Fs F3
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Which field of definition?

e : E(Fo)[f] x E(Fgo)[f] — e C Fi

» Arithmetic of [qu over Fg:

q tower field fixed by pairing construction
already optimized by previous works
Critical operation: products in Fq

» Arithmetic of F,

Software .
............ g [Fq = F3mn

Hardware traditionally implemented in hardware

does not scale to the 128-bit security level

Subgquadratic _
multiplication . |dea: lower the soft/hardware frontier

insert F3m in the tower field

implement it in hardware
use subquadratic multiplication algorithm for
Quadratic [Fq over [F3m
multiplication
F3 F3
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Which field of definition?

e : E(Fo)[f] x E(Fgo)[f] — e C Fi

» Arithmetic of [qu over Fg:

q tower field fixed by pairing construction
already optimized by previous works
Critical operation: products in Fq

» Arithmetic of F,

Software .
............ g [Fq = F3mn

Hardware traditionally implemented in hardware

does not scale to the 128-bit security level

Subgquadratic _
multiplication . |dea: lower the soft/hardware frontier

insert F3m in the tower field

implement it in hardware
use subquadratic multiplication algorithm for
Quadratic [Fq over Fszm
multiplication
» Problem:
F3 F3 field with composite extension degree

allows some additional attacks
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Weil Descent-based attacks

» We now consider:
E(F3mn)[¢] with m prime and n small

» Weil descent (or Weil restriction to scalar) apply:

E(Fmn) = We(Fsn)
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Weil Descent-based attacks

» We now consider:
E(F3mn)[¢] with m prime and n small

» Weil descent (or Weil restriction to scalar) apply:

» Gaudry—Hess—Smart attack:

We(F3m) might map to Jac(C), with C a curve of genus at least n
index calculus algorithm: solve DLP in O((3")% 7)

N. Estibals — Compact hardware for 128-bit-security Tate pairing

8/ 18



Weil Descent-based attacks

» We now consider:
E(F3mn)[¢] with m prime and n small

» Weil descent (or Weil restriction to scalar) apply:

E(Fmn) = We(Fsn)

» Gaudry—Hess—Smart attack:

We(F3m) might map to Jac(C), with C a curve of genus at least n
index calculus algorithm: solve DLP in O((3")% 7)

» Static Diffie-Hellman problem

leakage when reusing private key (e.g. EIGamal encryption)
Granger's attack: complexity in O((3™)' 1)
revoke key after a certain amount of use is an effective workaround
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Suitable curves for 128-bit security level

Cost of the attacks (bits)
p™ | n |log, ¢ | Pollard’s p | FFS
39| 1 | 697 342 132
3% | 5| 338 163 130
307 | 7] 612 300 129
3% | 11| 672 330 140
3% 13| 764 376 138
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Suitable

curves for 128-bit security level

Cost of the attacks (bits)

p™ | n |log,? | Pollard’s p | FFS | GHS | SDH
3931 1| 697 342 132 | - -~

3% | 5| 338 163 130 | 245 | 128
397 | 7| 612 300 129 | 182 | 92
3% | 11| 672 330 140 | 152 | 77
3% 13| 764 376 138 | 125 | 63
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Outline of the talk

» Implementation and results
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Arithmetic of the extension field

F o
» Polynomial representation: Fzmn = F3m[X]/(f(X))
f irreducible polynomial of degree n
addition, cubing (Frobenius automorphism): easy to
compute
u:q — [F3mvn
e
Hardware
F3
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Arithmetic of the extension field

» Polynomial representation: Fzmn = F3m[X]/(f(X))

f irreducible polynomial of degree n
addition, cubing (Frobenius automorphism): easy to
compute

Fg="Fzmn Multiplication

bottleneck of pairing computation

Hardware
our test case: multiplication in Fzors

* using "schoolbook” algorithm
* 25 products in [F3o
* 24 additions in F3zr

F3
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» Polynomial representation: Fzmn = F3m[X]/(f(X))
f irreducible polynomial of degree n
addition, cubing (Frobenius automorphism): easy to
compute

Fg="Fzmn Multiplication

bottleneck of pairing computation
subquadratic multiplication algorithm
* Karatsuba
* Karatsuba with Montgomery's trick
* Montgomery's formulae
Hardware * CRT-based algorithms
our test case: multiplication in Fzors
* using "schoolbook” algorithm
* 25 products in F3or
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F3
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Arithmetic of the extension field

» Polynomial representation: Fzmn = F3m[X]/(f(X))
f irreducible polynomial of degree n
addition, cubing (Frobenius automorphism): easy to
compute

Fg="Fzmn Multiplication

bottleneck of pairing computation
subquadratic multiplication algorithm
* Karatsuba
* Karatsuba with Montgomery's trick
* Montgomery's formulae
Hardware * CRT-based algorithms
our test case: multiplication in Fzors
* using CRT-based algorithm
* 12 products in Fzor
* 53 additions in [F3o

F3
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Experimental setup

» Full Tate pairing computation over E([F3os)

X

+

()°

[F 307

37289

253314

21099
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Experimental setup

» Full Tate pairing computation over E([F3os)

X

+

()°

[F 307

37289

253314

21099

» Finite field coprocessor

Prototyped on Xilinx Virtex-4 LX FPGAs
Post-place-and-route timing and area estimations
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Area

Area [slices]

100k~
xc4vIx200
80k
60k
xc4vIx100
40k
2ij xc4vix40
] xc4vIx15
1

65 70 75 80 85 90 95 100 105 110 115 120 125 130
Security [bits]
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Calculation time

Calculation time [us]

10000+

] ¢

10001,
IOOi.!z;;jﬁéz:::::::::::t
10_'//'/‘
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Calculation time

Calculation time [us]

10000+

° 2.11 ms/ [F 3075
1000

10://

65 70 75 80 85 90 95 100 105 110 115 120 125 130
Security [bits]

N. Estibals — Compact hardware for 128-bit-security Tate pairing 14 / 18



Calculation time

Calculation time [us]

1 -
0000+ 4.47 ms / Foiesr

°
° 2.11 ms/ [F 3075
1000

10://

65 70 75 80 85 90 95 100 105 110 115 120 125 130
Security [bits]
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Area—time product [slices - s]
10007

Area—Time product

100+

10

)
°
{. °
L] )
°
E °
° °
1e
°
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Area—Time product

Area—time product [slices - s]
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Comparison with ASIC and software

Supersingular

BN-curves
curves
EPGA 2..11 ms 52 ms
(This Work) (Ghosh et al., 2010)
ASIC B 2.91 ms
(Fan et al., 2009)
Software 7.59 ms 0.92 ms

(2.4 GHz Intel Core2)

(Beuchat et al., 2009)

(Aranha et al., 2010)
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Conclusion

» Compact, yet reasonably fast, accelerator for pairings with 128 bits of security

supersingular elliptic curve
low characteristic
take advantage of the sub-optimal k to implement efficient field arithmetic
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Conclusion

» Compact, yet reasonably fast, accelerator for pairings with 128 bits of security

supersingular elliptic curve

low characteristic
take advantage of the sub-optimal k to implement efficient field arithmetic

» Implement this pairing on more curves:
better understanding of the software/hardware frontier
hopefully improve performance

try higher security level
study genus-2 supersingular curves

N. Estibals — Compact hardware for 128-bit-security Tate pairing 17 / 18



Thank you for your attention
Questions?
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